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Abstract   

In previous papers (Shvidler and Karasaki, 1999, 2001, 2005, and 2008) we presented and 
analyzed an approach for finding the general forms of exactly averaged equations of flow and 
transport in porous media. We studied systems of basic equations for steady flow with sources in 
unbounded domains with stochastically homogeneous conductivity fields. A brief analysis of 
exactly averaged equations of nonsteady flow and nonreactive solute transport was also presented. 
At the core of this approach is the existence of appropriate random Green’s functions. For example, 
we showed that in the case of a 3-dimensional unbounded domain the existence of appropriate 
random Green’s functions is sufficient for finding the exact nonlocal averaged equations for flow 
velocity using the operator with a unique kernel-vector. Examination of random fields with global 
symmetry (isotropy, transversal isotropy and orthotropy) makes it possible to describe significantly 
different types of averaged equations with nonlocal unique operators. 

It is evident that the existence of random Green’s functions for physical linear processes is 
equivalent to assuming the existence of some linear random operators for appropriate stochastic 
equations. If we restricted ourselves to this assumption only, as we have done in this paper, we can 
study the processes in any dimensional bounded or unbounded fields and in addition, cases in 
which the random fields of conductivity and porosity are stochastically nonhomogeneous, 
nonglobally symmetrical, etc.. 

It is clear that examining more general cases involves significant difficulty and constricts the 
analysis of structural types for the processes being studied. Nevertheless, we show that we obtain 
the essential information regarding averaged equations for steady and transient flow, as well as for 
solute transport. 

 
Key words: heterogeneous porous media, random, averaging, nonlocal, flow, transient flow, nonreactive 
solute transport, operator approach  

       
1. INTRODUCTION      
 
The operator approach for analyzing some linear physical fields , such as problems of 

elasticity, and in particular problems of flow in porous media, has been applied in many earlier 
studies (Finkelberg, 1964; Shermergor,1977; Shvidler, 1985, 1993; Neuman and Orr, 1993; 
Tartakovsky and Neuman, 1998; Indelman, 2002,etc). 

As we outlined in Shvidler and Karasaki(2008) for example in the case of steady flow with 
sources many investigators a priori assume that in the general case there is linear relationship 
between the mean flow velocity vector and the gradient of the mean head or pressure. They have 
used this assumption to exclude the nonrandom density of the source function, for which one needs 
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to utilize an inverse vector-operator. As is evident in the general case a unique inverse vector-
operator does not exist. We showed that this approach in general leads to an ill-posed problem.  
   In addition to the problem discussed above,  there is another source of error that occurs when the 
solution converted by the Fourier or Fourier-Laplace transforms of integral flow-equations is 
solved directly by perturbation  methods (Indelman and Abramovich, 1994; Indelman, 1996). 
Assuming that the normalized converted fluctuations of the conductivity function are relatively 
small, investigators have used the Liouville-Neuman iteration procedure for expanding the solution 
of the integral equation in a series of powers of this parameter. We have previously noted (Shvidler 
and Karasaki, 2008) that these perturbation series always diverge. 

Next, each averaged term of this series includes the integral of the product of appropriate 
mixed moment for the converted fluctuation of the conductivity and the converted nonrandom 
function of the source intensity. Using some unproven formulas -A3 in Indelman and Abramovich, 
1994 and A2 in Indelman, 1996, the authors stated that for any conductivity random field and any 
term of the perturbation series ( for all approximation orders) are proportional to the nonrandom 
converted function of sources. This manipulation is repeated with the converted flow-velocity 
perturbation series, which leads to the final manipulation of excluding the converted function of 
sources from the appropriate order series of the converted head gradients and the converted flow-
velocity. It is evident that using this approach, one must utilize an inverse converted vector-
function, which is, as discussed above, an ill-posed problem.  
Furthermore, a simple analysis shows that the cited formulas (A2 and A3) are correct only in two 
cases: (1) the second order moment for any stochastically homogeneous random fields and (2) 
when the random conductivity function is a Gaussian field. In the latter case the moments of 2n  
orders can be written as the sum of (2n-1)!! terms, each of which is the product of the second order 
different points’ moments, and in all the terms we have any possible combinations of pairs. The 
odd order moments are zero. In addition, noteit that assuming that the conductivity or its converted 
fluctuation is a Gaussian function is only a crude approximation of real fields. Thus the 
manipulation that excludes the converted function of sources from any order perturbation series is 
incorrect. 
We need to emphasize that when averaging stochastic equations of flow and transport , it is 
important how we average the equation for the flow velocity or solute flux. As we proved and 
discussed in Shvidler and Karasaki (2008), deriving averaged equations like Darcy’s with the 
mean flow velocity linearly dependent on the mean gradient of head or gradient of pressure, leads 
in general to non-unique characteristics for these models. 
It is evident that in linear relations between the averaged flow velocity and the averaged gradient 
of head the density of sources or sinks  f x  or  ,f tx need not be included in the explicit form. 

Some methods of excluding these functions lead to different results. 
Another possible approach is to study some fictitious and relatively simple process in the so-called 
matching body. For example, we can study flow in homogeneous and isotropic nonrandom porous 
media, while setting the density of flow and sinks in this matching body identical to that in the 
original heterogeneous body. In this case it is easy to study the fictitious process in the matching 
body and obtain the relevant explicit nonrandom flow velocity and head distributions. 
Then, comparing the continuity equations for real processes in heterogeneous media to those in the 
matching body, we obtain the relationship between the desired head function and the known 
fictitious head function. The next step consists of calculating and averaging the flow velocity in 
real space. Of course the final relations for flow velocity include some functionals of preassigned 
fictitious processes. 
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   Many applications of this approach can be found in dealing with similar problems, for example 
in the theory of elasticity (Hashin and Strikman, 1962, Shermergor, 1979) and in porous media 
flow problems set forth by Shvidler (1985). 
The well known series of publications by S.P. Neuman et al., starting with Neuman and Orr (1993), 
developed some modifications to this approach. For example Tartakovsky and Neuman (1998) 
analyzed transient flow in unbounded stochastically homogeneous fields, deriving nonlocal 
equations (Equation 32 within that paper) for the mean flow velocity, which are-a convolution of 
kernel-tensor function and the gradient of head function. It is easy to see that the kernel-function is 
non-unique. 
  In addition, as we proved in Shvidler and Karasaki (2005 and 2008) the exact equation for flow-
velocity in the general case of a   stochastically homogeneous field is the convolution of unique 
kernel-vector and the head-function. However, in some cases involving global symmetry (isotropy, 
transversal isotropy or orthotropy) the convolution reduced to a unique and appropriate symmetric 
tensor and vector of head gradient (Shvidler and Karasaki, 2008). 
  Note that as in our previous publications (Shvidler and Karasaki, 1999, 2001, 2005, 2008) here 
we utilize appropriate Green’s functions and some of their properties. In all the cases examined 
below (flow, transient flow and transport of solute) we analyze processes in both unbounded and 
bounded domains. For calculating the averaged flow velocity we use the resulting relations 
between local random head and averaged head, and for calculating the averaged solute flux the 
local random concentration of solute and the averaged concentration of solute. In this way we find 
the forms of the exact averaged equations without directly solving the stochastic equations or using 
any assumptions regarding small parameters. 
By analyzing the processes in fields with fast oscillating parameters many effective approaches 
have been developed, one of which is the so-called homogenization. Similar variants  have been 
used to study linear as well as some nonlinear processes in random and periodical structures (see, 
for example, Bakhvalov and Panasenko 1989; Zhikov et al.1994; Hornung 1997). 
 
 2.Steady Flow with Sources and Sinks 
 
We consider a steady flow with sources and sinks that are locally or continuously distributed in a porous, 
single-connected, heterogeneous, d-dimensional, bounded domain. The local condition of flow continuity 
and Darcy’s law, the boundary condition are given by the following equations: 

   f v x x ,       ,u  v x σ x x     x  (2.1) 

  0u u const x   ,   x  (2.2) 

Here, 1( ,..., )dx xx  is a d-dimensional vector;  v x is the Darcy’s velocity vector;  σ x  is 

the random second rank conductivity tensor, symmetric by subscript, positive definite and limited; 
and  u x is the reduced pressure (or hydraulic head). The function  f x  is the given density of 

sources and sinks, which is an integrable and compactly supported function or a distribution with 

bounded support. In this case,   dq f dx


  x  is finite. The function  f x  and the constant 0u  are 

nonrandom.   
Equations (2.1) and (2.2) determine the relationsips among the random functions  u x  and 

 v x  , non-random function  f x  and constant 0u . Our goal is to find the general form of the 
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closed system of relationships between the averaged fields        ,U u x x V x v x  and the 

given function  f x  and constant 0u . 

Combining now Equations (2.1) and (2.2) we have for each realization of the conductivity 
field the differential elliptic equation and boundary condition for the scalar function 

    0u u u  x x  

     ,u f     σ x x x x  (2.3) 

  0,u  x x  (2.4) 

The  u x -the solution of the system (2.3)-(2.4), exists and is unique. In some cases  u x  can be 

the generalized function. For this solution we have the condition: 
Mu f    (2.5) 

where  M   σ x  is the random operator that for almost all realizations of conductivity tensor 

 σ x  maps the random spaces of the mentioned solutions - functions  u x  onto the nonrandom 

space of functions  f x . 

 In accordance with the Green’s formula we have the unique solutions of system (2.3)- (2.4) ( see 
for example Koshlyakov et al, 1964 ) 

   ( ) , du g f dy


  x x y y     (2.6) 

Here the kernel  ,g x y  is a random Green’s function that satisfies the equations 

   , , ,Mg   x y x y x y    (2.7) 

 , 0, ,g   x y x y     (2.8)  

Now we can write the unique solution of Equations (2.3) and (2.4) in a simple symbolic form: 

u Lf  ,      , dL g dy


  x y    (2.9) 

If we apply the random operator M  to both sides of the equation (2.9) and compare the result with 

Equation (2.5), we have  fML   ,where ( )f is the identity mapping of the space of the non-
random functions f . If, on the other hand, we apply the random operator L  to both sides of 

Equation (2.5) and compare the result with Equation (2.9), we have  uLM   , where   u  is the 
identity mapping for the space of the random functions u . Thus the random operators M  and L  

are noncommutative because their products-the identity operators ( )f  and   u  operate in different 
functional spaces. 
So, averaging Equation (2.9) over the ensemble of realization  σ x , we have for mean field 

0U u U u      

U L f  ,    , dL g dy


  x y �    (2.10) 
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Because averaging over the probability is related to summation, the nonrandom scalar operator 

L  exists and is nonsingular. Therefore the unique inverse  scalar operator 
1

L


exists and, when 

applied  to Equation (2.10), we have for x  the averaged equation for U   

  1

0 ,U u f L


   L L    (2.11)  

and for x  the boundary condition 

0U u     (2.12) 

The so-called effective nonrandom scalar operator L  in the general case is nonlocal and unique. 

 It easy to show that nonrandom operators L  and  
1

L


 L are noncommutative because 
 UL 

  L  and  fL  L .  

Comparing Equations (2.11) and (2.9) we obtain the relationship between the random field ( 0u u ) 

and the nonrandom field 0( )U u       

0 0( )u u N U u    (2.13) 

Here the nonlocal random operator N  is the random nonlocal operator L  which is normalized by 
the nonlocal and nonrandom operator 1

L  

N L  L  (2.14) 

It is clear that N  is a dimensionless linear random operator that for almost all realizations of 
random tensor-function  σ x  maps the uniform space of non-random functions ( 0U u ) into the 

spaces of the relevant realizations of the random functions ( 0u u ). In contrast the random 

operator 1 1 1 1N L L L   
 L  maps almost all the spaces of relevant realizations of random 

function ( 0u u ) into the uniform space of the nonrandom function ( 0U u ). It is evident from 

(2.12) or (2.13) that the mean operator  0( )U uN    is the identity mapping of the space of the 

nonrandom functions ( 0U u ). 

As we outlined before, now we will find the general relation between the mean fields U  and the 

mean velocity    V x v x . Applying the random vector-operator    x σ x  to both sides of 

Equation (2.13), we can describe the random local velocity vector 
         x xu NU      v x σ x x σ x  (2.15) 

Or after applying the rule of operator multiplication, and bearing in mind that except for the case 
of homogenization limit the scalar field U   in Equation (2.15) is independent of variable x, we 
have 
 0( ) ,U u N    v π π σ  (2.16) 

The random operator π  is  the composition of the random operators  σ  and N and maps the 
space of the nonrandom functions 0( )U u  into the space of the random vectors v . 

 Averaging now Equations (2.16) for the random vectors v  and π , we derive the mean nonrandom 
velocity vectors  

 0 ,U u N     V Π Π π σ   (2.17) 

It is obvious that the compositions-the vector random operator π  and the nonrandom Π― are 
nonlocal and they map the nonrandom scalar field ( 0U u ) into the vector fields v and V 
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respectively. Moreover from the condition f  v V  and Equations  2.16 ,  2.17  and (2.11) 

we have the relations:    Π π L  and respectively 

 v  0U u f  L   (2.18)  

 0U u f   V L    (2.19) 

Thus we have a closed system for the local averaged   fields, U  and V : Equations (2.11) and 
(2.12) for the averaged scalar field U  and Equations (2.17) for the averaged vector field V. In 
addition we have obtained the relationships for the local scalar field u  and the vector velocity v in 
terms of the averaged fields: (2.13) for u , and (2.16) for v. 
   Clearly, all the operators , ,L L π  and Π  are linear. They do not depend on the function f  ,but in 

general they are related to the domain  . 
Now, using the operator approach we will partly analyze the case in which the 3-D domain   is 
unbounded and the random field  σ x  is stochastically homogeneous. This case was studied in 

Shvidler and Karasaki (2008) with a different approach and here we will compare some results 
from the two approaches. 
 As we emphasized in the previous paper (Shvidler and Karasaki, 2008) in this case the local 
operator M  is a self-adjoint, and therefore, Green’s function  ,g x y  is symmetric by argument 

(Courant,1962):    , ,g gx y y x  , as is the mean Green’s function,    , ,G Gx y y x . Because 

the random field  σ x  is stochastically homogeneous    G G  x y y x  and G  is a real and 

even function.  
Averaging now the equation (2.9) we have  U  x  as the integral in full 3-D space 

      3U G f dy  x x y y           ( 2.15 )        

   As in Shvidler and Karasaki (2008), we apply to (2.15) the generalized Fourier transformation 
(Schwartz, 1961; Yosida, 1978) and obtain the averaged equation in k-space 

         1,F U f F G  k k k k k  ( 2.16)         

Respectively in the real x-space the averaged nonlocal equation for  U  x  is 

     3F U dy f  x y y x  ( 2.17)       

Substituting now  f x  from Equation (2.17) into Equation (2.9) we have the relationship between 

the random function u  and the nonrandom function U   in the explicit form 

        3 3,u g F U dy dz   x x y y z z  (2.18) 

Therefore the random operator N  from equation (2.13) is 

     3 3,N g F dy dz    x y y z  (2.19)    

and from  (2.18) and (2.16) we can find the explicit form of operator  Π x  
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      3F dy  Π x Γ x y y  (2.20) 

Here,      ,x g   Γ x y σ x x y  is the averaged Green’s velocity vector. In the Fourier space 

Equation (2.20) appears as 

     FΠ k Γ k k  (2.21) 

Multiplay now both parts of equation (2.21) by the function      U G f k k k  and taking into 

account that     1F G k k  we can obtain        ( )U f  k k Γ k k V k  and in real space we 

have 

      3U dy V x Π x y y  (2.22) 

Using now the averaged first equation from (2.1)     f V x x  and inserting here  V x  from 

(2.22) we obtain 

U f  L ,       3
x dy    L Π x y       (2.23)  

As we noted in the previous paper (Shvidler and Karasaki, 2008) the kernel-vector Π  is  
independent of ( )f x and is a unique operator that transforms the scalar field U   to the 
corresponding vector field V . 

 In the limiting cases of very small scales of heterogeneity and a stochastically homogeneous field 
 σ x , the effective operators L  and Π  are local and have simple explicit forms x y   L σ  , 

y  Π σ  , where const σ  is the effective conductivity tensor in the case of a homogenization 

limit.  
If the field   σ x  is global isotropic (see Shvidler and Karasaki, 2008) and domain   is 3-

dimensional and unbounded,  the vectorial  non-local operator N  Π σ  must be proportional 

to a unique vector   and therefore have the form  x  Π B . Because the operator N is 

dimensionless, the nonlocal scalar operator  xB  has the same dimension as the conductivity 

 σ x . Then, we have from (2.23) 

      3
yB U dy    V x x y y  (2.24).  

It is possible to show that for the cases of global orthotropic or transversal isotropic symmetry the 
averaged equations for V in relevant symmetry kind coordinate system are similar to (2.24), where 
the diagonal tensor  B  is a non-local operator with arguments dependent on the relevant 

invariants of symmetry. It is evident that the tensors σ  and  B  are unique characteristics for 

the chosen systems. 
 

    3.Nonsteady Transient Flow with Sources and Sinks 
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Let us consider a stochastic system of equations for pressure function  ,u tx  and flow-velocity 

vector-function  , tv x  in a single connected heterogeneous d -dimensional domain  . 

     ,
, ,

m t
t f t

t



 

x

v x x   (3.1) 

     , ,m t u tx x x  (3.2) 

     , ,t u t  v x σ x x  (3.3) 

 Here const   is a nonrandom coefficient of volume deformation of a liquid-core system,   x  

and the elliptic tensor  σ x  are porosity and conductivity random functions, respectively, and 

 ,f tx is the given density of sources and sinks, which is an integrable and compactly supported 

non-random function or distribution with bounded support. We assume that the pressure  ,u tx  

satisfies the initial condition u(x,0)=u0=const, if  x  and the boundary condition   0,u t ux , if 

x . If domain   is unbounded, we have the condition at infinity   0,u t ux  .  

 After combining Equations (3.1)~ (3.3) we have a parabolic differential equation for the displaced 
pressure     0, ,u t u t u  x x  

         ,
, ,

u t
u t f t

t



    

x
x σ x x x     (3.4) 

Thus we have the initial-boundary problem for the  ,u t x  that vanishes on   and at 0t  . 

The  ,u t x - the unique solution of Equation (3.4) with homogeneous boundary and initial 

conditions exists and can be a generalized function. For this solution we have 

Mu f   (3.5) 

where operator M  is 

   M
t

 
    

x σ x  (3.6) 

   Therefore, for almost all realizations of the conductivity random tensor fields  σ x  and porosity 

random function   x  the operator M  maps the space of the Equation (3.4) random solutions 

 ,u t x  that vanishes on   and at 0t   onto the space of the nonrandom functions  ,f tx .  

Since the generalized solution of Equation (3.4) with the cited  uniform initial and boundary 
conditions exist and is unique, according Green`s formula we can write 

     
0

, , ; , ,
t

du t g t f y dy d  


   x x y  (3.7) 
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Here the kernel  , ; ,g t x y  is the random Green`s function that satisfies the equation 

     , ; , , ,Mg t t      x y x y x y   (3.8) 

under the following boundary and initial conditions, respectively:  , ; , 0, ,g t    x y x y , 

and  , ; , 0, 0g t t  x y . 

Now we can write the solution of equation (3.4) that satisfies the uniform initial and boundary 
conditions in the form 

u L f   ,     
0

, ; ,
t

dL g t dy d 


   x y   (3.9) 

As in Section 2, it is easy to show that  fML     and  uLM    , where  f  and  u  are identity 
mappings in f  and u functional spaces, respectively . Thus the random operators L  and M are 
noncommutative. 

So, averaging Equations (3.9) of the ensemble of realizations  σ x  and   x , we have for the 

mean displaced pressure U u   

U L f    ,  
0

, ; ( )
t

dL G t dy d 


   x y  (3.10) 

Multiplying both sides of Equation (3.10) by the unique operator 
1

L


 L  , which in the general 

case is nonlocal, we derive, for the mean field U , the averaged functional equation 

 U f  L   ,  
1

L


 L   (3.11) 

 with relevant boundary and initial conditions  

00 , 0tU U      (3.12) 

By comparing Equations (3.11) and (3.9) we obtain the relationship between the spaces of random 
field  ,u t x  and the nonrandom field U    

 u NU x   , N L  L    (3.13) 

and between the random velocity vector  , tv x  and nonrandom field U   

  0, ( )t U u v x π  ,    x N  π σ x   (3.14) 

   Note that because the operators N and N are different, the operator π is essentially different 
from the operator π , which is defined in (2.16). But, of course, as above in Section 2, we are 
bearing in mind that except at the homogenization limit the local function U   in Equation (3.13) is 
independent from variable x. For this reason the random flow velocity is the product of random 
nonlocal operator π  and  field U  . 
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Averaging as above Equations (3.14) we can write for the mean velocity vector    , ,t tV x v x  

 , ( )ot U u V x Π  ,   x N   Π π σ x   (3.15)      

Using formulas (3.2) and (3.13) we have for    , ,t m tx xM  

 ( , ) ( , )t t x x x0M M M  (3.16) 

   0 0( ) ( ) , ( , ) ,u t U u N        x x x x 
0M M   (3.17) 

It should be noted that unlike the local random function   x , the nonrandom operator   is a 

nonlocal functional of x-space and time t . We will call it- the transient flow effective porosity 
operator. 

Returning now to Equation (3.1) and averaging it, using in addition (3.15) (3.16), and (3.17) , and 
taking into account that the function 0M doesn’t depend on t , we have the functional equation for 

the mean function  ,U tx , which satisfy the initial and boundary conditions:  

   0 0,0 , ,U u U t u x x   

 0U u f  L  ,  
t

  


 


L Π   (3.18)  

   Clearly, Equations (3.18) generalizes similar conditions for steady-state flow similar to those 
noted in Section 2. 

As emphasized earlier we analyzed the above stated problems in essentially general settings. Now 
we will consider nonsteady transient flow in the 3-D unbounded domain  . We assume that the 
random conductivity  σ x  and porosity   x  fields are stochastically homogeneous in  .  We 

assume that the basic local equations (3.1)-(3.4) are valid for any 0t   in   and at x the 

  0,u t u const x . The initial condition is   0,0u ux , for x  . 

In this case the solution to Equation (3.4) vanishes at infinity and at 0t  , the reduced pressure, 
( , )u t x , is valid in  . 

  We introduce the random Green`s functuion  , ; ,g t x y which satisfies the equation 

 , ; , ( ) ( )Mg t t     x y x y   and, like  ,u t x , is uniform at infinity and  0t  . In this case  

 functions      , ; , , ; ,xt g t   γ x y σ x x y   and      , ; , , ; ,p t g t  x y x x y  that all vanish at 

x   and 0t   satisfy the equation : 

       , ; ,
, ; ,x

p t
t t

t


    


   


x y
γ x y x y  (3.19)  

Let us introduce the averaged over ensemble of stochastically homogeneous random fields ( ) x  

and  σ x , the mean functions ,G P  and Γ , which depend on x y  and t   
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 ,G t  x y =  , ; ,g t x y  (3.20) 

   ; , ; ,P t p t   x y x y  (3.21) 

   , , ; ,t t   Γ x y γ x y   (3.22) 

Averaging Equation (3.19) yields 

       ,
,x

t
t t

t


    
  

     


x y
Γ x y x y  (3.23) 

We now consider FLT  and 1
FLT  , the direct and inverse Fourier-Laplace generalized transforms (see, 

for example Schwartz (1961) and Yosida (1978)) in k and   spaces using the following 
designations 

     , , , , ,FL FL FLG T G T T      k k Γ k Γ     (3.24) 

and we introduce the following vector  ,Π k  and scalar function  ,S k  

         1 1, , ( , ) , , , ,G S G      
   Π k Γ k k k k k   (3.25) 

It is straightforward to show that applying the transform FLT to Equation (3.23), we have in Fourier 

and Laplace space: 

       , , 2 , , 1S G i G      k k kΠ k k   (3.26) 

Multiplying Equation (3.26) by    , ,FLf T f t k x  and using the following formulas 

     , , ,U G f   k k k   (3.27) 

           , , , , , ,G f U        V k Π k k k Π k k  (3.28) 

     , , ,S U   k k kM  (3.29) 

We obtain the general averaged equation in Fourier-Laplace space: 

     , 2 , ,i f      k kV k kM  (3.30) 

  Clearly, for any  x and ( t  ) in stochastically homogeneous fields  σ x  and   x  the kernel-

vector  , t   x y  is an odd vector function in x y  space. On the other hand the 

transformed moment  ,P k  and Green`s function  ,G k are even function in k-space and for 

this reason the functions  ,S k and  ,S t  x y  are even in the same way. Taking this into 

account  the averaged nonlocal system for scalar and vector mean functions U and V is:  

     ,
, ,

t
t f t

t



 


x

V x x
M

 (3.31) 
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     3
0

0

, , ( , )
t

t S t U u dy d       x x y yM , (3.32) 

       3
0

0

, , ,
t

t t U u dy d       V x x y y  (3.33) 

    0,0 ,U U t u  x  (3.34) 

   Or one nonlocal equation for U   

         3 3

0

, , , , ,
t

xS t U dy d t U dy d f t
t

      

       
    

t

0

x y y Π x y y x  (3.35) 

 

4. Nonreactive Solute Transport 

Here we consider the stochastic transport of nonreactive solute. As before we assume that the 
conductivity and porosity are random fields and that therefore flow velocity and solute 
concentration are random fields as well.  

In the conventional approach to studying these similar processes the random flow velocity vector 
field is considered as given and usually as stochastically homogeneous. In addition the initial 
distribution of the solute is assumed to be a nonrandom plume. 

Here, however,  we will consider both processes (flow and transport) jointly. We will assume that 
at the initial moment in the field the solute is absent, but that later, solute is input in the field and 
output from the field through distributed sources or sinks.  

It is evident that depending on the method used to input solute in the field it may be injected with 
some volumes of carrier liquid. If these volumes are relatively significant they can reasonably be  
included in the flow balance equation. If the solute is output from the system together with liquid, 
we must account for it, because the given or prescribed density of liquid sinks and solute sinks are 
mutually dependent, for example, proportional. 

Now we consider flow and transport in the three-dimensional unbounded domain  . The local 
transport equations are as follows: 

     ,
, ,

a t
t t

t



 


x

q x x  (4.1) 

     , ,a t c tx x x  (4.2) 

       , , , ,t t c t c t  q x v x x D x  (4.3) 

 ,0 0c x  (4.4) 

The function  ,c tx  is the concentration of nonreactive solute that vanishes at infinity. We assume 

that the conductivity tensor  σ x  and porosity function   x are random functions, D  is a 

constant and nonrandom positive definite dispersion tensor and therefore the vectors, the flow-
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velocity  , tv x  and the solute flux  , tq x , as well as the scalar-functions,  ,c tx  and  ,a tx  are 

random. We assume that the function  , t x  is nonrandom solute source’s density. As we note 

later for this case the density of liquid sinks ( , )f tx  and ( , )t x must be independent. To close the 
system (4.1)-(4.4) we will use additional subsystem of equations (1,3)-(3,3) which describe the 
field  , tv x .  

Let us assume that the initial value of pressure   0,0u ux const  and at infinity 0( , )u t ux  as 

x  . Combining Equations (4.1)-(4.3) and (3.14) we can write for  ,c tx  the linear parabolic 

equation and the initial and  boundary conditions as follows: 

ˆ ( , ) ( , )M c t tx x  ,    0M̂ U u D
t

 
    


x     (4.5)  

   ,0 0 , , 0c c t x x  if x   (4.6) 

Introducing Green’s function  , ; ,cg t x y  that satisfies  the equation    ˆ
cMg t    x y  

with a uniform initial and boundary conditions we can write Green’s formula relationship as 

      3

0

, , ; , ,
t

cc t g t dy d   


  x x y y  (4.7) 

Defining the operator    3

0

, ; ,
t

c cL g t dy d 


   x y �   we can write Equation (4.7) in the form 

cc L   (4.8) 

and by averaging both sides of the last equation over the ensemble random fields  σ x  and   x  

and designating    , ,C t c tx x and    , ; , , ; ,cG t g t x y x y , we have 

cC L   (4.9) 

Multiplying both sides of Equation (4.9) by the unique inverse operator  
1

cL


leads to the basic 

equation for mean concentration C  

cC  L  ,  
1

c cL
 L   (4.10) 

The unique operator c
L we shall call as effective. 

From Equations (4.8) and (4.10) we have the relationship between the random and mean 
concentration 

 cc N C , c c cN L  L  (4.11) 

The scalar random operator cN  for almost all realization of the random fields  σ x  and 

  x maps the uniform nonrandom function space C  into relevant realizations of random 
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functions space c . Evidently we have ( )C
cN   - identity mapping in the space of nonrandom 

functions C . 

Using these results and the relation (4.3), we can find the mean flux Q  

0( ) c cQ q c c U u N C N C       v D π D  (4.12) 

And because the mean concentrationC  is nonrandom and ( )C
cN I , we can write 

 0, cQ C C U u N    W D W π  (4.13) 

The vector W can be called as the effective transport velocity, which reflects the convective, and 
because W is linked with cN , diffusion mechanisms of transport. 

Similarly we obtain c cA a c N C N C       or  

, cA C N      (4.14) 

The nonrandom functional    can be called as the effective transport porosity. It is evident that 
both effective functionals    and  from Section 3 , unlike the porous media function   x , also 

reflect appropriately different processes: transport and transient flow. 

Averaging Equation (4.1) and using the formulas (4.13) and (4.14) we can write the equation and 
initial and boundary conditions for the mean concentration  ,C tx : 

   ( , ) ( , ) ( , ) ( , ) , ( , )t C t x t C t C t t
t
        

x x W x D x x  (4.15) 

 ,0 0C x , by x  and   , 0C t x  if  x   (4.16) 

  From  Equations (4.14) and (4.9) we can write the semi-explicit form of the effective operator 

c
L , which includes the effective operators    and W . 

   , ,c t t
t
 

   


L x W x D  (4.17) 

  Finally we will study the somewhat exotic case of nonreactive solute transport in an unbounded 
porous space with stochastically homogeneous porosity and conductivity, in which (moreover) the 
flow-velocity is given as a stochastically homogeneous vector field. Of course, this case is 
admittedly not included in the above-stated general theory. We need to stress that in an unbounded 
space the stochastically homogeneous velocity field does not exist, but in some cases is an 
acceptable approximation.  

So, returning again to the basic system of equations (4.1)-(4.4), we introduce the random Green’s 
function  , ; ,cg t x y  that satisfies the equation: 

           , ; ,
( ) , , ; , , ; ,c

c c

g t
t g t g t t

t


     


           

x y
x v x x y D x y x y


      (4.18) 
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with cg vanishing at 0t    and at x   for any t . 

If the vector function  , tv x  and the scalar function   x  are defined as stochastically 

homogeneous fields in x-space and stationary in time t, we have the following relationships: 

   , ; , ,c cg t G t   x y x y      (4.19) 

     , ; , ,cg t H t    x x y x y  (4.20) 

     , , ; , ,c ct g t t   v x x y F x y  (4.21) 

Applying  FLT -the generalized Fourier-Laplace transforms in the vector k and the scalar   space 

for the functions cG ,  H  and cF , we have 

 , ( , )c FL cG T G t   k x y  ,    , ,FLH T H t   k x y ,  , ( , )c FL cT t   F k F x y (4.22) 

Introducing functions 

     1, , ,cH G   k k k   ,    ( , ) , ,c cG  W k F k k   (4.23) 

it is straightforward to show that averaging Equation (4.18), applying to it the FLT  transform and 

using the designations (4.23), we have 

     2, , 2 ( , ) ( , ) 4 ( ) , 1c c cG i G G         k k kW k k k Dk k     (4.24) 

 Multiplying Equation (4.24) by  ( , ) ,FLT t  k x  and taking into account that for  

the FLT  transform of    , ,C t c tx x we have  

     , , ,cC G   k k k  (4.25) 

and we obtain in (k,  ) space the general equation for the transformed mean concentration 

( , )C k  

             2, , 2 , , 4 , ,C i C C            k k kW k k kDk k k  (4.29) 

Then, using the inverse transform 1
FLT   on Equation (4.29) and denoting 

       1 1, ( , ) , , , , , ( , )FL FLt T t q t t T    
   x k Q x x W x W k  (4.30) 

we obtain the nonlocal  equations in space-time for the mean concentration  ,C tx and for the 

mean solute flux –vector  , tQ x  

   ,
( , ) ,

A t
t t

t



 


x

Q x x  (4.31) 



 16

    3

0

, ( , ) ,
t

A t t C dy d      x x y y  (4.32) 

     3

0

, ( , ) , ,
t

t t C dy d C t       Q x W x y y D x  (4.33) 

 ,0 0C x  (4.34) 

 
9. Summary 

    We have described the general form for the exactly averaged system of basic equations of steady   
flow, nonsteady transient flow and solute transport in arbitrary random bounded or unbounded 
domains of any dimension with sources and sinks. We examined the validity of the averaged 
descriptions and the generalized law for some nonlocal models. The approach described in the 
present paper does not require assuming the existence of any small parameters, for example, small 
scales of heterogeneity or small perturbation of conductivity field. 
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