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3. Executive Summary 
 
 Multiscale modeling of stochastic systems, or uncertainty quantization of  
multiscale modeling is becoming an emerging research frontier, with rapidly growing 
engineering applications in nanotechnology, biotechnology, advanced materials, and geo-
systems, etc. While tremendous efforts have been devoted to either stochastic methods or 
multiscale methods, little combined work had been done on integration of multiscale and 
stochastic methods, and there was no method formally available to tackle multiscale 
problems involving uncertainties. By developing an innovative Multiscale Stochastic 
Finite Element Method (MSFEM), this research has made a ground-breaking contribution 
to the emerging field of Multiscale Stochastic Modeling (MSM) (Fig 1). The theory of 
MSFEM basically decomposes a boundary value problem of random microstructure into 
a slow scale deterministic problem and a fast scale stochastic one. The slow scale 
problem corresponds to common engineering modeling practices where fine-scale 
microstructure is approximated by certain effective constitutive constants, which can be 
solved by using standard numerical solvers. The fast scale problem evaluates fluctuations 
of local quantities due to random microstructure, which is important for scale-coupling 
systems and particularly those involving failure mechanisms. The Green-function-based 
fast-scale solver developed in this research overcomes the curse-of-dimensionality 
commonly met in conventional approaches, by proposing a random field-based 
orthogonal expansion approach. The MSFEM formulated in this project paves the way to 
deliver the first computational tool/software on uncertainty quantification of multiscale 
systems. The applications of MSFEM on engineering problems will directly enhance our 
modeling capability on materials science (composite materials, nanostructures), 
geophysics (porous media, earthquake), biological systems (biological tissues, bones, 
protein folding). Continuous development of MSFEM will further contribute to the 
establishment of Multiscale Stochastic Modeling strategy, and thereby potentially to 
bring paradigm-shifting changes to simulation and modeling of complex systems cutting 
across multidisciplinary fields.   
 

 

Figure 1: Parallel paths of Homogenization-MDM & Renormalization–MSM  
(Xu et al, 2009) 
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4. A comparison of the actual accomplishments with the goals and objectives  
 
4.1 Objectives quoted from the project proposal  
 

“By developing formulation and algorithms, this research will provide to 
scientific and engineering communities novel computational methods for multiscale 
stochastic elliptic partial differential equations (PDEs). Two multiscale stochastic 
numerical methods, the numerical stochastic homogenization method (NSHM) and the 
multiscale stochastic finite element method (MsSFEM), will be formally established to 
solve stochastic boundary value problems characterized with highly oscillating stationary 
and non-stationary random coefficients, respectively.  The three-year research program 
will accomplish the development stage of multiscale stochastic numerical methods for 
stochastic boundary value problems, based on which software production and solvers for 
realistic problems will become attainable in the future production stage (Figure 4.5). The 
methods developed in this research program are further expected to act as a paradigm for 
solving of general stochastic PDEs involving multiscale stochastic data.” 
 
4.2 Actual accomplishments 
  

1. The numerical stochastic homogenization method has been formally 
established with formulation of stochastic variational principles (Xu, 2009) 
and numerical implementation on multi-phase heterogeneous materials (Xu 
and Chen, 2009); 

2. Based on a preliminary multiscale stochastic framework on elliptic PDEs (Xu, 
2007), MSFEM has been formally established for elastic boundary value 
problems of both stationary and non-stationary random heterogeneous 
materials (Xu et al, 2009). Various numerical algorithms to implement 
MSFEM have been developed (Shen and Xu, 2010).    

 
The MSFEM formulated has become ready for the next stage of software production, and 
the primary goals of the project have been completely achieved. In the addition to the 
above accomplishments, the following works related to multiscale stochastic modeling of 
materials have been performed under the sponsorship of this project: 
 

3. Multiscale stochastic modeling of strength of nanocomposites (Xu et al, 2010; 
Beyerlein et al, 2009); 

4. Stochastic modeling of fracture of random materials (Yang and Xu, 2008; Hu 
and Xu, 2009).   

 
 
5. Summary of Project Activities   
 
5.1 Original hypotheses and underlying variational principles  
  

An elastic boundary value problem (BVP) of random heterogeneous materials is 
governed by a 4th-order elliptic equation with randomly fluctuating coefficients (elastic 
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moduli) represented by a multi-phase random field. Since the focus of this research is on 
uncertainty quantification of responses due to spatial randomness of microstructures, the 
body force and boundary conditions are assumed to be deterministic.   
 To develop a finite element computational model for multiscale stochastic 
boundary value problems, the underlying stochastic variational principles are required, 
analogous to the role played by deterministic variational principles in the classical finite 
element formulation. In (Xu, 2009) two new stochastic variational principles are 
formulated, which provide a theoretical foundation for formulation of MSFEM.   
 
5.2 Approaches used 
 
 For scale-decoupling problems when there is a clear scale separation between the 
size of a BVP and the size of microstructure, the stochastic homogenization approach can 
be applied to solving of multiscale problems involving uncertainties. To quantify the 
scale-coupling effects, or assess the minimal size of representative volume element, a 
numerical stochastic homogenization method is developed in (Xu and Chen, 2009).  
 For scale-coupling problems occurring in small-scale systems such as 
NEMS/MEMS, and failure problems, classical homogenization approach is inapplicable, 
and MSFEM is developed in this project. The underlying theory of the MSFEM is the 
stochastic variational principles formulated in (Xu, 2009). By decomposing a random 
BVP into a slow-scale BVP and fast-scale one, the original PDE is transformed into an 
integral equation and Green-function-based finite element method is therefore developed 
to resolve the equation. More description of the computer model is given in Section 7 of 
this report.     
 
5.3 Problems encountered and departure from planned methodology and assessment of 
the impacts on the project results 
 
 The MSFEM formulated in this project has been applied onto random 
heterogeneous materials characterized with stationary random fields. For non-stationary 
problems as originally planned, although the formulation of the MSFEM is identically 
applicable, the computational algorithms need to be modified and improved, especially 
for nonlinear problems characterized with evolving non-stationary random fields.  The 
continuous efforts along this direction are underway (with proposals to NSF pending), 
and the breakthrough is expected to significantly enhance predictive capability of failure 
of materials.   
 
5.4 Facts, figures, analyses and assumption used to support the conclusions 
 
 The underlying theory of the MSFEM is rigorously derived as the stochastic 
variational principles for stochastic BVP (Xu, 2009). The facts, figures, and assumption 
about the verification and numerical accuracy of MSFEM are provided in Section 7 
specifically.   
 
6.  Products Developed Under the Award 
 



6. 1 Publications 
 

Peer Reviewed Journal Articles 
 

1. X.F. Xu, K Hu, I.J. Beyerlein, and G. Deodatis, “Statistical strength of 
hierarchical carbon nanotube composites”, to be submitted 

2. L. Shen and X.F. Xu, “Multiscale Stochastic Finite Element Modeling of Random 
Elastic Heterogeneous Materials”, Computational Mechanics, 2010, 45 (6) 607-
621 

3. I.J. Beyerlein, P.K. Porwal, Y.T. Zhu, K. Hu and X.F. Xu, “Scale and twist effects 
on the strength of nanostructured yarns and reinforced composites”, 
Nanotechnology, 2009, 20, 485702 

4. X.F. Xu, X. Chen, and L. Shen, “A Green-Function-Based Multiscale Method for 
Uncertainty Quantification of Finite Body Random Heterogeneous Materials”, 
Computers and Structures, 2009, 87, 1416-1426  

5. K. Hu and X.F. Xu, “Probabilistic Upscaling of Material Failure Using Random 
Field Models - A Preliminary Investigation”, Algorithms (special issue on 
Numerical Simulation of Discontinuities in Mechanics) , 2009, 2(2), 750-763 

6. X.F. Xu, “Generalized Variational Principles for Uncertainty Quantification of 
Boundary Value Problems of Random Heterogeneous Materials”, ASCE Journal 
of Engineering Mechanics, 2009, 135 (10) 1180-1188 

7. X.F. Xu and X. Chen, “Stochastic Homogenization of Random Multi-phase 
Composites and Size Quantification of Representative Volume Element”, 
Mechanics of Materials (2009) 41 (2) 174-186 

8. Z.J. Yang and X.F. Xu, “A Heterogeneous Cohesive Model for Quasi-Brittle 
Materials Considering Spatially Varying Random Fracture Properties”, Comput. 
Methods Appl. Mech. Engrg. (2008) 197 (45-48) 4027-4039 

9. X.F. Xu, “A multiscale stochastic finite element method on elliptic problems 
involving uncertainties”, Comput. Methods Appl. Mech. Engrg. (2007) 196 (25-
28) 2723-2736 
 

Book Chapter 
 

10. I.J. Beyerlein, P.K. Porwal, Y.T. Zhu, X.F. Xu, S.L. Phoenix,  “Probabilistic 
strength of carbon nanotube yarns”, Advances in Mathematical Modeling and 
Experimental Methods for Materials and Structures: The Jacob Aboudi Volume. 
Gilat and Banks-Sills, (eds.), Springer. 2010 

 
Proceedings 

 
11. X.F. Xu, “Multiscale Modeling of Random Heterogeneous Materials”, 

Proceedings of the 10th International Conference on Structural Safety and 
Reliability, Osaka, Japan, September 13~17, 2009 

12. L. Shen and X.F. Xu, “Multiscale Stochastic Finite Element Method on Random 
Boundary Value Problems”, The second International Conference on High 
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Performance Computing and Applications, Lecture Notes in Computer Science, 
Springer, August 10~12, 2009 

13. X.F. Xu, “A Random-Field Based Orthogonal Expansion Method to Circumvent 
Curse-of-Dimension in Multiscale Modeling of Random Media Problems”, 
Proceedings of the Fourth Biot Conference on Poromechanics, Columbia 
University, New York City, June 8~10, 2009 

14. Z.J. Yang and X.F. Xu, “Modelling cohesive crack propagation in concrete 
considering random heterogeneous fracture properties”, Proceedings of the 9th Int 
Conf Computational Structures Technology. Athens, Greece, CD (paper No. 245), 
Sept 2008,  

15. K. Hu, X.F. Xu, “A reliability-based hierarchical multiscale model for failure 
prediction”, Proceedings of the Inaugural International Conference of the 
Engineering Mechanics Institute, Minneapolis, MN, May 18~21, 2008  

16. X. Chen, and X.F. Xu, “Uncertainty quantification of boundary value problems of 
random materials”, Proceedings of the Inaugural International Conference of the 
Engineering Mechanics Institute, Minneapolis, MN, May 18~21, 2008  

17. X.F. Xu, I.J. Beyerlein, K. Hu, G. Deodatis, “Multiscale stochastic modeling of 
the failure of fiber reinforced composites”, Proceedings of the 49th 
AIAA/ASME/ASCE/AHS/ ASC Structures, Structural Dynamics, and Materials 
Conference, Schaumburg, Illinois, April 7~10, 2008; AIAA-2008-2292 

18. X.F. Xu and Keqiang Hu, “Size effect of stochastic representative volume 
element on multiscale damage modeling”,  Proceedings of the 18th ASCE 
Engineering Mechanics Conference, Blackburg, VA, 2007 

 
6.2 Networks or collaborations fostered 
 

• Professor Manolis Papadrakakis (National technical University of Athens, 
Greece) and Dr. George Stefanou (National technical University of Athens, 
Greece) on multiscale stochastic modeling techniques;  

• Professor Aihui Zhou (Chinese Academy of Sciences) and Dr Lihua Shen 
(Capital Normal University, China) on numerical algorithms of MSFEM;  

• Professor George Deodatis (Columbia University) and Dr. Irene Beyerlein (Las 
Alamos National Laboratory) on multiscale stochastic modeling of 
nanocomposites; 

• Dr. Zhenjun Yang (University of Liverpool) on stochastic modeling of fracture;  
• Dr. Xi Chen (Beijing Jiaotong University) MSFEM on geotechnical engineering.  

 
 6.3 Software 
 
  Two MSFEM computing codes have been developed using Matlab and C++, 
respectively.  
 
 
7. Information Involving Computer Modeling 
 
7.1 Model description, key assumption, version, source and intended use 
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Model description Based on the stochastic variational principles proposed in (Xu, 2009), 
a Green-function-based (GFB) multiscale method is formulated in (Xu et al, 2009; Shen 
and Xu, 2010) to decompose a BVP of random microstructure into a slow scale 
deterministic problem and a fast scale stochastic one (Fig. 2), with the flow chart shown 
in Fig 2. The slow scale problem corresponds to common engineering modeling practices 
where fine-scale microstructure is ignored by choosing appropriate effective constitutive 
constants. The fast scale problem evaluates fluctuations of local quantities due to random 
microstructure, which is important for scale-coupling systems and particularly those 
involving failure mechanisms. To resolve the fast scale problem, a novel GFB finite 
element method is developed which is numerically efficient to capture effects of local 
microstructure.   
  
Key assumption Both body force and boundary conditions are assumed to be 
deterministic. The two-point/second-order correlation function used in the model is 
assumed to be known, and in the examples an exponential function is used. 
 
Version The primary version of MSFEM is developed for linear problems (elasticity). 
The future version of MSFEM will include the extension to nonlinear problems (e.g. 
plasticity, damage and fracture) which is under ongoing development.    
 
Source Two MSFEM computing codes have been developed using Matlab and C++, 
respectively. 
 
Intended use The current version of MSFEM is developed for uncertainty quantification 
of stress and strain due to randomness or incompleteness of microstructural information, 
provided the second-order correlation function is given.   

  

 
 

Fig 2. Left) A meso-scale BVP is decomposed into a slow scale problem and a 
fast/micro-scale one; Right) Flow chart of MSFEM (Shen & Xu, 2010) 
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7.2 Performance criteria for the model related to the intended use 
 
 The current MSFEM version is verified by comparison with the available 
theoretical solutions for special cases of stochastic boundary value problems whereas the 
correlation length approaches zero or infinitely large.  The efficiency of algorithms is 
evaluated by comparing the convergence rate with that of classical displacement-based 
finite elements. 
 
 
7.3 Test results to demonstrate the model performance criteria were met 
 

As shown in Fig 3, when the correlation length lc =100 is significantly larger than 
the BVP size (10x10), the MSFEM solution converges to the theoretical solution for the 
special case with an infinitely large correlation length.  

As shown in Table 1,2 &3  the error estimates vs. mesh size, the convergence rate 
of the Green-function-based FEM is of the order  for bilinear elements, which is 
one order faster than the classical displacement-based finite element method. The error 
estimates also indicate that the convergence rate becomes faster when the ratio between a 
correlation length and the BVP size is larger. 

  
 

 
 
 

Fig 3. MSFEM solutions for a variety of correlation lengths (the dash and bottom lines 
corresponding to theoretical solutions) (Xu et al, 2009)   
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Table 1: The errors of the solutions for  = 10 cm  cl
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Table 2: The errors of the solutions for  = 5 cm  cl
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Table 3: The errors of the solutions for  = 2 cm  cl
 
 
7.4 Theory behind the model 
 
 Over the past half century tremendous progress has been achieved in theoretical 
and computational mechanics, and scale-decoupling deterministic mechanics has been 
well established. Based on a fundamental assumption of macro-micro scale decoupling, 
micromechanics was first initiated around fifty years ago to investigate effects of 
microscopic heterogeneity and randomness on macroscopic behaviors. Major efforts have 
since been focused on evaluation of effective mechanical properties and variational 
bounds by incorporating statistical information of microstructures. While recent 
examination of the subject indicates a certain level of maturity on scale-decoupling 
micromechanics, the area of scale-coupling mechanics emerges on the horizon that 
addresses heterogeneity and randomness of materials across multiple length and time 
scales, particularly for the emerging high strength composite metamaterials.    

A scale-coupling mechanics problem refers to a boundary value problem with one 
or more of its dimensions comparable to the characteristic length of heterogeneity, e.g., 
the thickness dimension of thin films and certain components of micro-electronic-
mechanical systems (MEMS) being comparable to the grain size of polycrystals; or in 
failure phenomena when local statistical heterogeneity become crucial due to high 
sensitivity of local instabilities. For these cases, the classical scale-decoupling 
homogenization approach becomes inapplicable. A prevalent issue in computational 
mechanics is while a fine mesh is desired for achieving high accuracy, a certain mesh size 
threshold exists below which material properties of the finite elements become non-
deterministic due to scale coupling effects between boundaries and heterogeneity inside 
elements, i.e. scale-decoupling deterministic finite elements become questionable. To 
tackle scale-coupling problems involving uncertainties and the curse-of-dimensionality, 
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novel multiscale methods and algorithms are required. Based on a stochastic variational 
formulation, a multiscale stochastic finite element method was recently proposed (Xu, 
2007) to tackle multiscale elliptic problems involving uncertainties. It has been 
recognized that, to bring multiscale methods closer to real materials, new theories for 
scale-coupling mechanics and uncertainty quantification are demanded. One particularly 
notes that there are no rigorous variational principles available with respect to uncertainty 
quantification of boundary value problems. This forms a major motivation of this study.   

Based on classical variational principles, generalized variational principles are 
presented in (Xu, 2009) for BVPs of random heterogeneous solids. It is worthnoting that 
classical variational principles are only useful for estimates of effective properties, e.g., 
elastic moduli of finite elements provided the element size is sufficiently larger than the 
size of heterogeneity, and are inapplicable for BVPs subjected to general boundary 
conditions. A complete picture of scale-coupling variational mechanics is presented in 
(Xu, 2009) which not only rigorously provides both deterministic and stochastic versions 
of generalized Hashin-Shtrikman and generalized energy principles, but critically 
formulates the boundary constraints to be satisfied by the Green’s function and the stress 
polarization. By first developing a decomposition scheme for stochastic BVPs, both 
deterministic and stochastic versions of generalized variational principles are formulated, 
which provide upper and lower variational bounds to quantify the uncertainty of 
responses due to randomness or incompletes of microstructural information. The details 
of the principles refer to (Xu, 2009). 
7.5 Mathematics to be used, including formulas and calculation methods 
 
 Based on the stochastic variational principles formulated, a random BVP is 
decomposed into a slow-scale deterministic BVP and fast-scale stochastic BVP. Since the 
slow-scale BVP can be solved by using standard finite elements, the model is reduced to 
that for a fast-scale BVP, while the formula for the latter is written as a Fredholm integral 
equation of the second kind involving the singular kernel  
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To resolve the above equation, three calculation methods have been developed (Xu, et al, 
2009), i.e. Galerkin finite element method, the FE-based collocation method, and an 
iterative pseudo-spectral method. The numerical experiments on higher/linear order finite 
elements and collocation method demonstrate that  

• The GFB finite element solution of the fast-scale BVP mostly depends on the 
accuracy of Green function approximation, and to compute Green function 
efficiently and accurately, higher order finite elements are better than linear ones, 
as shown in Fig. 4 Left). 

• Convergence rate of Gelerkin finite element (weak) method is faster than finite 
element based collocation (strong) method, as shown in Fig 4 Right). With 
higher-order elements such as Hermite bicubic element, the FEB-CM can be 
much improved without the effect due to discontinuity of  function, which 
remains for future investigation; 
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• The Green-function-based finite elements involve the singular kernel function. 
Use of triangular elements can lead to oscillating results with mesh sensitivity. 
Quadrilateral elements can generally avoid such undesired effect. 
 
 

 

 
 

Fig 4. Left) Comparison of solution accuracy between linear (1+1) and quadratic 
elements; Right) Comparison between finite elements and collocation method 

 
7.6 Whether or not the theory and mathematical algorithms were peer reviewed 
 
 The underlying scale-coupling theory in the context of formulated variational 
principles was peer reviewed and published in the Journal of Engineering Mechanics.  
The mathematical algorithms were peer reviewed and published in Journal of Computer 
and Structures and Computational Mechanics.  
 
7.7 Hardware requirement 
 
 For a benchmark problem involving thousands of finite elements, currently a PC 
is sufficient to perform MSFEM computation. When tens of thousands or more elements 
are involved, or for nonlinear MSFEM computation, high performance hardware such as 
workstation is in need.   
  
7.8 Documentation - Model Code      
 
 A MATLAB code for resolving elasticity of the fast-scale BVP is attached as part 
of this final report (the algorithmic part to obtain the slow-scale input, quadrature 
integration, and meshing are omitted).   
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%====================== 
% fsbvp3 – a fast-scale solver – March 30, 2010 
% Developed & Written by Dr Xi Frank Xu,Stevens Institute of Technology 
% Under the sponsorship of US Department of Energy 
%====================== 
  
   clear 
   t0=cputime; 
   load G G;% Green function 
   G=sparse(G); 
   load EPXX EPXX % slow-scale strain  
   load EPYY EPYY % slow-scale strain 
   load EPXY EPXY % slow-scale strain 
    
   c1=0.5;% volume fraction 
   Lc=1; % correlation length 
   E=200;MU=.2; % elastic moduli 
    
%------------------------- 
%  LOAD DATA 
%------------------------- 
   load MESHo   -ASCII 
   load NODES   -ASCII 
   load NP      -ASCII 
      
   NUMNP = MESHo(1); 
   NUMEL = MESHo(2); 
   NNPE  = MESHo(3); 
    
   XORD=NODES(:,1)'; 
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   YORD=NODES(:,2)'; 
   NPcode=NODES(:,3)'; 
 
%  -----------------------  
%  Declare sparse matrix 
%  -----------------------  
   
   K2 = zeros(NUMNP,NUMNP); 
   K11 = zeros(NUMNP,NUMNP); 
   K14 = zeros(NUMNP,NUMNP); 
   K12 = zeros(NUMNP,NUMNP); 
   K22 = zeros(NUMNP,NUMNP); 
   K24 = zeros(NUMNP,NUMNP); 
   K44 = zeros(NUMNP,NUMNP); 
  
%  ---------------------- 
%  General Initialization 
%  ---------------------- 
      if NNPE == 3 
      NSPE=3; 
      NNPS=2; 
   elseif NNPE == 6 
      NSPE=3; 
      NNPS=3; 
   elseif NNPE == 4 
      NSPE=4; 
      NNPS=2; 
   elseif NNPE == 8 
      NSPE=4; 
      NNPS=3; 
   end 
  
   RHS1(1:NUMNP,1)=0; 
   RHS2(1:NUMNP,1)=0; 
   RHS4(1:NUMNP,1)=0; 
  
%  ---------------------------------- 
%  Get shape function quadrature data 
%  ---------------------------------- 
   [SF,WT,NUMQPT,NPSIDE] = SFquad(NNPE); 
  
%  ------------------------- 
%  Create element matrices  
%  ------------------------- 
   
   for I=1:NUMEL 
     QE1(1:NNPE,1)=0.0; 
     QE2(1:NNPE,1)=0.0; 
     QE4(1:NNPE,1)=0.0; 
     S2(1:NNPE,1:NNPE)=0.0; 
     rc1=NP(I,:); 
%    ---------------------------------------- 
%    Begin volume quadrature for each element 
%    ---------------------------------------- 
     JEND=NUMQPT(1); 
          
     for J=1:JEND;  
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       SFj  = SF(1,:,J); % : nodal point number 
       DNDu = SF(2,:,J); 
       DNDv = SF(3,:,J); 
  
%        --------------------------------- 
%        Determine coordinate and Jacobian 
%        --------------------------------- 
         XJ=SF(1,:,J)*XORD(rc1)'; 
         YJ=SF(1,:,J)*YORD(rc1)'; 
         RJAC(1,1)=DNDu*(XORD(rc1))'; 
         RJAC(1,2)=DNDv*(XORD(rc1))'; 
         RJAC(2,1)=DNDu*(YORD(rc1))'; 
         RJAC(2,2)=DNDv*(YORD(rc1))'; 
         DETJ=det(RJAC); 
         if DETJ <=   0 
           fprintf(1,'\n--------------------------') 
           fprintf(1,'\n Error in steady.m        ')  
           fprintf(1,'\n DETJ =%7e',DETJ           ) 
           fprintf(1,'\n must be > 0.0'            ) 
           fprintf(1,'\n--------------------------\n') 
           error 
         end 
          
%        ----------------------------- 
%        Determine inverse of Jacobian 
%        ----------------------------- 
         RJACI=inv(RJAC); 
%        ---------------------------------------------------- 
%        Determine derivative of shape functions in X-Y plane 
%        ---------------------------------------------------- 
         DNDX=RJACI(1,1)*DNDu+RJACI(2,1)*DNDv; 
         DNDY=RJACI(1,2)*DNDu+RJACI(2,2)*DNDv; 
%        --------------------------------- 
%        Include user written coefficients 
%        RXJ, RYJ, BXJ, BYJ, GVJ, HVJ 
%        --------------------------------- 
         QE1=QE1+WT(1,J)*c1*SFj'*EPXX(I,J)*DETJ; 
         QE2=QE2+WT(1,J)*c1*SFj'*EPYY(I,J)*DETJ; 
         QE4=QE4+WT(1,J)*c1*SFj'*EPXY(I,J)*2*DETJ; 
         S2=S2+WT(1,J)*c1*SFj'*SFj*DETJ; 
         for II=1:NUMEL 
            rc2=NP(II,:); 
            S11(1:NNPE,1:NNPE)=0.0; 
            S12(1:NNPE,1:NNPE)=0.0; 
            S14(1:NNPE,1:NNPE)=0.0; 
            S22(1:NNPE,1:NNPE)=0.0; 
            S24(1:NNPE,1:NNPE)=0.0; 
            S44(1:NNPE,1:NNPE)=0.0; 
            SS11=0.0;SS12=0;SS14=0;SS22=0;SS24=0;SS44=0; 
            for JJ=1:JEND 
                SFjj = SF(1,:,JJ); % : nodal point number 
                DNDu = SF(2,:,JJ); 
                DNDv = SF(3,:,JJ); 
                XJJ=SF(1,:,JJ)*XORD(rc2)'; 
                YJJ=SF(1,:,JJ)*YORD(rc2)'; 
                RJAC(1,1)=DNDu*(XORD(rc2))'; 
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                RJAC(1,2)=DNDv*(XORD(rc2))'; 
                RJAC(2,1)=DNDu*(YORD(rc2))'; 
                RJAC(2,2)=DNDv*(YORD(rc2))'; 
                DETJJ=det(RJAC); 
                 
                RJACI=inv(RJAC); 
                 
                DNDX2=RJACI(1,1)*DNDu+RJACI(2,1)*DNDv; 
                DNDY2=RJACI(1,2)*DNDu+RJACI(2,2)*DNDv; 
                 
                c11=exp(-((XJ-XJJ).^2+(YJ-YJJ).^2)/Lc^2)*c1*(1-
c1)+c1^2;  
                 
                SS11=sum(sum(DNDX'*DNDX2.*G(2*NP(I,:)-1,2*NP(II,:)-
1))); 
                SS12=sum(sum(DNDX'*DNDY2.*G(2*NP(I,:)-1,2*NP(II,:)))); 
                SS14=sum(sum(DNDX'*DNDY2.*G(2*NP(I,:)-1,2*NP(II,:)-
1)+DNDX'*DNDX2.*G(2*NP(I,:)-1,2*NP(II,:)))); 
                SS22=sum(sum(DNDY'*DNDY2.*G(2*NP(I,:),2*NP(II,:)))); 
                SS24=sum(sum(DNDY'*DNDY2.*G(2*NP(I,:),2*NP(II,:)-
1)+DNDY'*DNDX2.*G(2*NP(I,:),2*NP(II,:)))); 
                SS44=sum(sum(DNDY'*DNDY2.*G(2*NP(I,:)-1,2*NP(II,:)-
1)... 
                    +DNDX'*DNDY2.*G(2*NP(I,:),2*NP(II,:)-1)... 
                    +DNDY'*DNDX2.*G(2*NP(I,:)-1,2*NP(II,:))... 
                    +DNDX'*DNDX2.*G(2*NP(I,:),2*NP(II,:)))); 
                 
                S11=S11+SS11*WT(1,J)*WT(1,JJ)*SFj'*SFjj*c11*DETJ*DETJJ; 
                S12=S12+SS12*WT(1,J)*WT(1,JJ)*SFj'*SFjj*c11*DETJ*DETJJ; 
                S14=S14+SS14*WT(1,J)*WT(1,JJ)*SFj'*SFjj*c11*DETJ*DETJJ; 
                S22=S22+SS22*WT(1,J)*WT(1,JJ)*SFj'*SFjj*c11*DETJ*DETJJ; 
                S24=S24+SS24*WT(1,J)*WT(1,JJ)*SFj'*SFjj*c11*DETJ*DETJJ; 
                S44=S44+SS44*WT(1,J)*WT(1,JJ)*SFj'*SFjj*c11*DETJ*DETJJ; 
            end 
            K11(rc1,rc2)=K11(rc1,rc2)+S11; 
            K12(rc1,rc2)=K12(rc1,rc2)+S12; 
            K14(rc1,rc2)=K14(rc1,rc2)+S14; 
            K22(rc1,rc2)=K22(rc1,rc2)+S22; 
            K24(rc1,rc2)=K24(rc1,rc2)+S24; 
            K44(rc1,rc2)=K44(rc1,rc2)+S44; 
          end 
      end 
%     ------------ end of volume quadrature 
  
%     ------------------------------------------------------------ 
%     Place completed element matrix in global SK and Q matrices 
%     ------------------------------------------------------------ 
       
      RHS1(rc1)=RHS1(rc1)+QE1; 
      RHS2(rc1)=RHS2(rc1)+QE2; 
      RHS4(rc1)=RHS4(rc1)+QE4; 
      K2(rc1,rc1)=K2(rc1,rc1)+S2; 
  
   end  % Loop over elements 
  
%  --------------------------- 
%  Specify known values of P (traction BC)  
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%  --------------------------- 
   [SF,WT,NUMQPT,NPSIDE] = SFquad(NNPE); 
   nx=zeros(NUMNP,1); 
   ny=zeros(NUMNP,1); 
   ny(1:9)=-1; 
   ny(834:841)=-1; 
   ny(145:153)=1; 
   ny(962:969)=1; 
   ny(833)=1; 
   ny(577)=-1; 
   nx(154:168)=abs(NODES(155:169,2)-
NODES(154:168,2))./((NODES(155:169,2)-
NODES(154:168,2)).^2+(NODES(155:169,1)-NODES(154:168,1)).^2).^.5; 
   ny(154:168)=-abs(NODES(155:169,1)-
NODES(154:168,1))./((NODES(155:169,2)-
NODES(154:168,2)).^2+(NODES(155:169,1)-NODES(154:168,1)).^2).^.5; 
   ny(169)=-1; 
   ny(426:433)=-1; 
   nx(562:576)=-abs(NODES(563:577,2)-
NODES(562:576,2))./((NODES(563:577,2)-
NODES(562:576,2)).^2+(NODES(563:577,1)-NODES(562:576,1)).^2).^.5; 
   ny(562:576)=-abs(NODES(563:577,1)-
NODES(562:576,1))./((NODES(563:577,2)-
NODES(562:576,2)).^2+(NODES(563:577,1)-NODES(562:576,1)).^2).^.5; 
   ny(577)=-1; 
   nx(410:424)=abs(NODES(411:425,2)-
NODES(410:424,2))./((NODES(411:425,2)-
NODES(410:424,2)).^2+(NODES(411:425,1)-NODES(410:424,1)).^2).^.5; 
   ny(410:424)=abs(NODES(411:425,1)-
NODES(410:424,1))./((NODES(411:425,2)-
NODES(410:424,2)).^2+(NODES(411:425,1)-NODES(410:424,1)).^2).^.5; 
   ny(425)=1; 
   ny(554:561)=1; 
   nx(818:832)=-abs(NODES(819:833,2)-
NODES(818:832,2))./((NODES(819:833,2)-
NODES(818:832,2)).^2+(NODES(819:833,1)-NODES(818:832,1)).^2).^.5; 
   ny(818:832)=abs(NODES(819:833,1)-
NODES(818:832,1))./((NODES(819:833,2)-
NODES(818:832,2)).^2+(NODES(819:833,1)-NODES(818:832,1)).^2).^.5; 
   ny(833)=1; 
       
   NX=zeros(NUMNP,114); 
   NY=zeros(NUMNP,114); 
   J=1; 
   for I=1:NUMNP 
       if (nx(I)^2+ny(I)^2)~=0 
           Lamda(I)=J; 
           J=J+1; 
       end 
   end 
   npn=zeros(NNPS,1); 
   npl=zeros(NNPS,1);   
   for I=1:NUMEL 
       for J=1:NSPE 
%         -------------------------------- 
%        CHECK IF QUADRATURE IS NECESSARY  
%        -------------------------------- 
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         CHKT=1.0; 
         %CHKTY=1.0; 
         %clear nps; 
         for K=1:NNPS 
            J1=NP(I,NPSIDE(J,K)); 
            CHKT=(nx(J1)^2+ny(J1)^2)*CHKT;   
            %CHKTY=CHKTY*ny(J1);   
            %nps(K)=NPSIDE(J,K); 
            npn(K)=J1; 
            npl(K)=Lamda(J1); 
         end 
          
         if CHKT ~= 0  
%           --------------------------------------- 
%           BEGIN SURFACE QUADRATURE ON SIDE J 
%           --------------------------------------- 
            %nps=[nps,nps+NNPE]; 
            KEND=NUMQPT(2); 
            for K=1:KEND;  
               %---------------------------- 
               % Calculate quadrature point 
               % values of parameters and  
               % mapping dsdu value. 
               %---------------------------- 
               SF4nK=SF(4,1:NNPS,K); 
               SF5nK=SF(5,1:NNPS,K); 
               %XK   = SF4nK*XORD(npn)'; 
               %YK   = SF4nK*YORD(npn)'; 
               DXDXI= SF5nK*XORD(npn)';  
               DYDXI= SF5nK*YORD(npn)';  
               NNX=SF4nK'*SF4nK*nx(NP(I,NPSIDE(J,1))); 
               NNY=SF4nK'*SF4nK*ny(NP(I,NPSIDE(J,1))); 
                
               %---------------------------------- 
               % Add quadrature values to integral 
               %---------------------------------- 
               DETJS=sqrt(DXDXI^2+DYDXI^2);  
               %Nf=[SF4nK',BLNKs';BLNKs',SF4nK']; 
               NX(npn,npl)=NX(npn,npl)+NNX*WT(2,K)*DETJS; 
               NY(npn,npl)=NY(npn,npl)+NNY*WT(2,K)*DETJS; 
  
            end % of surface quadrature  
         end %  if-statement for quadrature 
      end % of loop over element sides 
   end 
     
Z=zeros(NUMNP,114);Z0=zeros(114,114);Z1=zeros(114,114);Z2=zeros(114,114
); 
   K= [K2/E/R+K11 -K2/E/R*MU+K12 K14 NX Z;-K2'/E/R*MU+K12' K2/E/R+K22 
K24 Z NY;K14' K24' K44+K2*2*(1+MU)/E/R NY NX;NX' Z' NY' Z1 Z0;Z' NY' 
NX' Z0 Z2]; 
   F=[RHS1;RHS2;RHS4;zeros(114*2,1)]; 
   P=K\F; 
   cputime-t0  
   PP2=P(1+NUMNP:2*NUMNP); 
   PP4=P(1+2*NUMNP:3*NUMNP); 
   PP1=P(1:NUMNP);  


