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Abstract 

Based on the optimality principle (that the global energy expenditure rate is at its 

minimum for a given landscape under steady state conditions) and calculus of variations, 

we have derived a group of partial differential equations for describing steady-state 

optimal landscapes without explicitly distinguishing between hillslopes and channel 

networks. Other than building on the well-established Mining’s equation, this work does 

not rely on any empirical relationships (such as those relating hydraulic parameters to 

local slopes). Using additional constraints, we also theoretically demonstrate that steady-

state water depth is a power function of local slope, which is consistent with field data.  

 

Key words: Optimality; landscape modeling; USA 
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1. INTRODUCTION 

    Mathematical modeling of landscapes (for drainage basins) has been an active research 

area in the hydrology community. A landscape consists of the two interrelated systems: 

the channel network and hillslopes (Rodriguez-Iturbe et al., 1992). Hillslopes generate 

water runoff resulting from rainfalls and the network collects water runoff through the 

channel reaches and transports it downstream. There exist approximately three classes of 

approaches for modeling (and/or characterizing) the morphology of a drainage basin 

associated with uniform lithology and minor structural control (Sun et al., 1995). The 

models in the first class are based on Shreve’s fundamental stochastic postulate of 

random topology (Shreve, 1966, 1967).  The second class is based on optimality 

principles (Howard, 1990; Rodriguez-Iturbe et al., 1992; Sun et al., 1995; Rinaldo et al., 

2006). The third class is derived from a consideration of physical processes including 

erosion and deposition (e.g., Willgoose et al., 1991; Howard, 1994). The models based on 

optimality principles are particularly of interest, because similar principles seem to be 

able to explain a great number of complex natural phenomena that are determined by 

distinctly different processes (Bejan, 2000).    

     The role of optimality principles in forming complex natural patterns has been 

recognized for many years. Leopold and Langbein (1962) proposed a maximum entropy 

principle for studying the formation of landscapes. Howard (1990) developed a 

mathematical model (for optimal drainage networks) in which an initial network was 

generated by a random headward growth model, and then channels were shifted to 

minimize total stream power (or energy expenditure) within the network. The resulting 

networks are visually and morphometrically more similar to natural networks than the 

initial networks that are not subject to the minimized energy expenditure. 

     Rodriguez-Iturbe et al (1992) postulated principles of optimality in energy expenditure 

at both local and global scales for channel networks. The local optimality hypothesis 

states that networks will adjust their channel properties toward an optimal state in which 

the energy dissipation rate per unit channel area is constant throughout the network. The 

global optimality states that networks will adjust their topological structure such that the 

total energy dissipation rate is at the minimum within a given network. Based on these 

principles, Rinaldo et al. (1992) developed modeling approaches to generate optimal 
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channel networks (OCNs) and compared their results with those from natural river 

basins. Striking similarity was observed for natural and optimal networks in their fractal 

aggregation structures and other relevant features. Positive comparisons between a 

variety of observations from natural channel networks and those derived from the 

optimality principles were also reported by Rodriguez-Iturbe et al (1992) and Molnar and 

Ramirez (1998), among others.   

          In this short communication, we propose a new theoretical framework for modeling 

optimal landscapes. While previous studies mainly use spatially “discrete” approaches as 

a result of considering energy dissipation through channel networks only, we develop a 

group of (partial differential) governing equations for steady-state optimal landscapes 

(including both channel networks and associated hillslopes) using calculus of variations 

(Weinstock, 1974). This paper is organized as follows. The next section will present the 

detailed derivations for these equations. A simplified case is then discussed to reveal that 

often observed power-function relationships between water depth and local slope could 

be theoretically obtained based on the optimality principles. Finally, the potential 

limitations and further improvements of our work will be discussed.       

  
2. THEORY 

     We consider a landscape involving steady-state water flow and surface evolution 

processes. This assumption has been implicitly employed in previous studies on 

topological structures of channel networks (Howard, 1990; Rodriguez-Iturbe et al., 1992; 

Rinaldo et al., 2006). A land surface constantly responds to spatially and temporally 

variable forcing (such as rainfall). However, it develops average conditions (such as 

average hydraulic geometry) that are relatively stable on a large time scale (Leopold and 

Maddock, 1953; Molnar and Ramirez, 1998). Rinaldo et al. (2006) further indicated that 

several statistical properties are found to be almost the same for many rivers, irrespective 

of their age, supporting the steady-state treatment. Along the same line, rainfall is 

assumed to be in steady state and uniform through the landscape under consideration. 

While the model to be discussed can be extended to cases in which land properties (such 

as those related to soil and vegetation) are spatially heterogeneous, For simplicity we 

focus on land surfaces with homogeneous properties. Although infiltration processes 
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occurs during a rainfall event, they generally correspond to a relatively small portion of 

the rainfall water, especially during the period of heavy rainfalls that are expected to have 

important effects on landscape evolution processes. Therefore, infiltration is ignored in 

this study. 

      Based on the above simplifications, coupled water-flow (over a land surface) and 

surface-elevation equations can be derived from the principle that global energy 

expenditure rate is at the minimum. From the water mass (volume) conservation, steady-

state water flow equation is given by 

Q
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                                                                    (1) 

 

where x and y are two horizontal coordinate axes, qx and qy (m
2/s) are water fluxes (water 

velocity multiplied by water depth) along x and y directions, respectively, and Q (m/s)  is 

the rainfall rate.  

    Accordingly, energy expenditure rate for unit land-surface area, E , can be expressed 

as 
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The above equation simply states that for a given unit area, the energy expenditure rate at 

that location is equal to the energy carried by water flowing into the area minus the 

energy carried by water flowing out of the area. The rainfall is assumed to have the same 

energy as water at the location where the rain falls. The E (a function of x and y) 

represents the total energy including both potential (corresponding to elevation z) and 

kinetic energy: 

g

v
zE

2

2

                                                                          (3) 

 

where g (m2/s) is gravitational acceleration. Note that the second term is generally small 

and has been ignored in some previous studies (e.g., Howard, 1990; Rinaldo et al., 2006). 

For completeness, this term is included here.  
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    A combination of Equations (1) and (2) yields  
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    The water flux is generally given by Manning’s equation (Feng and Molz, 1997)  
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In Equation (5c), h (m) is water depth and n is Manning coefficient. In Equation (5d), S is 

called energy gradient that has been commonly approximated by elevation gradient (Feng 

and Molz, 1997). Note that Manning’s equation was derived based on a consideration 

that water energy loss results from friction force only. In other words, the energy loss 

related to maintenance of channels (corresponding to sediment transport) (Rodriguez-

Iturbe et al., 1992) is not considered by Manning’s equation. Although it is 

mathematically possible to consider such energy loss in determining water fluxes, 

previous studies seem to indicate that the current treatment is adequate for the purpose of 

flux calculations (Feng and Molz, 1997). One may also argue that during steady state and 

optimal conditions, energy loss related to sediment transport may be small. Nevertheless, 

this treatment is considered to be the first-order approximation only and further 

improvement may be possible in the future.  

     When we combine Equations (4) and (5), the global energy expenditure rate through 

domain    is given by 

 
 

 dxdyASEdxdy )( 4/3
*                                                           (6) 
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      The optimality principle in our problem is to minimize the absolute value of the 

above integral. To do so, we employ calculus of variations that seeks optimal (stationary) 

solutions to a functional (a function of functions) by identifying unknown functions 

(Weinstock, 1974). For example, the former corresponds to the integral defined in 

Equation (6) and the latter to land-surface elevation distribution z(x,y). 

    Based on Equations (1), (5) and (6), the Lagrange for the given problem is given by 
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Note that the first term is from Equation (6) and other terms are constraints from 

Equations (1) and (5). Use of these constraint terms allows considering related functions 

to be independent when determining the optimal solution to Equation (6). The   

functions are Lagrange multipliers. A mathematically equivalent way to define L to avoid 

the use of some (or all) constrains is to directly insert Equations (1) and (5) into the first 

term of Equation (7). In this case, the number of independent functions will be reduced. 

However, the use of Equation (7) is more straightforward and easier to handle for the 

given problem.  

   The following Euler-Lagrange equation is used to determine an unknown function w 

associated with L to minimize the integral defined in Equation (6) (Weinstock, 1974): 
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where wx and wy are partial derivatives with respect to x and y respectively. In this study, 

w corresponds to A, qx, qy, S* and E, respectively. (Also note that application of the Euler-

Lagrange equation to Lagrange multipliers will recover Equations (1) and (5).)  
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      Replacing w with A in Equation (8) and using the definition of S* (Equation (5d)), we 

obtain 
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      Replacing w with qx and qy, respectively, in Equation (8) yields  
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     Replacing w with S* in Equation (8) and making use of Equation (9), we have  
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    Again, replacing w with E in Equation (8), letting E 1 , and using Equation (1), 

we obtain 
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     By definition of  , Equation (9) can be rewritten as 
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     Combining Equations (1), (5a) and (5b) gives a new form of water flow equation: 
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      A combination of Equations (12) to (14) corresponds to the minimization of the 

absolute value of global energy expenditure rate in Equation (6). The above three 
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equations involve spatial distributions of three variables (A, E, and  ), and therefore 

these distributions can be uniquely solved using these equations under appropriate 

boundary conditions. The exact physical meaning of the intermediate variable  remains 

to be found. As indicated in Equation (13), gradients of E and   are perpendicular to 

each other. Equations (12) and (14) are also similar in form, although S* is directly 

related to E, rather than . Implications of these interesting features to topological 

structures of landscape need to be explored in the future. Elevation distributions (z(x,y)) 

can be obtained from E(x,y) and water flow conditions from Equation (3). Note that the 

focus of this note is on the derivation of the equations for steady-state optimal landscapes 

(Equations (12) to (14)) whose validity can be justified by the mathematical rigor of the 

derivation procedure and the validity of the optimality principle. We will leave to future 

studies the development of procedures to numerically solve these equations.   

     It is of interest to compare the current study with those relating modeling landscape 

processes to calculus of variations (Sinclair and Ball, 1996; Peckham, 2003]. The chief 

difference between this work and those studies includes two aspects. First, the current 

study starts with the minimization of rigorously defined glob energy expenditure rate, 

whereas Sinclair and Ball (1996) and Peckham (2003) started with a given partial 

differential equation for landscape evolution, obtained from considering erosion and/or 

water flow processes based on several assumptions, to derive the corresponding 

(Lagrange) functional. However, the links between their derived functional and the 

energy expenditure is weak, and therefore physical interpretation of their functional 

remains to be found. Although the exact physical meaning of the intermediate variable 

 is not clear yet here, we believe that this can be resolved in the future, because it has a 

clear geometrical interpretation that its gradient is perpendicular to the energy gradient 

(Equation (13)). It is likely that   is closely related to the underlying erosion processes 

that are not explicitly considered herein.  Second, in addition to the optimality of energy 

expenditure, our theory does not rely on empirical relationships except for the well-

established Mining’s equation, whereas those previous studies are based on either 

empirical power functions of hydraulic parameters (Peckham, 2003) or an assumption 

that erosion rate is proportional to the product of power functions for related parameters  

(Sinclair and Ball, 1996).    
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3. A SIMPLIFIED CASE 

       While Equations (12) to (14) provide a general description for steady-state optimal 

landscapes, we study in this section a simplified case that gives some interesting closed-

form results. This simplified case also partially serves as a case study to demonstrate the 

usefulness of the general framework employed in this study.  We consider two additional 

constraints for the optimization problem. First, we assume A to be a function of local 

slope S only. Many studies indicate that on average a number of hydraulic parameters 

including water depth h (that is directly related to A in Equation (5c)) can be considered 

as functions of local slope (Leopold and Maddock, 1953). Note that in general, A should 

be considered a function of location, as discussed in Section 2.  Secondly, we employ the 

following constraint: 

                                                                                        (15) 


 CEdxdy

 

where C is a constant. Since E is mainly composed of potential energy z, the above 

equation essentially states that the average elevation through the model domain (or total 

volume of the landscape under consideration) remains unchanged, which is consistent 

with the steady-state assumption made in this study. It should be emphasized that the 

optimality principle corresponds to minimization of global energy expenditure rate, not 

the total energy within the model domain. Under steady state conditions, the global 

energy expenditure is equal to difference between the latter and energy carried by water 

flowing out of the system.  

      Along the same line to derive Equation (7), the Lagrange for this simplified problem 

is given by 
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where the Lagrange multipliers  and   are a function of location and a constant, 

respectively. The last term on the right hand side of Equation (16) corresponds to the 

constraint defined in Equation (15). Note that the constraint related to water flow, 
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Equation (14), is not included in Equation (16), but will be handled later for mathematical 

convenience.  

   Applying the Euler-Lagrange Equation (8) to S* gives 
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   Applying the Euler-Lagrange Equation (8) to E yields 
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   For the optimization results to be physically valid, they must satisfy the water flow 

equation (14). A direct comparison between Equations (14) and (18) reveals that they are 

identical under the following conditions 
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Combining Equations (17) and (19), we can obtain 
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From Equation (5c), water depth h can be related to the local slope S by 

kSh  9.0                                                                                         (21) 

 

where k is a constant related to rainfall and other conditions, and likely to be site specific.  

      Equation (21) shows that under the two additional constraints mentioned above, 

minimization of global energy expenditure rate results in a simple outcome, that water 

depth throughout the landscape is a power function of local slope. This theoretical result 

agrees very well with field observations for channel networks (e.g., Leopold and 

Maddock 1953). Leopold and Langbein (1962) indicate that on average, rivers in 

midwestern United States follow the relationship 

8.0 Sh                                                                                         (22) 
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This corresponds k = 0.1 in our Equation (21). 

      While some interesting results are obtained, it is important to keep in mind the 

limitations of the additional constraints used in this section. For example, A (or water 

depth) depends not only on local slope, but also locations. This may explain why 

relations between observed recharge (related to water depth) and local slopes show 

relatively large degrees of fluctuations in many cases (e.g., Ijjasz-Vasquez and Bras, 

1995). Nevertheless, the current treatment (that hydraulic parameters depend on local 

slopes only) has often been regarded as a good approximation in practice (Leopold and 

Maddock, 1953; Leopold and Langbein, 1962). Therefore, our results are relevant to 

practical applications. Also note that a combination of Equations (14) and (20) will result 

in a single partial differential equation describing steady-state landscape, which is 

essentially similar to that developed by Peckham (2003), though arrived at by a quite 

different line of reasoning.     

 

4. CONCLUDING REMARKS 

     Based on the optimality principle and calculus of variations, this note derives a group 

of partial differential equations for describing steady-state optimal landscapes. They are 

developed for describing the whole landscapes without explicitly distinguishing between 

hillslopes and channel networks. Other than building on the well-established Mining’s 

equation, the study does not rely on any empirical relationships (such as those relating 

hydraulic parameters to local slopes). Using additional constraints, we also demonstrate 

that water depth is a power function of local slope, which is consistent with field data. 

      However, this needs to be extended in future studies. First, the physical meaning of   

 Equations (12) and (13) remains to be identified, while geometrically its gradient is 

perpendicular to the local energy gradient. Second, because the current study does not 

explicitly consider the erosion process (expected to be implicitly included in the 

optimality principle), the mathematical correlation between our equations and the 

corresponding erosion process is not totally clear at this point. Finally, numerical 

procedures need to be developed to solve the coupled equations - Equations (12) to (14).    

in
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