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Regional dry-season climate changes due to three
decades of Amazonian deforestation
Jaya Khanna1*†, David Medvigy1,2†, Stephan Fueglistaler1,2 and Robert Walko3

More than 20% of the Amazon rainforest has been cleared in
the past three decades1, triggering important hydroclimatic
changes1–6. Small-scale (a few kilometres) deforestation in
the 1980s has caused thermally triggered atmospheric circu-
lations7 that increase regional cloudiness8–10 and precipitation
frequency8. However, these circulations are predicted to dimin-
ish as deforestation increases11–13. Here we use multi-decadal
satellite records14,15 and numerical model simulations to show
a regime shift in the regional hydroclimate accompanying
increasing deforestation in Rondônia, Brazil. Compared with
the 1980s, present-day deforested areas in downwind western
Rondônia are found to be wetter than upwind eastern defor-
ested areas during the local dry season. The resultant precipi-
tation change in the two regions is approximately±25%of the
deforested area mean. Meso-resolution simulations robustly
reproduce this transition when forced with increasing defor-
estation alone, showing that large-scale climate variability
plays a negligible role16. Furthermore, deforestation-induced
surface roughness reduction is found to play an essential
role in the present-day dry-season hydroclimate. Our study
illustrates the strong scale sensitivity of the climatic response
to Amazonian deforestation and suggests that deforestation is
su�ciently advanced to have caused a shift from a thermally
to a dynamically driven hydroclimatic regime.

Small-scale deforestation of Amazonia has been correlated with
increased cloudiness and precipitation over deforested regions8–10.
This increase has been attributed to thermally triggered mesoscale
circulations4 resulting from small-scale spatial variations in land–
atmosphere sensible heat fluxes4,5,7,11 between pasture and forest.
However, thermal triggering is scale-dependent and may weaken
as deforested patches increase beyond ∼20 km size11,12. Because
the landscape in Rondônia, Brazil (Supplementary Fig. 1) is now
dominated by larger deforested patches, the conventional paradigm,
emphasizing thermal triggering,may no longer apply. Indeed, recent
model simulations of Rondônian hydroclimate13 have suggested that
horizontal variations in surface roughness between aerodynamically
smooth pasture and rough forests may give rise to a spatial
redistribution of precipitation not explained by thermal processes
alone. This study focuses on identifying and attributing such
regional trends in the Rondônian hydroclimate resulting from
increasing deforestation between 1980s and 2000s while separating
the influence of large-scale climate variability known to affect basin-
wide Amazonian climate16. Testing this or other ideas about multi-
decadal changes in Amazonian regional hydroclimate raises vexing
empirical issues because a continuous, three-decadal compilation
of field observations is not available. In this study we address this
problem by using three-decadal satellite observations of clouds

and precipitation for trend detection, and numerical simulations to
understand underlying driving mechanisms.

We use ISCCP (International Satellite Cloud Climatology
Project) GridSat14 (Gridded Satellite) cloud observations between
1983 and 2008 to evaluate changes in cloud cover over Rondônia
(see Methods). The GridSat data set has been created to harmonize
the records of multiple Geostationary Operational Environmental
Satellites (GOES) in space and time. Utilizing the full multi-decadal
record, our analysis extends earlier studies that used GOES data
on shorter time periods8–10. To derive cloud occurrence for a time
of each day, a binary image of pixel-level cloud cover is generated
using GridSat thermal and visible channel data sets together with
the ISCCP cloud detection algorithm17 (Supplementary Information
and Supplementary Fig. 2). We then compute pixel-level percentage
occurrence of cloudiness by time-averaging these daily maps. We
consider percentage deviations from the area means to minimize
the impact of possible artificial trends over time arising from non-
stationary biases in the GridSat record.

The observed hydroclimate is correlated with the LBA-ECO
ND-01 land cover time series18, which shows that the length scale
of deforestation increases from a few kilometres in the 1980s to
a few hundreds in the 2000s (Supplementary Fig. 1). Among the
notable features in the 1980s are the highly deforested regions along
the highway BR-364, previously shown to be conducive to thermally
triggered mesoscale circulations due to their favourable length scale
in that period7,11.

Our analysis focuses on the local dry season (June, July, August
and September—JJAS). Precipitation variability during this season
can affect dry-season length19–22 and ecosystem adaptation6,23,24.
The multi-decadal evolution of the average of 14:00 LT (Local
Time) and 17:00 LT JJAS mean cloud occurrence fields is plotted
in Fig. 1a–c aggregated into three periods to increase the signal-
to-noise ratio: 1983 to 1990 (early), 1990 to 1999 (mid), and
2001 to 2008 (present) (further details in Supplementary Figs 3
and 4). As known from previous studies, the percentage of cloud
cover is nearly uniformly high over BR-364 during the 1980s
(Fig. 1a) (although it is slightly shifted towards its west due to
easterly ambient winds; Supplementary Fig. 1l). But as the scales
of deforestation increase over time, this signal is replaced by
a dipole-like structure in cloud cover over the deforested area
(Fig. 1b,c) aligned with the near-surface southeasterly winds. Over
the downwind deforested areas high cloud occurrence is observed,
while upwind areas are associated with cloud suppression. The
bimodal probability distribution in Supplementary Fig. 5 shows that
enhancement and suppression of clouds occur in the northwestern
and southeastern deforested regions, irrespective of similar local
scales of deforestation (see also Methods). Use of another cloud

1Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey 08544, USA. 2Department of Geosciences, Princeton
University, Princeton, New Jersey 08544, USA. 3Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami 33149, USA. †Present
addresses: Jackson School of Geosciences, University of Texas at Austin, Austin, Texas 78712, USA (J.K.); Department of Biological Sciences, University of
Notre Dame, Notre Dame, Indiana 46556, USA (D.M.). *e-mail: jkhanna@jsg.utexas.edu

NATURE CLIMATE CHANGE | ADVANCE ONLINE PUBLICATION | www.nature.com/natureclimatechange 1

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

http://dx.doi.org/10.1038/nclimate3226
mailto:jkhanna@jsg.utexas.edu
www.nature.com/natureclimatechange


LETTERS NATURE CLIMATE CHANGE DOI: 10.1038/NCLIMATE3226

65 64 63 62 61 60

65 64 63 62 61 60

13

12

11

Longitude (° W)

65 64 63 62 61 60

Longitude (° W)

65 64 63 62 61 60

65 64 63 62 61 60

Longitude (° W)

Longitude (° W)

65 64 63 62 61 60

Longitude (° W) Longitude (° W)

La
tit

ud
e 

(°
 S

)

10

9

8

13

12

11

La
tit

ud
e 

(°
 S

)

10

9

8

13

12

11

La
tit

ud
e 

(°
 S

)

10

9

8

13

12

11

La
tit

ud
e 

(°
 S

)

10

9

8

13

12

11

La
tit

ud
e 

(°
 S

)

10

9

8

13

12

11

La
tit

ud
e 

(°
 S

)

10

9

8

a
Def. area avg. = 37.7% Def. area avg. = 32.1% Def. area avg. = 35.8%

Def. area avg. = 1.21 mm d−1

Deforested boundary in current decade 2005 Deforested boundary Highway BR 364

Natural savannah Topography Differences significant at the 99% level

0 200
km

Def. area avg. = 1.38 mm d−1 Def. area avg. = 1.19 mm d−1

b c

d e f

−20

−10

0

10

20 Percentage cloud occurrence (percentage
difference from

 deforested area m
ean)

−30

−20

−10

0

10

20

30

D
aily precipitation (percentage

difference from
 deforested area m

ean)

Figure 1 | Emergence of the southeast–northwest cloud and precipitation ‘dipoles’ with increasing deforestation in Rondônia. a–c, 14:00 LT and 17:00 LT

average percentage cloud occurrence in JJAS between 1983 and 1990 (a), 1991 and 1999 (b) and 2001 and 2008 (c) calculated using GridSat data14.
d–f, Corresponding JJAS daily averaged PERSIANN precipitation15. The data are presented as the percentage di�erence from the deforested area average in
the corresponding decade (reported on top of each panel). Stippling represents di�erences significant at the 1% significance level. The solid lines represent
deforested boundaries in the corresponding decades (see Supplementary Fig. 1). The dashed line is the 2005 deforested boundary and is provided for
reference. The high cloudiness signal along the southwestern flank of the 2005 deforested boundary, present in all panels, is due to hills (see
Supplementary Fig. 1i).

detection algorithm, a variant of algorithms used by previous
studies9, produces similar results.

To quantify the time evolution of the east–west dipole pattern in
cloud occurrence we define a dipole moment vector of the yearly
JJAS cloud field (Methods). The dipole vector time series shows a
statistically significant positive linear trendwith p<10−4 (Fig. 2 and
Supplementary Table 1), and Spearman’s rank correlation test also
indicates a monotonic increase with time. The temporal evolution
of the direction of the dipole (Fig. 2 inset) indicates a transition
from spatially uniform to a southeasterly dipole in cloud occurrence.
However, the time series shows some nonlinearity, which may be
due to changing rates of deforestation, large-scale climate variability,
interactions with variable regional-scale conditions including ex-
treme droughts in 2005 and 2010 and the sensitivity of the dipole
metric to partial cloud cover. This inter-annual variability is cur-
rently under evaluation and will be addressed in a future study.

Additional support for a changing hydroclimate is obtained
from precipitation data sets (Methods). Daily precipitation data
from PERSIANN-CDR15 (Precipitation Estimation from Remotely
Sensed Information using Artificial Neural Networks—Climate
Data Record), available between 1983 and 2015, show a grad-
ual emergence of a statistically significant east–west dipole in the
present-day period (Fig. 1d–f and Supplementary Fig. 3i). The JJAS
precipitation occurrence dipole is highly correlated with the cloud
occurrence dipole (correlation coefficient = 0.7, p < 10−4), and

shows larger values in the 2000s than in the 1980s (Fig. 2 and Supple-
mentary Table 1). Note however that PERSIANN-CDR is derived in
part from GridSat and so is not completely independent of it. An
east–west precipitation dipole is also evident in Tropical Rainfall
Measuring Mission (TRMM) 3B43 monthly and TRMM 3B42 3-
hourly precipitation data25 at 17:00 LT (Supplementary Fig. 3g,h).
The TRMM data sets are independent of GridSat but start only in
late 1997 and hence are too short for multi-decadal trend detection.

These precipitation data sets may have systematic biases when
estimating rain rate, amount, area and location, with TRMM in
general performing better than PERSIANN26 (Methods). However,
the temporal biases are not likely to strongly influence our analysis
of spatial patterns. The cross-validation of spatial patterns between
three satellite data sets (GridSat, PERSIANN and TRMM) also
improves the confidence in our inferences.

While some persistent cloud cover features are associated with
hills at 63.7◦W, 10.9◦ S and 62.2◦W, 11.1◦ S (Supplementary Fig. 1i),
within the deforested area the spatial patterns in cloud cover in
JJAS 2001–2008 are not correlated (p> 0.1) with local topography.
14:00 LT boundary layer winds obtained from NCEP/NCAR
(National Centers for Environmental Prediction/National Center
for Atmospheric Research) reanalysis 1 (Supplementary Fig. 1l) do
not show any significant trends between 1983 and 2008 (trends
in wind magnitude and direction at 1,000mb, 925mb and 850mb
all have p > 0.1) suggesting that the observed transition in the
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Figure 2 | Time evolution of cloud and precipitation dipole moment vectors showing increasing southeast–northwest redistribution with increasing
deforestation. The time evolution of the dipole moment metric (left y axis) is calculated using JJAS GridSat14 cloud occurrence and PERSIANN15

precipitation occurrence. Time evolution of cumulative deforestation (green shaded area and the right y axis), available since 1988 from the PRODES
project of INPE in Rondônia, is also shown. Precipitation dipoles are multiplied by a factor of 10. The x axis is labelled with year and number of days with
missing or incomplete GridSat data in JJAS in the corresponding year (in brackets). Years in which more than 50% data are missing have been excluded
from the time series analysis. The inset shows the cloudiness dipole moment vectors over 26 years. GridSat cloud dipoles in the main figure and inset have
the same colour code with yellow colours and blue colours representing present-day and early time periods respectively. The displayed statistics
correspond to the cloud data. For corresponding statistics for precipitation data, see Supplementary Table 1.
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Figure 3 | Emergence of the dipole in simulated data between the 1980s and 2000s and the causal physical mechanism behind the dipole in the
present time. a–f, 1,717 m altitude relative humidity averaged between 13:00 LT and 18:00 LT in DEF86SST80 (a), DEF06SST00 (b), DEF86SSTcl (c),
DEF06SSTcl (d), DEF06SSTcl-dyn (e) and DEF06SSTcl-thrm (f). The panels show the percentage di�erence of the field from the deforested area average.
All results are averaged over all days in August and over all ensemble members. Stippling shows di�erences significant at the 1% significance level.
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Figure 4 | Emergence of the cloud and precipitation ‘dipoles’ over three
decades as captured by observed and simulated data. (See Methods for
details on the simulated and observed data used to calculate the dipoles.)
Individual points represent ensemble mean dipole strength in the
corresponding data set and time period. Error bars, end-to-end, represent
two standard deviations. The data are scaled so that the mean of each
variable in the 1980s is equal to 1. The means from the 1980s are used to
scale the corresponding variables in the 2000s. The original mean and
standard deviation (×103% km) of each variable are reported in brackets
below each data point. The arrows represent the dipole moment vectors
calculated with ensemble averaged scaled magnitude and direction. The
dipole moment mean and variance are expected to di�er between the data
sets owing to di�erent spatial resolution and data units; however, the
scaling of 3 to 4 times between the 1980s and 2000s is observed across
all data sets.

hydroclimate is not a result of large-scale wind or sea surface
temperature (SST) changes known to affect Amazonian climate16.

We use the Ocean–Land–Atmosphere Model (OLAM)27 to
understand the mechanisms underpinning the observed changes.
First, we test whether forcing the model with observed, evolving
deforestation and SSTs reproduces the hydroclimate of Rondônia.
We compare two numerical experiments forced with 1986 land
cover and 1980s averaged SSTs, and 2006 land cover and 2000s
averaged SSTs. Then, to isolate the effect of large-scale climate
variability and to identify the causal mechanisms we repeat these
experiments with 1971–2010 average SSTs, and varying land cover
parameterizations (uniform surface roughness and topography,
reduced sensible heat variations and pristine land cover around
Rondônia). See Methods and Supplementary Table 2 for a complete
description of the experimental set-up. The variable resolution
capability of OLAM allows the resolution of climatologically
important scales of deforestation around Rondônia on an ∼8 km
grid11. However, this resolution is still too coarse to adequately
resolve clouds. Hence, following previous studies28, we use relative
humidity slightly above the top of the boundary layer (∼1,300m)
and precipitation as indicators of changing hydroclimate. Model
evaluation is performed using in situ29 and satellite observations in
Supplementary Fig. 6 and Supplementary Table 3.

We find that simulations forced with 1980s conditions have
more convection over the deforested patches as compared
with nearby forests, manifest as positive anomalies in relative
humidity and precipitation (Fig. 3a and Supplementary Fig. 7e)
relative to deforested area mean. Simulations forced with 2000s
conditions reveal the emergence of a dipole in relative humidity
and precipitation (Fig. 3b and Supplementary Fig. 7f) with positive
anomalies in the downwind deforested areas. The difference
between these deforested and the corresponding pristine forest

Thermodynamically driven regimea

b Dynamically driven regime

Smooth/warm Rough/coolRough/cool

Warm CoolCool

Figure 5 | Transition in the dominant convective regime with increasing
scales of deforestation. a, In the early period, convection over the
deforested region is enhanced by thermal triggering alone. b, In the
present-day period, horizontal variations in surface roughness result in a
suppression of convection in the upwind sector and enhancement of
convection in the downwind sector.

experiments (replacing pasture with forests) also captures the
transition (Supplementary Fig. 7a,b), confirming the significant
role of increasing deforestation in the emergence of the dipole.
Model runs with changing land use but identical, climatological
global SSTs give very similar results (Fig. 3a–d and Supplementary
Fig. 7a–h). These results are supported by the transition in
the vegetation-generated mesoscale circulations between the
two decades (Supplementary Fig. 8). We conclude that decadal
global SST changes, which affect the basin-scale Amazonian
hydroclimate16, are of secondary importance to the observed,
smaller-scale hydroclimatic changes reported here.

Figure 4 summarizes these findings fromobserved and simulated
data sets showing that the dipole strength in the present period is
3 to 4 times larger than in the early period irrespective of the data set
and irrespective of the SST boundary condition. This figure displays
the crucial role that increasing deforestation has played in changing
the regional hydroclimatic response between the two periods.

Finally, we evaluate whether the simulated dipole is associated
with convection modulated by surface roughness variations
(‘dynamical mechanism’)13 caused by deforestation. We repeat the
experiment with 2006 land cover and climatological SSTs, but with
pasture vegetation height set to that of evergreen forest (and other
pasture parameters at their standard values). The absence of the
east–west dipole in this experiment shows that changes in surface
roughness are essential for the simulation of the dipole (Fig. 3e and
Supplementary Fig. 7i). However, when ‘pasture’ is parameterized
with pasture height but otherwise as evergreen forest, the model
produces only a weak dipole (Fig. 3f and Supplementary Fig. 7j),
revealing the importance of deforestation-induced increase in
sensible heat fluxes and atmospheric instability for enhanced
convection over the deforested areas. Hence, the observed increase
in sensible heat fluxes over pasture is found insufficient to generate
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the dipole but necessary to provide conducive atmospheric
conditions to support the dynamical mechanism that triggers the
dipole. Lastly, regional topography is found to be inconsequential
for the existence of the dipole, although it maymodulate its strength
or orientation (Supplementary Fig. 7k,l). Overall, this transition in
the deforestation-triggered convective regime, consistent with cloud
and precipitation observations, illustrates a shift from a thermally
dominated7 (at small scales) to a dynamically dominated13

(at present-day scales of deforestation) convective regime.
Our study provides an integrated perspective on how three

decades of deforestation in Amazonia have affected the regional
hydroclimate. Cloud and precipitation observations and numerical
simulations consistently indicate a transition from a thermally
to a dynamically dominated convective regime associated with
increasing scales of deforestation (Fig. 5). The direct influence
of this transition is a substantial (25% of the area average)
wetting of the downwind sectors of deforested areas and a
similar drying of the upwind sectors. This is in contrast with a
thermally dominated convective regime, which resulted in mostly
non-precipitating cloudiness, and hence can be consequential for
ecosystem adaptation6,23,24 in the upwind and downwind deforested
regions. The generalizability of these physical mechanisms to other
seasons and other deforested regions in the Amazon and the
tropics is currently under evaluation and will be the subject of
another paper. While we find that the dynamical mechanism is
sufficient to explain the broad features of the observed changes in
the hydroclimate, more work is required to quantify to what extent
other processes such as changes in evapotranspiration andmoisture
recycling30 may have also contributed. Overall, our study provides
context for thinking about the climate of a future, more patchily
forested Amazonia31, by articulating relationships between climate
and spatial scales of deforestation.

Methods
Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.
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Methods
Region and period of investigation. The study is performed over the deforested
regions of the Brazilian state of Rondônia, which lie between 65◦ W, 60◦ W, 13◦ S
and 8◦ S (Supplementary Fig. 1). The LBA-ECO ND-01 (Large-Scale
Biosphere-Atmosphere Experiment in Amazonia—Ecology—Nutrient Dynamics)
land cover time series (1984 to 2010)18 and PRODES INPE (National Institute of
space research—Projeto de Monitoramento do Desflorestamento na Amazonia
Legal) estimates of annual deforestation (since 1988)32 are used to quantify
vegetation cover change in this study. Spatial scales of forest clearing in this region
have spanned a large range over the past 30 years making it a favourable test bed to
study different scale-dependent mechanisms of convective triggering4,5,13.

Dry-season precipitation variability and land surface-induced convective
processes are important for vegetation adaptation6,23,24 and in regulating the timing
of the transition seasons19–22. They may hence affect wet-season arrival19, which in
turn may feedback to vegetation functioning. Moreover, in Amazonia,
land–atmosphere coupling is generally strongest in the dry season33. Also
surface-induced mesoscale circulations are strongest during midday hours7,8,10,13.
Accordingly, we focus our analysis on the year-to-year changes in the peak
dry-season (June, July, August and September: JJAS) afternoon conditions. GridSat
cloudiness is analysed at 14:00 LT and 17:00 LT. TRMM 3B42 3-hourly precipitation
data25 are analysed at 17:00 LT because the effect of increase in cloudiness on
precipitation is observed in the late afternoon in the TRMM data set and also in the
LBA-ECO flux tower network data compilation29. PERSIANN and TRMM 3B43
daily-average products are used to analyse JJAS daily average precipitation.

Cloud cover data and detection algorithm. The ISCCP GridSat data set14,34,
produced under the NOAA Climate Data Record program by the International
Satellite Cloud Climatology Project (ISCCP), has been utilized to carry out the
multi-decadal analysis in this study. This data set combines several decades of
geostationary data from all over the globe, cross-calibrating between different
instruments in time and space (in time between different GOES satellites, and in
space between GOES and other geostationary satellites that are a part of the ISCCP
project14). We analysed the data at 14:00 LT and 17:00 LT for the months of June,
July, August and September between 1983 and 2008 using a standard cloud
detection algorithm17 summarized in the Supplementary Information.

Precipitation data.We primarily use the PERSIANN-CDR global precipitation
data set15 for our trend analysis over the study period of three decades. This data set
is available as daily total precipitation at 25 km spatial resolution. The period used
in this study is 1983 to 2015. PERSIANN-CDR employs the PERSIANN algorithm
on GridSat-B1 infrared satellite data, and employs the training of the artificial
neural network using the National Centers for Environmental Prediction (NCEP)
stage IV hourly precipitation data and is then adjusted using the Global
Precipitation Climatology Project (GPCP) monthly product. Hence, it is not
independent of the GridSat data. We also use TRMM 3B43 global monthly
averaged and TRMM 3B42 3-hourly precipitation products25 to identify spatial
patterns in the present-day period. Both are available at 25 km spatial resolution
since November 1997. The period of TRMM data used in this study is 2002
to 2014.

Model set-up and evaluation.We used the Ocean–Land–Atmosphere Model27
(OLAM) to carry out our numerical experiments. A successor of the Regional
Atmospheric Modeling System, OLAM is a variable-resolution global circulation
model that uses finite-volume discretization of the full non-hydrostatic,
compressible Navier–Stokes equations on a hexagonal grid. Such formulation is
essential for the modelling of convective processes in mesoscale phenomena such
as studied in this paper. Moreover, the variable resolution of OLAM also facilitates
interactions between large-scale atmospheric dynamics with mesoscale processes
without introducing errors due to lateral boundary conditions. These features of
OLAMmake it a suitable tool to study mesoscale phenomena. Land surface
processes, cloud microphysics, cumulus convection, radiative transfer and
subgrid-scale turbulence are parameterized. For details on parametrizations used
see ref.13.

We carried out 11 different numerical experiments (Supplementary Table 2).
We used 3 different land cover maps: simulations prefixed with DEF86 and DEF06
used the land cover observed in Rondônia18 in 1986 and 2006, respectively;
simulations prefixed with FORpr represent pristine forest and replace all pasture in
the region with evergreen forest. To reduce the number of degrees of freedom that
are introduced by an interactive ocean, we ran OLAM as an atmospheric general
circulation model with prescribed monthly averaged sea surface temperatures
(SSTs)35. We used 3 different SST forcings. Simulations suffixed SST80, SST00 and
SSTcl are forced with monthly SSTs averaged between 1980–1989, 2000–2009 and
1971–2010, respectively. The Hadley Center’s SST time series35 used for this study
are available as monthly averages that are further averaged over the periods
mentioned above to produce 3 averaged annual cycles. These annual cycles are
used for the respective experiments. We also considered a simulation that

controlled roughness length by running deforestation-like simulations in which the
height of pasture vegetation in Rondônia was set to be the same as for evergreen
forest (‘dyn’ in the simulation name). A similar deforested simulation was
performed to achieve a minimum possible horizontal variation of surface sensible
heat flux while maintaining the roughness differences between the two vegetation
types. In this experiment the pasture vegetation had the same properties as
evergreen forest except vegetation height (‘thrm’ in the simulation name). Finally, a
deforested experiment with no regional topographic variations was also performed
(‘topo’ in the simulation name) by applying the area-averaged topography within
68◦ W to 57◦ W and 16◦ S to 5◦ S.

Deforested experiments DEF86SST80 and DEF06SST00 were performed to
analyse the role of changing scales of deforestation and SSTs in the observed
decadal changes in the hydroclimate of Rondônia. Experiments DEF86SSTcl and
DEF06SSTcl were performed to separate the hydroclimatic effects of changing
scales of deforestation from the effects of observed decadal variability of SSTs.
Comparing DEF06SSTcl-dyn and DEF06SSTcl-thrm with DEF06SSTcl allowed us
to isolate the impacts of roughness length. Lastly, the DEF06SSTcl-topo experiment
allowed us to isolate the coupled effects of regional topography on the
deforestation-induced hydroclimatic changes. The difference fields (DEF-FOR
experiments) show the net effect of vegetation cover change from pristine forest to
pasture removing spatial features common to both experiments.

Each experiment consists of a time-lagged ensemble of 24 simulations. The
ensemble is generated by initializing 24 simulations at intervals of 1 day—intervals
starting at 0:00 UTC, 8 June 2004 and ending 0:00 UTC, 1 July 2004. All simulations
end at 0:00 UTC, 1 September. All simulation results presented in this study are
averaged over the respective 24 ensemble members. We chose to simulate only the
months of July and August due to computational constraints. We specifically chose
to analyse the month of August because observations show that this month
(amongst June, July, August and September) presents the highest resemblance with
the JJAS averaged values. This is summarized in Supplementary Table 1, which
shows that amongst all months analysed the trend in the August dipole moment is
the closest to the trend in JJAS dipole moment, and the spatial correlation between
the August averaged and JJAS averaged cloud cover is the largest.

The initial conditions are obtained from the National Centre for Environmental
Prediction36 atmospheric fields for June 2004. Soil energy and moisture are
initialized using values obtained at the end of 15-year OLAM spinup for June 2004.
The initialization is made with these values averaged over a 15◦×15◦ area around
Rondônia. For both simplicity and lack of available data, we prescribed a uniform,
constant clay loam soil type around Rondônia. However, soil characteristics can
vary as a function of time over deforested areas due to continual grazing and poor
management and can also vary on small spatial scales. Despite our simplification,
our prescription gave an adequate representation of the observed sensible heat
fluxes (Supplementary Table 3).

The grid resolution used in all of the experiments is∼8 km over Rondônia,
which gradually increases to 64 km over northern South America and up to 256 km
over the whole globe. We chose to simulate at this resolution because both the
thermally and dynamically generated vegetation breezes can be captured at this
resolution11,13. The vertical resolution is set to be 200m up to a height of 2 km,
which increases up to 2 km near the model top at 45 km. This grid set-up is the
same as that used in ref. 13.

In our simulations the pasture and evergreen forest vegetation types differ in
mainly four parameters: vegetation height, rooting depth, minimum stomatal
resistance and albedo. The values of these parameters for evergreen forest
vegetation are: 32m, 5m, 286 sm−1 and 0.12, respectively. The corresponding
values for pasture vegetation are: 0.32m, 1m, 100 sm−1 and 0.18. The modelled
vegetation roughness length L, which is the relevant variable for surface to
atmosphere momentum fluxes, is dependent on vegetation heightH and vegetation
total (leaf and stem) area index TAI:

L=H× (1−0.91×exp(−0.0075×TAI)) (1)

We evaluate our simulations with eddy covariance, meteorology and radiation
data collected at two eddy flux tower sites in Rondônia—Fazenda Nossa Senhora
(pasture site at 62.36◦ W, 10.76◦ S) and reserve Jaru (forest site at 61.93◦ W,
10.08◦ S) compiled in the LBA-ECO CD-32 (Carbon Dynamics) Flux Tower
Network Data29 between March 1999 and September 2002. LBA data
collected after 2002 are now also available (P. Artaxo, personal communication,
6 January 2017) and should be utilized in future studies for model validation.
We also use precipitation data from the monthly TRMM 3B43 (ref. 25) and
surface radiation fluxes from CERES (Clouds and Earth’s Radiant Energy Systems)
surface EBAF (Energy Balanced and Filled) product37. Daytime boundary
layer height data reported in ref. 38 are also used to evaluate the simulated
daytime development of boundary layer height over pasture and forest in
Rondônia. Model evaluation is performed for the numerical experiment
DEF06SST00 and is presented in Supplementary Fig. 6, Supplementary Table 3
and Supplementary Information.
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Dipole moment vector. Dipole moment vectors of cloudiness and precipitation
occurrence are calculated for each year. Only the pixels within the deforested
boundary (neglecting areas above 9.5◦ S as they form a separate deforested patch)
of the corresponding year are used in the calculation; thus, the area used to define
the dipoles is different in each year. It is a vector with X and Y components equal to
a spatial sum of the individual products of the pixel-wise percentage deviations and
their distance from an origin. Percentage deviations from the deforested area mean
are used because we are interested in spatial patterns rather than larger-scale trends
possibly associated with (multi-) decadal modes of climate variability.

Effect of temporal and spatial biases in satellite data. As observed in
Supplementary Fig. 2a–d, the JJAS averaged albedo and brightness temperature
from GridSat have negative and positive trends, respectively. Although the
performance of precipitation data sets has been evaluated in different parts of
South America26,39, similar temporal biases in precipitation data may also exist. For
example, both TRMM and PERSIANN precipitation data sets have been shown to
have systematic biases in estimating the rain rate, rain volume, rain area and rain
location of mesoscale convective systems26,40 in South America with TRMM in
general performing better than PERSIANNmostly due to the application of
monthly bias correction using ground-based precipitation in TRMM. PERSIANN
is also found to overestimate rain area and have larger biases in locating rain
centres as compared with TRMM, both compared with ground-based estimates26.
Due to this reason PERSIANN shows negative rain rate biases as compared with
ground-based data.

For the above reasons we use TRMM estimates for model evaluation. Also we
designed our observational analysis metrics based on percentage deviations from
area mean to minimize the effect of the above-mentioned temporal biases in the
satellite data. Also the cross-validation of our results of spatial redistribution of
clouds and precipitation between three, semi-independent, satellite-based
products—GridSat, TRMM and PERSIANN—also provides greater confidence in
the changes in the spatial patterns detected over the study region. It is observed
however that the precipitation percentage deviations, over the deforested area,
estimated using PERSIANN precipitation data are usually smaller in magnitude
than the corresponding TRMM percentage deviations (Supplementary Fig. 3g
and i) indicating the smearing of the precipitation area in PERSIANNmentioned
above. It should be noted that this study serves to detect trends in the spatial
organization of clouds and precipitation with increasing deforestation and not
trends in absolute values of clouds and precipitation.

Statistical robustness of the emerging dipole signal. Statistical robustness of the
dipole in the present day is tested in Supplementary Fig. 5. Probability distributions
in Supplementary Fig. 5a–d are generated using 14:00 LT JJAS percentage cloud
cover averaged over 1983 to 1990 and 2001 to 2008 and the corresponding land
cover maps in 1985 and 2005 obtained from LBA-ECO ND-0118. Both data sets are
re-gridded to 2.4 km by 2.4 km using two-dimensional interpolation for cloud
cover and by calculating the fractional deforested area under each coarse grid cell.
The joint probability distribution functions (panels e–g) for the periods 1983 to
1992 and 1997 to 2008 are obtained using 2,000 bootstrapped samples from each
period and the difference between the samples.

Supplementary Fig. 5e–g shows that there exists a statistically significant
systematic spatial redistribution of clouds between the early and present-day time
periods. The figures show this systematic spatial distribution in the difference field
(Supplementary Fig. 5g), which resembles the southeast–northwest dipole of cloud
occurrence as observed in the present-day period (Supplementary Fig. 5f). This
analysis corroborates our claim that there is a statistically systematic (as shown by
the bootstrapped sample) dipole signal present in the present-day times that is
different from the uniform cloudiness observed over highly deforested areas in the
early time period.

Supplementary Fig. 5a–d shows, first, that a change in scale of deforestation
between the 1980s to 2000s results in a change in the distribution of clouds over the
deforested area—change from a unimodal to a strong bimodal distribution. In the
early period the clouds preferably occur over moderately deforested grids (with
deforested fraction∼0.3), but the majority of the sparsely deforested grids are
characterized by downdrafts with low cloudiness. But in the present day, an equal
number of grids are populated by high as well as low cloud cover as depicted by the
bimodal distribution. Second, in the present-day time period the regions of high
and low cloud cover occur at similar levels of deforestation (grids with∼85% of
deforestation); that is, despite the amount of deforestation being the same, there is a
preference of high cloudiness in some regions and low cloudiness in
others—signifying a secondary role of thermal triggering.

Consistent increase in dipole strength in various data sets. Figure 4 shows that
there is a consistent three- to fourfold increase in the dipole strength between the
early and present-day time periods irrespective of the data set. The following
method is used to calculate the data presented in this figure. Simulated data include
the 1,717m relative humidity averaged between 13:00 LT and 18:00 LT and

precipitation averaged between 16:00 LT and 20:00 LT. Simulated data are obtained
from the month of August from DEF86SST80, DEF06SST00, DEF86SSTcl and
DEF06SSTcl. Observed data used to calculate dipole strength includes 14:00 LT and
17:00 LT averaged GridSat cloud and daily PERSIANN precipitation. Observational
period 1 includes JJAS 1983 to 1994 (except 1987 and 1988 due to unavailable data)
and period 2 includes JJAS 1997 to 2008 (except 1998 due to unavailable data). The
standard deviation in simulated data represents variability between 24 ensemble
members. The standard deviation in observational data represents
inter-annual variability.

Statistical tools. The ordinary least-squares fit is calculated with the MATLAB
in-built function fitlm. The significance of the trend line is tested using the p value
derived from the t statistics under the assumption of normal errors. Trend line for
the cloud occurrence dipole (Fig. 2) is calculated neglecting years that have at least
50% data missing. The same years are also removed from the trend calculation of
the precipitation occurrence dipole (Supplementary Table 1). Correlation analysis
is done using the MATLAB in-built function corrcoef. Statistical significance of
differences is calculated with a two-tailed t-test at the 1% significance level. The
null hypothesis tested in each case is—mean cloudiness or precipitation in each
pixel is equal to the deforested area mean cloudiness or precipitation. A pixel-wise
5-day running average is applied to the GridSat cloud occurrence and PERSIANN
and TRMM 3B42 precipitation time series before the t-test is performed.
Additionally, to access the robustness of the test results, a Z-test is also performed
on the sampling distribution of the sample means obtained from 200 bootstrapped
samples for each pixel. The bootstrapped sampling distributions were verified
to be normal on a quantile–quantile plot. All the results of hypothesis tests
reported in Fig. 1 and Supplementary Fig. 3 were further verified to be robust
under resampling.

Code availability. All modelled data and code that support the findings of this
study can be accessed from the Princeton University’s DataSpace online repository
(http://arks.princeton.edu/ark:/88435/dsp017s75df850).

Data availability. The data/reanalysis that support the findings of this study are
publicly available online at http://www.esrl.noaa.gov/psd (NCEP/NCAR 1),
http://dx.doi.org/10.7289/V59P2ZKR (ISCCP GridSat34)
https://www.ncdc.noaa.gov/cdr/atmospheric/precipitation-persiann-cdr
(PERSIANN-CDR41) with http://dx.doi.org/10.7289/V51V5BWQ,
https://pmm.nasa.gov/data-access/data-downloading (TRMM, accessed:
25 November 2014), and http://www.metoffice.gov.uk/hadobs/hadisst (Hadley
Center’s SST). The land use maps and flux tower data are distributed by the Oak
Ridge National Laboratory at http://daac.ornl.gov and the deforestation rate time
series is provided by the INPE PRODES project at http://www.obt.inpe.br/prodes.
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