

Annual Report of Monitoring at Barnes, Kansas, in 2010

Environmental Science Division

About Argonne National Laboratory

Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory's main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne and its pioneering science and technology programs, see www.anl.gov.

Availability of This Report

reports@adonis.osti.gov

This report is available, at no cost, at http://www.osti.gov/bridge. It is also available on paper to the U.S. Department of Energy and its contractors, for a processing fee, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone (865) 576-8401 fax (865) 576-5728

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, Argonne National Laboratory, or UChicago Argonne, LLC.

Annual Report of Monitoring at Barnes, Kansas, in 2010

by

Applied Geosciences and Environmental Management Section Environmental Science Division, Argonne National Laboratory

May 2011

Contents

No	otation	l	v
1	Intro	duction and Background	1-1
2	Con	ceptual Site Model	2-1
3	Sam	pling and Analysis Activities in 2010	3-1
	3.1 3.2 3.3 3.4	Measurement of Groundwater Levels Well Sampling and Analyses Handling and Disposal of Investigation-Derived Waste Quality Control for Sample Collection, Handling, and Analysis	3-1 3-2 3-2 3-3
4	Resu	Its and Discussion	4-1
	4.1 4.2	Groundwater Level Data Analytical Results for Volatile Organic Compounds in Groundwater Samples and Lateral Distribution of the Contaminants	4-1 4-3
5	Con	clusions and Recommendations	5-1
	5.1 5.2	Conclusions Recommendations	
6	Refe	rences	6-1
Aŗ	pendi	x A: Sampling Activities and Field Measurements at Barnes in 2010	A-1
Ap	pendi	x B: Results from the AGEM Laboratory for Dual Analyses of Samples Collected at Barnes in 2010 and for Quality Control Samples	B-1
Su	pplen	nent 1: Waste Characterization Datao	n CD
Su	pplen	nent 2: Sample Documentation from TestAmerica Laboratories, Inco	n CD

Figures

1.1	Groundwater sampling locations at Barnes in 2010 1-3
3.1	Wells at Barnes equipped with data loggers for automatic water level monitoring in 2010 3-5
4.1a	Potentiometric surface map depicting the groundwater flow direction in the deep aquifer zone at Barnes under static conditions on February 2, 2010 4-16
4.1b	Potentiometric surface map depicting the groundwater flow direction in the deep aquifer zone at Barnes under pumping conditions on February 2, 2010 4-17
4.2a	Hydrographs summarizing monthly results of long-term water level monitoring in the deep-zone wells at Barnes, January-December 2010 4-18
4.2b	Hydrographs summarizing monthly results of long-term water level monitoring in the intermediate-zone wells at Barnes, January-September 2010 4-24
4.3	Analytical results for carbon tetrachloride in groundwater samples collected at Barnes in 2009-2010
4.4	Analytical results for chloroform in groundwater samples collected at Barnes in 2009-2010
4.5	Interpreted carbon tetrachloride plume in 2010 in wells screened in the deep aquifer zone
5.1	Wells in the approved monitoring network, beginning in 2011 5-4
5.2	Wells at Barnes equipped with data loggers for automatic water level monitoring in 2011

Tables

4.1	Hand-measured water levels at Barnes in 2010	4-5
4.2	Elevation ranges measured for the three aquifer zones, 2007-2010	4-6
4.3	Analytical results from the AGEM Laboratory for volatile organic compounds in groundwater samples collected at Barnes, 2006-2010	4-7

Tables (Cont.)

A.1	Sequence of groundwater sampling activities at Barnes in 2010	A-2
A.2	Field measurements for groundwater samples collected at Barnes, 2006-2010	\-10
B.1	Analytical results from the AGEM Laboratory for quality control samples collected to monitor sample collection and handling activities at Barnes in 2010	B-2
B.2	Analytical results from the AGEM Laboratory for dual analyses of samples collected at Barnes in 2010	B-3

Notation

AGEM	Applied Geosciences and Environmental Management
AMSL	above mean sea level
BGL	below ground level
°C	degree(s) Celsius
CCC	Commodity Credit Corporation
CD	compact disc
COC	chain of custody
EPA	U.S. Environmental Protection Agency
ft	foot (feet)
gal	gallon(s)
hr	hour(s)
in.	inch(es)
KDHE	Kansas Department of Health and Environment
L	liter(s)
µg/kg	microgram(s) per kilogram
µg/L	microgram(s) per liter
µS/cm	microsiemen(s) per centimeter
mg/L	milligram(s) per liter
min	minute
mV	millivolt(s)
ND	not detected
PWS	public water supply
RBSL	risk-based screening level
USDA	U.S. Department of Agriculture
VOC	volatile organic compound

Annual Report of Monitoring at Barnes, Kansas, in 2010

1 Introduction and Background

The Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) operated a grain storage facility at Barnes, Kansas, in 1949-1974. Carbon tetrachloride contamination was initially detected in 1986 in the town's public water supply wells. In 2006-2007, the CCC/USDA conducted a comprehensive targeted investigation at and near its former property in Barnes to characterize this contamination. Those results were reported previously (Argonne 2008a). The results of that investigation indicated that carbon tetrachloride contamination is present in groundwater at low to moderate levels in the vicinity of the former CCC/USDA grain storage facility.

Information obtained during the 2006-2007 investigation also indicated that at least one other potential source might have contributed to the groundwater contaminant plume (Argonne 2008a). The former agriculture building owned by the local school district, located immediately east of well PWS3, is also a potential source of the contamination.

In November 2007, the CCC/USDA began periodic groundwater monitoring at Barnes. The monitoring is being conducted on behalf of the CCC/USDA by Argonne National Laboratory, under the direction of the Kansas Department of Health and Environment (KDHE). The objective is to monitor the carbon tetrachloride contamination identified in the groundwater at Barnes. Through 2010, sampling was conducted in a network of 28 individual monitoring wells (at 19 distinct locations), 2 public water supply wells, and 1 private well (Figure 1.1).

The results of the 2006-2007 targeted investigation and the subsequent monitoring events (Argonne 2008a-d, 2009a,b, 2010) demonstrated the presence of carbon tetrachloride contamination in groundwater at levels exceeding the KDHE Tier 2 risk-based screening level (RBSL) of 5.0 μ g/L for this compound. The contaminant plume appears to extend from the former CCC/USDA property northwestward, toward the Barnes public water supply wells. Long-term monitoring of the groundwater levels and the contaminant distribution has confirmed that pumping of the public water supply wells affects the direction of groundwater flow. When these wells are not pumping, the direction of groundwater flow is to the northeast. However, when they are pumping, groundwater flow is directed to the northwest, toward the public wells.

A contingency interim measure (Argonne 2009c) has been approved by the KDHE (2009) and will be implemented if the two operating public water supply wells become contaminated at levels above the RBSL of $5.0 \ \mu g/L$ for carbon tetrachloride.

This current report presents the results of monitoring conducted in 2010. Sampling of the monitoring well network was conducted in March-April 2010 and September 2010. In addition, the two operating public water supply wells were sampled in June 2010 and December 2010. On the basis of an evaluation of the data collected in 2006-2009 (Argonne 2010), including a trend analysis of the site contamination and its migration, the KDHE (2010) concurred that future monitoring will occur on an annual basis, with twice-yearly sampling of the two public water supply wells in service (conducted in cooperation with the city). The KDHE (2010) also agreed to decrease the number wells to be sampled in the future, as discussed in Section 5.

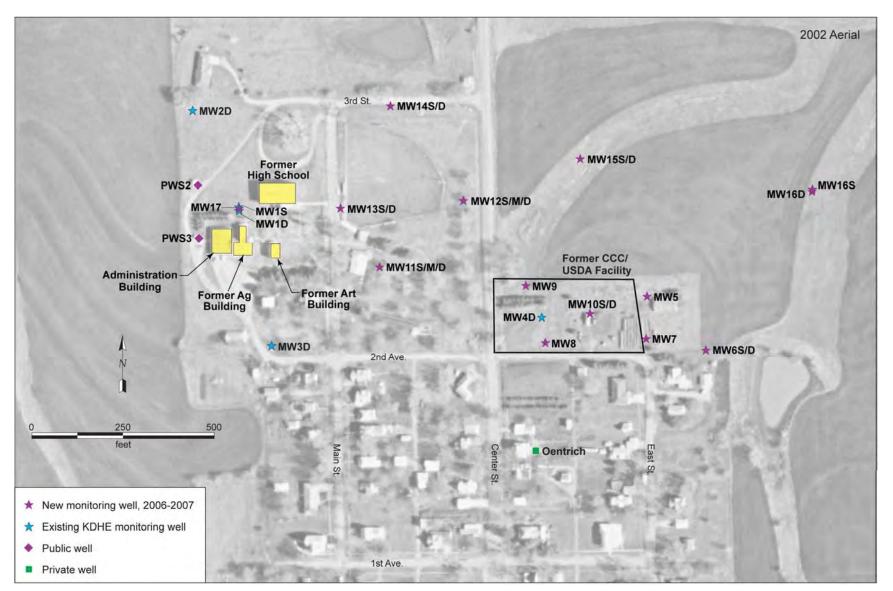


FIGURE 1.1 Groundwater sampling locations at Barnes in 2010. Source of photograph: NAPP (2002).

2 Conceptual Site Model

Barnes lies in a transition zone between the Flint Hills and the glaciated region. The area's topography consists of gently sloping hills of Pleistocene loess (with variations in elevation < 50 ft) overlying a shale unit and interbedded shale, limestone, and siltstone of the Permian Chase Group. Groundwater for the public water supply is produced from the bedrock aquifer of the Chase Group.

The site lithology and subsurface contaminant conditions were determined in the 2006-2007 investigation through the collection of continuous-core samples at 13 locations (MW5-MW17) extending from east of the former CCC/USDA grain storage facility and westward, across the area of concern, toward the public water supply wells (Argonne 2008a). The predominant lithology consists of a thin layer of silty clay to clayey silt with fine sand in the upper 2-20 ft. This layer is underlain by highly weathered shale interbedded with thin layers of fractured limestone at depths of approximately 18-132 ft BGL (below ground level). No soil contamination at concentrations above the current RBSL of 73.4 μ g/kg for the soil-to-groundwater protection pathway was detected at any of the 13 locations. Trace concentrations (<10 μ g/kg) of carbon tetrachloride were detected in soil at 3 locations on the former CCC/USDA facility property. These low concentrations would not result in higher concentrations in groundwater, and therefore the soil on the former CCC/USDA property is not considered to be a source for the carbon tetrachloride contamination in groundwater.

Groundwater is present predominantly in the fractured limestone layers. Monitoring wells were installed and screened at various depths, with several locations completed as nested wells to determine contaminant concentrations at depths where water-bearing zones were indicated. Throughout the monitoring program, a detailed evaluation of the hand-measured water levels and carbon tetrachloride data has been conducted to investigate the stratigraphy of the saturated zone. The accumulated water level data confirm that three vertically distinct aquifer zones are present: shallow, intermediate, and deep. These zones are discussed further in Section 4.1. The vertical distribution of the carbon tetrachloride in groundwater indicates that the highest concentrations (approximately 50-80 μ g/L over the course of the monitoring program to date) occur in the intermediate aquifer zone. Lower concentrations have been detected in the deep aquifer zone, and no carbon tetrachloride has been detected in the shallow zone. Trace levels of carbon tetrachloride have been detected periodically in the two public water supply wells; these wells are believed to be screened over all three aquifer zones.

Extensive documentation of the potentiometric surface at Barnes during the targeted investigation and subsequent monitoring events (Argonne 2008a-d, 2009a,b, 2010) has indicated that operation of the public water supply wells strongly influences the groundwater flow direction. The accumulated data document a predominant direction of groundwater flow to the northeast under non-pumping conditions. In contrast, flow is toward the northwest, in the approximate direction of the public wells, when they are pumping. The data demonstrate that the public water supply wells are operated daily, with drawdowns of as much as 2.25 ft during pumping. Pumping and subsequent water level recovery periods typically range from 3 hr to 7 hr in duration, resulting in groundwater levels (and apparent flow directions) that shift relatively continuously throughout much of each day. For this reason, water level data collected by the automatic recorders, which are coincident in time at all monitored locations, provide the primary basis for determining the topology of the potentiometric surface at any point in the cycles of groundwater pumping and recovery.

The automatic recorder data also provide critical information needed to evaluate the hydrologic regime in anticipation of a corrective action study. The data accumulated for recorders installed in deep-zone wells indicate the presence of both vertical and lateral influences on the local hydraulic gradients. Intermediate-zone wells equipped with automatic water level recorders obtain detailed data on the potential temporal variability of the hydraulic heads in this aquifer zone.

3 Sampling and Analysis Activities in 2010

3.1 Measurement of Groundwater Levels

The groundwater sampling events at Barnes on March 30-April 1, 2010, and on September 17-18, 2010, involved 1 private well (Oentrich) and 28 monitoring wells (MW1S, MW1D, MW2D, MW3D, MW4D, MW5, MW6S, MW6D, MW7, MW8, MW9, MW10S, MW10D, MW11S, MW11M, MW11D, MW12S, MW12M, MW12D, MW13S, MW13D, MW14S, MW14D, MW15S, MW15D, MW16S, MW16D, MW17). In addition, sampling of the two operating public water supply wells (PWS2 and PWS3) was conducted on March 31, June 17, September 18, and December 15, 2010. All of the well locations are shown in Figure 1.1. A chronological summary of the field activities in 2010 is in Appendix A, Table A.1.

Before implementation of the low-flow sampling described in Section 3.2, a hand-held water level indicator was used to measure the depth to groundwater and the total depth of each well, to within 0.01 ft, from the top of the well casing. During the 2010 sampling events, monitoring wells MW1S and MW12S were measured but were found to be dry, and consequently they could not be sampled. Two public water supply wells (PWS2 and PWS3) and one private well (Oentrich) were sampled but could not be measured because of the pumps and other equipment in the wells. Introduction of measuring devices could result in damage to the wells.

In addition to the manual water level measurements, since 2006 data recorders have been gathering long-term data on the groundwater elevation and gradient at selected monitoring wells across the investigation area. The data loggers record water levels continuously at 60-min intervals. To augment the data generated by recorders installed in the deeper aquifer zone, in November 2008 water level recorders were installed in five wells — MW10S, MW11M, MW12M, MW13S, and MW17 — to investigate the potential hydraulic influences on groundwater flow and contaminant migration in the intermediate aquifer zone, in which the highest concentrations of carbon tetrachloride in groundwater have been identified. In 2010, a total of 14 wells were monitored for water levels, at the locations shown in Figure 3.1.

The hand-measured and automatically recorded groundwater level data are presented and discussed in Section 4.1.

3.2 Well Sampling and Analyses

After measurement of water levels, low-flow groundwater sampling techniques, according to U.S. Environmental Protection Agency (EPA) guidelines (Puls and Barcelona 1996; Yeskis and Zavala 2002), were used to purge and sample the monitoring wells. The Oentrich well and the public water supply wells were sampled at their respective faucets after purging for 5-10 min (Table A.1 in Appendix A). The field measurements are in Appendix A, Table A.2. For public wells PWS2 and PWS3, samples of untreated ("raw") produced water were collected at the wellheads prior to mixing and introduction into the public distribution system.

Under the exact requirements of state regulation K.A.R. 28-15, compliance samples would be collected from the distribution system after treatment and after water from the wells had been combined, as indicated in 40 CFR 141.24(f)(3). The sampling of individual wellheads at Barnes to test each well is a more stringent comparison with the Tier 2 standard of $5.0 \,\mu\text{g/L}$ than sampling of the blended water.

Groundwater samples designated for analyses for volatile organic compounds (VOCs) were collected in appropriate laboratory containers, labeled, packaged, and chilled to 4°C by placement in ice-filled coolers. The samples were shipped via an overnight delivery service to the Applied Geosciences and Environmental Management (AGEM) Laboratory at Argonne for VOCs analyses with EPA Method 524.2 (EPA 1995). Aliquots of selected samples (chosen in the field) were also shipped to TestAmerica Laboratories, Inc., South Burlington, Vermont, for verification VOCs analyses according to EPA Contract Laboratory Program protocols.

The analytical results are presented and discussed in Section 4.2.

3.3 Handling and Disposal of Investigation-Derived Waste

Purge water generated as potentially contaminated investigation-derived waste was containerized on-site in 55-gal drums. The accumulated purge water (less than two drums) was sampled for VOCs (including ethylene dibromide) and nitrates. The samples were analyzed by a Kansas-certified laboratory, Pace Analytical Services (Lenexa, Kansas). The analytical results are in Supplement 1, on the compact disc (CD) inside the back cover of this report. The concentrations of carbon tetrachloride, chloroform, ethylene dibromide, and nitrate were below

the KDHE standards. On December 17, 2010, the wastewater was taken to the Sabetha municipal water treatment facility for disposal.

3.4 Quality Control for Sample Collection, Handling, and Analysis

Quality assurance/quality control procedures followed during the 2010 monitoring events are described in detail in the *Master Work Plan* (Argonne 2002). The results are summarized as follows:

- Sample collection and handling activities were monitored by the documentation of samples as they were collected and the use of chain-of-custody forms and custody seals to ensure sample integrity during handling and shipment.
- Samples designated for VOCs analyses were received with custody seals intact and at the appropriate preservation temperature. All samples sent to the AGEM Laboratory were analyzed within the required holding times.
- Quality control samples collected to monitor sample-handling activities (field blank, equipment rinsates and trip blanks) and method blanks analyzed with the samples to monitor analytical methodologies were all free of carbon tetrachloride and chloroform contamination. Analytical results for quality control samples collected to monitor sample-handling activities are in Appendix B, Table B.1.
- Groundwater samples were analyzed for VOCs at the AGEM Laboratory by the purge-and-trap method on a gas chromatograph-mass spectrometer system. Calibration checks analyzed with each sample delivery group were required to be within ±20% of the standard. Surrogate standard determinations performed on samples and blanks were within the specified range of 80-120% for all samples, in either the initial analysis or a successful reanalysis.
- Results from the AGEM Laboratory for dual analyses of the groundwater samples are in Appendix B, Table B.2. The results of the dual analyses

compare well, with average relative percent difference values for carbon tetrachloride and chloroform of approximately 8.4% and 2.3%, respectively, indicating consistency in the sampling and analytical methodologies.

• In accordance with the procedures defined in the *Master Work Plan* (Argonne 2002), groundwater samples were submitted to a second laboratory (TestAmerica) for verification analysis according to the protocols of the EPA's Contract Laboratory Program. Documentation is in Supplement 2 (on CD). The results from the two laboratories compare favorably, with average relative percent difference values for carbon tetrachloride and chloroform of 14% and 4%, respectively. Methylene chloride was not detected by either laboratory. The lack of contamination in the sample from public well PWS3 was confirmed in verification analysis.

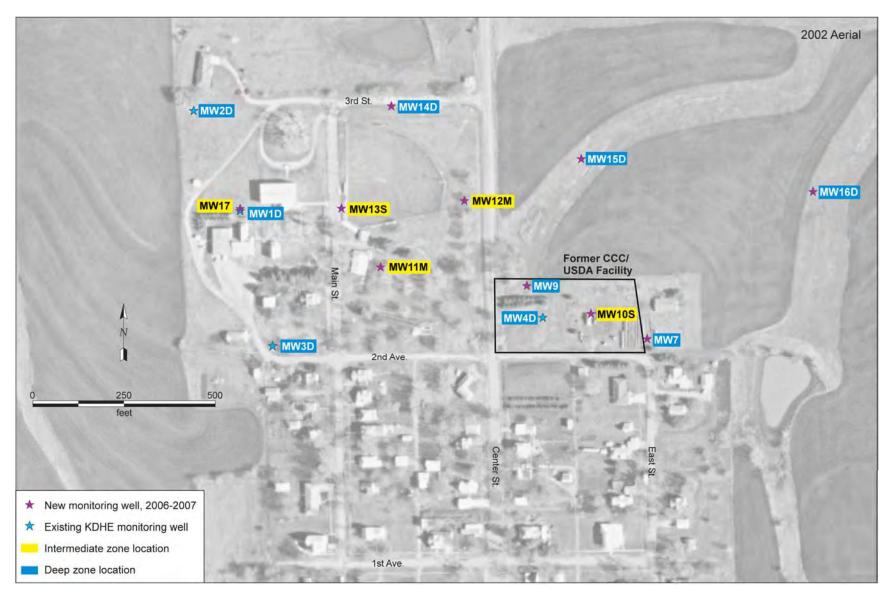


FIGURE 3.1 Wells at Barnes equipped with data loggers for automatic water level monitoring in 2010. Source of photograph: NAPP (2002).

4 Results and Discussion

4.1 Groundwater Level Data

The manual water level measurements taken during 2010 are in Table 4.1. Included are measurements made during sampling of the monitoring well network on March 30-April 1 and September 17-18, 2010, and hand measurements taken on February 3 and July 16, 2010, for all shallow, intermediate, and deep wells in the monitoring network. Evaluation of manual water level measurements (together with the contaminant distribution data discussed in Section 4.2) continues to suggest that three vertically distinguishable aquifer zones are present at Barnes: shallow, intermediate, and deep. The designations "S," "M," and "D" in monitoring well names (Table 4.1) were assigned at the time of well installation. They indicate shallow-, medium-, and deep-screened (relative depths) wells in an individual well cluster, rather than the aquifer zone screened. Table 4.2 shows the approximate water level elevations for wells screened in the three aquifer zones, as indicated by the long-term monitoring data accumulated since 2007. As in the prior monitoring events, three vertically distinguished aquifer zones are also evident in the 2010 sampling events (Table 4.2).

Water level data collected by the automatic recorders, which are coincident in time at all monitored locations, provide the primary basis for determination of the topology of the potentiometric surface at any point in the cycles of groundwater pumping and recovery. Water levels measured by hand over a finite time period in the areally distributed network of monitoring wells at this site cannot generally be relied on to yield a meaningful representation of groundwater flow directions under pumping conditions, because of the documented short-term, transient water level variations that are related to pumping cycles in the public water supply wells. Figure 4.1a presents a potentiometric surface map (under non-pumping conditions) on February 2, 2010, for the network of wells in the deeper aquifer zone currently being monitored (see Section 3.1). Figure 4.1b represents a comparable map derived from measurements taken on February 2, 2010, under pumping conditions.

The hydrographs in Figures 4.2a and 4.2b summarize data for the recording transducers in the deep-zone wells (January-December 2010) and the intermediate-zone wells (January-September 2010 only, because of recorder failures), respectively. The hydrographs for the deep-zone wells showed relatively stable water levels in January, after which levels increased in a somewhat stepwise fashion from February through mid July. A net increase of up to

approximately 18 ft is evident over this period at most locations. The levels slowly declined through the remainder of the year, but they were still approximately 11 ft higher at many locations at the end of the year than in January 2010. A similar pattern of seasonal rise in the water levels in the intermediate zone is also indicated, although the data for this interval are incomplete because of multiple recorder failures. Increases of 12-16 ft are indicated from January to July in this zone.

Prior to November 2008, Argonne observed suggestions of the presence of vertical hydraulic gradients in the data from recorders in the deep portion of the aquifer (particularly at MW15D). Consequently, in November 2008, wells in the intermediate portion of the aquifer (MW10S, MW11M, MW12M, MW13S, and MW17; Table 4.1) were equipped with automatic water level recorders to generate detailed data on the potential temporal variability of the hydraulic heads in this aquifer zone. The observed groundwater levels in the intermediate zone (Figure 4.2b) do not show the degree of drawdown response observed in the deep wells.

These data, together with the VOCs analyses of groundwater samples discussed in Section 4.2, support a plausible working interpretation for the movement of groundwater (and carbon tetrachloride) in the study area. The existing results suggest that the entire saturated sequence at Barnes is hydraulically interconnected but varies internally in both vertical and horizontal permeability. The permeability in the more shaly parts of the section (which include the intermediate aquifer zone) appears to be generally lower than the permeability in the deep aquifer zone, and migration pathways might therefore be more complex in the shaly materials. The shaly materials of the intermediate zone appear to have sufficient vertical permeability to have allowed infiltration of carbon tetrachloride into the deeper parts of the section. The vertical permeability is still quite low, however, as evidenced by the significant vertical gradients documented in the nested wells (Table 4.1).

Most of the deep monitoring wells are associated with limestones (see Figures 4.1-4.5 in Argonne 2008a). The logs show that even though MW15D is considered a "deep" well, it is not completed in these limestones. Well MW15D has always returned much higher measured groundwater levels than would be expected, given its relative areal position at the site (Figures 3.1 and 4.2a) and its screened depth. This observation is qualitatively consistent with the hypothesis that the higher groundwater levels in MW15D are a reflection of lower permeability associated with the shales at this location, versus the nearby limestones — which appear to act as better carrier beds.

The observed groundwater levels in the intermediate-zone wells do not appear to define an apparent flow direction toward the public water supply wells, despite the mapped occurrence of carbon tetrachloride contamination in this stratigraphic interval (Section 4.2). The relative water levels do, however, appear qualitatively linked to the elevations of the screens in the respective intermediate-zone monitoring wells. Well MW11 has the highest recorded groundwater levels and the shallowest (in terms of elevation) screened interval, with MW10-MW12 the next lower in screened elevations (and water levels), and MW13-MW17 the lowest. The existing data empirically indicate that the measured "head" in each of these wells is more strongly influenced by the vertical position of the well screen than by the areal location of the well in the intermediate zone of the groundwater flow system.

4.2 Analytical Results for Volatile Organic Compounds in Groundwater Samples and Lateral Distribution of the Contaminants

The analytical data for VOCs in the groundwater samples collected in 2010 are in Table 4.3, together with data for the previous sampling events at Barnes. The highest concentration of carbon tetrachloride in sitewide monitoring continues to be found at intermediate-zone well MW10S (located in the eastern portion of the former CCC/USDA facility and screened at 93-103 ft BGL), with detections of 73 μ g/L in March-April 2010 and 78 μ g/L in September 2010.

Wells MW12M and MW13S are located northwest of well MW10S (Figure 3.1) and in the direction of flow toward the public wells when these wells are in operation. Carbon tetrachloride concentrations at both wells remained fairly stable through 2010, with values at MW12M of 2.2 μ g/L in March-April and 6.6 μ g/L in September and values at MW13S of 13 μ g/L in March-April and 6.2 μ g/L in September. The 2010 concentrations trended lower at MW12M and at MW13S than values reported in 2008-2009, possibly as a result of the higher water levels documented during 2010 than in earlier years.

The lateral distribution of carbon tetrachloride in groundwater in sampling events in 2009-2010 is illustrated in Figure 4.3. The distribution in 2010 is similar to the previous distribution. Contaminant concentrations at and near the public water supply wells remained low to undetectable.

Trace levels of carbon tetrachloride continue to be detected periodically at public well PWS2 (Table 4.3 and Figure 4.3). No contamination has been detected in public well PWS3 since 2008. Because of the pulsing influence on groundwater flow patterns, depending on whether the public wells are operating, no clear migration trend toward the public wells has been evident in sitewide monitoring to date.

The lateral distribution of chloroform in groundwater in 2010 (Figure 4.4) is also similar to the distribution during previous sampling events. The highest concentration of chloroform in sitewide sampling since 2007 has been found at well MW12M, located northwest of the former CCC/USDA facility and screened at 90-100 ft BGL (in the intermediate aquifer zone), with concentrations of 1.0-5.9 μ g/L. Relatively lower dissolved oxygen and oxidation-reduction potential values have been measured consistently at this location (Table A.2).

The vertical distribution of carbon tetrachloride in groundwater indicates that the highest concentrations are present in the intermediate zone, at wells MW10S (78 μ g/L), MW12M (6.6 μ g/L), and MW13S (6.2 μ g/L), as measured in September 2010 (Table 4.3). The deep-zone wells at these locations showed little to no change in carbon tetrachloride concentrations between the 2009 and 2010 sampling events (Figure 4.3). Figure 4.5 illustrates the interpreted lateral extent of the contaminant in the deep zone in 2010.

Shallow-zone well MW11S continued to show no detectable concentrations of carbon tetrachloride. Shallow-zone wells MW1S and MW12S were dry and were not sampled in 2010 (Table 4.3 and Figure 4.3).

In keeping with the groundwater level relationships outlined in Section 4.1, the above observations suggest that groundwater and carbon tetrachloride might be relatively less mobile in the (shaly) intermediate-zone lithologies than in the deeper limestones. Both vertical and horizontal hydraulic gradients are expected to drive contaminant migration in the shaly materials, while horizontal groundwater flow (and contaminant migration) might predominate in the deeper limestones. Because of the inferred higher permeability in the deeper limestones, the carbon tetrachloride in this zone might be more effectively mixed and diluted by groundwater movement in response to the oscillatory hydraulic gradients imparted by pumping of the public wells, while the movement of groundwater and hence carbon tetrachloride in the intermediate-zone lithologies is more restricted.

				١	Water Level c	on Date Indic	ated		
	Reference	2/2	2/10	3/30/1	0-4/1/10	7/16	6/10	9/17/10)-9/18/10
Well	Elevation (ft AMSL)	ft TOC ^a	ft AMSL	ft TOC ^a	ft AMSL	ft TOC ^a	ft AMSL	ft TOC ^a	ft AMSL
Shallow a	quifer zone								
MW1S	1351.58	Dry	_	Dry	_	_	_	Dry	_
MW11S	1336.58	25.20	1311.38	21.50	1315.08	NM	-	24.71	1311.87
MW12S	1327.46	Dry	-	Dry	-	-	-	Dry	-
Intermedi	ate aquifier zo	ne							
MW10S	1331.33	74.48	1256.85	71.96	1259.37	62.75	1268.58	65.95	1265.38
MW11M	1336.51	79.58	1256.93	77.90	1258.61	68.44	1268.07	71.22	1265.29
MW12M	1327.46	71.06	1256.40	70.45	1257.01	59.69	1267.77	63.90	1263.56
MW13S	1342.36	87.65	1254.71	85.65	1256.71	75.14	1267.22	78.01	1264.35
MW17	1351.77	97.06	1254.71	94.90	1256.87	84.71	1267.06	88.03	1263.74
Deep aqu	ifer zone								
MW1D	1351.33	118.85	1232.48	114.55	1236.78	107.74	1243.59	105.28	1246.05
MW2D	1348.85	116.64	1232.21	112.40	1236.45	100.34	1248.51	103.38	1245.47
MW3D	1345.99	113.35	1232.64	108.86	1237.13	97.00	1248.99	99.92	1246.07
MW4D	1326.32	94.53	1231.79	91.45	1234.87	78.58	1247.74	81.25	1245.07
MW5	1327.20	95.94	1231.26	92.06	1235.14	NM	_	70.45	1256.75
MW6S	1323.13	88.83	1234.30	86.15	1236.98	NM	-	76.46	1246.67
MW6D	1323.15	91.88	1231.27	87.84	1235.31	NM	-	79.35	1243.80
MW7	1329.91	98.52	1231.39	94.56	1235.35	82.95	1246.96	85.67	1244.24
MW8	1330.06	98.25	1231.81	94.06	1236.00	NM	-	84.95	1245.11
MW9	1321.86	90.15	1231.71	82.45	1239.41	74.25	1247.61	75.46	1246.40
MW10D	1331.33	99.88	1231.45	96.86	1234.47	NM	-	86.92	1244.41
MW11D	1336.53	104.19	1232.34	100.10	1236.43	NM	-	90.97	1245.56
MW12D	1327.52	96.00	1231.52	93.55	1233.97	NM	-	83.10	1244.42
MW13D	1342.37	110.11	1232.26	105.75	1236.62	NM	-	96.88	1245.49
MW14S	1332.69	100.79	1231.90	96.70	1235.99	NM	-	87.82	1244.87
MW14D	1332.74	100.83	1231.91	96.50	1236.24	84.93	1247.81	87.66	1245.08
MW15S	1309.34	78.44	1230.90	75.65	1233.69	NM	-	66.07	1243.27
MW15D	1309.29	71.21	1238.08	66.50	1242.79	54.92	1254.37	58.11	1251.18
MW16S	1299.47	NM ^b	-	66.10	1233.37	NM	-	57.24	1242.23
MW16D	1299.52	69.11	1230.41	65.95	1233.57	54.59	1244.93	57.65	1241.87
Oentrich ^c	1336.93	NM	_	NM	_	_	_	NM	_

TABLE 4.1 Hand-measured water levels at Barnes in 2010.

^a TOC, top of casing.

^b NM, not measured.

.

^c The Oentrich well water level was measured from the concrete at the top of the well vault. The value shown was corrected by 5.5 ft to give a measured depth from the top of the casing.

	Elevation	Elevation of Aquifer Zone (ft AMSL)					
Date	Shallow	Intermediate	Deep				
September 2010	1,312	1,263-1,265	1,242-1,256				
July 2010	-	1,267-1,269	1,244-1,254				
March-April 2010	1,315	1,257-1,259	1,233-1,243				
February 2010	1,311	1,255-1,257	1,230-1,238				
October 2009	1,275-1,307	1,254-1,256	1,229-1,237				
June 2009	1,274-1,310	1,255-1,258	1,232-1,241				
March 2009	1,308	1,251-1,256	1,229-1,236				
November 2008	-	1,257-1,259	1,233-1,242				
October 2008	1,314	1,256-1,259	1,235-1,242				
July 2008	1,312	1,255-1,258	1,229-1,239				
March 2008	1,309	1,250-1,254	1,223-1,229				
November 2007	1,307	1,249-1,254	1,220-1,239				
June 2007	1,276-1,314	1,247-1,254	1,221-1,228				

TABLE 4.2 Elevation ranges measured for the three aquifer zones, 2007-2010.

TABLE 4.3 Analytical results from the AGEM Laboratory for volatile organic compounds in
groundwater samples collected at Barnes, 2006-2010.

				Con	centration (µg/	′L)
Location	Depth (ft BGL)	Sample	Sampling Date	Carbon Tetrachloride	Chloroform	Methylene Chloride
Previously	existing monitorir	ng wells				
MW1S	13.3-23.3	Not sampled (well dry)	7/19/06	_	_	_
		Not sampled (well dry)	4/4/07	_	_	_
		Not sampled (well dry)	11/18/07	_	_	_
		Not sampled (well dry)	3/4/08	_	_	_
		Not sampled (well dry)	7/9/08	_	_	_
		Not sampled (well dry)	10/22/08	_	_	_
		Not sampled (well dry)	3/4/09	_	_	_
		Not sampled (well dry)	6/17/09	_	_	_
		Not sampled (well dry)	9/30/09	_	_	_
		Not sampled (well dry)	3/31/10	_	_	_
		Not sampled (well dry)	9/17/10	_	_	_
			7/10/00		ND2	
MW1D	139.85-159.4	BAMW1D-W-21688	7/19/06	1.0	ND ^a	ND
		BAMW1D-W-22565	4/4/07	1.2	ND	ND
		BAMW1D-W-22593	11/18/07	ND	ND	ND
		BAMW1D-W-22627	3/4/08	0.2 J ^b	ND	ND
		BAMW1D-W-22668	7/9/08	0.2 J	ND	ND
		BAMW1D-W-27720	10/22/08	ND	ND	ND
		BAMW1D-W-22703	3/4/09	ND	ND	ND
		BAMW1D-W-28639	6/17/09	ND	ND	ND
		BAMW1D-W-28678	9/30/09	0.3 J	ND	ND
		BAMW1D-W-28718	3/31/10	ND	ND	ND
		BAMW1D-W-28761	9/17/10	ND	ND	ND
MW2D	133.26-152.93	BAMW2D-W-21687	7/19/06	ND	ND	ND
		BAMW2D-W-22564	4/4/07	ND	ND	ND
		BAMW2D-W-22594	11/18/07	ND	ND	ND
		BAMW2D-W-22628	3/7/08	ND	ND	ND
		BAMW2D-W-22669	7/10/08	ND	ND	ND
		BAMW2D-W-27721	10/22/08	ND	ND	ND
		BAMW2D-W-22704	3/4/09	ND	ND	ND
		BAMW2D-W-28640	6/18/09	ND	ND	ND
		BAMW2D-W-28679	9/30/09	ND	ND	ND
		BAMW2D-W-20079 BAMW2D-W-28719	3/31/10	ND	ND	ND
		BAMW2D-W-28762	9/17/10	ND	ND	ND
	400 00 450 70		7/40/00			
MW3D	133.02-152.73	BAMW3D-W-21686	7/19/06	ND	ND	ND
		BAMW3D-W-22567	4/4/07	ND	ND	ND
		BAMW3D-W-22595	11/19/07	ND	ND	ND
		BAMW3D-W-22629	3/7/08	ND	ND	ND
		BAMW3D-W-22670	7/10/08	ND	ND	ND
		BAMW3D-W-27722	10/22/08	ND	ND	ND
		BAMW3D-W-22705	3/4/09	ND	ND	ND
		BAMW3D-W-28641	6/17/09	ND	ND	ND
		BAMW3D-W-28680	9/30/09	ND	ND	ND
		BAMW3D-W-28720	4/1/10	ND	ND	ND
		BAMW3D-W-28763	9/17/10	ND	ND	ND

				Concentration (µg/L)			
Location	Depth (ft BGL)	Sample	Sampling Date	Carbon Tetrachloride	Chloroform	Methylene Chloride	
Previously	existing monitorir	ng wells (cont.)					
MW4D	98.38-118.22	BAMW4D-W-21690	7/20/06	2.1	ND	ND	
		BAMW4D-W-22583	4/6/07	3.5	0.1 J	ND	
		BAMW4D-W-22596	11/19/07	1.7	0.4 J	ND	
		BAMW4D-W-22642	3/9/08	18	0.4 J	ND	
		BAMW4D-W-22671	7/12/08	9.4	0.5 J	ND	
		BAMW4D-W-22071 BAMW4D-W-27723	10/23/08	7.6	ND	ND	
		BAMW4D-W-22706	3/5/09	7.2	0.3 J	ND	
		BAMW4D-W-28642	6/18/09	9.1	ND	ND	
		BAMW4D-W-28681	9/30/09	13	0.3 J	ND	
		BAMW4D-W-28721	3/31/10	13	0.4 J	ND	
		BAMW4D-W-28764	9/17/10	12	ND	ND	
CCC/USD	A wells installed o	luring the 2006-2007 investig	pation				
MW5	110-120	BAMW5-W-22589	4/6/07	0.6 J	ND	ND	
		BAMW5-W-22597	11/19/07	0.6 J	ND	ND	
		BAMW5-W-22637	3/8/08	0.7 J	ND	ND	
		BAMW5-W-22672	7/11/08	ND	ND	ND	
		BAMW5-W-27724	10/23/08	3.0	ND	ND	
		BAMW5-W-22707	3/5/09	3.2	ND	ND	
		BAMW5-W-28643	6/19/09	4.8	ND	ND	
		BAMW5-W-28682	9/30/09	7.2	ND	ND	
		BAMW5-W-28722	3/30/10	7.7	0.3 J	ND	
		BAMW5-W-28765	9/17/10	11	ND	ND	
MW6S	90.5-100.5	Not sampled (well dry)	4/4/07	_	_	_	
NIV 00	00.0 100.0	BAMW6S-W-22598	11/19/07	0.3 J	ND	ND	
		BAMW6S-W-22635	3/8/08	0.3 J 0.4 J	ND	ND	
		BAMW6S-W-22673	7/11/08	ND	ND	ND	
		BAMW6S-W-22073 BAMW6S-W-27725	10/23/08	ND	ND	ND	
		BAMW6S-W-27725 BAMW6S-W-22708	3/5/09	ND	ND	ND	
		BAMW6S-W-28644	6/18/09	ND	ND		
		BAMW6S-W-28683	10/1/09	ND	ND	ND	
		BAMW6S-W-28723	3/31/10	0.4 J	ND	ND	
		BAMW6S-W-28766	9/18/10	ND	ND	ND	
MW6D	105-115	BAMW6D-W-22573	4/5/07	ND	ND	ND	
		BAMW6D-W-22599	11/19/07	0.5 J	ND	ND	
		BAMW6D-W-22636	3/8/08	0.8 J	ND	ND	
		BAMW6D-W-22674	7/11/08	0.9 J	ND	ND	
		BAMW6D-W-27726	10/23/08	1.1	ND	ND	
		BAMW6D-W-22709	3/5/09	1.4	ND	ND	
		BAMW6D-W-28645	6/18/09	1.5	ND	ND	
		BAMW6D-W-28684	10/1/09	1.5	ND	ND	
		BAMW6D-W-28724	3/31/10	1.2	ND	ND	

				Con	centration (µg/	Ľ)
Location	Depth (ft BGL)	Sample	Sampling Date	Carbon Tetrachloride	Chloroform	Methylene Chloride
CCC/USDA	wells installed	during the 2006-2007 investi	gation (cont.)			
MW7	116-126	BAMW7-W-22588	4/6/07	1.0	ND	ND
		BAMW7-W-22600	11/19/07	2.6	ND	ND
		BAMW7-W-22643	3/9/08	2.8	ND	ND
		BAMW7-W-22675	7/12/08	1.7	ND	ND
		BAMW7-W-27727	10/23/08	2.1	ND	ND
		BAMW7-W-22710	3/5/09	1.4	ND	ND
		BAMW7-W-28646	6/19/09	1.4	ND	ND
		BAMW7-W-28685	9/30/09	1.6	ND	ND
		BAMW7-W-28725	3/30/10	1.6	ND	ND
		BAMW7-W-28768	9/17/10	2.6	ND	ND
MW8	110-120	BAMW8-W-22584	4/6/07	14	0.7 J	ND
		BAMW8-W-22601	11/19/07	23	0.6 J	ND
		BAMW8-W-22652	3/10/08	19	0.6 J	ND
		BAMW8-W-22676	7/11/08	21	0.6 J	ND
		BAMW8-W-27728	10/23/08	24	1.0	ND
		BAMW8-W-22711	3/5/09	20	1.3	ND
		BAMW8-W-28647	6/19/09	26	1.7	ND
		BAMW8-W-28686	9/30/09	29	2.2	ND
		BAMW8-W-28726	3/31/10	30	2.0	ND
		BAMW8-W-28769	9/17/10	31	2.1	ND
MW9	100-110	BAMW9-W-22582	4/5/07	1.0	ND	ND
		BAMW9-W-22602	11/19/07	7.7	0.6 J	ND
		BAMW9-W-22647	3/9/08	3.0	0.3 J	ND
		BAMW9-W-22678	7/11/08	1.3	0.3 J	ND
		BAMW9-W-27729	10/24/08	2.2	0.2 J	ND
		BAMW9-W-22712	3/5/09	2.3	ND	ND
		BAMW9-W-28648	6/17/09	1.1	ND	ND
		BAMW9-W-28687	9/29/09	4.6	ND	ND
		BAMW9-W-28727	3/31/10	2.9	ND	ND
		BAMW9-W-28770	9/18/10	1.4	ND	ND
MW10S	93-103	BAMW10S-W-22586	4/6/07	20	1.4	ND
		BAMW10S-W-22603	11/19/07	11	0.7 J	ND
		BAMW10S-W-22649	3/10/08	56	2.0	ND
		BAMW10S-W-22679	7/11/08	49	1.8	ND
		BAMW10S-W-27730	10/23/08	68	2.3	ND
		BAMW10S-W-22713	3/5/09	49	2.1	ND
		BAMW10S-W-28649	6/19/09	76	2.5	ND
		BAMW10S-W-28688	9/30/09	53	2.4	ND
		BAMW10S-W-28728	3/30/10	73	3.0	ND
		BAMW10S-W-28771	9/17/10	78	2.9	ND

				Con	centration (µg/	′L)
Location	Depth (ft BGL)	Sample	Sampling Date	Carbon Tetrachloride	Chloroform	Methylene Chloride
CCC/USDA	wells installed	during the 2006-2007 investi	gation (cont.)			
MW10D	115-125	BAMW10D-W-22585	4/6/07	2.4	0.2 J	ND
		BAMW10D-W-22604	11/19/07	6.3	0.5 J	ND
		BAMW10D-W-22646	3/9/08	5.7	0.5 J	ND
		BAMW10D-W-22680	7/11/08	3.9	0.7 J	ND
		BAMW10D-W-27731	10/23/08	4.4	0.6 J	ND
		BAMW10D-W-22714	3/5/09	5.3	0.4 J	ND
		BAMW10D-W-28650	6/19/09	4.8	0.6 J	ND
		BAMW10D-W-28689	9/30/09	4.3	0.4 J	ND
		BAMW10D-W-28729	3/30/10	4.4	0.4 J	ND
		BAMW10D-W-28772	9/17/10	4.8	ND	ND
MW11S	40-50	BAMW11S-W-22570	4/4/07	ND	1.1	ND
		BAMW11S-W-22605	11/19/07	ND	0.6 J	ND
		BAMW11S-W-22630	3/5/08	ND	0.6 J	ND
		BAMW11S-W-22681	7/10/08	ND	0.4 J	ND
		BAMW11S-W-27732	10/23/08	ND	0.3 J	ND
		BAMW11S-W-22715	3/4/09	ND	ND	ND
		BAMW11S-W-28651	6/19/09	ND	ND	ND
		BAMW11S-W-28690	10/1/09	ND	ND	ND
		BAMW11S-W-28730	3/31/10	ND	ND	ND
		BAMW11S-W-28773	9/18/10	ND	ND	ND
MW11M	90-100	BAMW11M-W-22572	4/5/07	ND	ND	ND
		BAMW11M-W-22606	11/19/07	3.7	ND	ND
		BAMW11M-W-22644	3/6/08	2.4	0.5 J	ND
		BAMW11M-W-22682	7/10/08	2.4	0.7 J	ND
		BAMW11M-W-27733	10/23/08	1.7	2.1	ND
		BAMW11M-W-22716	3/4/09	0.6 J	1.2	ND
		BAMW11M-W-28652	6/19/09	ND	1.1	ND
		BAMW11M-W-28691	10/1/09	ND	0.5 J	ND
		BAMW11M-W-28731	3/31/10	0.5 J	0.8 J	ND
		BAMW11M-W-28774	9/18/10	ND	ND	ND
MW11D	125-135	BAMW11D-W-22571	4/4/07	1.1	ND	ND
		BAMW11D-W-22607	11/19/07	0.8 J	ND	ND
		BAMW11D-W-22639	3/5/08	0.4 J	ND	ND
		BAMW11D-W-22683	7/10/08	0.9 J	ND	ND
		BAMW11D-W-27734	10/23/08	0.9 J	0.2 J	ND
		BAMW11D-W-22717	3/4/09	0.8 J	ND	ND
		BAMW11D-W-28653	6/19/09	ND	ND	ND
		BAMW11D-W-28692	10/1/09	1.0	ND	ND
		BAMW11D-W-28732	4/1/10	0.5 J	ND	ND
		BAMW11D-W-28775	9/18/10	ND	ND	ND

				Concentration (µg/L)		
Location	Depth (ft BGL)	Sample	Sampling Date	Carbon Tetrachloride	Chloroform	Methylene Chloride
CCC/USDA	wells installed	during the 2006-2007 investig	ation (cont.)			
MW12S	43-50	Not sampled (well dry)	4/5/07	_	_	_
		Not sampled (well dry)	11/19/07	_	_	_
		Not sampled (well dry)	3/10/08	-	_	-
		Not sampled (well dry)	7/10/08	-	_	-
		Not sampled (well dry)	10/22/08	-	_	-
		Not sampled (well dry)	3/4/09	-	-	-
		BAMW12S-W-28654	6/19/09	ND	ND	ND
		Not sampled (well dry)	10/1/09	-	-	-
		Not sampled (well dry)	3/31/10	-	-	-
		Not sampled (well dry)	9/18/10	-	-	-
MW12M	90-100	BAMW12M-W-22580	4/5/07	20	4.2	ND
		BAMW12M-W-22609	11/19/07	18	5.1	ND
		BAMW12M-W-22651	3/10/08	18	2.6	ND
		BAMW12M-W-22685	7/10/08	27	4.2	ND
		BAMW12M-W-27736	10/22/08	18	4.5	ND
		BAMW12M-W-22719	3/4/09	25	4.4	ND
		BAMW12M-W-28655	6/19/09	28	4.9	ND
		BAMW12M-W-28694	10/1/09	26	5.1	ND
		BAMW12M-W-28734	3/31/10	2.2	1.0	ND
		BAMW12M-W-28777	9/18/10	6.6	5.9	ND
MW12D	115-125	BAMW12D-W-22576	4/5/07	0.6 J	ND	ND
		BAMW12D-W-22610	11/18/07	1.6	ND	ND
		BAMW12D-W-22641	3/9/08	1.0	ND	ND
		BAMW12D-W-22686	7/11/08	0.7 J	ND	ND
		BAMW12D-W-27737	10/22/08	0.9 J	ND	ND
		BAMW12D-W-22757	3/4/09	0.7 J	ND	ND
		BAMW12D-W-28656	6/19/09	ND	ND	ND
		BAMW12D-W-28695	10/1/09	1.5	ND	ND
		BAMW12D-W-28735	3/31/10	1.0	0.2 J	ND
		BAMW12D-W-28778	9/18/10	0.6 J	ND	ND
MW13S	112-122	BAMW13S-W-22575	4/5/07	21	1.6	ND
		BAMW13S-W-22611	11/19/07	17	1.8	ND
		BAMW13S-W-22650	3/10/08	17	1.5	ND
		BAMW13S-W-22687	7/9/08	17	1.9	ND
		BAMW13S-W-27738	10/22/08	20	1.6	ND
		BAMW13S-W-22758	3/4/09	14	1.1	ND
		BAMW13S-W-28657	6/18/09	16	1.1	ND
		BAMW13S-W-28696	9/30/09	12	0.9 J	ND
		BAMW13S-W-28736	4/1/10	13	0.8 J	ND
		BAMW13S-W-28779	9/18/10	6.2	1.2	ND

				Concentration (µg/L)		′L)
Location	Depth (ft BGL)	Sample	Sampling Date	Carbon Tetrachloride	Chloroform	Methylene Chloride
CCC/USDA	wells installed	during the 2006-2007 investi	gation (cont.)			
MW13D	127-137	BAMW13D-W-22574 BAMW13D-W-22612 BAMW13D-W-22645 BAMW13D-W-22688 BAMW13D-W-22759 BAMW13D-W-22759 BAMW13D-W-28658 BAMW13D-W-28697 BAMW13D-W-28737	4/5/07 11/19/07 3/9/08 7/9/08 10/22/08 3/4/09 6/18/09 9/30/09 4/1/10	3.5 5.9 11 5.9 6.6 5.9 6.2 7.2 5.5	0.4 J 0.2 J 1.1 0.9 J 0.6 J 0.6 J ND 1.0 0.5 J	ND ND ND ND ND ND ND ND
MW14S	108-118	BAMW13D-W-28780 BAMW14S-W-22569 BAMW14S-W-22613 BAMW14S-W-22640 BAMW14S-W-22689 BAMW14S-W-27740 BAMW14S-W-28620 BAMW14S-W-28659 BAMW14S-W-28698 BAMW14S-W-28738 BAMW14S-W-28738	9/18/10 4/4/07 11/18/07 3/8/08 7/10/08 10/22/08 3/4/09 6/18/09 10/1/09 4/1/10 9/18/10	5.8 0.9 J 1.2 4.3 5.6 5.6 5.6 3.7 5.2 4.3 4.9	0.6 J ND 0.3 J 0.3 J 0.3 J 0.4 J 0.6 J 0.3 J 0.3 J 0.3 J 0.3 J 0.3 J	ND ND ND ND ND ND ND ND ND ND ND
MW14D	123-133	BAMW14D-W-22568 BAMW14D-W-22614 BAMW14D-W-22638 BAMW14D-W-22690 BAMW14D-W-28621 BAMW14D-W-28660 BAMW14D-W-28699 BAMW14D-W-28739 BAMW14D-W-28782	4/4/07 11/18/07 3/8/08 7/10/08 10/22/08 3/5/09 6/18/09 10/1/09 4/1/10 9/17/10	1.2 0.6 J 0.7 J 0.5 J ND 0.6 J ND 0.5 J 0.4 J ND	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND
MW15S	88-98	BAMW15S-W-22560 BAMW15S-W-22615 BAMW15S-W-22648 BAMW15S-W-22691 BAMW15S-W-22691 BAMW15S-W-28622 BAMW15S-W-28661 BAMW15S-W-28700 BAMW15S-W-28740 BAMW15S-W-28783	4/4/07 11/18/07 3/10/08 7/12/08 10/23/08 3/5/09 6/17/09 9/29/09 3/30/10 9/18/10	1.5 8.7 1.8 2.2 1.9 2.5 3.2 2.6 4.0 1.9	ND 0.4 J 0.2 J 0.3 J ND 0.5 J ND 0.4 J ND	ND ND ND ND ND ND ND ND ND

				Concentration (µg/L)		′L)
Location	Depth (ft BGL)	Sample	Sampling Date	Carbon Tetrachloride	Chloroform	Methylene Chloride
CCC/USDA	wells installed	during the 2006-2007 investi	gation (cont.)			
MW15D	105-115	BAMW15D-W-22561 BAMW15D-W-22616 BAMW15D-W-22631 BAMW15D-W-22692 BAMW15D-W-27743	4/4/07 11/18/07 3/8/08 7/12/08 10/24/08	ND ND 0.2 J ND ND	ND ND ND ND ND	ND ND ND ND ND
		BAMW15D-W-28623 BAMW15D-W-28662 BAMW15D-W-28701 BAMW15D-W-28741 BAMW15D-W-28784	3/5/09 6/17/09 9/29/09 3/30/10 9/18/10	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND
MW16S	76-86	BAMW16S-W-22563 BAMW16S-W-22617 BAMW16S-W-22632 BAMW16S-W-22693 BAMW16S-W-27744 BAMW16S-W-28624 BAMW16S-W-28663 BAMW16S-W-28702 BAMW16S-W-28742	4/4/07 11/19/07 3/7/08 7/11/08 10/23/08 3/5/09 6/18/09 9/29/09 3/30/10	ND ND 0.4 J ND 0.9 J 1.4 1.6 1.7 1.6	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND
MW16D	90-100	BAMW16S-W-28785 BAMW16D-W-22562 BAMW16D-W-22618 BAMW16D-W-22633 BAMW16D-W-22694 BAMW16D-W-28694 BAMW16D-W-28625 BAMW16D-W-28703 BAMW16D-W-28743 BAMW16D-W-28786	9/18/10 4/4/07 11/19/07 3/7/08 7/11/08 10/23/08 3/5/09 6/18/09 9/29/09 3/30/10 9/18/10	1.7 ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND
MW17	120-130	BAMW17D-W-22566 BAMW17D-W-22619 BAMW17-W-22634 BAMW17-W-22695 BAMW17-W-27746 BAMW17-W-28626 BAMW17-W-28665 BAMW17-W-28704 BAMW17-W-28744 BAMW17-W-28787	4/4/07 11/19/07 3/5/08 7/9/08 10/22/08 3/4/09 6/17/09 9/30/09 3/31/10 9/17/10	ND ND 0.3 J 0.4 J 0.7 J 1.0 1.0 ND 0.5 J ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND

				Concentration (µg/L)		
Location	Depth (ft BGL)	Sample	Sampling Date	Carbon Tetrachloride	Chloroform	Methylene Chloride
Private wells						
Oentrich	150	BAOENT-W-21693	7/20/06	0.3 J	ND	ND
		BAOENT-W-21713	8/2/06	0.6 J	ND	ND
		BAOENTRICH-W-22579	4/5/07	0.6 J	ND	ND
		BAOENTRICH-W-22622	11/19/07	0.8 J	ND	ND
		BAOENTRICH-W-22654	3/6/08	1.3	ND	ND
		BAOENTRICH-W-22695	7/11/08	0.3 J	ND	ND
		BAOENTRICH-W-27747	10/23/08	0.9 J	ND	ND
		BAOENTRICH-W-28627	3/5/09	1.1	ND	ND
		BAOENTRICH-W-28666	6/18/09	0.9 J	ND	ND
		BAOENTRICH-W-28705	9/30/09	1.6	ND	ND
		BAOENTRICH-W-28745	4/1/10	1.2	ND	ND
		BAOENTRICH-W-28788	9/18/10	3.3	0.8 J	ND
Sedivy	138	BACW-W-21849	8/22/06	ND	ND	ND
		BASED2-W-21913	9/13/06	ND	ND	ND
Sedivy1	90	Not sampled (well dry)	9/13/06	-	_	_
Public water	supply wells					
PWS2	155	BAPWS2-W-22510	3/9/07	ND	ND	ND
		BAPW2-W-22578	4/5/07	ND	ND	ND
		BAPW2-W-22620	11/20/07	ND	ND	ND
		BAPWS2-W-22655	3/6/08	ND	ND	ND
		BAPWS2-W-22696	7/11/08	0.8 J	ND	ND
		BAPW2-W-27748	10/23/08	1.7	ND	ND
		BAPWS2-W-28628	3/5/09	0.9 J	ND	ND
		BAPWS2-W-28667	6/18/09	1.0	ND	ND
		BAPWS2-W-28706	9/30/09	ND	ND	ND
		BAPWS2-W-28715	12/14/09	ND	ND	ND
		BAPWS2-W-28746	3/31/10	0.9 J	ND	ND
		BAPWS2-W-28758	6/17/10	0.8 J	ND	ND
		BAPWS2-W-28789	9/18/10	1.1	ND	ND
		BAPWS2-W-28803	12/15/10	0.7 J	ND	ND
PWS3	160	BAPWS3-W-22511	3/9/07	0.2 J	ND	ND
		BAPW3-W-22577	4/5/07	ND	ND	ND
		BAPW3-W-22621	11/20/07	ND	ND	ND
		BAPWS3-W-22656	3/6/08	ND	ND	ND
		BAPWS3-W-22697	7/11/08	0.2 J	ND	ND
		BAPW3-W-27749	10/23/08	ND	ND	ND
		BAPWS3-W-28629	3/5/09	ND	ND	ND
		BAPWS3-W-28668	6/18/09	ND	ND	ND
		BAPWS3-W-28707	9/30/09	ND	ND	ND
		BAPWS3-W-28716	12/14/09	ND	ND	ND
		BAPWS3-W-28747	3/31/10	ND	ND	ND
		BAPWS3-W-28759	6/17/10	ND	ND	ND
		BAPWS3-W-28790	9/18/10 12/15/10	ND		ND
		BAPWS3-W-28804	12/15/10	ND	ND	ND

- ^a ND, contaminant not detected at an instrument detection limit of 0.1 µg/L.
- ^b Qualifier J indicates an estimated concentration below the purge-and-trap method quantitation limit of 1.0 µg/L.
- ^c Pumping status of public wells:

Sampling Date	PWS2	PWS3
3/9/07	Well has been pumping today.	Well has been pumping today.
4/5/07	Sampled after letting run for 5-10 min.	Well has been pumping all day.
11/20/07	Well on at time of sampling.	Well on at time of sampling.
3/6/08	Let water run from tap for 2-3 min, then sampled.	Sample collected from tap in well house. Let water run from tap for 2-3 min, then sampled.
7/11/08	Running for 30 min.	Running for 30 min.
10/23/08	Well was pumping for 5 min.	Well was pumping for 30 min.
3/5/09	Well operating to fill water tower prior to sampling.	Ran for 5 min.
6/18/09	Well pumping since 6 a.m. on June 18. Let run from tap for 5 min, then sampled.	Well was used on June 17. Let pump run for 10 min, then sampled.
9/30/09	Well used on September 29. Let well run for 10 min, then sampled.	Well in use. Let tap run for 5 min, then sampled.
12/14/09	Well has been pumping today.	Well has been pumping today.
3/31/10	Well used on March 30. Let well run for 10 min, then sampled.	Well in use oversnight. Let tap run for 5 min, then sampled.
6/17/10	Recent use of well not recorded in log.	Recent use of well not recorded in log.
9/18/10	Well in use for past 2 days. Sampled from tap after purging for 5-10 min (approximately 500 gal).	Well in use for past 2 days. Sampled from tap after purging for 5-10 min (approximately 500 gal).
12/15/10	Recent use of well not recorded in log.	Recent use of well not recorded in log.

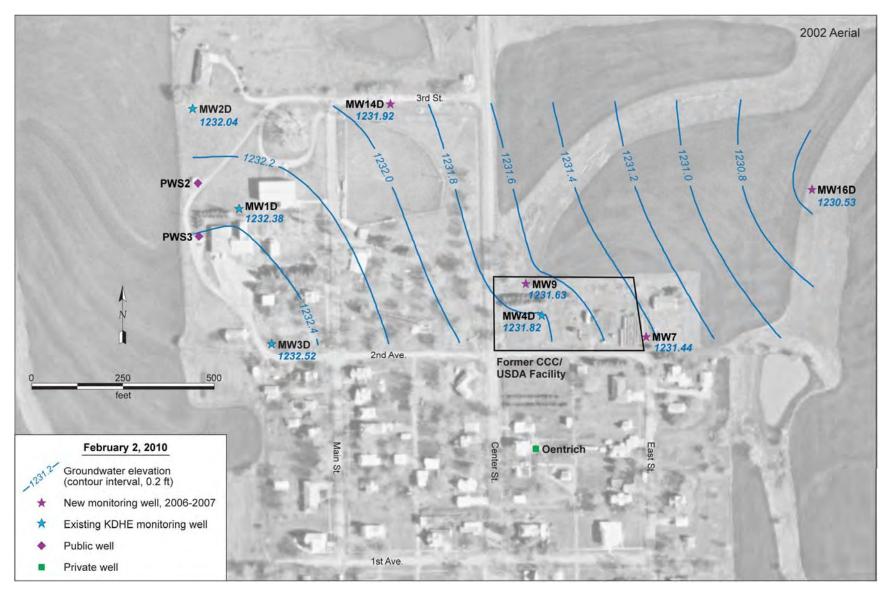


FIGURE 4.1a Potentiometric surface map depicting the groundwater flow direction in the deep aquifer zone at Barnes under static (nonpumping) conditions on February 2, 2010. Source of photograph: NAPP (2002).

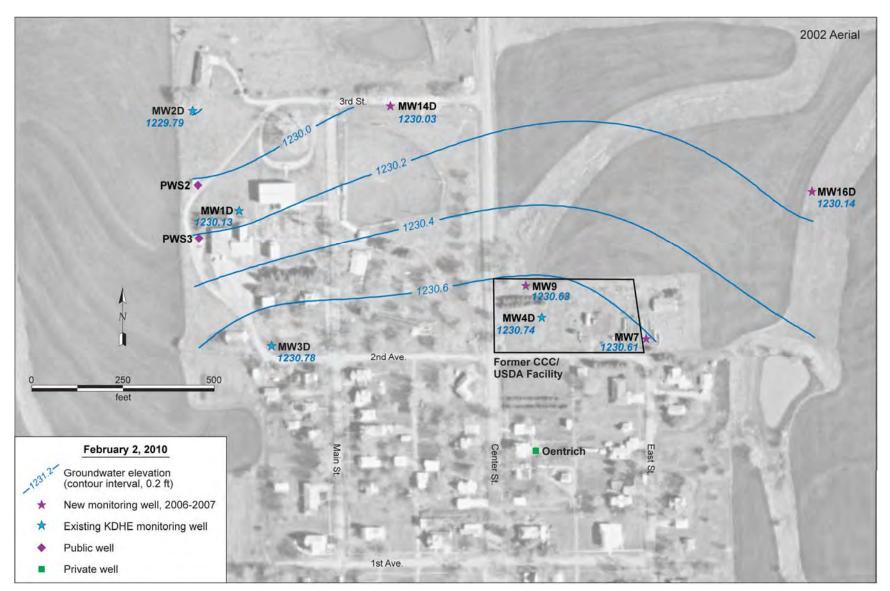


FIGURE 4.1b Potentiometric surface map depicting the groundwater flow direction in the deep aquifer zone at Barnes under pumping conditions on February 2, 2010. Source of photograph: NAPP (2002).

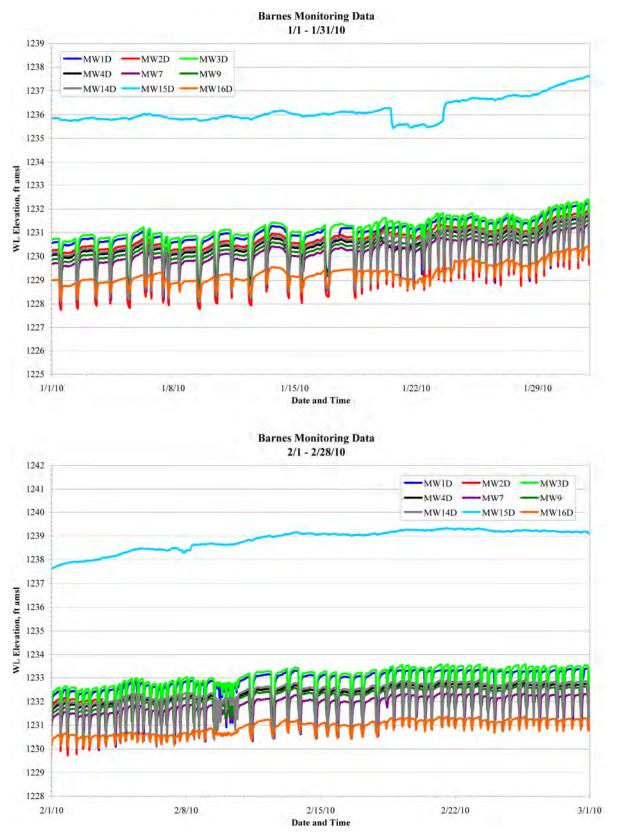


FIGURE 4.2a Hydrographs summarizing monthly results of long-term water level monitoring in the deep-zone wells at Barnes, January-December 2010.

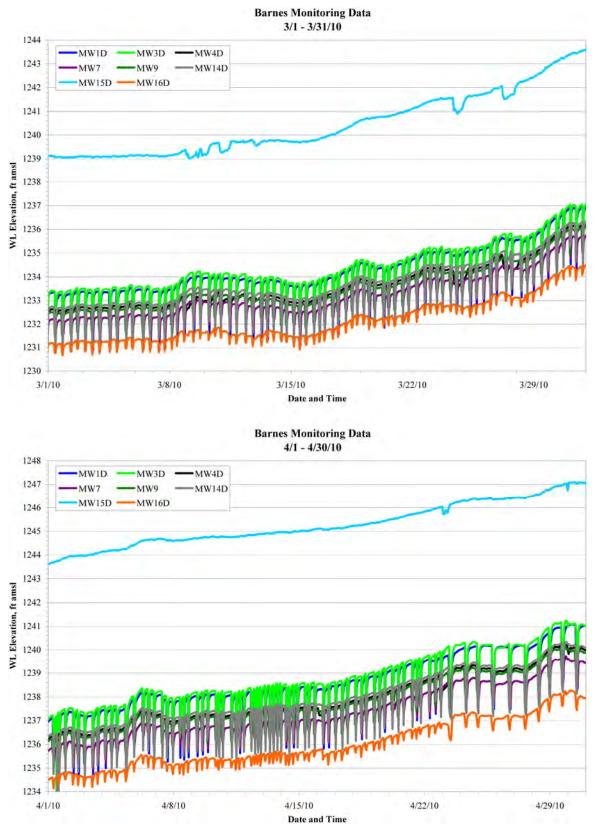


FIGURE 4.2a (Cont.)

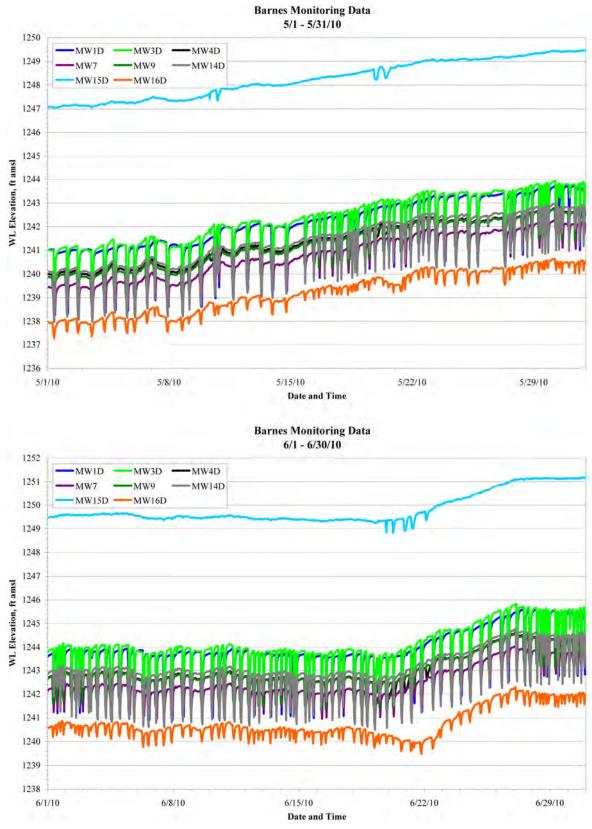


FIGURE 4.2a (Cont.)

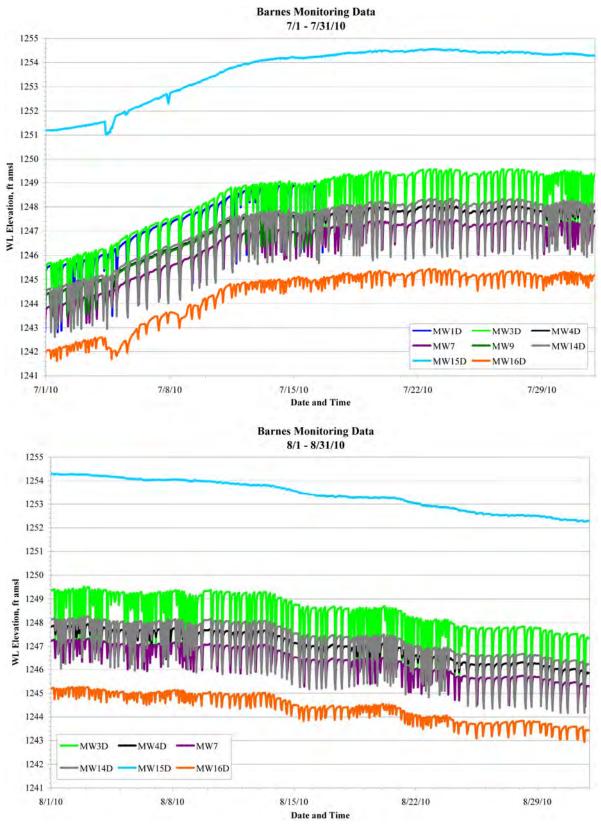


FIGURE 4.2a (Cont.)

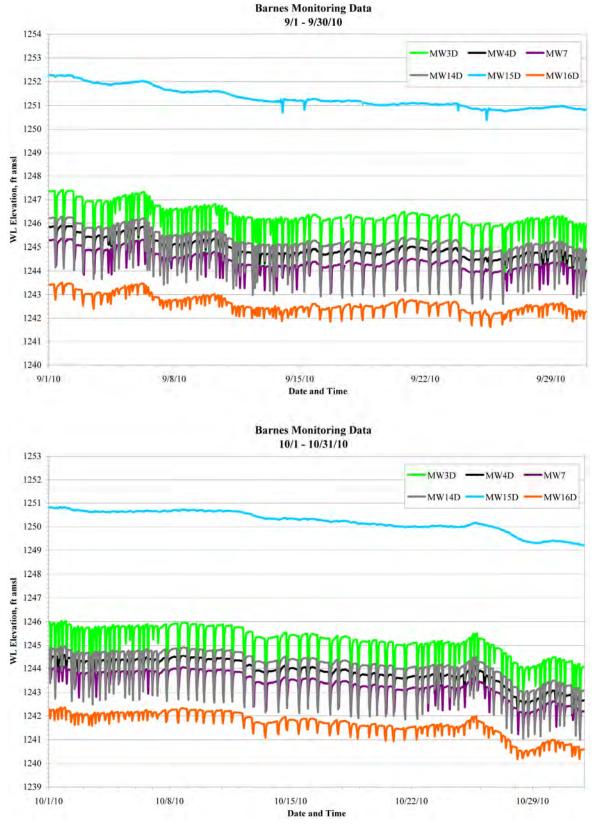


FIGURE 4.2a (Cont.)

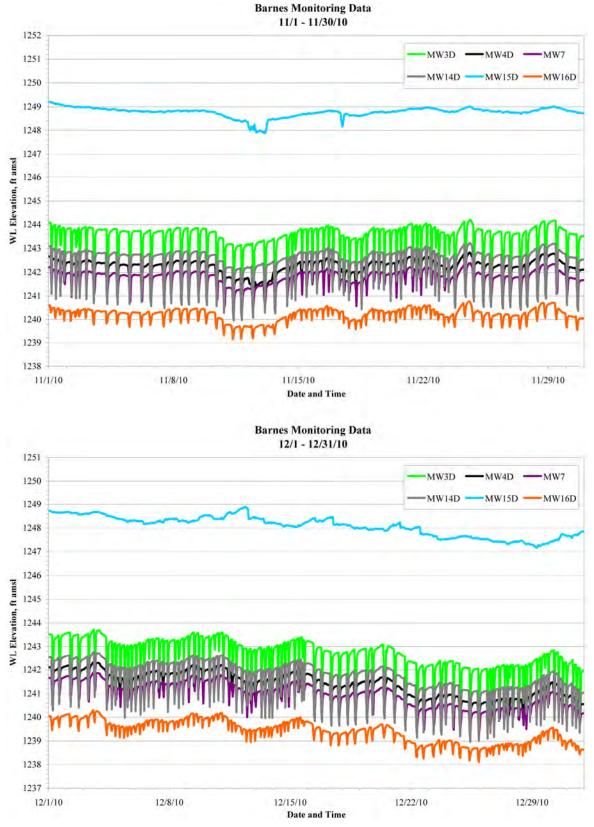


FIGURE 4.2a (Cont.)

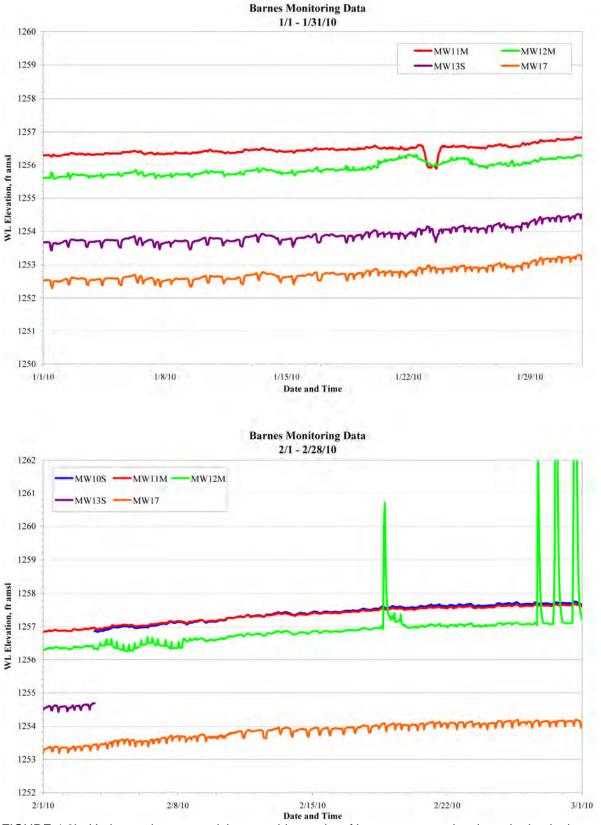


FIGURE 4.2b Hydrographs summarizing monthly results of long-term water level monitoring in the intermediate-zone wells at Barnes, January-September 2010.

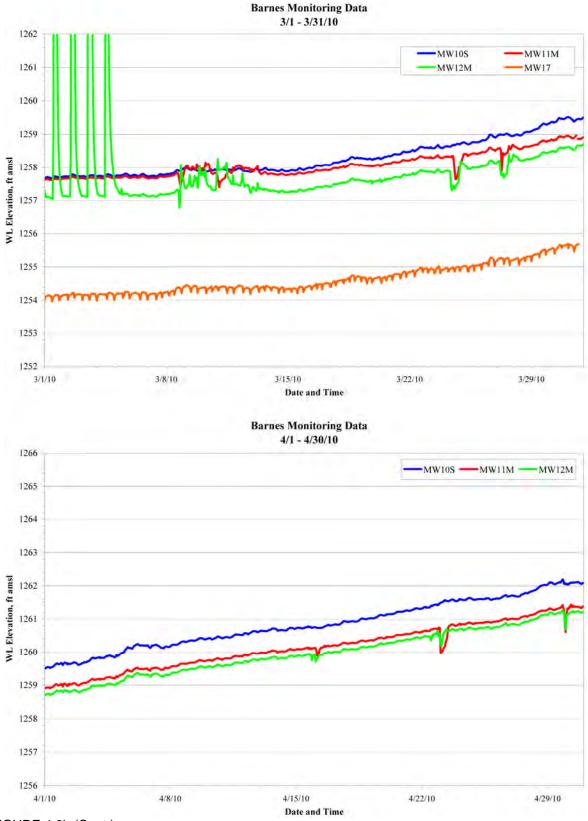
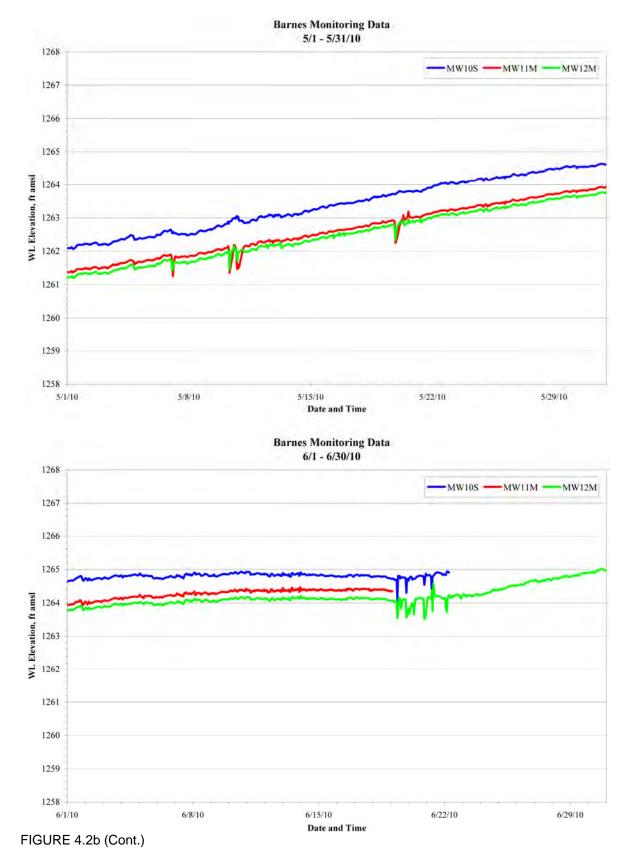



FIGURE 4.2b (Cont.)

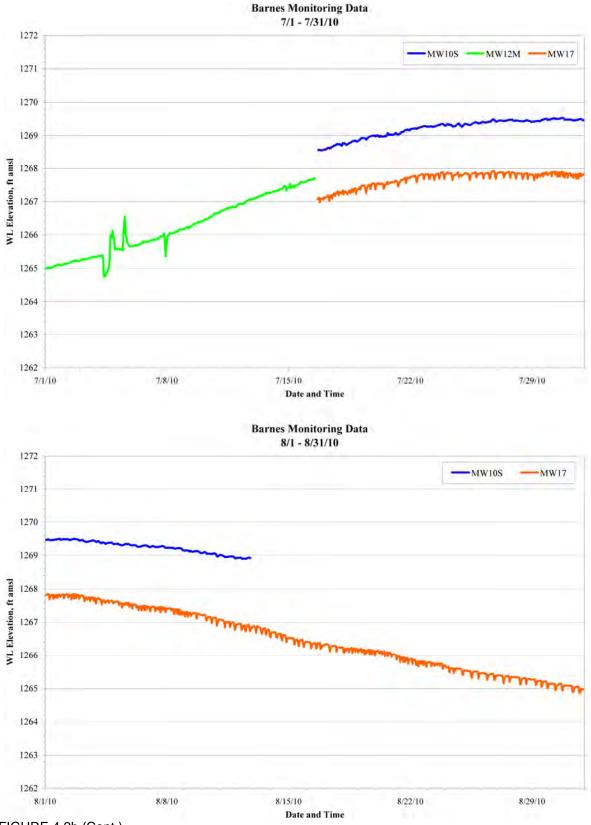
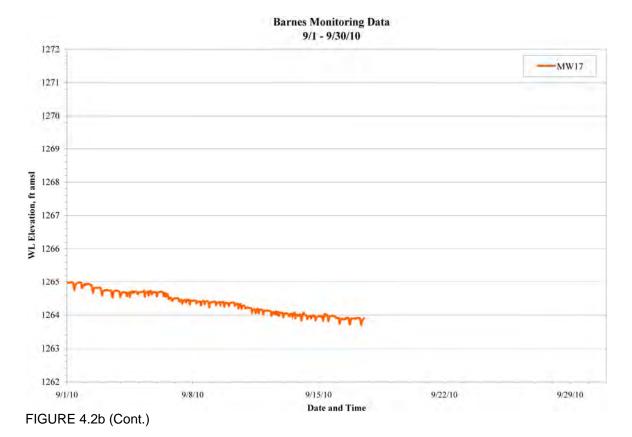



FIGURE 4.2b (Cont.)

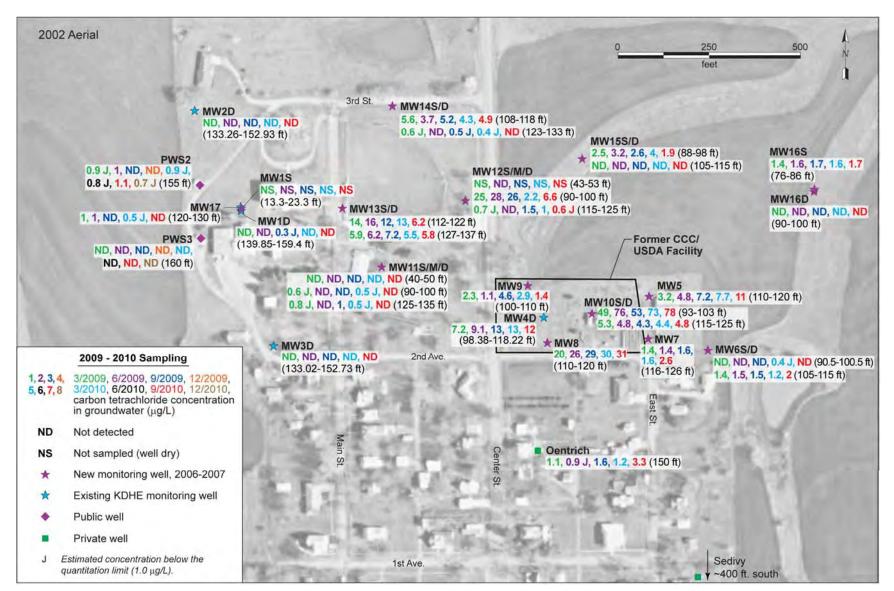


FIGURE 4.3 Analytical results for carbon tetrachloride in groundwater samples collected at Barnes in 2009-2010. Source of photograph: NAPP (2002).

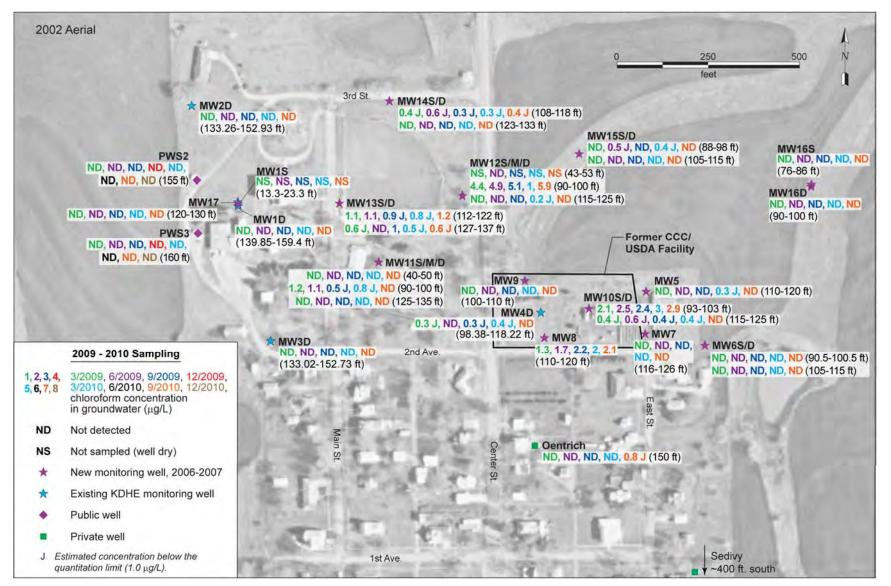


FIGURE 4.4 Analytical results for chloroform in groundwater samples collected at Barnes in 2009-2010. Source of photograph: NAPP (2002).

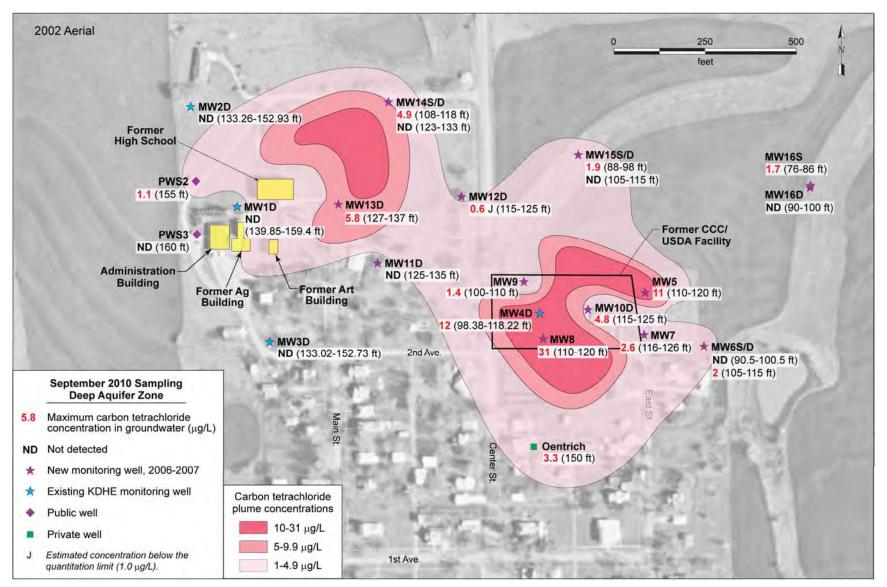


FIGURE 4.5 Interpreted carbon tetrachloride plume in 2010 in wells screened in the deep aquifer zone (groundwater elevations approximately 1,242-1,256 ft AMSL in September 2010). Source of photograph: NAPP (2002).

5 Conclusions and Recommendations

5.1 Conclusions

The findings of the monitoring events at Barnes in 2010 continued to support the following conclusions:

- Measurements of groundwater levels obtained manually and through the use of automatic recorders have consistently indicated that the flow direction is strongly influenced by pumping of the public water supply wells. The results have demonstrated
 - An apparent groundwater flow direction to the northeast when the public wells *are not pumping* and
 - A northwesterly groundwater flow trend when the public wells *are pumping*.
- Evaluation of manual water level measurements and carbon tetrachloride concentrations continues to suggest that three vertically distinguishable aquifer zones are present at Barnes: shallow, intermediate, and deep. All 5 monitoring wells screened in the intermediate aquifer zone and 9 of 20 wells completed in the deep aquifer zone were monitored with automatic water level recorders in 2010.
- The vertical distribution of carbon tetrachloride in groundwater continues to indicate that the highest concentrations occur in the intermediate aquifer zone. Lower concentrations have been detected in the deep aquifer zone, and no carbon tetrachloride has been detected in the shallow zone.
- The conceptual model of the groundwater flow system at Barnes, as previously postulated on the basis of the accumulated results, suggests that the observed vertical hydraulic gradients and higher carbon tetrachloride concentrations in the intermediate zone might reflect generally lower

permeability and hence less effective groundwater and contaminant migration in the intermediate zone than in the deep aquifer zone.

- As it has since March 2008, intermediate-zone well MW10S, in the eastern portion of the former CCC/USDA facility, contained the highest concentrations of carbon tetrachloride.
- Overall, the lateral distribution of carbon tetrachloride in groundwater in 2010 is similar to the distribution during previous sampling events. The accumulated data, including a trend analysis conducted in 2009, indicate stable contaminant concentrations, with no imminent impact to the public wells.
- A conceptual contingent interim measure work plan (Argonne 2009c), approved by the KDHE (2009), involves use of a granular activated carbon system for protection of the public water supply wells.

5.2 Recommendations

- In anticipation of a corrective action study, continue annual monitoring of the reduced set of wells approved by the KDHE (2010) and semi-annual sampling of the public water supply wells. The reduced set of wells is illustrated in Figure 5.1.
- Sampling schedules for the public wells will be coordinated so that the annual sampling by the city of Barnes serves as one of the two annual events and our sampling serves as the other. In 2011, the CCC/USDA proposes to conduct its annual sampling in December.
- Multiple water level recorder failures in 2010 led to reevaluation of the water level monitoring needs at Barnes. The conclusion was that water level monitoring should be discontinued in two deep-zone wells, as follows:

- Well MW4D, which is subject to water invasion and recorder failure and is close to monitoring point MW9.
- Well MW15D, which is not screened in the same part of the deep aquifer zone as the other deep wells and consequently does not yield comparable data (Section 4.1).
- Replacement recorders are being obtained to restore the monitoring capability in all of the remaining wells that were monitored in 2010, as follows (Figure 5.2):
 - Intermediate-zone wells MW10S, MW11M, MW12M, MW13S, MW17.
 - Deep-zone wells MW1D, MW2D, MW3D, MW7, MW9, MW14D, MW16D.

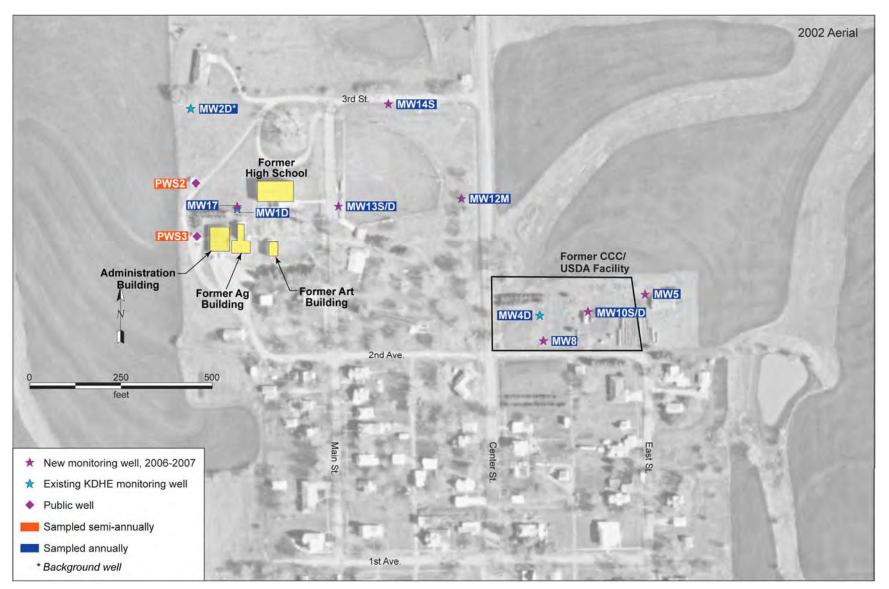


FIGURE 5.1 Wells in the approved monitoring network, beginning in 2011. Source of photograph: NAPP (2002).

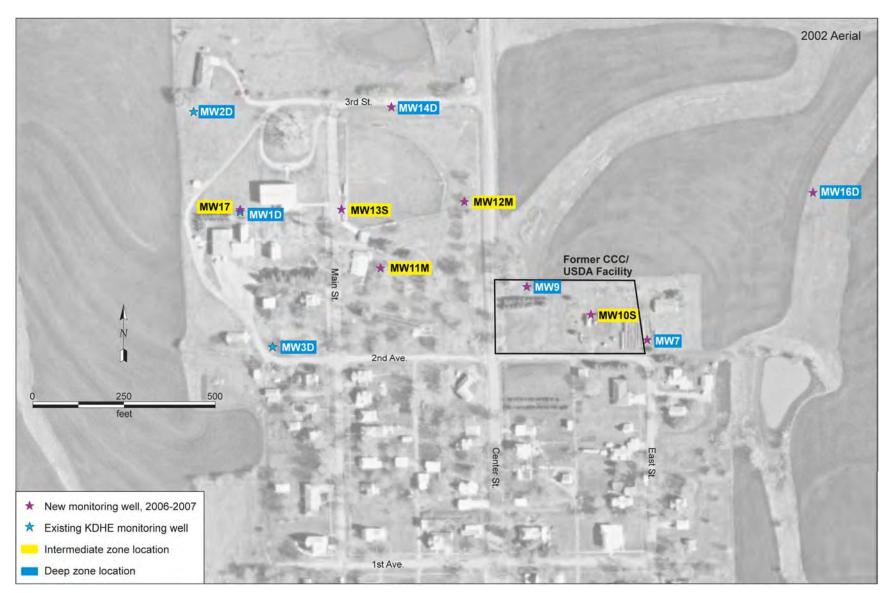


FIGURE 5.2 Wells at Barnes equipped with data loggers for automatic water level monitoring in 2011. Source of photograph: NAPP (2002).

6 References

Argonne, 2002, *Final Master Work Plan: Environmental Investigations at Former CCC/USDA Facilities in Kansas, 2002 Revision*, ANL/ER/TR-02/004, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, December.

Argonne, 2008a, *Final Report: Results of the 2006-2007 Investigation of Potential Contamination at the Former CCC/USDA Facility in Barnes, Kansas, ANL/EVS/AGEM/TR-07-12, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, August.*

Argonne, 2008b, *November* 2007 *Monitoring Results for Barnes, Kansas,* ANL/EVS/AGEM/TR-08-04, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, February.

Argonne, 2008c, *March 2008 Monitoring Results for Barnes, Kansas*, ANL/EVS/AGEM/TR-08-11, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, August.

Argonne, 2008d, *July 2008 Monitoring Results for Barnes, Kansas*, ANL/EVS/AGEM/TR-08-17, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, September.

Argonne, 2009a, *October 2008 Monitoring Results for Barnes, Kansas*, ANL/EVS/AGEM/TR-09-04, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, February.

Argonne, 2009b, *March-June 2009 Monitoring Results for Barnes, Kansas,* ANL/EVS/AGEM/TR-09-09, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, February.

Argonne, 2009c, *Contingency Interim Measure for the Public Water Supply at Barnes, Kansas,* ANL/EVS/AGEM/TR-08-19, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, June.

Argonne, 2010, *Semi-Annual Monitoring Report for Barnes, Kansas, for 2010*, ANL/EVS/AGEM/TR-10-02, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, April.

EPA, 1995, Method 524.2: Measurement of Purgeable Organic Compounds in Water by Capillary Column Gas Chromatography/Mass Spectrometry, Revision 4.1, edited by J.W. Munch, National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio.

KDHE, 2009, letter from E. Finzer (Bureau of Environmental Remediation, Kansas Department of Health and Environment, Topeka, Kansas) to C. Roe (Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C.), regarding *Contingency Interim Measure for the Public Water Supply at Barnes, Kansas*, August 24.

KDHE, 2010, letter from M. Townsend (Bureau of Environmental Remediation, Kansas Department of Health and Environment, Topeka, Kansas) to C. Roe (Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C.), regarding *KDHE Response to CCC/USDA Letter November 18, 2010 Regarding Semi-Annual Monitoring, CCC/USDA Site, Barnes, KS*, December 27.

NAPP, 2002, aerial image NAPP 12897 222, National Aerial Photography Program, U.S. Geological Survey (available from Kansas Geospatial Community Commons [http://www.kansasgis.org/]), April 9.

Puls, R.W., and M.J. Barcelona, 1996, "Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures," EPA/540/S-95/504, in *Ground Water Issue*, Superfund Technology Support Center for Ground Water, National Risk Management Research Laboratory, U.S. Environmental Protection Agency, Ada, Oklahoma, April (www.epa.gov/tio/tsp/download/ lwflw2a.pdf).

Yeskis, D., and B. Zavala, 2002, *Ground-Water Sampling Guidelines for Superfund and RCRA Project Managers: Ground Water Forum Issue Paper*, EPA 542-S-02-001, Technology Innovative Office, Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, D.C., May (http://www.epa.gov/tio/tsp/download/ gw_sampling_guide.pdf). Appendix A:

Sampling Activities and Field Measurements at Barnes in 2010

Sample Date	Time	Sample	Sample Type ^a	Location	Depth (ft BGL)	Chain of Custody	Shipping Date	Sample Description
3/30/10	14:29	BAMW16D-W-28743	MW	MW16D	90-100	2616	3/30/10	Depth to water = 65.95 ft. Depth of 2-in. well = 100 ft. Sample collected by using low-flow bladder pump after purging of 6 L. Pump intake positioned at 95 ft. Aliquots collected for verification analysis at TestAmerica.
3/30/10	14:40	BAMW5-W-28722	MW	MW5	110-120	2616	3/30/10	Depth to water = 92.06 ft. Depth of 2-in. well = 120 ft. Sample collected by using low-flow bladder pump after purging of 5.2 L. Pump intake positioned at 115 ft. Aliquots collected for verification analysis at TestAmerica.
3/30/10	15:31	BAMW16S-W-28742	MW	MW16S	76-86	2616	3/30/10	Depth to water = 66.1 ft. Depth of 2-in. well = 86 ft. Sample collected by using low-flow bladder pump after purging of 6 L. Pump intake positioned at 81 ft. Aliquots collected for verification analysis at TestAmerica.
3/30/10	16:10	BAMW7-W-28725	MW	MW7	116-126	2616	3/30/10	Depth to water = 94.56 ft. Depth of 2-in. well = 126 ft. Sample collected by using low-flow bladder pump after purging of 4.5 L. Pump intake positioned at 121 ft.
3/30/10	16:20	BAQCIR-W-28752 ^b	RI	QC	-	2616	3/30/10	Rinsate of decontaminated sampling line after collection of sample BAMW7-W-28725.
3/30/10	17:04	BAMW15D-W-28741	MW	MW15D	105-115	2616	3/30/10	Depth to water = 66.5 ft. Depth of 2-in. well = 115 ft. Sample collected by using low-flow bladder pump after purging of 5 L. Pump intake positioned at 110 ft. Aliquots collected for verification analysis at TestAmerica.
3/30/10	17:30	BAMW10S-W-28728	MW	MW10S	93-103	2616	3/30/10	Depth to water = 71.96 ft. Depth of 2-in. well = 103 ft. Sample collected by using low-flow bladder pump after purging of 7.5 L. Pump intake positioned at 98 ft.
3/30/10	17:31	BAMW10SDUP-W-28749 ^b	MW	MW10S	93-103	2616	3/30/10	Replicate of sample BAMW10S-W-28728.
3/30/10	18:04	BAMW15S-W-28740	MW	MW15S	88-98	2616	3/30/10	Depth to water = 75.65 ft. Depth of 2-in. well = 96.5 ft. Sample collected by using low-flow bladder pump after purging of 5 L. Pump intake positioned at 93 ft.

TABLE A.1 Sequence of groundwater sampling activities at Barnes in 2010.

TABLE A.1 (Cont.)

Sample Date	Time	Sample	Sample Type ^a	Location	Depth (ft BGL)	Chain of Custody	Shipping Date	Sample Description
3/30/10	18:30	BAMW10D-W-28729	MW	MW10D	115-125	2616	3/30/10	Depth to water = 96.86 ft. Depth of 2-in. well = 125 ft. Sample collected by using low-flow bladder pump after purging of 5 L. Pump intake positioned at 120 ft.
3/30/10	18:42	BAQCIR-W-28753 ^b	RI	QC	_	2616	3/30/10	Rinsate of decontaminated sampling line after collection of sample BAMW15S-W-28740.
3/31/10	10:25	BAMW8-W-28726	MW	MW8	110-120	2617	3/31/10	Depth to water = 94.06 ft. Depth of 2-in. well = 120 ft. Sample collected by using low-flow bladder pump after purging of 5.5 L. Pump intake positioned at 115 ft. Aliquots collected for verification analysis at TestAmerica.
3/31/10	10:55	BAMW9-W-28727	MW	MW9	100-110	2617	3/31/10	Depth to water = 82.45 ft. Depth of 2-in. well = 110 ft. Sample collected by using low-flow bladder pump after purging of 5 L. Pump intake positioned at 105 ft.
3/31/10	11:26	BAPWS3-W-28747	PW	PWS3	160	2617	3/31/10	
3/31/10	11:30	BAMW4D-W-28721	MW	MW4D	98.38-118.22	2617	3/31/10	Depth to water = 91.45 ft. Depth of 2-in. well = 116.6 ft. Sample collected by using low- flow bladder pump after purging of 6 L. Pump intake positioned at 108.30 ft.
3/31/10	11:32	BAPWS2-W-28746	PW	PWS2	155	2617	3/31/10	Well used on March 30. Allowed well to run for 10 min and then sampled.
3/31/10	11:40	BAQCIRW-28754 ^b	RI	QC	-	2617	3/31/10	Rinsate of decontaminated sampling line after collection of sample BAMW4D-W-28721.
3/31/10	12:00	BAMW12S-dry-Mar10	MW	MW12S	43-53			Well was dry.
3/31/10	12:19	BAMW12D-W-28735	MW	MW12D	115-125	2617	3/31/10	Depth to water = 93.55 ft. Depth of 2-in. well = 125 ft. Sample collected by using low-flow bladder pump after purging of 5 L. Pump intake positioned at 120 ft.
3/31/10	13:17	BAMW12M-W-28734	MW	MW12M	90-100	2617	3/31/10	Depth to water = 70.45 ft. Depth of 2-in. well = 100 ft. Sample collected by using low-flow bladder pump after purging of 4.5 L. Pump intake positioned at 95 ft.

TABLE A.1 (Cont.)

Sample Date	Time	Sample	Sample Type ^a	Location	Depth (ft BGL)	Chain of Custody	Shipping Date	Sample Description
3/31/10	13:20	BAMW6S-W-28723	MW	MW6S	90.5-100.5	2617	3/31/10	Depth to water = 86.15 ft. Depth of 2-in. well = 99 ft. Sample collected by using low-flow bladder pump after purging of 13 L. Pump intake positioned at 95.50 ft. Aliquots collected for verification analysis at TestAmerica.
3/31/10	14:13	BAMW6D-W-28724	MW	MW6D	105-115	2617	3/31/10	Depth to water = 87.84 ft. Depth of 2-in. well = 115 ft. Sample collected by using low-flow bladder pump after purging of 5 L. Pump intake positioned at 110 ft.
3/31/10	14:54	BAMW11S-W-28730	MW	MW11S	40-50	2617	3/31/10	Depth to water = 21.5 ft. Depth of 1-in. well = 50 ft. Sample collected by using low-flow bladder pump after purging of 2 L. Pump intake positioned at 45 ft.
3/31/10	15:44	BAMW2D-W-28719	MW	MW2D	133.26-152.93	2619	4/1/10	Depth to water = 112.4 ft. Depth of 2-in. well = 152.90 ft. Sample collected by using low- flow bladder pump after purging of 6.5 L. Pump intake positioned at 143.10 ft.
3/31/10	16:00	BAQCTB-W-28756 ^b	ТВ	QC	-	2617	3/31/10	Trip blank send to the AGEM Laboratory for organic analysis with water samples listed on COCs 2616 and 2617, and to Test America for verification organic analysis with water samples listed on COC 2618.
3/31/10	16:11	BAMW11M-W-28731	MW	MW11M	90-100	2619	4/1/10	Depth to water = 77.9 ft. Depth of 2-in. well = 100 ft. Sample collected by using low-flow bladder pump after purging of 8 L. Pump intake positioned at 95 ft.
3/31/10		BAMW1S-dry-Mar10	MW	MW1S	13.3-23.3	0040		Well was dry.
3/31/10	17:14	BAMW1D-W-28718	MW	MW1D	139.85-159.4	2619	4/1/10	Depth to water = 114.55 ft. Depth of 2-in. well = 159.4 ft. Sample collected by using low- flow bladder pump after purging of 5.5 L. Pump intake positioned at 149.63 ft.
3/31/10	18:45	BAMW17-W-28744	MW	MW17	120-130	2619	4/1/10	Depth to water = 94.90 ft. Depth of 2-in. well = 130 ft. Sample collected by using low-flow bladder pump after purging of 5.5 L. Pump intake positioned at 125 ft.

TABLE A.1 (Cont.)

Sample Date	Time	Sample	Sample Type ^a	Location	Depth (ft BGL)	Chain of Custody	Shipping Date	Sample Description
4/1/10	10:10	BAMW13S-W-28736	MW	MW13S	112-122	2619	4/1/10	Depth to water = 85.65 ft. Depth of 2-in. well = 122 ft. Sample collected by using low-flow bladder pump after purging of 6 L. Pump intake positioned at 117 ft.
4/1/10	11:05	BAMW13D-W-28737	MW	MW13D	127-137	2619	4/1/10	Depth to water = 105.75 ft. Depth of 2-in. well = 137 ft. Sample collected by using low- flow bladder pump after purging of 4.5 L. Pump intake positioned at 132 ft.
4/1/10	11:58	BAMW11D-W-28732	MW	MW11D	125-135	2619	4/1/10	Depth to water = 100.1 ft. Depth of 2-in. well = 135 ft. Sample collected by using low-flow bladder pump after purging of 7 L. Pump intake positioned at 130 ft.
4/1/10	11:59	BAMW11DDUP-W-28750 ^b	MW	MW11D	125-135	2619	4/1/10	Replicate of sample BAMW11D-W-28732.
4/1/10		BAQCIR-W-28755 ^b	RI	QC	-	2619	4/1/10	Rinsate of decontaminated sampling line after collection of sample BAMW11D-W-28732 and replicate BAMW11DDUP-W-28750.
4/1/10	12:25	BAMW3D-W-28720	MW	MW3D	133.02-152.73	2619	4/1/10	Depth to water = 108.86 ft. Depth of 2-in. well = 152.0 ft. Sample collected by using low- flow bladder pump after purging of 6 L. Pump intake positioned at 142.88 ft.
4/1/10	13:02	BAOENTRICH-W-28745	DW	Oentrich	150	2619	4/1/10	Purged of 10 gal and then sampled.
4/1/10	13:14	BAMW14D-W-28739	MW	MW14D	123-133	2619	4/1/10	Depth to water = 96.5 ft. Depth of 2-in. well = 133 ft. Sample collected by using low-flow bladder pump after purging of 4 L. Pump intake positioned at 128 ft.
4/1/10	13:15	BAMW14DDUP-W-28751 ^b	MW	MW14D	123-133	2619	4/1/10	Replicate of sample BAMW14D-W-28739.
4/1/10	14:00	BAQCTB-W-28757 ^b	ТВ	QC	-	2619	3/31/10	Trip blank sent to the AGEM Laboratory for organic analysis with water samples listed on COC 2619.
4/1/10	14:07	BAMW14S-W-28738	MW	MW14S	108-118	2619	4/1/10	Depth to water = 96.7 ft. Depth of 2-in. well = 118 ft. Sample collected by using low-flow bladder pump after purging of 4 L. Pump intake positioned at 113 ft.
6/17/10	12:31	BAPWS3-W-28759	PW	PWS3	160	2862	6/17/10	Recent use of well not stated in log.
6/17/10	12:39	BAPWS2-W-28758	PW	PWS2	155	2862	6/17/10	Recent use of well not stated in log.
6/17/10		BAQCTB-W-28760 ^b	ТВ	QC	-	2862	6/17/10	Trip blank sent to the AGEM Laboratory for organic analysis with water samples listed on COC 2862.

TABLE A.1 (Cont.)

Sample Date	Time	Sample	Sample Type ^a	Location	Depth (ft BGL)	Chain of Custody	Shipping Date	Sample Description
9/17/10	11:50	BAMW3D-W-28763	MW	MW3D	133.02-152.73	2744	9/18/10	Depth to water = 99.92 ft. Depth of 2-in. well = 152.73 ft. Sample collected by using low- flow bladder pump after purging of 7 L. Pump intake positioned at 142.88 ft.
9/17/10	13:03	BAMW2D-W-28762	MW	MW2D	133.26-152.93	2744	9/18/10	Depth to water = 103.38 ft. Depth of 2-in. well = 152.93 ft. Sample collected by using low- flow bladder pump after purging of 10.5 L. Pump intake positioned at 143.10 ft.
9/17/10	13:14	BAMW7-W-28768	MW	MW7	116-126	2744	9/18/10	Depth to water = 85.67 ft. Depth of 2-in. well = 126 ft. Sample collected by using low-flow bladder pump after purging of 5 L. Pump intake positioned at 121 ft.
9/17/10	14:12	BAMW5-W-28765	MW	MW5	110-120	2744	9/18/10	Depth to water = 70.45 ft. Depth of 2-in. well = 100 ft. Sample collected by using low-flow bladder pump after purging of 4.5 L. Pump intake positioned at 95 ft.
9/17/10	14:20	BAQCIR-W-28796	RI	QC	-	2744	9/18/10	Rinsate of decontaminated sampling line after collection of sample BAMW5-W-28765.
9/17/10	14:50	BAMW17-W-28787	MW	MW17	120-130	2744	9/18/10	Depth to water = 88.03 ft. Depth of 2-in. well = 130 ft. Sample collected by using low-flow bladder pump after purging of 7 L. Pump intake positioned at 125 ft.
9/17/10	15:30	BAMW10S-W-28771	MW	MW10S	93-103	2744	9/18/10	Depth to water = 65.95 ft. Depth of 2-in. well = 103 ft. Sample collected by using low-flow bladder pump after purging of 6.5 L. Pump intake positioned at 98 ft.
9/17/10	15:31	BAMW10SDUP-W-28791 ^b	MW	MW10S	93-103	2744	9/18/10	Replicate of sample BAMW10S-W-28771.
9/17/10	16:26	BAMW10D-W-28772	MW	MW10D	115-125	2744	9/18/10	Depth to water = 86.92 ft. Depth of 2-in. well = 125 ft. Sample collected by using low-flow bladder pump after purging of 5 L. Pump intake positioned at 120 ft.
9/17/10	17:00	BAMW1D-W-28761	MW	MW1D	139.85-159.4	2744	9/18/10	Depth to water = 105.28 ft. Depth of 2-in. well = 159.4 ft. Sample collected by using low- flow bladder pump after purging of 9 L. Pump intake positioned at 149.63 ft.
9/17/10	17:00	BAQCTB-W-28802 ^b	ТВ	QC	-	2744	9/18/10	Trip blank sent to the AGEM Laboratory for organic analysis with water samples listed on COC 2744.

TABLE A.1 (Cont.)

Sample Date	Time	Sample	Sample Type ^a	Location	Depth (ft BGL)	Chain of Custody	Shipping Date	Sample Description
9/17/10 9/17/10		BAMW1DDUP-W-28792 ^b BAQCIR-W-28797	MW RI	MW1D QC	139.85-159.4 –	2744 2744	9/18/10 9/18/10	Replicate of sample BAMW1D-W-28761. Rinsate of decontaminated sampling line after collection of sample BAMW1D-W-28761 and replicate BAMW1DDUP-W-28792.
9/17/10	17:48	BAMW8-W-28769	MW	MW8	110-120	2744	9/18/10	Depth to water = 84.95 ft. Depth of 2-in. well = 120 ft. Sample collected by using low-flow bladder pump after purging of 4 L. Pump intake positioned at 115 ft.
9/17/10	18:48	BAMW4D-W-28764	MW	MW4D	98.38-118.22	2744	9/18/10	Depth to water = 81.25 ft. Depth of 2-in. well = 118.22 ft. Sample collected by using low- flow bladder pump after purging of 4.5 L. Pump intake positioned at 108.30 ft.
9/17/10	18:49	BAMW4DDUP-W-28793 ^b	MW	MW4D	98.38-118.22	2744	9/18/10	Replicate of sample BAMW4D-W-28764.
9/17/10	19:42	BAMW14D-W-28782	MW	MW14D	123-133	2744	9/18/10	Depth to water = 87.66 ft. Depth of 2-in. well = 133 ft. Sample collected by using low-flow bladder pump after purging of 9 L. Pump intake positioned at 128 ft.
9/18/10	9:06	BAMW16S-W-28785	MW	MW16S	76-86	2747	9/20/10	Depth to water = 57.24 ft. Depth of 2-in. well = 86 ft. Sample collected by using low-flow bladder pump after purging of 6.5 L. Pump intake positioned at 81 ft.
9/18/10	9:07	BAMW16SDUP-W-28794 ^b	MW	MW16S	76-86	2747	9/20/10	Replicate of sample BAMW16S-W-28785.
9/18/10		BAMW14S-W-28781	MW	MW14S	108-118	2746	9/20/10	Depth to water = 87.82 ft. Depth of 2-in. well = 118 ft. Sample collected by using low-flow bladder pump after purging of 6 L. Pump intake positioned at 113 ft.
9/18/10	9:54	BAMW16D-W-28786	MW	MW16D	90-100	2747	9/20/10	Depth to water = 57.65 ft. Depth of 2-in. well = 100 ft. Sample collected by using low-flow bladder pump after purging of 4.5 L. Pump intake positioned at 95 ft.
9/18/10	10:04	BAQCIR-W-28798	RI	QC	-	2747	9/20/10	Rinsate of decontaminated sampling line after collection of sample BAMW16D-W-28786.
9/18/10	10:21	BAMW13S-W-28779	MW	MW13S	112-122	2746	9/20/10	Depth to water = 78.01 ft. Depth of 2-in. well = 122 ft. Sample collected by using low-flow bladder pump after purging of 7 L. Pump intake positioned at 117 ft.
9/18/10	10:22	BAMW13SDUP-W-28795 ^b	MW	MW13S	112-122	2747	9/20/10	Replicate of sample BAMW13S-W-28779.

TABLE A.1 (Cont.)

Sample Date	Time	Sample	Sample Type ^a	Location	Depth (ft BGL)	Chain of Custody	Shipping Date	Sample Description
9/18/10	11:20	BAMW15S-W-28783	MW	MW15S	88-98	2746	9/20/10	Depth to water = 66.07 ft. Depth of 2-in. well = 98 ft. Sample collected by using low-flow bladder pump after purging of 9 L. Pump intake positioned at 93 ft.
9/18/10	11:31	BAMW13D-W-28780	MW	MW13D	127-137	2746	9/20/10	Depth to water = 96.88 ft. Depth of 2-in. well = 137 ft. Sample collected by using low-flow bladder pump after purging of 5 L. Pump intake positioned at 132 ft.
9/18/10	11:45	BAPWS2-W-28789	PW	PWS2	155	2747	9/20/10	Well in use for past 2 days. Sampled from tap after purging for 5-10 min (approximately 500 gal).
9/18/10	11:55	BAPWS3-W-28790	PW	PWS3	160	2747	9/20/10	Well last used 2 days prior to sampling. Sampled from tap after purging for 5- 10 min (approximately 500 gal).
9/18/10	12:00	BADIH2O-W-28800	FB	QC	_	2747	9/20/10	Blank of water used for equipment
9/18/10	12:05	BAQCIR-W-28799 ^b	RI	QC	-	2747	9/20/10	decontamination. Rinsate of decontaminated sampling line after collection of sample BAMW13S-W-28779 and replicate BAMW13SDUP-W-28795.
9/18/10	12:10	BAMW15D-W-28784	MW	MW15D	105-115	2746	9/20/10	Depth to water = 58.11 ft. Depth of 2-in. well = 115 ft. Sample collected by using low-flow bladder pump after purging of 5 L. Pump intake positioned at 110 ft.
9/18/10	13:34	BAMW6S-W-28766	MW	MW6S	90.5-100.5	2746	9/20/10	Depth to water = 76.46 ft. Depth of 2-in. well = 100.5 ft. Sample collected by using low- flow bladder pump after purging of 7.5 L. Pump intake positioned at 95.50 ft.
9/18/10	14:04	BAMW9-W-28770	MW	MW9	100-110	2746	9/20/10	Depth to water = 75.46 ft. Depth of 2-in. well = 110 ft. Sample collected by using low-flow bladder pump after purging of 10 L. Pump intake positioned at 105 ft.
9/18/10	14:24	BAMW6D-W-28767	MW	MW6D	105-115	2746	9/20/10	Depth to water = 79.35 ft. Depth of 2-in. well = 115 ft. Sample collected by using low-flow bladder pump after purging of 5 L. Pump intake positioned at 110 ft.
9/18/10	14:44	BAOENTRICH-W-28788	DW	Oentrich	150	2747	9/20/10	Sampled from hydrant after purging of 5-10 gal.

TABLE A.1 (Cont.)

Sample Date	Time	Sample	Sample Type ^a	Location	Depth (ft BGL)	Chain of Custody	Shipping Date	Sample Description
9/18/10	14:50	BAQCTB-W-28801 ^b	ТВ	QC	_	2747	9/20/10	Trip blank sent to the AGEM Laboratory for organic analysis with water samples listed on COCs 2746 and 2747.
9/18/10	15:40	BAMW12M-W-28777	MW	MW12M	90-100	2746	9/20/10	Depth to water = 63.90 ft. Depth of 2-in. well = 100 ft. Sample collected by using low-flow bladder pump after purging of 6 L. Pump intake positioned at 95 ft.
9/18/10	16:30	BAMW12D-W-28778	MW	MW12D	115-125	2746	9/20/10	Depth to water = 83.10 ft. Depth of 2-in. well = 125 ft. Sample collected by using low-flow bladder pump after purging of 4.5 L. Pump intake positioned at 120 ft.
9/18/10	16:42	BAMW11M-W-28774	MW	MW11M	90-100	2746	9/20/10	Depth to water = 71.22 ft. Depth of 2-in. well = 100 ft. Sample collected by using low-flow bladder pump after purging of 10 L. Pump intake positioned at 95 ft.
9/18/10	17:42	BAMW11D-W-28775	MW	MW11D	125-135	2746	9/20/10	Depth to water = 90.97 ft. Depth of 2-in. well = 135 ft. Sample collected by using low-flow bladder pump after purging of 3 L. Pump intake positioned at 130 ft.
9/18/10	18:18	BAMW11S-W-28773	MW	MW11S	40-50	2746	9/20/10	Depth to water = 24.71 ft. Depth of 1-in. well = 50 ft. Sample collected by using low-flow bladder pump after purging of 1.75 L. Pump intake positioned at 45 ft.
12/15/10	12:00	BAPWS2-W-28803	PW	PWS2	155	2702	12/16/10	
12/15/10	12:20	BAPWS3-W-28804	PW	PWS3	160	2702	12/16/10	
12/15/10	12:45	BAQCTB-W-28805 ^b	ТВ	QC	_	2702	12/16/10	Trip blank sent to the AGEM Laboratory for organic analysis with water samples listed on COC 2702.

^a Sample types: DW, domestic well; MW, monitoring well; PW, public water supply well; RI, rinsate; TB, trip blank.

^b Quality control sample.

Well	Screen Interval (ft BGL)	Sample Date	Temperature (°C)	рН	Conductivity (µS/cm)	Dissolved Oxygen (mg/L)	Oxidation- Reduction Potential (mV)
Previously	vexisting KDHE mon	itoring wells					
MW1S	13.3-23.3	7/19/06 ^a	_	_	_	_	_
		4/4/07 ^a	_	_	_	-	_
		11/18/07 ^a	-	-	-	-	_
		3/4/08 ^a	-	-	-	-	_
		7/9/08 ^a	-	-	-	-	-
		10/22/08 ^a	-	-	-	-	-
		3/4/09 ^a	-	-	-	-	_
		6/17/09 ^a	-	-	-	-	_
		9/30/09 ^a	-	-	-	-	_
		3/31/10 ^a	-	_	_	-	-
		9/17/10 ^a	-	-	-	-	-
MW1D	139.85-159.4	7/19/06	22.8	7.15	945	_	_
		4/4/07	15.7	6.30	855	-	_
		11/18/07	12.7	7.62	712	-	-
		3/4/08	5.5	7.22	1167	11.6	244
		7/9/08	18.1	7.05	992	16.2	98
		10/22/08 3/4/09	12.6 13.8	7.07 7.07	937 962	8.95 8.94	108 253
		6/17/09	23.3	7.07	1021	5.43	106
		9/30/09	16.3	6.87	1007	6.74	268
		3/31/10	16.6	7.08	760	6.57	-25
		9/17/10	17.5	7.14	851	8.22	160
MW2D	133.26-152.93	7/19/06	24.7	7.72	946	_	_
		4/4/07	15.1	6.32	887	_	_
		11/18/07	12.1	6.96	1448	-	-
		3/7/08	6.5	7.22	1198	4.61	197
		7/10/08	18.4	6.91	1163	5.03	155
		10/22/08 3/4/09	11.6 14.5	7.07 7.06	931 1126	6.19 5.60	132 243
		6/18/09	14.5	6.97	1235	3.55	116
		9/30/09	17.0	6.15	1196	3.44	25
		3/31/10	16.2	7.09	827	5.18	-37
		9/17/10	20.1	7.13	945	5.00	150
MW3D	133.02-152.73	7/19/06	23.0	7.06	976	_	_
		4/4/07	15.6	6.37	989	_	_
		11/19/07	10.5	7.16	1093	-	_
		3/7/08	8.2	7.09	1195	5.34	255
		7/10/08	19.8	6.99	1177	13.8	110
		10/22/08	13.5	7.01	1238	4.46	84
		3/4/09 6/17/09	12.8 18.5	7.08 6.65	1062 1038	7.00 5.90	210 110
		9/30/09	15.2	6.87	1058	5.96	209
		4/1/10	18.2	7.11	789	5.62	-60
		9/17/10	20.0	7.00	953	4.87	77

TABLE A.2 Field measurements for groundwater samples collected at Barnes, 2006-2010.	
--	--

Well	Screen Interval (ft BGL)	Sample Date	Temperature (°C)	рН	Conductivity (µS/cm)	Dissolved Oxygen (mg/L)	Oxidation- Reduction Potential (mV)
Previously	y existing KDHE mon	itoring wells (c	ont.)				
MW4D	98.38-118.22	7/20/06 4/6/07 11/19/07 3/9/08 7/12/08 10/23/08 3/5/09 6/18/09 9/30/09 3/31/10 9/17/10	23.5 11.3 15.7 11.5 14.4 13.0 15.9 18.5 17.3 15.1 16.5	6.26 6.21 6.98 7.14 6.94 7.02 7.61 7.03 6.85 7.09 7.01	968 1018 1022 859 1001 973 1402 975 925 785 900	- 6.57 6.77 5.56 4.04 5.72 7.85 7.19 7.18	- 201 149 94 17 127 150 22 259
CCC/USE	DA wells installed duri	ng 2006-2007	investigation				
MW5	110-120	4/6/07 11/19/07 3/8/08 7/11/08 10/23/08 3/5/09 6/19/09 9/30/09 3/30/10 9/17/10	13.9 15.2 9.9 18.8 12.8 15.9 16.4 16.1 15.2 17.2	6.17 6.74 6.66 6.78 6.86 6.71 6.66 6.58 6.96	1705 3070 2770 2930 2384 2146 2292 1780 907 1093	- 0.66 1.32 0.67 2.36 1.01 3.08 4.65 4.02	- 123 37 20 56 45 72 17 -20
MW6S	90.5-100.5	4/4/07 ^a 11/19/07 3/8/08 7/11/08 10/23/08 3/5/09 6/18/09 10/1/09 3/31/10 9/18/10	- 12.0 4.7 28.2 11.9 13.9 19.5 14.6 16.4 15.8	- 7.60 7.77 7.61 11.17 7.88 7.70 6.30 7.52 11.16	- 723 673 753 582 603 698 618 584 568	- 9.85 5.12 5.23 4.52 5.76 5.78 2.26	- 92 91 18 27 88 -25 35
MW6D	105-115	4/5/07 11/19/07 3/8/08 7/11/08 10/23/08 3/5/09 6/18/09 10/1/09 3/31/10 9/18/10	6.2 13.6 9.1 19.8 12.0 13.4 19.0 16.0 17.6 15.9	6.11 7.00 7.15 7.05 7.18 7.22 6.86 6.41 7.10 7.06	936 1103 908 999 957 903 992 910 821 981	- 5.56 12.8 6.27 3.07 4.44 4.18 5.04 4.94	- 241 100 128 21 114 98 -2 147

Well	Screen Interval (ft BGL)	Sample Date	Temperature (°C)	рН	Conductivity (µS/cm)	Dissolved Oxygen (mg/L)	Oxidation- Reduction Potential (mV)
CCC/USD	A wells installed duri	ng 2006-2007	investigation (co	nt.)			
MW7	116-126	4/6/07 11/19/07 3/9/08 7/12/08 10/23/08 3/5/09 6/19/09 9/30/09 3/30/10 9/17/10	14.1 14.6 13.1 14.4 12.7 15.3 16.3 16.2 16.4 17.2	6.30 7.16 7.10 6.95 7.16 7.11 7.05 6.86 7.04 6.88	1051 890 1068 1238 1191 1141 1174 1132 923 1149	- 4.24 4.36 8.61 9.93 4.32 8.24 7.34 4.18	- 186 98 122 126 48 216 -48 104
MW8	110-120	4/6/07 11/19/07 3/10/08 7/11/08 10/23/08 3/5/09 6/19/09 9/30/09 3/31/10 9/17/10	12.1 14.6 13.1 18.6 12.9 16.2 18.0 16.7 14.0 17.4	6.23 7.09 6.38 7.06 7.12 7.07 6.15 7.07 7.05	974 909 961 1049 948 985 972 889 815 940	- 6.71 6.19 8.74 9.43 6.65 6.22 7.46 6.85	- 182 152 97 165 102 33 23 231
MW9	100-110	4/5/07 11/19/07 3/9/08 7/11/08 10/24/08 3/5/09 6/17/09 9/29/09 3/31/10 9/18/10	12.9 16.5 11.2 17.7 13.0 16.2 15.9 13.9 15.4 14.7	6.20 7.21 7.07 6.58 7.06 7.10 6.87 6.79 6.88 7.14	976 1066 928 1010 888 939 907 871 754 879	- 5.80 5.63 5.42 8.40 5.62 7.84 7.25 7.24	- 239 189 79 173 146 135 123 188
MW10S	93-103	4/6/07 11/19/07 3/10/08 7/11/08 10/23/08 3/5/09 6/19/09 9/30/09 3/30/10 9/17/10	13.2 14.5 12.7 17.3 13.4 15.3 16.0 15.8 15.3 17.2	6.36 7.22 7.08 6.91 7.08 7.25 7.12 6.58 7.08 7.02	1004 942 975 913 895 925 829 776 865	- 5.18 12.8 5.39 2.66 5.44 4.63 6.88 5.21	- 176 119 78 13 104 31 -25 164

Well	Screen Interval (ft BGL)	Sample Date	Temperature (°C)	рН	Conductivity (µS/cm)	Dissolved Oxygen (mg/L)	Oxidation- Reduction Potential (mV)
CCC/USD	A wells installed duri	ng 2006-2007	investigation (co	nt.)			
MW10D	115-125	4/6/07 11/19/07 3/9/08 7/11/08 10/23/08 3/5/09 6/19/09 9/30/09 3/30/10 9/17/10	12.1 14.5 13.7 17.4 13.5 15.9 16.9 15.8 15.1 17.6	6.21 7.42 7.01 6.78 7.01 7.20 7.08 6.62 7.00 6.97	992 1175 1024 1090 1000 969 1035 922 835 955	- 5.07 12.6 5.00 4.37 5.70 5.48 6.42 5.71	- 236 117 93 12 109 32 -34 204
MW11S	40-50	4/4/07 11/19/07 3/5/08 7/10/08 10/23/08 3/4/09 6/19/09 10/1/09 3/31/10 9/18/10	12.8 11.2 9.4 19.5 10.2 14.5 15.0 15.9 18.0 15.8	6.14 7.15 6.81 6.47 6.99 7.11 6.81 6.81 6.98	1027 1174 1122 1224 1085 1186 1159 1114 958 1178	- 2.26 1.86 5.80 4.32 3.11 2.16 6.05 1.95	_ 241 166 146 37 173 203 84 185
MW11M	90-100	4/5/07 11/19/07 3/6/08 7/10/08 10/23/08 3/4/09 6/19/09 10/1/09 3/31/10 9/18/10	7.5 11.9 10.8 31.9 12.4 13.6 14.7 14.5 17.4 16.0	7.60 7.17 7.06 7.08 7.06 7.33 6.92 6.85 6.96 7.22	1097 1144 997 1124 962 910 973 919 742 846	- 2.65 3.88 3.19 4.90 4.84 6.66 5.49 8.82	- 254 149 116 28 185 153 67 174
MW11D	125-135	4/4/07 11/19/07 3/5/08 7/10/08 10/23/08 3/4/09 6/19/09 10/1/09 4/1/10 9/18/10	13.8 13.1 6.0 17.5 12.3 14.3 17.4 14.7 17.4 15.8	6.18 7.22 7.06 6.25 7.11 7.23 6.96 6.85 6.91 7.11	990 987 872 957 863 848 885 854 750 871	- 6.85 7.14 8.71 4.47 5.92 6.91 7.35 6.49	- 252 177 123 27 131 154 99 189

Well	Screen Interval (ft BGL)	Sample Date	Temperature (°C)	рН	Conductivity (µS/cm)	Dissolved Oxygen (mg/L)	Oxidation- Reduction Potential (mV)		
CCC/USDA wells installed during 2006-2007 investigation (cont.)									
MW12S	43-53	4/5/07 ^a	_	_	_	_	_		
		11/19/07 ^a	-	-	-	-	_		
		3/10/08 ^a	-	-	_	_	_		
		7/10/08 ^a	-	-	-	-	_		
		10/22/08 ^a	-	-	-	-	-		
		3/4/09 ^a	-	-	-	-	-		
		6/19/09	20.5	7.00	1436	_	_		
		10/1/09 ^a	-	-	_	_	_		
		3/31/10 ^a	-	-	_	_	_		
		9/18/10 ^a	_	-	-	-	-		
MW12M	90-100	4/5/07	12.6	6.42	867	_	_		
		11/19/07	14.9	7.13	835	_	_		
		3/10/08	12.6	7.13	665	1.81	212		
		7/10/08	16.9	7.09	878	8.17	87		
		10/22/08	12.2	7.20	785	8.93	126		
		3/4/09	14.1	7.24	851	2.15	20		
		6/19/09	17.0	6.99	856	2.34	112		
		10/1/09 3/31/10	14.4 17.5	6.81 7.05	840 334	3.41 0.40	52 36		
		9/18/10	15.8	7.13	649	0.40	-61		
MW12D	115-125	4/5/07	14.0	6.36	930				
	115-125	4/5/07	15.6	6.95	930 571	_	_		
		3/9/08	8.8	7.13	881	5.25	237		
		7/11/08	19.9	6.01	987	4.72	197		
		10/22/08	12.3	7.09	873	7.96	136		
		3/4/09	14.4	7.25	923	4.06	21		
		6/19/09	16.4	6.96	895	5.08	150		
		10/1/09	15.8	6.85	869	6.74	154		
		3/31/10	16.6	6.89	753	6.57	103		
		9/18/10	15.5	6.97	872	6.17	139		
MW13S	112-122	4/5/07	9.8	6.42	946	_	-		
		11/19/07	16.5	7.21	893	-	_		
		3/10/08	12.2	7.13	810	6.21	199		
		7/9/08	17.4	6.99	875	7.72	116		
		10/22/08 3/4/09	13.5 13.8	7.08 7.23	793 818	5.08 4.39	100 29		
		6/18/09	17.6	7.23	803	4.39 6.12	29 104		
		9/30/09	15.4	5.74	721	6.06	177		
		4/1/10	15.0	7.14	667	7.47	64		
		9/18/10	16.7	7.42	772	12.9	186		

Well	Screen Interval (ft BGL)	Sample Date	Temperature (°C)	pН	Conductivity (µS/cm)	Dissolved Oxygen (mg/L)	Oxidation- Reduction Potential (mV)
CCC/USD	A wells installed duri	ng 2006-2007	investigation (co	ont.)			
MW13D	127-137	4/5/07 11/19/07 3/9/08 7/9/08 10/22/08 3/4/09 6/18/09 9/30/09 4/1/10 9/18/10	14.9 17.0 13.1 18.6 13.3 14.5 17.5 17.4 16.3 17.3	6.25 7.00 7.09 7.07 7.06 7.19 6.93 5.99 7.09 7.14	397 763 758 848 824 833 828 706 694 803	- 5.95 18.1 5.28 4.01 5.60 5.60 6.62 6.26	- 213 57 98 25 117 142 21 189
MW14S	108-118	4/4/07 11/18/07 3/8/08 7/10/08 10/22/08 3/4/09 6/18/09 10/1/09 4/1/10 9/18/10	13.4 12.9 13.2 17.4 13.2 13.8 17.5 16.0 17.8 16.4	6.50 7.26 7.20 7.16 7.11 7.15 7.01 6.25 6.96 7.11	704 966 729 775 716 736 742 663 625 705	- 6.59 16.4 5.81 8.96 5.18 5.78 7.66 6.76	- 208 87 90 268 97 99 73 193
MW14D	123-133	4/4/07 11/18/07 3/8/08 7/10/08 10/22/08 3/5/09 6/18/09 10/1/09 4/1/10 9/17/10	14.7 13.2 12.0 17.7 13.0 13.6 19.8 15.5 17.8 16.1	6.34 7.47 7.06 7.07 7.00 7.06 7.04 6.21 6.93 7.09	932 739 1424 1459 1212 1339 1523 1154 1189 1162	- 1.95 14.5 1.41 2.15 1.99 1.59 1.75 6.46	- 282 86 79 69 46 90 67 45
MW15S	88-98	4/4/07 11/18/07 3/10/08 7/12/08 10/23/08 3/5/09 6/17/09 9/29/09 3/30/10 9/18/10	13.1 13.9 12.1 14.0 13.0 15.7 18.2 15.4 15.7 16.4	8.03 NR 8.67 8.88 8.00 8.78 9.13 7.40 7.81 7.49	854 1883 697 660 789 589 386 786 467 776	- 5.49 11.6 5.27 7.48 4.84 6.93 6.73 5.83	- 173 94 67 163 62 181 63 127

Well	Screen Interval (ft BGL)	Sample Date	Temperature (°C)	рН	Conductivity (µS/cm)	Dissolved Oxygen (mg/L)	Oxidation- Reduction Potential (mV)
CCC/USD	A wells installed duri	ng 2006-2007	investigation (co	nt.)			
MW15D	105-115	4/4/07 11/18/07 3/8/08 7/12/08 10/24/08 3/5/09 6/17/09 9/29/09 3/30/10 9/18/10	14.8 13.1 9.0 14.1 13.0 15.8 18.6 15.6 17.3 16.2	6.15 6.85 6.80 6.81 6.82 6.71 6.53 6.68 6.75	2980 2190 2912 3067 2876 2945 2887 2848 2486 2778	- 0.57 1.05 0.34 0.41 0.61 0.25 0.30 0.21	- 131 90 27 -15 51 92 54 -38
MW16S	76-86	4/4/07 11/19/07 3/7/08 7/11/08 10/23/08 3/5/09 6/18/09 9/29/09 3/30/10 9/18/10	12.8 15.0 7.3 18.8 11.6 16.3 15.9 14.3 16.6 17.0	6.35 6.94 6.96 6.71 7.01 7.03 6.76 6.92 6.84	1708 1616 1968 2883 1350 1505 971 963 828 966	- 3.45 1.13 6.01 2.49 5.57 7.50 6.90 5.58	- 184 52 136 12 101 123 90 106
MW16D	90-100	4/4/07 11/19/07 3/7/08 7/11/08 10/23/08 3/5/09 6/18/09 9/29/09 3/30/10 9/18/10	14.1 12.5 7.0 18.9 11.3 15.6 18.3 14.4 16.3 15.7	6.17 6.78 6.64 6.79 6.94 6.77 6.67 6.59 6.68	2910 2400 2866 3134 2791 2926 2867 2583 2429 2759	- 0.50 0.41 0.45 0.27 0.30 0.64 0.24 0.22	- 140 32 37 14 46 17 78 -53
MW17	120-130	4/4/07 11/19/07 3/5/08 7/9/08 10/22/08 3/4/09 6/17/09 9/30/09 3/31/10 9/17/10	16.0 8.3 5.5 17.5 13.1 14.1 18.4 14.8 14.1 19.2	6.44 7.15 7.12 7.11 7.10 7.12 7.01 6.89 7.15 7.22	861 610 804 843 777 823 825 800 687 790	- 7.02 20.6 8.35 8.47 5.65 7.74 6.96 9.60	- 239 89 110 258 103 248 -66 153

Well	Screen Interval (ft BGL)	Sample Date	Temperature (°C)	рН	Conductivity (μS/cm)	Dissolved Oxygen (mg/L)	Oxidation- Reduction Potential (mV)			
Private wells										
Oentrich	150	7/20/06	_	_	_	_	_			
		8/2/06	-	_	_	_	_			
		4/5/07	_	_	_	_	_			
		11/19/07	12.1	8.26	1830	_	_			
		3/6/08	-	_	_	_	-			
		7/11/08	-	_	_	_	-			
		10/23/08	-	_	-	_	-			
		3/5/09	-	_	_	_	-			
		6/18/09	15.3	7.15	1270	_	-			
		9/30/09	15.6	7.14	1275	_	-			
		4/1/10	12.8	7.41	1017	_	-			
		9/18/10	-	_	_	-	-			
0	400	0/00/00								
Sedivy	138	8/22/06	_	-	_	_	-			
		9/13/06	22.5	6.57	739	-	-			

^a Not sampled (well dry).

Appendix B:

Results from the AGEM Laboratory for Dual Analyses of Samples Collected at Barnes in 2010 and for Quality Control Samples

			Co	oncentration (µg/L)	
Sample Date	Sample	Туре	Carbon Tetrachloride	Chloroform	Methlene Chloride
3/30/10 3/30/10 3/31/10 3/31/10 4/1/10 4/1/10	BAQCIR-W-28752 BAQCIR-W-28753 BAQCIRW-28754 BAQCTB-W-28756 BAQCIR-W-28755 BAQCTB-W-28757	Equipment rinsate Equipment rinsate Equipment rinsate Trip blank Equipment rinsate Trip blank	ND ^a ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND
6/17/10	BAQCTB-W-28760	Trip blank	ND	ND	ND
9/17/10 9/17/10 9/17/10 9/18/10 9/18/10 9/18/10 9/18/10	BAQCIR-W-28796 BAQCIR-W-28797 BAQCTB-W-28802 BADIH2O-W-28800 BAQCIR-W-28798 BAQCIR-W-28799 BAQCTB-W-28801	Equipment rinsate Equipment rinsate Trip blank Field blank Equipment rinsate Equipment rinsate Trip blank	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND
12/15/10	BAQCTB-W-28805	Trip blank	ND	ND	ND

TABLE B.1 Analytical results from the AGEM Laboratory for quality control samples collected to
monitor sample collection and handling activities at Barnes in 2010.

 $^{a}\,$ ND, contaminant not detected at an instrument detection limit of 0.1 $\mu g/L.$

TABLE B.2 Analytical results from the AGEM Laboratory for dual analyses of samples collected at
Barnes in 2010.

				Con	centration (µg/	L)
Sample Date	Location	Sample	Analysis Type	Carbon Tetrachloride	Chloroform	Methylene Chloride
March 30-	April 1, 2010), sampling event				
3/31/10	MW1D	BAMW1D-W-28718	Primary	ND ^a	ND	ND
3/31/10	MW1D	BAMW1D-W-28718DUP	Duplicate	ND	ND	ND
3/31/10	MW8	BAMW8-W-28726	Primary	30	2.0	ND
3/31/10	MW8	BAMW8-W-28726DUP	Duplicate	28	1.9	ND
3/30/10	MW10S	BAMW10S-W-28728	Primary	73	3.0	ND
3/30/10	MW10S	BAMW10SDUP-W-28749	Replicate	61	2.6	ND
4/1/10	MW11D	BAMW11D-W-28732	Primary	0.5 J ^b	ND	ND
4/1/10	MW11D	BAMW11DDUP-W-28750	Replicate	0.7 J	ND	ND
4/1/10	MW14D	BAMW14D-W-28739	Primary	0.4 J	ND	ND
4/1/10	MW14D	BAMW14DDUP-W-28751	Replicate	0.5 J	ND	ND
4/1/10	Oentrich	BAOENTRICH-W-28745	Primary	1.2	ND	ND
4/1/10	Oentrich	BAOENTRICH-28745DUP	Duplicate	1.4	ND	ND
Septembe	r 17-18, 201	0, sampling event				
9/17/10	MW1D	BAMW1D-W-28761	Primary	ND	ND	ND
9/17/10	MW1D	BAMW1DDUP-W-28792	Replicate	ND	ND	ND
9/17/10	MW4D	BAMW4D-W-28764	Primary	12	ND	ND
9/17/10	MW4D	BAMW4DDUP-W-28793	Replicate	11	ND	ND
9/17/10	MW8	BAMW8-W-28769	Primary	31	2.1	ND
9/17/10	MW8	BAMW8-W-28769DUP	Duplicate	31	2.1	ND
9/18/10	MW9	BAMW9-W-28770	Primary	1.4	ND	ND
9/18/10	MW9	BAMW9-W-28770DUP	Duplicate	1.4	ND	ND
9/17/10	MW10S	BAMW10S-W-28771	Primary	78	2.9	ND
9/17/10	MW10S	BAMW10SDUP-W-28791	Replicate	80	2.9	ND
9/18/10	MW13S	BAMW13S-W-28779	Primary	6.2	1.2	ND
9/18/10	MW13S	BAMW13SDUP-W-28795	Replicate	6.4	1.1	ND
9/18/10	MW16S	BAMW16S-W-28785	Primary	1.7	ND	ND
9/18/10	MW16S	BAMW16SDUP-W-28794	Replicate	1.7	0.3 J	ND

 a $\,$ ND, contaminant not detected at an instrument detection limit of 0.1 $\mu g/L.$

 b Qualifier J indicates an estimated concentration below the purge-and-trap method quantitation limit of 1.0 $\mu g/L.$

Supplement 1:

Waste Characterization Data

Pace Analytical Services, Inc. 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

October 14, 2010

Mr. Travis Kamler TCW Construction Inc 141 M Street Lincoln, NE 68508

RE: Project: Kansas Waste Water Pace Project No.: 6086606

Dear Mr. Kamler:

Enclosed are the analytical results for sample(s) received by the laboratory on October 01, 2010. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Judy Sipson

Trudy Gipson

trudy.gipson@pacelabs.com Project Manager

Enclosures

cc: Mr. David Surgnier

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 1 of 19

CERTIFICATIONS

Project: Kansas Waste Water

Pace Project No.: 6086606

Kansas Certification IDs

9608 Loiret Boulevard, Lenexa, KS 66219 A2LA Certification #: 2456.01 Arkansas Certification #: 05-008-0 Illinois Certification #: 001191 Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212008A Oklahoma Certification #: 9205/9935 Texas Certification #: T104704407-08-TX Utah Certification #: 9135995665

REPORT OF LABORATORY ANALYSIS

SAMPLE SUMMARY

Project:Kansas Waste WaterPace Project No.:6086606

Lab ID	Sample ID	Matrix	Date Collected	Date Received
6086606001	BAPURGE-W-930101	Water	09/30/10 09:00	10/01/10 09:15
6086606002	CNPURGE-W-930102	Water	09/30/10 10:00	10/01/10 09:15
6086606003	EVPURGE-W-930103	Water	09/30/10 11:32	10/01/10 09:15
6086606004	MRPURGE-W-930104	Water	09/30/10 13:42	10/01/10 09:15

REPORT OF LABORATORY ANALYSIS

SAMPLE ANALYTE COUNT

Project: Kansas Waste Water Pace Project No.: 6086606

Lab ID	Sample ID	Method	Analysts	Analytes Reported
6086606001	BAPURGE-W-930101	EPA 504.1	NAW	1
		EPA 5030B/8260	HMW	70
		EPA 300.0	RAB	1
6086606002	CNPURGE-W-930102	EPA 504.1	NAW	1
		EPA 5030B/8260	HMW	70
		EPA 300.0	RAB	1
6086606003	EVPURGE-W-930103	EPA 504.1	NAW	1
		EPA 5030B/8260	HMW	70
		EPA 300.0	RAB	1
6086606004	MRPURGE-W-930104	EPA 504.1	NAW	1
		EPA 5030B/8260	HMW	70
		EPA 300.0	RAB	1

REPORT OF LABORATORY ANALYSIS

Project: Kansas Waste Water

Pace Project No.: 6086606

Sample: BAPURGE-W-930101	Lab ID:	6086606001	Collected:	09/30/1	0 09:00	Received: 10)/01/10 09:15	Matrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
504 GCS EDB and DBCP	Analytical	Method: EPA 5	04.1 Prepara	ation Met	hod: EP	A 504.1			
1,2-Dibromoethane (EDB)	Ν	D ug/L		0.029	1	10/07/10 00:00	10/07/10 21:2	3 106-93-4	
8260 MSV	Analytical	Method: EPA 5	030B/8260						
Acetone	29	3 ug/L		10.0	1		10/03/10 12:4	6 67-64-1	
Benzene		D ug/L		1.0	1		10/03/10 12:4	6 71-43-2	
Bromobenzene	N	D ug/L		1.0	1		10/03/10 12:4	6 108-86-1	
Bromochloromethane	N	D ug/L		1.0	1		10/03/10 12:4	6 74-97-5	
Bromodichloromethane	N	D ug/L		1.0	1		10/03/10 12:4	6 75-27-4	
Bromoform	N	D ug/L		1.0	1		10/03/10 12:4	6 75-25-2	
Bromomethane	N	D ug/L		1.0	1		10/03/10 12:4	6 74-83-9	
2-Butanone (MEK)	N	D ug/L		10.0	1		10/03/10 12:4	6 78-93-3	
n-Butylbenzene	N	D ug/L		1.0	1		10/03/10 12:4	6 104-51-8	
sec-Butylbenzene	Ν	D ug/L		1.0	1		10/03/10 12:4	6 135-98-8	
tert-Butylbenzene	Ν	D ug/L		1.0	1		10/03/10 12:4	6 98-06-6	
Carbon disulfide		D ug/L		5.0	1		10/03/10 12:4	6 75-15-0	L3
Carbon tetrachloride	Ν	D ug/L		1.0	1		10/03/10 12:4	6 56-23-5	
Chlorobenzene		D ug/L		1.0	1		10/03/10 12:4	6 108-90-7	L3
Chloroethane		D ug/L		1.0	1		10/03/10 12:4	6 75-00-3	
Chloroform		D ug/L		1.0	1		10/03/10 12:4	6 67-66-3	
Chloromethane		Dug/L		1.0	1		10/03/10 12:4		
2-Chlorotoluene		D ug/L		1.0	1		10/03/10 12:4		
4-Chlorotoluene		Dug/L		1.0	1		10/03/10 12:4		
1,2-Dibromo-3-chloropropane		Dug/L		2.5	1		10/03/10 12:4		
Dibromochloromethane		Dug/L		1.0	1		10/03/10 12:4		
1,2-Dibromoethane (EDB)		Dug/L		1.0	1		10/03/10 12:4		
Dibromomethane		Dug/L		1.0	1		10/03/10 12:4		
1,2-Dichlorobenzene		Dug/L		1.0	1		10/03/10 12:4		
1,3-Dichlorobenzene		Dug/L		1.0	1		10/03/10 12:4		
1,4-Dichlorobenzene		Dug/L		1.0	1		10/03/10 12:4		
Dichlorodifluoromethane		Dug/L		1.0	1		10/03/10 12:4		
1,1-Dichloroethane		Dug/L Dug/L		1.0	1		10/03/10 12:4		
,		Dug/L Dug/L		1.0	1		10/03/10 12:4		
1,2-Dichloroethane									
1,2-Dichloroethene (Total) 1,1-Dichloroethene		Dug/L		1.0	1		10/03/10 12:4		
		Dug/L		1.0	1		10/03/10 12:4		
cis-1,2-Dichloroethene		Dug/L		1.0	1		10/03/10 12:4		
trans-1,2-Dichloroethene		D ug/L		1.0	1		10/03/10 12:4		
1,2-Dichloropropane		Dug/L		1.0	1		10/03/10 12:4		
1,3-Dichloropropane		Dug/L		1.0	1		10/03/10 12:4		
2,2-Dichloropropane		D ug/L		1.0	1		10/03/10 12:4		
1,1-Dichloropropene		Dug/L		1.0	1		10/03/10 12:4		
cis-1,3-Dichloropropene		Dug/L		1.0	1			6 10061-01-5	
trans-1,3-Dichloropropene		D ug/L		1.0	1			6 10061-02-6	L3
Ethylbenzene		D ug/L		1.0	1		10/03/10 12:4		
Hexachloro-1,3-butadiene	N	D ug/L		1.0	1		10/03/10 12:4	6 87-68-3	
2-Hexanone	N	D ug/L		10.0	1		10/03/10 12:4	6 591-78-6	
Isopropylbenzene (Cumene)	N	D ug/L		1.0	1		10/03/10 12:4	6 98-82-8	L3
p-Isopropyltoluene	Ν	D ug/L		1.0	1		10/03/10 12:4	6 99-87-6	

Date: 10/14/2010 11:06 AM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc..

Page 5 of 19

Project: Kansas Waste Water

Pace Project No.: 6086606

Sample: BAPURGE-W-930101	Lab ID: 6086606001	Collected: 09/30/10	0 09:00	Received: 10/	/01/10 09:15	Matrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical Method: EPA	5030B/8260					
Methylene chloride	ND ug/L	1.0	1		10/03/10 12:46	5 75-09-2	
4-Methyl-2-pentanone (MIBK)	ND ug/L	10.0	1		10/03/10 12:46	6 108-10-1	
Methyl-tert-butyl ether	ND ug/L	1.0	1		10/03/10 12:46	6 1634-04-4	
Naphthalene	ND ug/L	10.0	1		10/03/10 12:46	6 91-20-3	
n-Propylbenzene	ND ug/L	1.0	1		10/03/10 12:46	6 103-65-1	
Styrene	ND ug/L	1.0	1		10/03/10 12:46	6 100-42-5	
1,1,1,2-Tetrachloroethane	ND ug/L	1.0	1		10/03/10 12:46	630-20-6	
1,1,2,2-Tetrachloroethane	ND ug/L	1.0	1		10/03/10 12:46	6 79-34-5	
Tetrachloroethene	ND ug/L	1.0	1		10/03/10 12:46	6 127-18-4	
Toluene	ND ug/L	1.0	1		10/03/10 12:46	6 108-88-3	
1,2,3-Trichlorobenzene	ND ug/L	1.0	1		10/03/10 12:46	87-61-6	
1,2,4-Trichlorobenzene	ND ug/L	1.0	1		10/03/10 12:46	6 120-82-1	
1,1,1-Trichloroethane	ND ug/L	1.0	1		10/03/10 12:46	6 71-55-6	
1,1,2-Trichloroethane	ND ug/L	1.0	1		10/03/10 12:46	6 79-00-5	
Trichloroethene	ND ug/L	1.0	1		10/03/10 12:46	6 79-01-6	
Trichlorofluoromethane	ND ug/L	1.0	1		10/03/10 12:46	6 75-69-4	
1,2,3-Trichloropropane	ND ug/L	2.5	1		10/03/10 12:46	6 96-18-4	
1,2,4-Trimethylbenzene	ND ug/L	1.0	1		10/03/10 12:46	6 95-63-6	
1,3,5-Trimethylbenzene	ND ug/L	1.0	1		10/03/10 12:46	6 108-67-8	
Vinyl chloride	ND ug/L	1.0	1		10/03/10 12:46	6 75-01-4	
Xylene (Total)	ND ug/L	3.0	1		10/03/10 12:46	6 1330-20-7	
4-Bromofluorobenzene (S)	93 %	87-113	1		10/03/10 12:46	6 460-00-4	
Dibromofluoromethane (S)	103 %	86-112	1		10/03/10 12:46	6 1868-53-7	
1,2-Dichloroethane-d4 (S)	98 %	82-119	1		10/03/10 12:46	6 17060-07-0	
Toluene-d8 (S)	102 %	90-110	1		10/03/10 12:46	6 2037-26-5	
Preservation pH	7.0	0.10	1		10/03/10 12:46	6	
300.0 IC Anions	Analytical Method: EPA	300.0					
Nitrate as N	2.7 mg/L	0.10	1		10/01/10 18:59	9 14797-55-8	

Date: 10/14/2010 11:06 AM

REPORT OF LABORATORY ANALYSIS

Page 6 of 19

Project: Kansas Waste Water

Pace Project No.: 6086606

Sample: CNPURGE-W-930102	Lab ID: 6086606002	Collected: 09/30/1	10 10:00	Received: 10)/01/10 09:15 N	latrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
504 GCS EDB and DBCP	Analytical Method: EPA 5	04.1 Preparation Met	thod: EF	PA 504.1			
1,2-Dibromoethane (EDB)	ND ug/L	0.029	1	10/07/10 00:00	10/07/10 21:34	106-93-4	
8260 MSV	Analytical Method: EPA 5	030B/8260					
Acetone	474 ug/L	10.0	1		10/03/10 13:01	67-64-1	
Benzene	ND ug/L	1.0	1		10/03/10 13:01	71-43-2	
Bromobenzene	ND ug/L	1.0	1		10/03/10 13:01	108-86-1	
Bromochloromethane	ND ug/L	1.0	1		10/03/10 13:01	74-97-5	
Bromodichloromethane	ND ug/L	1.0	1		10/03/10 13:01	75-27-4	
Bromoform	ND ug/L	1.0	1		10/03/10 13:01	75-25-2	
Bromomethane	ND ug/L	1.0	1		10/03/10 13:01	74-83-9	
2-Butanone (MEK)	ND ug/L	10.0	1		10/03/10 13:01	78-93-3	
n-Butylbenzene	ND ug/L	1.0	1		10/03/10 13:01	104-51-8	
sec-Butylbenzene	ND ug/L	1.0	1		10/03/10 13:01	135-98-8	
tert-Butylbenzene	ND ug/L	1.0	1		10/03/10 13:01		
Carbon disulfide	ND ug/L	5.0	1		10/03/10 13:01		L3
Carbon tetrachloride	ND ug/L	1.0	1		10/03/10 13:01		
Chlorobenzene	ND ug/L	1.0	1		10/03/10 13:01		L3
Chloroethane	ND ug/L	1.0	1		10/03/10 13:01		20
Chloroform	ND ug/L	1.0	1		10/03/10 13:01		
Chloromethane	ND ug/L	1.0	1		10/03/10 13:01		
2-Chlorotoluene	ND ug/L	1.0	1		10/03/10 13:01		
4-Chlorotoluene	ND ug/L	1.0	1		10/03/10 13:01		
	•	2.5	1		10/03/10 13:01		
1,2-Dibromo-3-chloropropane	ND ug/L	1.0	1		10/03/10 13:01		
Dibromochloromethane	ND ug/L						
1,2-Dibromoethane (EDB)	ND ug/L	1.0	1		10/03/10 13:01		
Dibromomethane	ND ug/L	1.0	1		10/03/10 13:01		
1,2-Dichlorobenzene	ND ug/L	1.0	1		10/03/10 13:01		
1,3-Dichlorobenzene	ND ug/L	1.0	1		10/03/10 13:01		
1,4-Dichlorobenzene	ND ug/L	1.0	1		10/03/10 13:01		
Dichlorodifluoromethane	ND ug/L	1.0	1		10/03/10 13:01		
1,1-Dichloroethane	ND ug/L	1.0	1		10/03/10 13:01		
1,2-Dichloroethane	ND ug/L	1.0	1		10/03/10 13:01		
1,2-Dichloroethene (Total)	ND ug/L	1.0	1		10/03/10 13:01		
1,1-Dichloroethene	ND ug/L	1.0	1		10/03/10 13:01	75-35-4	
cis-1,2-Dichloroethene	ND ug/L	1.0	1		10/03/10 13:01		
trans-1,2-Dichloroethene	ND ug/L	1.0	1		10/03/10 13:01	156-60-5	
1,2-Dichloropropane	ND ug/L	1.0	1		10/03/10 13:01	78-87-5	
1,3-Dichloropropane	ND ug/L	1.0	1		10/03/10 13:01	142-28-9	
2,2-Dichloropropane	ND ug/L	1.0	1		10/03/10 13:01	594-20-7	
1,1-Dichloropropene	ND ug/L	1.0	1		10/03/10 13:01	563-58-6	
cis-1,3-Dichloropropene	ND ug/L	1.0	1		10/03/10 13:01	10061-01-5	
trans-1,3-Dichloropropene	ND ug/L	1.0	1		10/03/10 13:01	10061-02-6	L3
Ethylbenzene	ND ug/L	1.0	1		10/03/10 13:01		
Hexachloro-1,3-butadiene	ND ug/L	1.0	1		10/03/10 13:01		
2-Hexanone	ND ug/L	10.0	1		10/03/10 13:01		
Isopropylbenzene (Cumene)	ND ug/L	1.0	1		10/03/10 13:01		L3
		1.0					

Date: 10/14/2010 11:06 AM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc..

Page 7 of 19

Project: Kansas Waste Water

Pace Project No.: 6086606

Sample: CNPURGE-W-930102	Lab ID: 6086606002	Collected: 09/30/10	10:00	Received: 10/01/	10 09:15 I	Matrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical Method: EPA 50	030B/8260					
Methylene chloride	ND ug/L	1.0	1	10/	/03/10 13:01	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND ug/L	10.0	1	10/	/03/10 13:01	108-10-1	
Methyl-tert-butyl ether	ND ug/L	1.0	1	10/	/03/10 13:01	1634-04-4	
Naphthalene	ND ug/L	10.0	1	10/	/03/10 13:01	91-20-3	
n-Propylbenzene	ND ug/L	1.0	1	10/	/03/10 13:01	103-65-1	
Styrene	ND ug/L	1.0	1	10/	/03/10 13:01	100-42-5	
1,1,1,2-Tetrachloroethane	ND ug/L	1.0	1	10/	/03/10 13:01	630-20-6	
1,1,2,2-Tetrachloroethane	ND ug/L	1.0	1	10/	/03/10 13:01	79-34-5	
Tetrachloroethene	ND ug/L	1.0	1	10/	/03/10 13:01	127-18-4	
Toluene	ND ug/L	1.0	1	10/	/03/10 13:01	108-88-3	
1,2,3-Trichlorobenzene	ND ug/L	1.0	1	10/	/03/10 13:01	87-61-6	
1,2,4-Trichlorobenzene	ND ug/L	1.0	1	10/	/03/10 13:01	120-82-1	
1,1,1-Trichloroethane	ND ug/L	1.0	1	10/	/03/10 13:01	71-55-6	
1,1,2-Trichloroethane	ND ug/L	1.0	1	10/	/03/10 13:01	79-00-5	
Trichloroethene	ND ug/L	1.0	1	10/	/03/10 13:01	79-01-6	
Trichlorofluoromethane	ND ug/L	1.0	1	10/	/03/10 13:01	75-69-4	
1,2,3-Trichloropropane	ND ug/L	2.5	1	10/	/03/10 13:01	96-18-4	
1,2,4-Trimethylbenzene	ND ug/L	1.0	1	10/	/03/10 13:01	95-63-6	
1,3,5-Trimethylbenzene	ND ug/L	1.0	1	10/	/03/10 13:01	108-67-8	
Vinyl chloride	ND ug/L	1.0	1	10/	/03/10 13:01	75-01-4	
Xylene (Total)	ND ug/L	3.0	1	10/	/03/10 13:01	1330-20-7	
4-Bromofluorobenzene (S)	96 %	87-113	1	10/	/03/10 13:01	460-00-4	
Dibromofluoromethane (S)	105 %	86-112	1	10/	/03/10 13:01	1868-53-7	
1,2-Dichloroethane-d4 (S)	100 %	82-119	1	10/	/03/10 13:01	17060-07-0	
Toluene-d8 (S)	101 %	90-110	1	10/	/03/10 13:01	2037-26-5	
Preservation pH	7.0	0.10	1	10/	/03/10 13:01		
300.0 IC Anions	Analytical Method: EPA 30	0.0					
Nitrate as N	1.7 mg/L	0.10	1	10/	/01/10 19:15	5 14797-55-8	

Date: 10/14/2010 11:06 AM

REPORT OF LABORATORY ANALYSIS

Page 8 of 19

Project: Kansas Waste Water

Pace Project No.: 6086606

Sample: EVPURGE-W-930103	Lab ID:	6086606003	Collected:	09/30/1	0 11:32	Received: 10	/01/10 09:15	Matrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qua
504 GCS EDB and DBCP	Analytical	Method: EPA 50	04.1 Prepara	ation Met	hod: EP/	A 504.1			
1,2-Dibromoethane (EDB)	NE) ug/L		0.029	1	10/07/10 00:00	10/07/10 21:44	106-93-4	
8260 MSV	Analytical	Method: EPA 50	030B/8260						
Acetone		7 ug/L		10.0	1		10/03/10 13:16	67-64-1	E,P2
Benzene	NE) ug/L		1.0	1		10/03/10 13:16		
Bromobenzene	NE) ug/L		1.0	1		10/03/10 13:16		
Bromochloromethane) ug/L		1.0	1		10/03/10 13:16	74-97-5	
Bromodichloromethane	NE) ug/L		1.0	1		10/03/10 13:16	75-27-4	
Bromoform	NE) ug/L		1.0	1		10/03/10 13:16	75-25-2	
Bromomethane) ug/L		1.0	1		10/03/10 13:16	74-83-9	
2-Butanone (MEK)	NE) ug/L		10.0	1		10/03/10 13:16	78-93-3	
n-Butylbenzene) ug/L		1.0	1		10/03/10 13:16	104-51-8	
sec-Butylbenzene	NE) ug/L		1.0	1		10/03/10 13:16	135-98-8	
tert-Butylbenzene	NE) ug/L		1.0	1		10/03/10 13:16	98-06-6	
Carbon disulfide	NE) ug/L		5.0	1		10/03/10 13:16	75-15-0	L3
Carbon tetrachloride	NE) ug/L		1.0	1		10/03/10 13:16	56-23-5	
Chlorobenzene	NE) ug/L		1.0	1		10/03/10 13:16	108-90-7	L3
Chloroethane	NE) ug/L		1.0	1		10/03/10 13:16	75-00-3	
Chloroform	NE) ug/L		1.0	1		10/03/10 13:16	67-66-3	
Chloromethane	NE) ug/L		1.0	1		10/03/10 13:16	74-87-3	
2-Chlorotoluene	NE) ug/L		1.0	1		10/03/10 13:16	95-49-8	
4-Chlorotoluene	NE) ug/L		1.0	1		10/03/10 13:16	106-43-4	
1,2-Dibromo-3-chloropropane	NE) ug/L		2.5	1		10/03/10 13:16	96-12-8	
Dibromochloromethane	NE) ug/L		1.0	1		10/03/10 13:16	124-48-1	
1,2-Dibromoethane (EDB)	NE) ug/L		1.0	1		10/03/10 13:16	106-93-4	
Dibromomethane	NE) ug/L		1.0	1		10/03/10 13:16	74-95-3	
1,2-Dichlorobenzene	NE) ug/L		1.0	1		10/03/10 13:16	95-50-1	
1,3-Dichlorobenzene	NE) ug/L		1.0	1		10/03/10 13:16	541-73-1	
1,4-Dichlorobenzene	NE) ug/L		1.0	1		10/03/10 13:16	106-46-7	
Dichlorodifluoromethane	NE) ug/L		1.0	1		10/03/10 13:16	75-71-8	
1,1-Dichloroethane	NE) ug/L		1.0	1		10/03/10 13:16	75-34-3	
1,2-Dichloroethane	NE) ug/L		1.0	1		10/03/10 13:16	107-06-2	
1,2-Dichloroethene (Total)	NE) ug/L		1.0	1		10/03/10 13:16	540-59-0	
1,1-Dichloroethene	NE) ug/L		1.0	1		10/03/10 13:16	75-35-4	
cis-1,2-Dichloroethene	NE) ug/L		1.0	1		10/03/10 13:16	156-59-2	
trans-1,2-Dichloroethene	NE) ug/L		1.0	1		10/03/10 13:16	156-60-5	
1,2-Dichloropropane	NE) ug/L		1.0	1		10/03/10 13:16	78-87-5	
1,3-Dichloropropane	NE) ug/L		1.0	1		10/03/10 13:16	142-28-9	
2,2-Dichloropropane	NE) ug/L		1.0	1		10/03/10 13:16	594-20-7	
1,1-Dichloropropene	NE) ug/L		1.0	1		10/03/10 13:16	563-58-6	
cis-1,3-Dichloropropene) ug/L		1.0	1		10/03/10 13:16		
trans-1,3-Dichloropropene) ug/L		1.0	1		10/03/10 13:16		L3
Ethylbenzene) ug/L		1.0	1		10/03/10 13:16		
Hexachloro-1,3-butadiene) ug/L		1.0	1		10/03/10 13:16		
2-Hexanone) ug/L		10.0	1		10/03/10 13:16		
Isopropylbenzene (Cumene)) ug/L		1.0	1		10/03/10 13:16		L3
p-Isopropyltoluene) ug/L		1.0	1		10/03/10 13:16		

Date: 10/14/2010 11:06 AM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc..

Page 9 of 19

Project: Kansas Waste Water

Pace Project No.: 6086606

Sample: EVPURGE-W-930103	Lab ID: 6086606003	Collected: 09/30/10) 11:32	Received: 10/01/	'10 09:15 N	Matrix: Water	
Parameters	ResultsUnits	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical Method: EPA	5030B/8260					
Methylene chloride	ND ug/L	1.0	1	10/	/03/10 13:16	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND ug/L	10.0	1	10/	/03/10 13:16	108-10-1	
Methyl-tert-butyl ether	ND ug/L	1.0	1	10/	/03/10 13:16	1634-04-4	
Naphthalene	ND ug/L	10.0	1	10/	/03/10 13:16	91-20-3	
n-Propylbenzene	ND ug/L	1.0	1	10/	/03/10 13:16	103-65-1	
Styrene	ND ug/L	1.0	1	10/	/03/10 13:16	100-42-5	
1,1,1,2-Tetrachloroethane	ND ug/L	1.0	1	10/	/03/10 13:16	630-20-6	
1,1,2,2-Tetrachloroethane	ND ug/L	1.0	1	10/	/03/10 13:16	79-34-5	
Tetrachloroethene	ND ug/L	1.0	1	10/	/03/10 13:16	127-18-4	
Toluene	ND ug/L	1.0	1	10/	/03/10 13:16	108-88-3	
1,2,3-Trichlorobenzene	ND ug/L	1.0	1	10/	/03/10 13:16	87-61-6	
1,2,4-Trichlorobenzene	ND ug/L	1.0	1	10/	/03/10 13:16	120-82-1	
1,1,1-Trichloroethane	ND ug/L	1.0	1	10/	/03/10 13:16	71-55-6	
1,1,2-Trichloroethane	ND ug/L	1.0	1	10/	/03/10 13:16	79-00-5	
Trichloroethene	ND ug/L	1.0	1	10/	/03/10 13:16	79-01-6	
Trichlorofluoromethane	ND ug/L	1.0	1	10/	/03/10 13:16	75-69-4	
1,2,3-Trichloropropane	ND ug/L	2.5	1	10/	/03/10 13:16	96-18-4	
1,2,4-Trimethylbenzene	ND ug/L	1.0	1	10/	/03/10 13:16	95-63-6	
1,3,5-Trimethylbenzene	ND ug/L	1.0	1	10/	/03/10 13:16	108-67-8	
Vinyl chloride	ND ug/L	1.0	1	10/	/03/10 13:16	75-01-4	
Xylene (Total)	ND ug/L	3.0	1	10/	/03/10 13:16	1330-20-7	
4-Bromofluorobenzene (S)	96 %	87-113	1	10/	/03/10 13:16	460-00-4	
Dibromofluoromethane (S)	98 %	86-112	1	10/	/03/10 13:16	1868-53-7	
1,2-Dichloroethane-d4 (S)	92 %	82-119	1	10/	/03/10 13:16	17060-07-0	
Toluene-d8 (S)	100 %	90-110	1	10/	/03/10 13:16	2037-26-5	
Preservation pH	7.0	0.10	1	10/	/03/10 13:16		
300.0 IC Anions	Analytical Method: EPA	300.0					
Nitrate as N	2.0 mg/L	0.10	1	10/	/01/10 19:32	14797-55-8	

Date: 10/14/2010 11:06 AM

REPORT OF LABORATORY ANALYSIS

Page 10 of 19

Project: Kansas Waste Water

Pace Project No.: 6086606

Sample: MRPURGE-W-930104	Lab ID: 6086606004	Collected: 09/30/1	10 13:42	Received: 10	/01/10 09:15 N	latrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
504 GCS EDB and DBCP	Analytical Method: EPA	504.1 Preparation Met	thod: EF	PA 504.1			
1,2-Dibromoethane (EDB)	ND ug/L	0.029	1	10/07/10 00:00	10/07/10 21:55	106-93-4	
8260 MSV	Analytical Method: EPA	5030B/8260					
Acetone	351 ug/L	10.0	1		10/03/10 13:31	67-64-1	
Benzene	ND ug/L	1.0	1		10/03/10 13:31	71-43-2	
Bromobenzene	ND ug/L	1.0	1		10/03/10 13:31	108-86-1	
Bromochloromethane	ND ug/L	1.0	1		10/03/10 13:31	74-97-5	
Bromodichloromethane	ND ug/L	1.0	1		10/03/10 13:31	75-27-4	
Bromoform	ND ug/L	1.0	1		10/03/10 13:31	75-25-2	
Bromomethane	ND ug/L	1.0	1		10/03/10 13:31	74-83-9	
2-Butanone (MEK)	ND ug/L	10.0	1		10/03/10 13:31	78-93-3	
n-Butylbenzene	ND ug/L	1.0	1		10/03/10 13:31	104-51-8	
sec-Butylbenzene	ND ug/L	1.0	1		10/03/10 13:31	135-98-8	
tert-Butylbenzene	ND ug/L	1.0	1		10/03/10 13:31		
Carbon disulfide	ND ug/L	5.0	1		10/03/10 13:31		L3
Carbon tetrachloride	ND ug/L	1.0	1		10/03/10 13:31		
Chlorobenzene	ND ug/L	1.0	1		10/03/10 13:31		L3
Chloroethane	ND ug/L	1.0	1		10/03/10 13:31		20
Chloroform	ND ug/L	1.0	1		10/03/10 13:31		
Chloromethane	ND ug/L	1.0	1		10/03/10 13:31		
2-Chlorotoluene	ND ug/L	1.0	1		10/03/10 13:31		
4-Chlorotoluene	ND ug/L	1.0	1		10/03/10 13:31		
	•	2.5	1		10/03/10 13:31		
1,2-Dibromo-3-chloropropane	ND ug/L	1.0	1		10/03/10 13:31		
Dibromochloromethane	ND ug/L						
1,2-Dibromoethane (EDB)	ND ug/L	1.0	1		10/03/10 13:31		
Dibromomethane	ND ug/L	1.0	1		10/03/10 13:31		
1,2-Dichlorobenzene	ND ug/L	1.0	1		10/03/10 13:31		
1,3-Dichlorobenzene	ND ug/L	1.0	1		10/03/10 13:31		
1,4-Dichlorobenzene	ND ug/L	1.0	1		10/03/10 13:31		
Dichlorodifluoromethane	ND ug/L	1.0	1		10/03/10 13:31		
1,1-Dichloroethane	ND ug/L	1.0	1		10/03/10 13:31		
1,2-Dichloroethane	ND ug/L	1.0	1		10/03/10 13:31		
1,2-Dichloroethene (Total)	ND ug/L	1.0	1		10/03/10 13:31		
1,1-Dichloroethene	ND ug/L	1.0	1		10/03/10 13:31	75-35-4	
cis-1,2-Dichloroethene	ND ug/L	1.0	1		10/03/10 13:31	156-59-2	
trans-1,2-Dichloroethene	ND ug/L	1.0	1		10/03/10 13:31	156-60-5	
1,2-Dichloropropane	ND ug/L	1.0	1		10/03/10 13:31	78-87-5	
1,3-Dichloropropane	ND ug/L	1.0	1		10/03/10 13:31	142-28-9	
2,2-Dichloropropane	ND ug/L	1.0	1		10/03/10 13:31	594-20-7	
1,1-Dichloropropene	ND ug/L	1.0	1		10/03/10 13:31	563-58-6	
cis-1,3-Dichloropropene	ND ug/L	1.0	1		10/03/10 13:31	10061-01-5	
trans-1,3-Dichloropropene	ND ug/L	1.0	1		10/03/10 13:31		L3
Ethylbenzene	ND ug/L	1.0	1		10/03/10 13:31		
Hexachloro-1,3-butadiene	ND ug/L	1.0	1		10/03/10 13:31		
2-Hexanone	ND ug/L	10.0	1		10/03/10 13:31		
Isopropylbenzene (Cumene)	ND ug/L	1.0	1		10/03/10 13:31		L3
p-Isopropyltoluene	ND ug/L	1.0	1			99-87-6	

Date: 10/14/2010 11:06 AM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc..

Page 11 of 19

Project: Kansas Waste Water

Pace Project No.: 6086606

Sample: MRPURGE-W-930104	Lab ID: 6086606004	Collected: 09/30/10	13:42	Received: 10/0	01/10 09:15 I	Matrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical Method: EPA 50	030B/8260					
Methylene chloride	ND ug/L	1.0	1		10/03/10 13:31	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND ug/L	10.0	1		10/03/10 13:31	108-10-1	
Methyl-tert-butyl ether	ND ug/L	1.0	1		10/03/10 13:31	1634-04-4	
Naphthalene	ND ug/L	10.0	1		10/03/10 13:31	91-20-3	
n-Propylbenzene	ND ug/L	1.0	1		10/03/10 13:31	103-65-1	
Styrene	ND ug/L	1.0	1		10/03/10 13:31	100-42-5	
1,1,1,2-Tetrachloroethane	ND ug/L	1.0	1		10/03/10 13:31	630-20-6	
1,1,2,2-Tetrachloroethane	ND ug/L	1.0	1		10/03/10 13:31	79-34-5	
Tetrachloroethene	ND ug/L	1.0	1		10/03/10 13:31	127-18-4	
Toluene	ND ug/L	1.0	1		10/03/10 13:31	108-88-3	
1,2,3-Trichlorobenzene	ND ug/L	1.0	1		10/03/10 13:31	87-61-6	
1,2,4-Trichlorobenzene	ND ug/L	1.0	1		10/03/10 13:31	120-82-1	
1,1,1-Trichloroethane	ND ug/L	1.0	1		10/03/10 13:31	71-55-6	
1,1,2-Trichloroethane	ND ug/L	1.0	1		10/03/10 13:31	79-00-5	
Trichloroethene	ND ug/L	1.0	1		10/03/10 13:31	79-01-6	
Trichlorofluoromethane	ND ug/L	1.0	1		10/03/10 13:31	75-69-4	
1,2,3-Trichloropropane	ND ug/L	2.5	1		10/03/10 13:31	96-18-4	
1,2,4-Trimethylbenzene	ND ug/L	1.0	1		10/03/10 13:31	95-63-6	
1,3,5-Trimethylbenzene	ND ug/L	1.0	1		10/03/10 13:31	108-67-8	
Vinyl chloride	ND ug/L	1.0	1		10/03/10 13:31	75-01-4	
Xylene (Total)	ND ug/L	3.0	1		10/03/10 13:31	1330-20-7	
4-Bromofluorobenzene (S)	95 %	87-113	1		10/03/10 13:31	460-00-4	
Dibromofluoromethane (S)	105 %	86-112	1		10/03/10 13:31	1868-53-7	
1,2-Dichloroethane-d4 (S)	98 %	82-119	1		10/03/10 13:31	17060-07-0	
Toluene-d8 (S)	103 %	90-110	1		10/03/10 13:31	2037-26-5	
Preservation pH	7.0	0.10	1		10/03/10 13:31		
300.0 IC Anions	Analytical Method: EPA 30	0.0					
Nitrate as N	0.99 mg/L	0.10	1		10/01/10 19:48	14797-55-8	

Date: 10/14/2010 11:06 AM

REPORT OF LABORATORY ANALYSIS

Page 12 of 19

Project:	Kansas Waste Wa	ater									
Pace Project No .:	6086606										
QC Batch:	OEXT/25923		Analysi	s Method:	E	PA 504.1					
QC Batch Method:	EPA 504.1		Analysis Description:		GCS 504 EDB DBCP						
Associated Lab Sar	nples: 60866060	001, 6086606002, 60	86606003,	60866060	04						
METHOD BLANK:	713551		M	latrix: Wate	ər						
Associated Lab Sar	nples: 60866060	001, 6086606002, 60	86606003,	60866060	04						
			Blank	Re	porting						
Parar	neter	Units	Result		Limit	Ana	lyzed	Qualif	iers		
1,2-Dibromoethane	(EDB)	ug/L		ND	0.030	10/07/	10 20:50				
LABORATORY CO	NTROL SAMPLE &	LCSD: 713552		7	13553						
			Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parar	neter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
1,2-Dibromoethane	(EDB)	ug/L	.25	0.29	0.28	3 114	112	70-130		2 20	

Date: 10/14/2010 11:06 AM

REPORT OF LABORATORY ANALYSIS

Page 13 of 19

Project: Kansas Waste Water

Pace Project No.: 6086606

QC Batch:	MSV/32160	Analysis Method:	EPA 5030B/8260
QC Batch Method:	EPA 5030B/8260	Analysis Description:	8260 MSV Water 7 day
Associated Lab Sam	nples: 6086606001, 60866060	02, 6086606003, 6086606004	
	711201	Matrix: Water	

Matrix: Water

METHOD BLANK:	711291	

Associated Lab Samples: 6086606001, 6086606002, 6086606003, 6086606004

chloroethane ug/L ND 1.0 10/03/10 11:44 étrachloroethane ug/L ND 1.0 10/03/10 11:44 loroethane ug/L ND 1.0 10/03/10 11:44 loroethane ug/L ND 1.0 10/03/10 11:44 loroethane ug/L ND 1.0 10/03/10 11:44 choroethane ug/L ND 1.0 10/03/10 11:44 choroptopane ug/L ND 1.0 10/03/10 11:44 choroptopane ug/L ND 1.0 10/03/10 11:44 omo-3-chloropropane ug/L ND 1.0 10/03/10 11:44 loroethane (EDB) ug/L ND 1.0 10/03/10 11:44 loroethane ug/L ND 1.0 10/03/10 11:44 loroeth			Blank	Reporting		
chloroethane ug/L ND 1.0 1003/10 11:44 étrachloroethane ug/L ND 1.0 1003/10 11:44 loroethane ug/L ND 1.0 1003/10 11:44 loroethane ug/L ND 1.0 1003/10 11:44 loroptopene ug/L ND 1.0 1003/10 11:44 chlorobenzene ug/L ND 1.0 1003/10 11:44 chlorobenzene ug/L ND 1.0 1003/10 11:44 obioroptopane ug/L ND 1.0 1003/10 11:44 omo-3-chloroptopane ug/L ND 1.0 1003/10 11:44 lorobetnane (EDB) ug/L ND 1.0 1003/10 11:44 lorobetnane (EDB) ug/L ND 1.0 1003/10 11:44 loroethane (Total) ug/L ND 1.0 1003/10 11:44 loroethane (Total) ug/L ND	Parameter	Units	Result	Limit	Analyzed	Qualifiers
chloroethane ug/L ND 1.0 1003/10 11:44 étrachloroethane ug/L ND 1.0 1003/10 11:44 loroethane ug/L ND 1.0 1003/10 11:44 loroethane ug/L ND 1.0 1003/10 11:44 loroptopene ug/L ND 1.0 1003/10 11:44 chlorobenzene ug/L ND 1.0 1003/10 11:44 chlorobenzene ug/L ND 1.0 1003/10 11:44 chlorobenzene ug/L ND 1.0 1003/10 11:44 omo-3-chloropropane ug/L ND 1.0 1003/10 11:44 loroethane (EDB) ug/L ND 1.0 1003/10 11:44 loroethane ug/L ND 1.0 1003/10 11:44 loroethane ug/L ND 1.0 1003/10 11:44 loroethane ug/L ND 1.0 100	1,1,1,2-Tetrachloroethane	ug/L		1.0	10/03/10 11:44	
etrachloroethane ug/L ND 1.0 10/03/10 11:44 chloroethane ug/L ND 1.0 10/03/10 11:44 loroethane ug/L ND 1.0 10/03/10 11:44 loroethane ug/L ND 1.0 10/03/10 11:44 loroethane ug/L ND 1.0 10/03/10 11:44 chlorobenzene ug/L ND 1.0 10/03/10 11:44 chlorobenzene ug/L ND 1.0 10/03/10 11:44 chlorobenzene ug/L ND 1.0 10/03/10 11:44 omo-3-chloropropane ug/L ND 1.0 10/03/10 11:44 omo-3-chloropropane ug/L ND 1.0 10/03/10 11:44 loroethane ug/L ND 1.0 10/03/10 11:44 loroethane ug/L ND 1.0 10/03/10 11:44 loroethane ug/L ND 1.0 10/03/10 11:44 loropenae ug/L ND 1.0 10/03/10 11:44 l	1,1,1-Trichloroethane	0	ND	1.0	10/03/10 11:44	
bioroethane ug/L ND 1.0 10/03/10 11:44 loroethane ug/L ND 1.0 10/03/10 11:44 loropropene ug/L ND 1.0 10/03/10 11:44 loropropene ug/L ND 1.0 10/03/10 11:44 chloropropane ug/L ND 1.0 10/03/10 11:44 chloropropane ug/L ND 1.0 10/03/10 11:44 mothane (EDB) ug/L ND 1.0 10/03/10 11:44 loroethane (Total) ug/L ND 1.0 10/03/10 11:44 loroepropane ug/L ND 1.0 10/03/10 11:44 loroepropane ug/L ND 1.0 10/03/10 11:44 loropenzene ug/L ND 1.0 10/03/10 11:44	,1,2,2-Tetrachloroethane	•	ND	1.0	10/03/10 11:44	
biocethane ug/L ND 1.0 1/0/3/10 11:44 loroethene ug/L ND 1.0 1/0/3/10 11:44 loropopene ug/L ND 1.0 1/0/3/10 11:44 chlorobenzene ug/L ND 1.0 1/0/3/10 11:44 chlorobenzene ug/L ND 1.0 1/0/3/10 11:44 methylbenzene ug/L ND 1.0 1/0/3/10 11:44 mo-3-chloropropane ug/L ND 1.0 1/0/3/10 11:44 mo-3-chloropropane ug/L ND 1.0 1/0/3/10 11:44 loroethane (EDB) ug/L ND 1.0 1/0/3/10 11:44 loroethane ug/L ND 1.0 1/0/3/10 11:44 loroepropane ug/L ND 1.0 1/0/3/10 11:44 loroepropane ug/L ND 1.0 1/0/3/10 11:44 loropopane ug/L ND 1.0 1/0/3/10 11:44 loropropane ug/L ND 1.0 1/0/3/10 11:44 <td< td=""><td>,1,2-Trichloroethane</td><td>•</td><td></td><td></td><td></td><td></td></td<>	,1,2-Trichloroethane	•				
biocethene ug/L ND 1.0 10/03/10 11:44 bioropropene ug/L ND 1.0 10/03/10 11:44 chlorobenzene ug/L ND 2.5 10/03/10 11:44 chlorobenzene ug/L ND 2.5 10/03/10 11:44 methylbenzene ug/L ND 2.5 10/03/10 11:44 morb-3-chloropropane ug/L ND 1.0 10/03/10 11:44 biorobenzene ug/L ND 1.0	,1-Dichloroethane	-				
biopropene ug/L ND 1.0 10/03/10 11:44 chlorobenzene ug/L ND 1.0 10/03/10 11:44 chlorobenzene ug/L ND 1.0 10/03/10 11:44 methylbenzene ug/L ND 1.0 10/03/10 11:44 pmo-3-chloropropane ug/L ND 1.0 10/03/10 11:44 pmo-stane (EDB) ug/L ND 1.0 10/03/10 11:44 lorobenzene ug/L ND 1.0 10/03/10 11:44 loropropane ug/L ND 1.0 10/03/10 11:44 loropropane ug/L ND 1.0 10/03/10 11:44 loropropane ug/L ND 1.0	,1-Dichloroethene					
bhorobenzene ug/L ND 1.0 10/03/10 11:44 chloropopane ug/L ND 2.5 10/03/10 11:44 chlorobenzene ug/L ND 1.0 10/03/10 11:44 chlorobenzene ug/L ND 1.0 10/03/10 11:44 omo-schloropropane ug/L ND 1.0 10/03/10 11:44 omoethane (EDB) ug/L ND 1.0 10/03/10 11:44 loroethane ug/L ND 1.0 10/03/10 11:44 loroethane ug/L ND 1.0 10/03/10 11:44 loroethane ug/L ND 1.0 10/03/10 11:44 loropane ug/L ND 1.0 10/03/10 11:44 loropopane ug/L ND 1.0 10/03/10 11:44 loropopane ug/L ND 1.0 10/03/10 11:44 loropopane ug/L ND 1.0 10/	,1-Dichloropropene	•		-		
bioropropane ug/L ND 2.5 10/03/10 11:44 chlorobenzene ug/L ND 1.0 10/03/10 11:44 methylbenzene ug/L ND 1.0 10/03/10 11:44 omo-3-chloroppane ug/L ND 1.0 10/03/10 11:44 omoethane (EDB) ug/L ND 1.0 10/03/10 11:44 lorobenzene ug/L ND 1.0 10/03/10 11:44 lorobenzene ug/L ND 1.0 10/03/10 11:44 loroptopane ug/L ND 1.0	,2,3-Trichlorobenzene	-		-		
biological ND 1.0 10/03/10 11:44 methylbenzene ug/L ND 1.0 10/03/10 11:44 pmo-3-chloropropane ug/L ND 2.5 10/03/10 11:44 pmo-3-chloropropane ug/L ND 1.0 10/03/10 11:44 lorobenzene ug/L ND 1.0 10/03/10 11:44 lorobenzene ug/L ND 1.0 10/03/10 11:44 loropropane ug/L ND 1.0 10/03/10	2,3-Trichloropropane	•				
methylbenzene ug/L ND 1.0 1/0/03/10 11:44 pmo-3-chloropropane ug/L ND 2.5 1/0/03/10 11:44 pmoethane (EDB) ug/L ND 1.0 1/0/03/10 11:44 lorobenzene ug/L ND 1.0 1/0/03/10 11:44 lorobentene (Total) ug/L ND 1.0 1/0/03/10 11:44 lorobenzene ug/L ND 1.0 1/0/03/10 11:44 loropropane ug/L ND <t< td=""><td>,2,4-Trichlorobenzene</td><td>•</td><td></td><td></td><td></td><td></td></t<>	,2,4-Trichlorobenzene	•				
bmo-3-chloropropane ug/L ND 2.5 10/03/10 11:44 bmoethane (EDB) ug/L ND 1.0 10/03/10 11:44 lorobenzene ug/L ND 1.0 10/03/10 11:44 loroethane ug/L ND 1.0 10/03/10 11:44 loroethene (Total) ug/L ND 1.0 10/03/10 11:44 loropropane ug/L ND 1.0	,2,4-Trimethylbenzene	•				
bmoethane (EDB) ug/L ND 1.0 10/03/10 11:44 lorobenzene ug/L ND 1.0 10/03/10 11:44 lorobethane ug/L ND 1.0 10/03/10 11:44 loroethane (Total) ug/L ND 1.0 10/03/10 11:44 loropropane ug/L ND 1.0 10/03/10 11:44 loroptopane ug/L ND 1.0 10/03/10 11:44 one (MEK) ug/L ND 1.0 10/03/10 11:44 toluene ug/L ND 1.0 10/03/10 11:44 cluene ug/L ND 1.0 10/03/10 <td>· · ·</td> <td>•</td> <td></td> <td></td> <td></td> <td></td>	· · ·	•				
biorobenzene ug/L ND 1.0 10/03/10 11:44 loroothane ug/L ND 1.0 10/03/10 11:44 loroothane ug/L ND 1.0 10/03/10 11:44 loroothene (Total) ug/L ND 1.0 10/03/10 11:44 methylbenzene ug/L ND 1.0 10/03/10 11:44 loroothenzene ug/L ND 1.0 10/03/10 11:44 loropropane ug/L ND 1.0 10/03/10 11:44 one (MEK) ug/L ND 1.0 10/03/10 11:44 one ug/L ND 1.0 10/03/10 11:44 oluene ug/L ND 1.0 10/03/10 11:44 oluene ug/L ND 1.0 10/03/10 11:44 oluene ug/L <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td>		-				
boroethane ug/L ND 1.0 10/03/10 11:44 loroethene (Total) ug/L ND 1.0 10/03/10 11:44 loropropane ug/L ND 1.0 10/03/10 11:44 lorobenzene ug/L ND 1.0 10/03/10 11:44 lorobenzene ug/L ND 1.0 10/03/10 11:44 loropropane ug/L ND 1.0 10/03/10 11:44 loroe ug/L ND 1.0 10/03/10 11:44 one ug/L ND 1.0 10/03/10 11:44 toluene ug/L ND 1.0 10/03/10 11:44 cone ug/L ND 1.0 10/03/10 11:44 enzene ug/L	,2-Dichlorobenzene			-		
boroethene (Total) ug/L ND 1.0 10/03/10 11:44 loropropane ug/L ND 1.0 10/03/10 11:44 loropropane ug/L ND 1.0 10/03/10 11:44 lorobenzene ug/L ND 1.0 10/03/10 11:44 loropropane ug/L ND 1.0 10/03/10 11:44 loroptopane ug/L ND 1.0 10/03/10 11:44 lono ug/L ND 1.0 10/03/10 <td>,2-Dichloroethane</td> <td>•</td> <td></td> <td></td> <td></td> <td></td>	,2-Dichloroethane	•				
loropropane ug/L ND 1.0 10/03/10 11:44 methylbenzene ug/L ND 1.0 10/03/10 11:44 lorobenzene ug/L ND 1.0 10/03/10 11:44 loropropane ug/L ND 1.0 10/03/10 11:44 one (MEK) ug/L ND 1.0 10/03/10 11:44 toluene ug/L ND 1.0 10/03/10 11:44 cone ug/L ND 1.0 10/03/10 11:44 </td <td>,</td> <td></td> <td></td> <td>-</td> <td></td> <td></td>	,			-		
methylenzene ug/L ND 1.0 10/03/10 11:44 lorobenzene ug/L ND 1.0 10/03/10 11:44 loropropane ug/L ND 1.0 10/03/10 11:44 one ug/L ND 1.0 10/03/10 11:44 toluene ug/L ND 1.0 10/03/10 11:44 cone ug/L ND 1.0						
borobenzene ug/L ND 1.0 10/03/10 11:44 loropropane ug/L ND 1.0 10/03/10 11:44 one ug/L ND 1.0 10/03/10 11:44 one ug/L ND 1.0 10/03/10 11:44 one ug/L ND 1.0 10/03/10 11:44 cone ug/L ND 1.0 10/03/10 11:44		•				
bropropane ug/L ND 1.0 10/03/10 11:44 loropropane ug/L ND 1.0 10/03/10 11:44 loropropane ug/L ND 1.0 10/03/10 11:44 loropropane ug/L ND 1.0 10/03/10 11:44 one (MEK) ug/L ND 1.0 10/03/10 11:44 toluene ug/L ND 1.0 10/03/10 11:44 one ug/L ND 1.0 10/03/10 11:44 coluene ug/L ND 1.0 10/03/10 11:44 coluene ug/L ND 1.0 10/03/10 11:44 coluene ug/L ND 1.0 10/03/10 11:44 uor ng/L ND 1.0 10/03/10 11:44 coluenthane ug/L ND 1.0 10/03/10 11:44 chloromethane ug/L ND 1.0 10/03/10 11:44 <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td>		•				
ND 1.0 10/03/10 11:44 loropropane ug/L ND 1.0 10/03/10 11:44 loropropane ug/L ND 1.0 10/03/10 11:44 one (MEK) ug/L ND 1.0 10/03/10 11:44 toluene ug/L ND 1.0 10/03/10 11:44 one ug/L ND 1.0 10/03/10 11:44 one ug/L ND 1.0 10/03/10 11:44 one ug/L ND 1.0 10/03/10 11:44 coluene ug/L ND 1.0 10/03/10 11:44 coluene ug/L ND 1.0 10/03/10 11:44 ug/L ND 1.0 10/03/10 11:44 ug/L ND 1.0 10/03/10 11:44 oncomethane ug/L ND 1.0 10/03/10 11:44 chloromethane ug/L ND 1.0		•				
bropropane ug/L ND 1.0 10/03/10 11:44 one (MEK) ug/L ND 10.0 10/03/10 11:44 toluene ug/L ND 1.0 10/03/10 11:44 one ug/L ND 1.0 10/03/10 11:44 one ug/L ND 1.0 10/03/10 11:44 toluene ug/L ND 10.0 10/03/10 11:44 -2-pentanone (MIBK) ug/L ND 10.0 10/03/10 11:44 enzene ug/L ND 1.0 10/03/10 11:44 enzene ug/L ND 1.0 10/03/10 11:44 enzene ug/L ND 1.0 10/03/10 11:44 rm ug/L ND 1.0 10/03/10 11:44 rm ug/L ND 1.0 10/03/10 11:44 rm ug/L ND 1.0 10/03/10 11:44 e		-				
ne (MEK) ug/L ND 10.0 10/03/10 11:44 toluene ug/L ND 1.0 10/03/10 11:44 one ug/L ND 1.0 10/03/10 11:44 toluene ug/L ND 1.0 10/03/10 11:44 -2-pentanone (MIBK) ug/L ND 10.0 10/03/10 11:44 -2-pentanone (MIBK) ug/L ND 1.0 10/03/10 11:44 -2-pentanone ug/L ND 1.0 10/03/10 11:44 -2-pentanone ug/L ND 1.0 10/03/10 11:44 rm ug/L ND 1.0						
tolueneug/LND1.01/0/03/10 11:44oneug/LND10.010/03/10 11:44tolueneug/LND10.010/03/10 11:44-2-pentanone (MIBK)ug/LND10.010/03/10 11:44ug/LND1.010/03/10 11:4410.0enzeneug/LND1.010/03/10 11:44enzeneug/LND1.010/03/10 11:44chloromethaneug/LND1.010/03/10 11:44rmug/LND1.010/03/10 11:44rmug/LND1.010/03/10 11:44ethaneug/LND1.010/03/10 11:44ethaneug/LND1.010/03/10 11:44ethaneug/LND1.010/03/10 11:44ethaneug/LND1.010/03/10 11:44ethaneug/LND1.010/03/10 11:44ethaneug/LND1.010/03/10 11:44ethaneug/LND1.010/03/10 11:44ethaneug/LND1.010/03/10 11:44rmug/LND1.010/03/10 11:44rmug/LND1.010/03/10 11:44rmug/LND1.010/03/10 11:44rmug/LND1.010/03/10 11:44rhoneug/LND1.010/03/10 11:44rhoneug/LND1.010/03/10 11:44rhoneug/LND1.0 </td <td></td> <td>•</td> <td></td> <td>-</td> <td></td> <td></td>		•		-		
one ug/L ND 10.0 10/03/10 11:44 toluene ug/L ND 1.0 10/03/10 11:44 -2-pentanone (MIBK) ug/L ND 10.0 10/03/10 11:44 -2-pentanone (MIBK) ug/L ND 10.0 10/03/10 11:44 -2-pentanone (MIBK) ug/L ND 1.0 10/03/10 11:44 -2-pentanone (MIBK) ug/L ND 1.0 10/03/10 11:44 -2-pentanone (MIBK) ug/L ND 1.0 10/03/10 11:44 -2-pentanone ug/L ND	()	Ū				
tolueneug/LND1.010/03/1011:44-2-pentanone (MIBK)ug/LND10.010/03/1011:44ug/LND1.010/03/1011:44enzeneug/LND1.010/03/1011:44enzeneug/LND1.010/03/1011:44chloromethaneug/LND1.010/03/1011:44chloromethaneug/LND1.010/03/1011:44rmug/LND1.010/03/1011:44ethaneug/LND1.010/03/1011:44ethaneug/LND1.010/03/1011:44ethaneug/LND1.010/03/1011:44ethaneug/LND1.010/03/1011:44ethaneug/LND1.010/03/1011:44ethaneug/LND1.010/03/1011:44ethaneug/LND1.010/03/1011:44rmug/LND1.010/03/1011:44rmug/LND1.010/03/1011:44rmug/LND1.010/03/1011:44rmug/LND1.010/03/1011:44rhoneug/LND1.010/03/1011:44rhoneug/LND1.010/03/1011:44rhoneug/LND1.010/03/1011:44rhoneug/LND <td< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td></td<>		-				
-2-pentanone (MIBK)ug/LND10.010/03/10 11:44ug/LND10.010/03/10 11:44enzeneug/LND1.010/03/10 11:44aloromethaneug/LND1.010/03/10 11:44chloromethaneug/LND1.010/03/10 11:44rmug/LND1.010/03/10 11:44ethaneug/LND1.010/03/10 11:44ethaneug/LND1.010/03/10 11:44ethaneug/LND1.010/03/10 11:44ethaneug/LND1.010/03/10 11:44ethaneug/LND1.010/03/10 11:44ethaneug/LND1.010/03/10 11:44ethaneug/LND1.010/03/10 11:44ethaneug/LND1.010/03/10 11:44ethaneug/LND1.010/03/10 11:44haneug/LND1.010/03/10 11:44rmug/LND1.010/03/10 11:44rmug/LND1.010/03/10 11:44rmug/LND1.010/03/10 11:44rhaneug/LND1.010/03/10 11:44ethaneug/LND1.010/03/10 11:44bichloroetheneug/LND1.010/03/10 11:44bichloropropeneug/LND1.010/03/10 11:44	Hexanone	•				
ug/LND10.010/03/1011:44ug/LND1.010/03/1011:44enzeneug/LND1.010/03/1011:44enzeneug/LND1.010/03/1011:44endoromethaneug/LND1.010/03/1011:44rmug/LND1.010/03/1011:44ethaneug/LND1.010/03/1011:44disulfideug/LND5.010/03/1011:44etrachlorideug/LND1.010/03/1011:44enzeneug/LND1.010/03/1011:44mug/LND1.010/03/1011:44enzeneug/LND1.010/03/1011:44enzeneug/LND1.010/03/1011:44haneug/LND1.010/03/1011:44ethaneug/LND1.010/03/1011:44ethaneug/LND1.010/03/1011:44ethaneug/LND1.010/03/1011:44ethaneug/LND1.010/03/1011:44ethaneug/LND1.010/03/1011:44ethaneug/LND1.010/03/1011:44ethaneug/LND1.010/03/1011:44ethaneug/LND1.010/03/1011:44ethaneug/LND1.01	Chlorotoluene	-				
aug/LND1.01/0/3/1011:44anzeneug/LND1.01/0/3/1011:44aloromethaneug/LND1.01/0/3/1011:44chloromethaneug/LND1.01/0/3/1011:44rmug/LND1.01/0/3/1011:44ethaneug/LND1.01/0/3/1011:44disulfideug/LND1.01/0/3/1011:44etrachlorideug/LND1.01/0/3/1011:44enzeneug/LND1.01/0/3/1011:44haneug/LND1.01/0/3/1011:44rmug/LND1.01/0/3/1011:44ethaneug/LND1.01/0/3/1011:44bichloroetheneug/LND1.01/0/3/1011:44bichloropropeneug/LND1.01/0/3/1011:44	•••	•				
enzeneug/LND1.01/0/03/10 11:44aloromethaneug/LND1.01/0/03/10 11:44chloromethaneug/LND1.01/0/03/10 11:44rmug/LND1.01/0/03/10 11:44ethaneug/LND5.01/0/03/10 11:44etrachlorideug/LND1.01/0/03/10 11:44etrachlorideug/LND1.01/0/03/10 11:44enzeneug/LND1.01/0/03/10 11:44haneug/LND1.01/0/03/10 11:44rmug/LND1.01/0/03/10 11:44chaneug/LND1.01/0/03/10 11:44rmug/LND1.01/0/03/10 11:44ethaneug/LND1.01/0/03/10 11:44etha	cetone	-				
ND1.01.0/03/1011:44chloromethaneug/LND1.010/03/1011:44rmug/LND1.010/03/1011:44ethaneug/LND1.010/03/1011:44disulfideug/LND5.010/03/1011:44etrachlorideug/LND1.010/03/1011:44enzeneug/LND1.010/03/1011:44haneug/LND1.010/03/1011:44rmug/LND1.010/03/1011:44ethaneug/LND1.010/03/1011:44rmug/LND1.010/03/1011:44ethaneug/LND1.010/03/1011:44ethaneug/LND1.010/03/1011:44ethaneug/LND1.010/03/1011:44ethaneug/LND1.010/03/1011:44ethaneug/LND1.010/03/1011:44ethaneug/LND1.010/03/1011:44ethaneug/LND1.010/03/1011:44ethaneug/LND1.010/03/1011:44ethaneug/LND1.010/03/1011:44ethaneug/LND1.010/03/1011:44ethaneug/LND1.010/03/1011:44ethaneug/LND1.010	enzene					
chloromethaneug/LND1.01/0/03/1011:44rmug/LND1.01/0/03/1011:44ethaneug/LND1.01/0/03/1011:44disulfideug/LND5.01/0/03/1011:44etrachlorideug/LND1.01/0/03/1011:44enzeneug/LND1.01/0/03/1011:44haneug/LND1.01/0/03/1011:44rmug/LND1.01/0/03/1011:44ethaneug/LND1.01/0/03/1011:44ethaneug/LND1.01/0/03/1011:44ethaneug/LND1.01/0/03/1011:44ethaneug/LND1.01/0/03/1011:44ethaneug/LND1.01/0/03/1011:44ethaneug/LND1.01/0/03/1011:44ethaneug/LND1.01/0/03/1011:44ethaneug/LND1.01/0/03/1011:44ethaneug/LND1.01/0/03/1011:44ethaneug/LND1.01/0/03/1011:44ethaneug/LND1.01/0/03/1011:44ethaneug/LND1.01/0/03/1011:44ethaneug/LND1.01/0/03/1011:44ethaneug/LND1.01/0/03/1011:44	romobenzene	•		-		
rm ug/L ND 1.0 10/03/10 11:44 ethane ug/L ND 1.0 10/03/10 11:44 disulfide ug/L ND 5.0 10/03/10 11:44 etrachloride ug/L ND 1.0 10/03/10 11:44 enzene ug/L ND 1.0 10/03/10 11:44 hane ug/L ND 1.0 10/03/10 11:44 rm ug/L ND 1.0 10/03/10 11:44 ethane ug/L ND 1.0 10/03/10 11:44 bichloroethene ug/L ND 1.0 10/03/10 11:44 bichloropropene ug/L ND 1.0 10/03/10 11:44	romochloromethane	0				
ethaneug/LND1.010/03/1011:44disulfideug/LND5.010/03/1011:44etrachlorideug/LND1.010/03/1011:44enzeneug/LND1.010/03/1011:44haneug/LND1.010/03/1011:44rmug/LND1.010/03/1011:44ethaneug/LND1.010/03/1011:44ethaneug/LND1.010/03/1011:44ethaneug/LND1.010/03/1011:44ethaneug/LND1.010/03/1011:44ethaneug/LND1.010/03/1011:44ethaneug/LND1.010/03/1011:44ethaneug/LND1.010/03/1011:44ethaneug/LND1.010/03/1011:44ethaneug/LND1.010/03/1011:44ethaneug/LND1.010/03/1011:44	romodichloromethane	•				
disulfideug/LND5.010/03/1011:44etrachlorideug/LND1.010/03/1011:44enzeneug/LND1.010/03/1011:44haneug/LND1.010/03/1011:44rmug/LND1.010/03/1011:44ethaneug/LND1.010/03/1011:44ethaneug/LND1.010/03/1011:44Dichloroetheneug/LND1.010/03/1011:44Dichloropropeneug/LND1.010/03/1011:44	romoform	0				
etrachloride ug/L ND 1.0 10/03/10 11:44 enzene ug/L ND 1.0 10/03/10 11:44 hane ug/L ND 1.0 10/03/10 11:44 rm ug/L ND 1.0 10/03/10 11:44 ethane ug/L ND 1.0 10/03/10 11:44 obichloroethene ug/L ND 1.0 10/03/10 11:44 obichloropropene ug/L ND 1.0 10/03/10 11:44	romomethane	•				
vg/L ND 1.0 10/03/10 11:44 hane ug/L ND 1.0 10/03/10 11:44 rm ug/L ND 1.0 10/03/10 11:44 ethane ug/L ND 1.0 10/03/10 11:44 obichloroethene ug/L ND 1.0 10/03/10 11:44 obichloropropene ug/L ND 1.0 10/03/10 11:44	arbon disulfide	•				
haneug/LND1.010/03/1011:44rmug/LND1.010/03/1011:44ethaneug/LND1.010/03/1011:44bichloroetheneug/LND1.010/03/1011:44bichloropropeneug/LND1.010/03/1011:44	arbon tetrachloride	-				
rm ug/L ND 1.0 10/03/10 11:44 ethane ug/L ND 1.0 10/03/10 11:44 bichloroethene ug/L ND 1.0 10/03/10 11:44 bichloropropene ug/L ND 1.0 10/03/10 11:44	hlorobenzene	•				
ethane ug/L ND 1.0 10/03/10 11:44 Dichloroethene ug/L ND 1.0 10/03/10 11:44 Dichloropropene ug/L ND 1.0 10/03/10 11:44	hloroethane	-		-		
Dichloroethene ug/L ND 1.0 10/03/10 11:44 Dichloropropene ug/L ND 1.0 10/03/10 11:44	hloroform	0				
Dichloropropene ug/L ND 1.0 10/03/10 11:44	hloromethane	•				
	is-1,2-Dichloroethene	0				
chloromethane ug/l ND 1.0 10/03/10 11:44	s-1,3-Dichloropropene					
	ibromochloromethane	ug/L	ND	1.0	10/03/10 11:44	

Date: 10/14/2010 11:06 AM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc..

Project: Kansas Waste Water

Pace Project No.: 6086606					
METHOD BLANK: 711291		Matrix:	Water		
Associated Lab Samples: 6086	606001, 6086606002, 6	6086606003, 60866	606004		
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Dibromomethane	ug/L	ND	1.0	10/03/10 11:44	
Dichlorodifluoromethane	ug/L	ND	1.0	10/03/10 11:44	
Ethylbenzene	ug/L	ND	1.0	10/03/10 11:44	
Hexachloro-1,3-butadiene	ug/L	ND	1.0	10/03/10 11:44	
Isopropylbenzene (Cumene)	ug/L	ND	1.0	10/03/10 11:44	
Methyl-tert-butyl ether	ug/L	ND	1.0	10/03/10 11:44	
Methylene chloride	ug/L	ND	1.0	10/03/10 11:44	
n-Butylbenzene	ug/L	ND	1.0	10/03/10 11:44	
n-Propylbenzene	ug/L	ND	1.0	10/03/10 11:44	
Naphthalene	ug/L	ND	10.0	10/03/10 11:44	
p-Isopropyltoluene	ug/L	ND	1.0	10/03/10 11:44	
sec-Butylbenzene	ug/L	ND	1.0	10/03/10 11:44	
Styrene	ug/L	ND	1.0	10/03/10 11:44	
tert-Butylbenzene	ug/L	ND	1.0	10/03/10 11:44	
Tetrachloroethene	ug/L	ND	1.0	10/03/10 11:44	
Toluene	ug/L	ND	1.0	10/03/10 11:44	
trans-1,2-Dichloroethene	ug/L	ND	1.0	10/03/10 11:44	
trans-1,3-Dichloropropene	ug/L	ND	1.0	10/03/10 11:44	
Trichloroethene	ug/L	ND	1.0	10/03/10 11:44	
Trichlorofluoromethane	ug/L	ND	1.0	10/03/10 11:44	
Vinyl chloride	ug/L	ND	1.0	10/03/10 11:44	
Xylene (Total)	ug/L	ND	3.0	10/03/10 11:44	
1,2-Dichloroethane-d4 (S)	%	93	82-119	10/03/10 11:44	
4-Bromofluorobenzene (S)	%	101	87-113	10/03/10 11:44	
Dibromofluoromethane (S)	%	102	86-112	10/03/10 11:44	
Toluene-d8 (S)	%	102	90-110	10/03/10 11:44	

LABORATORY CONTROL SAMPLE: 711292

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	20	22.0	110	79-116	
1,1,1-Trichloroethane	ug/L	20	21.2	106	77-113	
1,1,2,2-Tetrachloroethane	ug/L	20	18.9	94	68-122	
1,1,2-Trichloroethane	ug/L	20	20.9	104	82-117	
1,1-Dichloroethane	ug/L	20	20.7	103	67-122	
1,1-Dichloroethene	ug/L	20	23.7	118	70-119	
1,1-Dichloropropene	ug/L	20	21.1	106	81-115	
1,2,3-Trichlorobenzene	ug/L	20	19.9	99	66-135	
1,2,3-Trichloropropane	ug/L	20	18.4	92	76-126	
1,2,4-Trichlorobenzene	ug/L	20	19.7	99	66-126	
1,2,4-Trimethylbenzene	ug/L	20	19.8	99	78-115	
1,2-Dibromo-3-chloropropane	ug/L	20	24.1	121	58-147	
1,2-Dibromoethane (EDB)	ug/L	20	21.2	106	84-121	
1,2-Dichlorobenzene	ug/L	20	20.9	105	79-116	
1,2-Dichloroethane	ug/L	20	19.2	96	74-119	

Date: 10/14/2010 11:06 AM

REPORT OF LABORATORY ANALYSIS

Page 15 of 19

Project: Kansas Waste Water

Pace Project No.: 6086606

LABORATORY CONTROL SAMPLE: 711292

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,2-Dichloroethene (Total)	ug/L		44.0	110	78-117	
1,2-Dichloropropane	ug/L	20	19.6	98	77-115	
1,3,5-Trimethylbenzene	ug/L	20	19.5	98	83-117	
1,3-Dichlorobenzene	ug/L	20	21.7	108	79-112	
,3-Dichloropropane	ug/L	20	20.7	103	82-119	
,4-Dichlorobenzene	ug/L	20	21.8	109	78-111	
,2-Dichloropropane	ug/L	20	22.1	110	57-130	
-Butanone (MEK)	ug/L	100	89.9	90	41-157	
-Chlorotoluene	ug/L	20	20.1	100	82-118	
Hexanone	ug/L	100	96.1	96	57-137	
Chlorotoluene	ug/L	20	22.5	112	83-114	
Methyl-2-pentanone (MIBK)	ug/L	100	92.9	93	62-118	
cetone		100	93.6	94	38-174	
enzene	ug/L	20	93.6 19.5	94 97	79-116	
romobenzene	ug/L	20 20	19.5	97 95	79-116 81-115	
	ug/L					
romochloromethane	ug/L	20	20.3	102	72-123	
romodichloromethane	ug/L	20	21.9	110	76-113	
romoform	ug/L	20	22.9	115	62-129	
omomethane	ug/L	20	23.6	118	24-168	
arbon disulfide	ug/L	20	28.3	142	45-129 l	_3
rbon tetrachloride	ug/L	20	19.7	99	67-124	
lorobenzene	ug/L	20	23.0	115	79-113 l	L3
loroethane	ug/L	20	21.4	107	57-153	
loroform	ug/L	20	21.3	107	74-116	
loromethane	ug/L	20	17.7	88	51-138	
-1,2-Dichloroethene	ug/L	20	21.0	105	77-120	
-1,3-Dichloropropene	ug/L	20	22.9	114	76-116	
promochloromethane	ug/L	20	23.0	115	73-115	
promomethane	ug/L	20	19.1	95	75-115	
chlorodifluoromethane	ug/L	20	13.9	69	6-181	
nylbenzene	ug/L	20	19.8	99	76-122	
xachloro-1,3-butadiene	ug/L	20	20.4	102	68-129	
ppropylbenzene (Cumene)	ug/L	20	21.4	107	71-104 l	L3
ethyl-tert-butyl ether	ug/L	20	21.4	107	62-131	
ethylene chloride	ug/L	20	22.8	114	61-137	
Butylbenzene	ug/L	20	20.7	104	75-124	
Propylbenzene	ug/L	20	20.0	100	79-116	
aphthalene	ug/L	20	18.3	91	60-145	
sopropyltoluene	ug/L	20	19.4	97	79-114	
c-Butylbenzene	ug/L	20	20.4	102	83-119	
yrene	ug/L	20	21.0	105	70-125	
t-Butylbenzene	ug/L	20	22.2	111	81-118	
trachloroethene	ug/L	20	23.1	116	77-117	
luene	ug/L	20	20.3	101	75-120	
ans-1,2-Dichloroethene	ug/L	20	23.0	115	76-119	
ans-1,3-Dichloropropene	ug/L	20	21.3	106	64-105 I	L3
ichloroethene	ug/L	20	19.4	97	78-118	
ichlorofluoromethane	ug/L	20	20.9	105	73-118	
	ug/L	20	20.0	100	10-110	

Date: 10/14/2010 11:06 AM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 16 of 19

Project: Kansas Waste Water

Pace Project No.: 6086606

LABORATORY CONTROL SAMPLE: 711292

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Vinyl chloride	ug/L	20	22.6	113	60-122	
Xylene (Total)	ug/L	60	61.1	102	74-124	
1,2-Dichloroethane-d4 (S)	%			89	82-119	
4-Bromofluorobenzene (S)	%			97	87-113	
Dibromofluoromethane (S)	%			105	86-112	
Toluene-d8 (S)	%			101	90-110	

REPORT OF LABORATORY ANALYSIS

Page 17 of 19

-	Kansas Waste	Water											
Pace Project No.: 0	6086606 WETA/14191			Anolyg	ia Mathaa	. r	EPA 300.0						
				•	sis Method								
QC Batch Method:	EPA 300.0			•	sis Descrip		300.0 IC Anic	ons					
Associated Lab Samp	ples: 60866	06001, 608	36606002, 6	086606003	, 6086606	6004							
METHOD BLANK:	710224			Ν	Matrix: Wa	ater							
Associated Lab Sam	ples: 60866	06001, 608	36606002, 6	086606003	, 6086606	6004							
				Blank	c F	Reporting							
Parame	eter		Units	Resu	t	Limit	Analyz	zed	Qualifiers				
Nitrate as N		mg/L			ND	0.10	0 10/01/10	18:26					
LABORATORY CON	TROL SAMPLI	E: 71022	25										
Parame	eter		Units	Spike Conc.	LC Res	-	LCS % Rec	% Rec Limits		ualifiers			
Nitrate as N		mg/L		5		4.9	99	90	-110		-		
MATRIX SPIKE SAM	PLE:	71022	26										
				608660	06004	Spike	MS	М	S	% Rec			
Parame	eter		Units	Res	ult	Conc.	Result	% F	Rec	Limits		Qualif	iers
Nitrate as N		mg/L			0.99	5	Ę	5.5	91	68-	120		
MATRIX SPIKE & MA	ATRIX SPIKE [DUPLICAT	E: 71022	7		710228							
				MS	MSD								
		60	86604004	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	er	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Nitrate as N	r	ng/L	0.18	5	5	5.1	5.2	99	100	68-120	1	16	

Date: 10/14/2010 11:06 AM

REPORT OF LABORATORY ANALYSIS

Page 18 of 19

QUALIFIERS

Project: Kansas Waste Water

Pace Project No.: 6086606

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

BATCH QUALIFIERS

Batch: MSV/32160

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

ANALYTE QUALIFIERS

- E Analyte concentration exceeded the calibration range. The reported result is estimated.
- L3 Analyte recovery in the laboratory control sample (LCS) exceeded QC limits. Analyte presence below reporting limits in associated samples. Results unaffected by high bias.
- P2 Re-extraction or re-analysis could not be performed due to insufficient sample amount.

REPORT OF LABORATORY ANALYSIS

Sa	mple Condition	Upon Receipt		
Pace Analytical [*] Client Name	E TCU)	Project #	s Slelesle
	e Shipping Label Used		No Optional Proj. Due Dat Proj. Name:	e: 10/13
Custody Seal on Cooler/Box Present: Yes	h plilo Seals in	ntact: 🛛 Yes 🗌	No L	
Packing Material: Bubble Wrap Bubble		.None Dther		
Thermometer Used: T-191 T-194	Type of Ice: Wet	Biue None	Samples on ice, cooling p	
Cooler Temperature: 2.2 Temperature should be above freezing to 6°C		Comments:	Date and Initials of perso contents:	on examining
Chain of Custody present:		1		· · · · · · · · · · · · · · · · · · ·
Chain of Custody filled out:	Yes INO IN/A	2		
Chain of Custody relinquished:	DYAS DNO DNIA	3		
Sampler name & signature on COC:		4.		
Samples arrived within holding time:		5	·····	
Short Hold Time analyses (<72hr):	JZYes INO IN/A	6. NO 3		
Rush Turn Around Time requested:	□Yes ☑No □N/A	7.		
Sufficient volume:		8	······································	
Correct containers used:	, IZYes □No □N/A	9.		
-Pace containers used:	□Yes DNO □N/A	······································		
Containers intact:	Yes No N/A	10		
Unpreserved 5035A soils frozen w/in 48hrs?		11.		
Filtered volume received for dissolved tests	□Yes □No □N/A	12.		·
Sample labels match COC:	Yes 🗆 No 🗆 N/A	13.		
-Includes date/time/ID/analyses Matrix:	WT,			
All containers needing preservation have been checked.	□Yes □No ☑N/A	14.		
All containers needing preservation are found to be in compliance with EPA recommendation.				
Exceptions VOA coliform, TOC, O&G, WI-DRO (water), Phenolics		Initial when completed	Lot # of added preservative	
Trip Blank present:		15.		
Pace Trip Blank lot # (if purchased):				······
Headspace in VOA vials (>6mm):	□Yes J No □N/A	16		
Project sampled in USDA Regulated Area:	□Yes □No □N/A	17. List State:		
Client Notification/ Resolution: Cop	by COC to Client? Y	· / N	Field Data Required?	Y / N
Person Contacted:	Date/T	ime:		
Comments/ Resolution:				
		······································		· · · · · · · · · · · · · · · · · · ·
			<u></u>	
- hall			10 1	-10
Project Manager Review:			Date: 10-1	

\$

· · ·

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

X

Pace Analytical[®]

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section A	Section B			Section C				Page	1	of	1
Required Client Information: Company: TCW Construction	Required Project Informati			Invoice Inform Attention:			1			1272	142
Address: 141 M Start	Copy To:	Q tow construct @ prodigy ,ne+	tion.com	Company Nan	ravis Kamla ^{ne:} TCW	sn	REGULATORY				
Address: 141 M Street	Sargnier	@ prodigy .ne+		Address:	166						
Lincon NE 6000	Purchase Order No.:			Pace Quote				GROUN	DWATER		GWATER
Email To: +Komler Qter Construction				Reference:			F UST F	RCRA		OTHER	
Phone: 416 7255 Fax:		as Waste Wa	ter	Manager:	Trudy Gipso	n	Site Location	KS			
Requested Due Date/TAT:	Project Number:			Pace Profile #:	• -		STATE:	<u> </u>	[
							Analysis Filtere	d (Y/N)			
Section D Matrix C Required Client Information MATRIX / Drinking Wate Water Waste Water Product Soil/Solid SAMPLE ID Oil	P COMF See valid codes to lef	COLLECTED COMPOSITE COMPOS START END/GR/			Preservatives	V ET			Chlorine (Y/N)		
(A-Z, 0-9 / ,-) Air Sample IDs MUST BE UNIQUE Tissue Other	AATRIX CODE SAMPLE TYPE		AMPLE TEMP A	+ OF CONTAINERS	HNO ₃ HCI NaOH Na ₂ S ₂ O ₃ Methanol Other				Residual	Lo 8(L)	lo./ Lab I,D.
1 BAPHAGE-W-930101 2 CNPURGE-W-930102 3 EVPURGE-W-930102 4 MRPURGE-W-930102	ww C 3	/10 9/30	91 00 59	53	a	221			1 16	21 2/04	qu)2/297 6.
2 CNP4RGE - W- 930102	2 WWC 4	/10 9-30	1000 60	53		221			++	II	- er
3 EVPURGE-W- 93010.	3 wwc 4	10 9-30	113265		2	221					రా
4 MR PURGE - W - 930 / 04	4 Whic 4	/10 9-30	342	53	.	221				⊬ V	1 1/001
5				\square					+	1	100
6	- $ $ N										holik
7							\mathbb{N}		++		
8							N				•
9											
10						·		\downarrow			
11								+N			
12											
ADDITIONAL COMMENTS	RELINQUISH	ED BY / AFFILIATION	DATE	TIME	ACCEPTED B	Y / AFFILIATION	DATE	TIME		SAMPLE CONDIT	IONS
All samples Collected		2- /TCW	9-30-10	1830	Junt	2	19XI po	0915	2.2	$Y \mid V$	<u> </u>
from 55 gal Drum Stored										· /	
at each site				ļ							
L	•	SAMPLER NAME AN	D SIGNATUR	ε	· · · · · · · · · · · · · · · · · · ·				<u>υ</u> 8		tact
	ORIGINAL	PRINT Nam	e of SAMPLER	Trai	is Kamler				Temp in °C	(NN)	es In
			E of SAMPLER			DATE Signed (MM/DD/YY):	09/30/	10	Tem	Custody Sealed Cooler (Y/N)	Samples Intact (Y/N)

*Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days.

F-ALL-Q-020rev.07, 15-May-2007

. ee

Sold To:

Mr. Travis Kamler

Lincoln, NE 68508 402-475-5030

141 M Street

TCW Construction Inc

Invoice Number: 106081867 Date: 10/14/2010 Total Amount Due: \$592.00

Please Remit To:

Pace Analytical Services, Inc. P.O. Box 684056 Milwaukee, WI 53268-4056

Clien	t Number/Client ID	Purchase Order No	Pace Project Mg	ır	Terms	Page
60-50	08440 / TCW Const	Credit Card	Trudy Gipson		Net 30 Days**	1
Pace Proj Report S	Project: Kansas Waste Water ect No: 6086606 ent To: Mr. David Surgnier, Mr. Travis Kamler, TCV ments:	V Construction Inc	Client Name: TCW (Sample Received: 10/1/2		n Inc	
		ANALYTICAL C	HARGES			
Quantity Unit	Description	Method	Matrix		Price	Total
4 Ea	300.0 IC Anions-Nitrate	EPA 300.0	Water		\$18.00	\$72.00
4 Ea	504 GCS EDB DBCP	EPA 504.1	Water		\$60.00	\$240.00
4 Ea	8260 VOC by GC/MS-Full Sc	an EPA 5030B/8	260 Water		\$70.00	\$280.00
				Ana	alytical Subtotal	\$592.00
		Total Number of Charge	s 12	Total	Invoice Amount	\$592.00
Samples Receiv	ved for analysis:					
Lab ID	Client Sample ID	Received				
6086606001	BAPURGE-W-930101	10/1/2010 9:15:00				

6086606001BAPURGE-W-93010110/1/2010 9:15:006086606002CNPURGE-W-93010210/1/2010 9:15:006086606003EVPURGE-W-93010310/1/2010 9:15:006086606004MRPURGE-W-93010410/1/2010 9:15:00

If you have any questions or to pay by credit card, please contact Trudy Gipson at Pace. Phone: 1(913)563-1405 Email: trudy.gipson@pacelabs.com

**1.5% MONTHLY FINANCE CHARGE ASSESSED AFTER 30 DAYS OR TERMS OF CONTRACT. PLEASE REFERENCE THE INVOICE NUMBER ON ALL REMITTANCE ADVICE.

AN EQUAL OPPORTUNITY EMPLOYER

Please complete and return copy of invoice with your payment.

INVOICE TOTAL \$592.00

Amount Paid: \$_____

Check No:

Customer No: 60-508440 Invoice No: 106081867

Page 1 of 1

AGEM 40 L

CITY OF SABETHA Cash - Matt 805 MAIN PO BOX 187 SABETHA KS 66534 785-284-2158 Dec 17, 2010 Receipt No: 2.001326 TCW Construction B WASTEWATER FUND-MISC MISCELLANEOUS INCOME-purg A 50.00 ed water Total: 50.00 ----50.00 Cash Total Applied: Change Tendered: .00 -----

12/17/10 01:28PM

Supplement 2:

Sample Documentation from TestAmerica Laboratories, Inc.

TestAmerica Laboratories, Inc.

April 16, 2010

Mr. Clyde Dennis Argonne National Laboratory 9700 S. Cass Avenue Bldg. 203, Office B149 Argonne, IL 60439

Re: Laboratory Project No. 21005 Case: BARNES; SDG: 136602

Dear Mr. Dennis:

Enclosed are analytical results for samples that were received by TestAmerica Burlington on April 1st, 2010. Laboratory identification numbers were assigned, and designated as follows:

Lab ID	Client Sample ID	Sample <u>Date</u>	Sample <u>Matrix</u>
	Received: 04/01/10 ETR No:	136602	
824497	BAMW5-W-28722	03/30/10	WATER
			··· ·· — · ·
824498	BAMW15D-W-28741	03/30/10	WATER
824499	BAMW16S-W-28742	03/30/10	WATER
824500	BAMW16D-W-28743	03/30/10	WATER
824501	BAMW6S-W-28723	03/31/10	WATER
824502	BAMW8-W-28726	03/31/10	WATER
824503	BAPWS3-W-28747	03/31/10	WATER
824504	BAQCTB-W-28756	03/31/10	WATER
824505	VHBLK01	04/01/10	WATER

Documentation of the condition of the samples at the time of their receipt and any exception to the laboratory's Sample Acceptance Policy is documented in the Sample Handling section of this submittal. The samples, as received, were not acid preserved. On that basis, the laboratory did provide for the analytical work to be performed within seven days of sample collection.

In order to accommodate field length limitations in processing the data summary forms, the laboratory did, in certain instances, abbreviate the sample identifier. The electronically formatted data provides for the full sample identifier.

SOM01.2 Volatile Organics (Trace Level Water)

A storage blank was prepared for volatile organics analysis, and stored in association with the

30 Community Drive, Suite 11 South Burlington, VT 05403 tel 802.660.1990 fax 802.660.1919 www.testamericainc.com

THE LEADER IN ENVIRONMENTAL TESTING

storage of the samples. That storage blank, identified as VHBLK01, was carried through the holding period with the samples, and analyzed.

It should be noted that the derived result for carbon tetrachloride (24.6 ug/L) from the analysis of sample BAMW8-W-28726 did exceed the concentration in the high calibration point (20.0 ug/L), and the result is qualified accordingly. An additional, dilution analysis of sample BAMW8-W-28726 could not be performed as the test volume was consumed in performing the primary analysis.

Each of the analyses associated with the sample set exhibited an acceptable internal standard performance. There was an acceptable recovery of each deuterated monitoring compound (DMC) in the analysis of each method blank associated with the analytical work, and in the analysis of the storage blank associated with the sample set. The analysis of the samples in this sample set did meet the technical acceptance criteria specific to DMC recoveries, although not all DMC recoveries were within the control range in each analysis. The technical acceptance criteria does provide for the recovery of up to three DMCs to fall outside of the control range in the analysis of field samples. Matrix spike and matrix spike duplicate analyses were not performed on samples in this sample set. Trace concentrations of acetone and 2-butanone were identified in the analysis of each of the method blanks associated with the analytical work. The concentration of each compound in each analysis was below the established reporting limit, and each analysis did meet the technical acceptance criteria for a compliant method blank analysis. A trace concentration of acetone was identified in the analysis of the storage blank associated with the sample set. The concentration of acetone in that analysis was below the established reporting limit, and the analysis did meet the technical acceptance criteria for a compliant storage blank analysis. Present in the method blank and storage blank analyses was a non-target constituent that represented a compound that is related to the DMC formulation. The fact that the presence of this compound is not within the laboratory's control is at issue. The derived results for that compound have been qualified with an "X" qualifier to reflect the source of the contamination.

The responses for each of the target analytes met the relative standard deviation criterion in the initial calibration. The response for each target analyte met the percent difference criterion in each continuing calibration check acquisition. The response for each target analyte met the 50.0 percent difference criterion in each closing calibration check acquisition.

The primary quantitation mass for methylcyclohexane that is specified in the Statement of Work is mass 83. The laboratory did identify a contribution to mass 83 from 1,2-dichloropropane- d_6 , one of the deuterated monitoring compounds (DMCs). The laboratory did change the primary quantitation mass assignment to mass 55 for the quantification of methylcyclohexane.

Manual integration was employed in deriving certain of the analytical results. The values that have been derived from manual integration are qualified on the quantitation reports. Extracted ion current profiles for each manual integration are included in the data package, and further documented in the Sample Preparation section of this submittal.

Any reference within this report to Severn Trent Laboratories, Inc. or STL, should be understood to refer to TestAmerica Laboratories, Inc. (formerly known as Severn Trent Laboratories, Inc.) The analytical results associated with the samples presented in this test report were generated under a quality system that adheres to requirements specified in the NELAC standard. Release

of the data in this test report and any associated electronic deliverables is authorized by the Laboratory Director's designee as verified by the following signature.

If there are any questions regarding this submittal, please contact me at 802 660-1990.

Sincerely,

Kirk F. Young Project Manager

KFY/hsf Enclosure

<u>Organic</u>

- U: Compound analyzed but not detected at a concentration above the reporting limit.
- J: Estimated value.
- N: Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds (TICs) where the identification of a compound is based on a mass spectral library search.
- P: SW-846: The relative percent difference for detected concentrations between two GC columns is greater than 40%. Unless otherwise specified the higher of the two values is reported on the Form I.

CLP SOW: Greater than 25% difference for detected concentrations between two GC columns. Unless otherwise specified the lower of the two values is reported on the Form I.

- C: Pesticide result whose identification has been confirmed by GC/MS.
- B: Analyte is found in the sample and the associated method blank. The flag is used for tentatively identified compounds as well as positively identified compounds.
- E: Compounds whose concentrations exceed the upper limit of the calibration range of the instrument for that specific analysis.
- D: Concentrations identified from analysis of the sample at a secondary dilution.
- A: Tentatively identified compound is a suspected aldol condensation product.
- X,Y,Z: Laboratory defined flags that may be used alone or combined, as needed. If used, the description of the flag is defined in the project narrative.

Inorganic/Metals

- E: Reported value is estimated due to the presence of interference.
- N: Matrix spike sample recovery is not within control limits.
- * Duplicate sample analysis is not within control limits.
- B: The result reported is less than the reporting limit but greater than the instrument detection limit.
- U: Analyte was analyzed for but not detected above the reporting limit.

Method Codes:

P ICP-AES

- MS ICP-MS
- CV Cold Vapor AA
- AS Semi-Automated Spectrophotometric

FQA009:02.18.08:4 TestAmerica Burlington

2	6	1	8	

FedEx # 8558 7682 9521

MATRIX: Water	ARC	GON			AL L	ABO	RAT	ORY	Ť	Shipping	Container N	lo.	
RECEIVING LAB: Test America	1 c	HAII	N OF C	UST	ODY	REC	OR	D*	F	Shipping I			
PROJECT/SITE: Barnes KS				A	NALY	SIS				ANL Field	Contact (N Surgni	ame 8 	k Temporary Phone): 630 <i>40</i> 8 アルイ
SAMPLER(S) (Signature)	Number	V								X	U		
DATE OF COLLECTION SAMPLE ID NUMBER(S)	con- tainers	6 (-					м.	REMA	RKS
March 30,2010 BAMW 5-W-28722	2	2								20	40 mL	¢0	- VOC
1 BAMW15D-W-28741	2	2									1		
BAMW/65-W-28742	2	2											
March 30, 2010 BAMW160-W-28743	2	2									<u> </u>		
								+		•		-,	
March 31, 2010 BAMW65 - W-28723	2	2					_						
BAMW8-W-28726	222	んえ											
BAPWS3-W-28747	12	2					_						
March 31, 2010 BAQCTB - W - 28756	-2							+		dx c	10 mL	-60	r Voc
	<u> </u>		\checkmark					+					
	+ -	++	$\rightarrow \rightarrow$	Ы				╉──┨					
	$+ \cdot -$				\rightarrow	\pm							
	\vdash					\neg	+						$-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
					-			M					
Relinguished by (Signature) Date Time Received	r ved by (Sig	gnatu	re)	Re	linqui	shed	by (S	ignatu	ure)	Date	Time		Received by (Signature)
3/31/10 17:00		-											
Relinquished by (Signature) Date Time Receiv	ved for La	borato	ory by	Da	ite		Ti	me		Remarks			
Clu	anka	<u>W-</u>	-	41	1110			1200	0	0.	6		
Y N FOR LAB USE ONLY *A sample is under custody if:													
Custody seal was intact when shipment received.			. It is in	-	•								
Sample containers were intact when received.				-				-	-	your posses	sion; or,		
Shipment was at required temperature when receiv	red.			-	•			-	n lock	ked it up; or,			
Sample labels, Tags and COC agrée.			. It is in										
Argonne National Laboratory, Applied Geosciences & Environmental Mgt. Group, Environmental Research Division, 9700 S. Cass Avenue, Argonne, IL 60439													

ER-160 (12-94)

THE LEADER IN ENVIRONMENTAL TESTING

Sample Data Summary – SOM01.2 Volatiles – Trace

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

BAMW15D28741

Lab Name: TESTAMERICA BURLINGTON		Contract: 8E-00302	·	
Lab Code: STLV Case No.: BARNES	Mod. Re	ef No.:	SDG No.: 136602	
Matrix: (SOIL/SED/WATER) Water		Lab Sample ID: 8244	98	
Sample wt/vol: 25.0 (g/mL) mL		Lab File ID: 824498	3	
Level: (TRACE/LOW/MED) TRACE		Date Received: 04/0	01/2010	
% Moisture: not dec.		Date Analyzed: 04/0	05/2010	
GC Column: DB-624 ID: 0.53	(mm)	Dilution Factor: 1.	0	
Soil Extract Volume:	(uL)	Soil Aliquot Volume	:	(uL)
Purge Volume: 25.0	(mL)			

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
=============		=======================================	=======
75-71-8	Dichlorodifluoromethane	0.50	ט
74-87-3	Chloromethane	0.50	υ
75-01-4	Vinyl chloride	0.50	ט
		0.50	ט
	Chloroethane	0.50	ט
1		0.50	ט
	1,1-Dichloroethene	0.50	ט
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	ע ו
67-64-1	Acetone	5.0	U
	Carbon disulfide	0.50	ע ו
	Methyl acetate	0.50	ן ש ן
75-09-2		0.50	ן ט
156-60-5		0.50	ן ט
1634-04-4	Methyl tert-butyl ether	0.50	ט ט
75-34-3	1,1-Dichloroethane	0.50	ט ט
156-59-2	cis-1,2-Dichloroethene	0.50	ט ו
78-93-3	2-Butanone	5.0	ש ט
74-97-5	Bromochloromethane	0.50	U
67-66-3	Chloroform	0.50	U
71-55-6	1,1,1-Trichloroethane	0.50	ע ו
110-82-7	Cyclohexane	0.50	υ
56-23-5	Carbon tetrachloride	0.50	υ
71-43-2	Benzene	0.50	υ
107-06-2	1,2-Dichloroethane	0.50	υ
			<u></u>

Report 1,4-Dioxane for Low-Medium VOA analysis only

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

BAMW15D28741

Lab Name: TESTAMERICA BURLINGTON		Contract: 8E-00302	1 <u></u>	
Lab Code: STLV Case No.: BARNES	Mod. 1	Ref No.:	SDG No.: 136602	
Matrix: (SOIL/SED/WATER) Water		Lab Sample ID: 824	498	
Sample wt/vol: 25.0 (g/mL) ml	L	Lab File ID: 82449	8	
Level: (TRACE/LOW/MED) TRACE		Date Received: 04/	01/2010	
% Moisture: not dec.		Date Analyzed: 04/	05/2010	
GC Column: DB-624 ID: 0.53	(mm)	Dilution Factor: 1	.0	
Soil Extract Volume:	(uL)	Soil Aliquot Volum	e:	(uL)
Purge Volume: 25.0	(mL)			

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/kg) <u>ug/L</u>	Q
===========			========
79-01-6	Trichloroethene	0.50	υ
108-87-2	Methylcyclohexane	0.50	υ
78-87-5	1,2-Dichloropropane	0.50	U
75-27-4	Bromodichloromethane	0.50	υ
10061-01-5	cis-1,3-Dichloropropene	0.50	ט ט
108-10-1	4-Methyl-2-pentanone	5.0	υ
108-88-3	Toluene	0.50	ט 🛛
10061-02-6	trans-1,3-Dichloropropene	0.50	ט
79-00-5	1,1,2-Trichloroethane	0.50	ע ו
127-18-4	Tetrachloroethene	0.38	J
591-78-6	2-Hexanone	5.0	ע
124-48-1	Dibromochloromethane	0.50	ט
106-93-4	1,2-Dibromoethane	0.50	ע ו
108-90-7	Chlorobenzene	0.50	ט ו
100-41-4	Ethylbenzene	0.50	υ
95-47-6	o-Xylene	0.50	U
179601-23-1	m,p-Xylene	0.50	υ
100-42-5	Styrene	0.50	U
75-25-2	Bromoform	0.50	U
98-82-8	Isopropylbenzene	0.50	ט
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U
541-73-1	1,3-Dichlorobenzene	0.50	U
106-46-7	1,4-Dichlorobenzene	0.50	U
95-50-1	1,2-Dichlorobenzene	0.50	U U
96-12-8	1,2-Dibromo-3-chloropropane	0.50	υ
120-82-1	1,2,4-Trichlorobenzene	0.50	ט (
87-61-6	1,2,3-Trichlorobenzene	0.50	ט
		l	I

SOM01.2

EPA SAMPLE NO.

BAMW15D28741

Lab Name: TESTAMERICA BURLINGTON		Contract: 8E-00302		
Lab Code: STLV Case No.: BARNES	Mod.	Ref No.:	SDG No.:	136602
Matrix: (SOIL/SED/WATER) Water		Lab Sample ID: 82449	8	
Sample wt/vol: 25.0 (g/mL) mL		Lab File ID: 824498		
Level: (TRACE or LOW/MED) TRACE		Date Received: 04/01	/2010	
% Moisture: not dec.		Date Analyzed: 04/05	/2010	
GC Column: DB-624 ID: 0.53	(mm)	Dilution Factor: 1.0		
Soil Extract Volume:	(uL)	Soil Aliquot Volume:		(uL)
CONCENTRATION UNITS: (ug/L or ug/kg) u	g/L	Purge Volume: 25.0		(mL)

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
		=======	================	=====
	Unknown	7.01	3.2	JXB
·····			·`	
·····		·		
	·			
	· · · · · · · · · · · · · · · · · · ·	·		
		•		
		·		
	· · · · · · · · · · · · · · · · · · ·		····	
				ļ
				I
				I
				1
			1	
966796(1)	Total Alkanes	N/A		
			unknown 7.01	Unknown 7.01 3.2

(1) EPA-designated Registry Number.

EPA SAMPLE NO.

BAMW16D28743

Lab Name: TESTAMERICA BURLINGTON		Contract: 8E-00302		
Lab Code: STLV Case No.: BARNES	Mod. Re	ef No.:	SDG No.: 136602	
Matrix: (SOIL/SED/WATER) Water		Lab Sample ID: 8245	500	
Sample wt/vol: 25.0 (g/mL) mL		Lab File ID: 824500)	
Level: (TRACE/LOW/MED) TRACE		Date Received: 04/0	01/2010	
% Moisture: not dec.		Date Analyzed: 04/0	06/2010	
GC Column: DB-624 ID: 0.53	(mm)	Dilution Factor: 1.	. 0	
Soil Extract Volume:	(uL)	Soil Aliquot Volume	2:	(uL)
Purge Volume: 25.0	(mL)			

		CONCENTRATION UNITS:	,
CAS NO.	COMPOUND	(ug/L or ug/kg) <u>ug/L</u>	Q
		=======================================	
75-71-8	Dichlorodifluoromethane	0.50	ΰ
74-87-3	Chloromethane	0.50	U
75-01-4	Vinyl chloride	0.50	U
74-83-9		0.50	U
1	Chloroethane	0.50	U
	Trichlorofluoromethane	0.50	υ
	1,1-Dichloroethene	0.50	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	U U
67-64-1	Acetone	5.0	U
75-15-0	Carbon disulfide	0.50	υ
79-20-9	Methyl acetate	0.50	U U
75-09-2	Methylene chloride	0.50	ט
156-60-5	trans-1,2-Dichloroethene	0.50	U U
1634-04-4	Methyl tert-butyl ether	0.50	ט
75-34-3	1,1-Dichloroethane	0.50	ט
156-59-2	cis-1,2-Dichloroethene	0.50	U
78-93-3	2-Butanone	5.0	U
74-97-5	Bromochloromethane	0.50	U
67-66-3	Chloroform	0.50	υ
71-55-6	1,1,1-Trichloroethane	0.50	U
110-82-7	Cyclohexane	0.50	U
56-23-5	-	0.50	U
71-43-2	Benzene	0.50	U
107-06-2	1,2-Dichloroethane	0.50	ט ו

Report 1,4-Dioxane for Low-Medium VOA analysis only

EPA SAMPLE NO.

BAMW16D28743

Lab Name: TESTAMERICA BURLINGTON		Contract: 8E-00302	I	10 , 0 , 0 , 0	_ '
Lab Code: STLV Case No.: BARNES	Mod. Re	ef No.:	SDG No.:	136602	
Matrix: (SOIL/SED/WATER) Water		Lab Sample ID: 8245	500		
Sample wt/vol: 25.0 (g/mL) mL		Lab File ID: 824500)		
Level: (TRACE/LOW/MED) TRACE		Date Received: 04/0	01/2010		
% Moisture: not dec.		Date Analyzed: 04/0	06/2010		
GC Column: DB-624 ID: 0.53	(mm)	Dilution Factor: 1.	. 0		
Soil Extract Volume:	(uL)	Soil Aliquot Volume	e:	(1	uL)
Purge Volume: 25.0	(mL)				

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/kg) ug/L	Q
================			
79-01-6	Trichloroethene	0.50	υ
108-87-2	Methylcyclohexane	0.50	U
78-87-5	1,2-Dichloropropane	0.50	U
75-27-4	Bromodichloromethane	0.50	U U
10061-01-5	cis-1,3-Dichloropropene	0.50	U
108-10-1	4-Methyl-2-pentanone	5.0	ט
108-88-3	Toluene	0.50	ע
	trans-1,3-Dichloropropene	0.50	ט
79-00-5	1,1,2-Trichloroethane	0.50	U
127-18-4	Tetrachloroethene	0.55	
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	0.50	U U
106-93-4	1,2-Dibromoethane	0.50	ע ו
108-90-7	Chlorobenzene	0.50	U U
100-41-4	Ethylbenzene	0.50	U
95-47-6	o-Xylene	0.50	U
179601-23-1	m,p-Xylene	0.50	U
100-42-5	Styrene	0.50	U
75-25-2	Bromoform	0.50	U
98-82-8	Isopropylbenzene	0.50	U
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U
541-73-1	1,3-Dichlorobenzene	0.50	ע
106-46-7	1,4-Dichlorobenzene	0.50	U U
95-50-1	1,2-Dichlorobenzene	0.50	U
96-12-8	1,2-Dibromo-3-chloropropane	0.50	U
120-82-1	1,2,4-Trichlorobenzene	0.50	U U
87-61-6	1,2,3-Trichlorobenzene	0.50	ע
		1	I

EPA SAMPLE NO.

BAMW16D28743

Lab Name: TESTAMERICA BURLINGTON		Contract: 8E-00302		
Lab Code: STLV Case No.: BARNES	Mod.	Ref No.:	SDG No.: 13660)2
Matrix: (SOIL/SED/WATER) Water		Lab Sample ID: 82450	0	
Sample wt/vol: 25.0 (g/mL) mL		Lab File ID: 824500		
Level: (TRACE or LOW/MED) TRACE		Date Received: 04/01	/2010	
% Moisture: not dec.		Date Analyzed: 04/06	/2010	
GC Column: DB-624 ID: 0.53	(mm)	Dilution Factor: 1.0		
Soil Extract Volume:	(uL)	Soil Aliquot Volume:	(1	يL)
CONCENTRATION UNITS: (ug/L or ug/kg) u	Id/T	Purge Volume: 25.0	(n	nL)

	CAS NUMBER	COMPOUND NAME	RT		CONC.	Q
01		=====================================	======= 7.01	=====	======= 3.2	===== TVD
01		Olikilowii	7.01		2.2	JAD
03						
04					· · · · · · · · · · · · · · · · · · ·	
05						
06	<u> </u>					
07						
08						
09				P-9	· · · · · · · · · · · · · · · · · · ·	
10						
11						
12						
13		-				
14	<u></u>					
15	· · · · · · · · · · · · · · · · · · ·					
16				•••	· · · · · · · · · · · · · · · · · · ·	
17				·		·····
18 19						
20						
21					······································	
22		······		·		
23						
24					<u> </u>	
25		· ····································				
26						
27						
28				•		
29						
30						
ĺ	E966796(1) (1) EPA-designated	Total Alkanes	N/A			

(1) EPA-designated Registry Number.

۱

BAMW16S28742

Lab Name: TESTAMERICA BURLINGTON Contract: 8E-00302 Case No.: BARNES Mod. Ref No.: SDG No.: 136602 Lab Code: STLV Lab Sample ID: 824499 Matrix: (SOIL/SED/WATER) Water Sample wt/vol: 25.0 (g/mL) mL Lab File ID: 824499 Date Received: 04/01/2010 Level: (TRACE/LOW/MED) TRACE % Moisture: not dec. Date Analyzed: 04/05/2010 GC Column: DB-624 ID: 0.53 (mm) Dilution Factor: 1.0 Soil Aliquot Volume: Soil Extract Volume: (uL) (uL) Purge Volume: 25.0 (mL)

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
75-71-8	Dichlorodifluoromethane	0.50	======= U
	Chloromethane	0.50	Ū
	Vinyl chloride	0.50	Ū
74-83-9	-	0.50	Ū
	Chloroethane	0.50	Ū
	Trichlorofluoromethane	0.50	Ū
	1,1-Dichloroethene	0.50	Ū
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	υ
67-64-1		5.0	υ
75-15-0	Carbon disulfide	0.50	υ
79-20-9		0.50	υ
75-09-2		0.50	υ
	trans-1,2-Dichloroethene	0.50	υ
1634-04-4		0.50	υ
75-34-3	1,1-Dichloroethane	0.50	υ
	cis-1,2-Dichloroethene	0.50	υ
78-93-3	2-Butanone	5.0	υ
74-97-5	Bromochloromethane	0.50	υ
67-66-3	Chloroform	0.21	J
71-55-6	1,1,1-Trichloroethane	0.50	υ
110-82-7	Cyclohexane	0.50	υ
56-23-5	Carbon tetrachloride	1.3	<u> </u>
71-43-2	Benzene	0.50	υ
107-06-2	1,2-Dichloroethane	0.50	υ

Report 1,4-Dioxane for Low-Medium VOA analysis only

EPA SAMPLE NO.

BAMW16S28742

Lab Name: TESTAMERICA BURLINGTON		Contract: 8E-00302	4 <u></u>	I
Lab Code: STLV Case No.: BARNES	Mod.	Ref No.:	SDG No.: 136602	
Matrix: (SOIL/SED/WATER) Water		Lab Sample ID: 8244	499	
Sample wt/vol: 25.0 (g/mL) mL		Lab File ID: 824499	9	
Level: (TRACE/LOW/MED) TRACE		Date Received: 04/0	01/2010	
% Moisture: not dec.		Date Analyzed: 04/0	05/2010	
GC Column: DB-624 ID: 0.53	(mm)	Dilution Factor: 1	.0	
Soil Extract Volume:	(uL)	Soil Aliquot Volume	e:	(uL)
Purge Volume: 25.0	(mL)			

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
79-01-6	Trichloroethene	0.50	υ
108-87-2	Methylcyclohexane	0.50	υ
78-87-5	1,2-Dichloropropane	0.50	υ.
75-27-4	Bromodichloromethane	0.50	. ប
10061-01-5	cis-1,3-Dichloropropene	0.50	υ
108-10-1	4-Methyl-2-pentanone	5.0	υ
108-88-3	Toluene	0.50	υ
10061-02-6	trans-1,3-Dichloropropene	· 0.50	υ
79-00-5	1,1,2-Trichloroethane	0.50	υ
127-18-4	Tetrachloroethene	0.41	J
591-78-6	2-Hexanone	5.0	U U
124-48-1	Dibromochloromethane	0.50	U U
106-93-4	1,2-Dibromoethane	0.50	U
108-90-7	Chlorobenzene	0.50	U
100-41-4	Ethylbenzene	0.50	U
95-47-6	o-Xylene	0.50	υ
179601-23-1	m,p-Xylene	0.50	υ
100-42-5	Styrene	0.50	ע
75-25-2	Bromoform	0.50	U
98-82-8	Isopropylbenzene	0.50	υ
79-34-5	1,1,2,2-Tetrachloroethane	0.50	υ
541-73-1	1,3-Dichlorobenzene	0.50	υ
106-46-7	1,4-Dichlorobenzene	0.50	υ
95-50-1		0.50	ע ו
96-12-8	1,2-Dibromo-3-chloropropane	0.50	υ
120-82-1	1,2,4-Trichlorobenzene	0.50	υ
87-61-6	1,2,3-Trichlorobenzene	0.50	υ
		1	

EPA SAMPLE NO.

BAMW16S28742

Lab Name: TESTAMERICA BURLINGTON		Contract: 8E-00302		
Lab Code: STLV Case No.: BARNES	Mod.	Ref No.:	SDG No.: 13	6602
Matrix: (SOIL/SED/WATER) Water		Lab Sample ID: 824499	9	
Sample wt/vol: 25.0 (g/mL) mL		Lab File ID: 824499		
Level: (TRACE or LOW/MED) TRACE		Date Received: 04/01,	/2010	
% Moisture: not dec.		Date Analyzed: 04/05,	/2010	
GC Column: DB-624 ID: 0.53	(mm)	Dilution Factor: 1.0		
Soil Extract Volume:	(uL)	Soil Aliquot Volume:		(uL)
CONCENTRATION UNITS: (ug/L or ug/kg) u	ıg/L	Purge Volume: 25.0		(mL)

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
	Unknown	======= 7.01	3.1	===== .TYD
2	UIIKIIOWII	/.01	2.1	UAD
3		·		·
1				
5				
5		· · · ·		
7				
3			· · · · · · · · · · · · · · · · · · ·	
)	/			
1				
2				
3				
1				
5				
5				
7				I
3				
Э			·	
)				
1				
2				
3				
1				
5				
5				
7				
3				
9	[
E966796(1)	Total Alkanes	N/A		L

(1) EPA-designated Registry Number.

EPA SAMPLE NO.

BAMW528722

Lab Name: TESTAMERICA BURLINGTON		Contract: 8E-00302	I	1
Lab Code: STLV Case No.: BARNES	Mod. Re	ef No.:	SDG No.: 136602	
Matrix: (SOIL/SED/WATER) Water		Lab Sample ID: 8244	197	
Sample wt/vol: 25.0 (g/mL) mL		Lab File ID: 824497	7	
Level: (TRACE/LOW/MED) TRACE		Date Received: 04/0	01/2010	
% Moisture: not dec.		Date Analyzed: 04/0	05/2010	
GC Column: DB-624 ID: 0.53	(mm)	Dilution Factor: 1.	. 0	
Soil Extract Volume:	(uL)	Soil Aliquot Volume	2:	(uL)
Purge Volume: 25.0	(mL)			

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
75-71-8	Dichlorodifluoromethane	0.50	U
74-87-3	Chloromethane	0.50	υ
75-01-4	Vinyl chloride	0.50	υ
	Bromomethane	0.50	υ
75-00-3	Chloroethane	0.50	υ
75-69-4	Trichlorofluoromethane	0.50	υ
75-35-4	1,1-Dichloroethene	0.50	υ
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	υ
67-64-1	Acetone	5.0	U U
75-15-0	Carbon disulfide	0.50	υ
79-20-9	Methyl acetate	0.50	υ
75-09-2	Methylene chloride	0.50	ע
156-60-5	trans-1,2-Dichloroethene	0.50	U
1634-04-4	Methyl tert-butyl ether	0.50	U
	1,1-Dichloroethane	0.50	U
156-59-2	cis-1,2-Dichloroethene	0.50	U
78-93-3	2-Butanone	5.0	U
74-97-5	Bromochloromethane	0.50	υ
	Chloroform	0.34	J
71-55-6	1,1,1-Trichloroethane	0.50	ע ו
	Cyclohexane	0.50	U
56-23-5	Carbon tetrachloride	6.2	
		0.50	U
107-06-2	1,2-Dichloroethane	0.50	U
		·	

Report 1,4-Dioxane for Low-Medium VOA analysis only

EPA SAMPLE NO.

BAMW528722

Contract: 8E-00302 Lab Name: TESTAMERICA BURLINGTON Lab Code: STLV Case No.: BARNES Mod. Ref No.: SDG No.: 136602 Lab Sample ID: 824497 Matrix: (SOIL/SED/WATER) Water Sample wt/vol: 25.0 (g/mL) mL Lab File ID: 824497 Level: (TRACE/LOW/MED) TRACE Date Received: 04/01/2010 Date Analyzed: 04/05/2010 % Moisture: not dec. GC Column: DB-624 ID: 0.53 (mm) Dilution Factor: 1.0 Soil Aliquot Volume: Soil Extract Volume: (uL) (uL) Purge Volume: 25.0 (mL)

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
79-01-6	Trichloroethene	0.50	π
108-87-2	Methylcyclohexane	0.50	U
78-87-5	1,2-Dichloropropane	0.50	U
75-27-4	Bromodichloromethane	0.50	υ
10061-01-5	cis-1,3-Dichloropropene	0.50	U U
108-10-1	4-Methyl-2-pentanone	5.0	Ŭ
108-88-3	Toluene	0.50	U
10061-02-6	trans-1,3-Dichloropropene	0.50	υ
79-00-5	1,1,2-Trichloroethane	0.50	Ū
127-18-4	Tetrachloroethene	0.34	J
591-78-6	2-Hexanone	5.0	υ
	Dibromochloromethane	0.50	Ū
106-93-4	1,2-Dibromoethane	0.50	ן ש
108-90-7	Chlorobenzene	0.50	υ
100-41-4	Ethylbenzene	0.50	υ
95-47-6	o-Xylene	0.50	υ
179601-23-1	m,p-Xylene	0.50	υ
100-42-5	Styrene	0.50	U
75-25-2	Bromoform	0.50	υ
98-82-8	Isopropylbenzene	0.50	ע
79-34-5	1,1,2,2-Tetrachloroethane	0.50	ע ו
541-73-1	1,3-Dichlorobenzene	0.50	ט
106-46-7	1,4-Dichlorobenzene	0.50	ַ ַ ַ ַ ַ ַ
95-50-1	1,2-Dichlorobenzene	0.50	ט
96-12-8	1,2-Dibromo-3-chloropropane	0.50	υ
120-82-1	1,2,4-Trichlorobenzene	0.50	ប
87-61-6	1,2,3-Trichlorobenzene	0.50	U

EPA SAMPLE NO.

BAMW528722

Lab Name: TESTAMERICA BURLINGTON		Contract: 8E-00302	
Lab Code: STLV Case No.: BARNES	Mod.	Ref No.: SDG No.: 136	5602
Matrix: (SOIL/SED/WATER) Water		Lab Sample ID: 824497	
Sample wt/vol: 25.0 (g/mL) mL		Lab File ID: 824497	
Level: (TRACE or LOW/MED) TRACE		Date Received: 04/01/2010	
% Moisture: not dec.		Date Analyzed: 04/05/2010	
GC Column: DB-624 ID: 0.53	(mm)	Dilution Factor: 1.0	
Soil Extract Volume:	(uL)	Soil Aliquot Volume:	(uL)
CONCENTRATION UNITS: (ug/L or ug/kg)	ug/L	Purge Volume: 25.0	(mL)

	CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
~ 1			========	=======================================	=====
01 02		Unknown	7.01	3.2	JYR
02					·
04					
05				·	
06					
07					
08					
09					
10					
11	ten/				
12					
13					
14					
15					
16	· · · · · · · · · · · · · · · · · · ·				
17					
18					
19					
20			I		
21					
22					
23					
24					
25					
26 27					
28 29	<u> </u>				
30				·	
50	E966796(1)	Total Alkanes	N/A	· · · · · · · · · · · · · · · · · · ·	
I	(1) EPA-designated 3	Pegistry Number			<u>L</u>

(1) EPA-designated Registry Number.

BAMW6528723 Contract: 8E-00302 Lab Name: TESTAMERICA BURLINGTON SDG No.: 136602 Lab Code: STLV Case No.: BARNES Mod. Ref No.: Lab Sample ID: 824501 Matrix: (SOIL/SED/WATER) Water Sample wt/vol: 25.0 (g/mL) mL Lab File ID: 824501 Date Received: 04/01/2010 Level: (TRACE/LOW/MED) TRACE Date Analyzed: 04/06/2010 % Moisture: not dec. GC Column: DB-624 ID: 0.53 (mm) Dilution Factor: 1.0 (uL) Soil Aliquot Volume: (uL) Soil Extract Volume: Purge Volume: 25.0 (mL)

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
	====================================		=======
75-71-8	Dichlorodifluoromethane	0.50	υ
74-87-3	Chloromethane	0.50	U
75-01-4	Vinyl chloride	0.50	υ
74-83-9	Bromomethane	0.50	υ
75-00-3	Chloroethane	0.50	υ
75-69-4	Trichlorofluoromethane	0.50	U
75-35-4	1,1-Dichloroethene	0.50	υ
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	ט
	Acetone	5.0	υ
75-15-0	Carbon disulfide	0.50	υ
79-20-9	Methyl acetate	0.50	υ
75-09-2	Methylene chloride	0.50	υ
156-60-5	trans-1,2-Dichloroethene	0.50	υ
	Methyl tert-butyl ether	0.50	υ
	1,1-Dichloroethane	0.50	U
	cis-1,2-Dichloroethene	0.50	U
78-93-3	2-Butanone	5.0	ט
74-97-5	Bromochloromethane	0.50	ט
	Chloroform	0.50	U U
71-55-6	1,1,1-Trichloroethane	0.50	U U
	Cyclohexane	0.50	U
	Carbon tetrachloride	0.32	J
	Benzene	0.50	U U
107-06-2	1,2-Dichloroethane	0.50	U

Report 1,4-Dioxane for Low-Medium VOA analysis only

SOM01.2

EPA SAMPLE NO.

EPA SAMPLE NO.

BAMW6S28723

Contract: 8E-00302 Lab Name: TESTAMERICA BURLINGTON Lab Code: STLV Case No.: BARNES Mod. Ref No.: SDG No.: 136602 Lab Sample ID: 824501 Matrix: (SOIL/SED/WATER) Water Lab File ID: 824501 Sample wt/vol: 25.0 (g/mL) mL Date Received: 04/01/2010 Level: (TRACE/LOW/MED) TRACE Date Analyzed: 04/06/2010 % Moisture: not dec. Dilution Factor: 1.0 GC Column: DB-624 ID: 0.53 (mm) Soil Aliquot Volume: (uL) Soil Extract Volume: (uL) Purge Volume: 25.0 (mL)

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
================		=======================================	=======
79-01-6	Trichloroethene	0.50	Ŭ
108-87-2		0.50	U
78-87-5	1,2-Dichloropropane	0.50	U
75-27-4	Bromodichloromethane	0.50	U
10061-01-5	cis-1,3-Dichloropropene	0.50	U
108-10-1	1 1	5.0	ע ו
108-88-3	Toluene	0.50	U
10061-02-6	trans-1,3-Dichloropropene	0.50	υ
79-00-5	1,1,2-Trichloroethane	0.50	υ
127-18-4	Tetrachloroethene	0.21	J
591-78-6	2-Hexanone	5.0	υ
124-48-1	Dibromochloromethane	0.50	υ
	1,2-Dibromoethane	0.50	υ
108-90-7	Chlorobenzene	0.50	U
100-41-4	Ethylbenzene	0.50	ט
95-47-6	o-Xylene	0.50	υ
179601-23-1	m,p-Xylene	0.50	U
100-42-5	Styrene	0.50	U
75-25-2	Bromoform	0.50	U
98-82-8	Isopropylbenzene	0.50	U
79-34-5	1,1,2,2-Tetrachloroethane	0.50	υ
541-73-1		0.50	U
106-46-7		0.50	U
	1,2-Dichlorobenzene	0.50	υ
	1,2-Dibromo-3-chloropropane	0.50	U
	1,2,4-Trichlorobenzene	0.50	U
87-61-6	1,2,3-Trichlorobenzene	0.50	U
0, 01 0			1

EPA SAMPLE NO.

BAMW6S28723

Lab Name: TESTAMERICA BURLINGTON		Contract: 8E-00302		
Lab Code: STLV Case No.: BARNES	Mod.	Ref No.:	SDG No.:	136602
Matrix: (SOIL/SED/WATER) Water		Lab Sample ID: 82450	1	
Sample wt/vol: 25.0 (g/mL) mL		Lab File ID: 824501		
Level: (TRACE or LOW/MED) TRACE		Date Received: 04/01	/2010	
% Moisture: not dec.		Date Analyzed: 04/06	/2010	
GC Column: DB-624 ID: 0.53	(mm)	Dilution Factor: 1.0		
Soil Extract Volume:	(uL)	Soil Aliquot Volume:		(uL)
CONCENTRATION UNITS: (ug/L or ug/kg)	ug/L	Purge Volume: 25.0		(mL)

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
=======================================	1	7.01	=======================================	=====
	Unknown	7.01	3.1	UAB
-				
• · · · · · · · · · · · · · · · · · · ·				
)			- the second sec	
)				
-				
· · · · · · · · · · · · · · · · · · ·				
-				
5				
5				
7				
3				
		1		
)				
E966796(1)	Total Alkanes	N/A		

(1) EPA-designated Registry Number.

EPA SAMPLE NO.

BAMW828726

Lab Name: TESTAMERICA BURLINGTON		Contract: 8E-00302	
Lab Code: STLV Case No.: BARNES	Mod.	Ref No.: SDG No.:	136602
Matrix: (SOIL/SED/WATER) Water		Lab Sample ID: 824502	
Sample wt/vol: 25.0 (g/mL) ml	Ĺ	Lab File ID: 824502	
Level: (TRACE/LOW/MED) TRACE		Date Received: 04/01/2010	
% Moisture: not dec.		Date Analyzed: 04/06/2010	
GC Column: DB-624 ID: 0.53	(mm)	Dilution Factor: 1.0	
Soil Extract Volume:	(uL)	Soil Aliquot Volume:	(uL)
Purge Volume: 25.0	(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/kg) <u>ug/L</u>	Q
75-71-8	Dichlorodifluoromethane	0.50	U
74-87-3	Chloromethane	0.50	υ
75-01-4	Vinyl chloride	0.50	U
74-83-9	Bromomethane	0.50	U
75-00-3		0.50	ט
75-69-4	Trichlorofluoromethane	0.50	υ
75-35-4	1,1-Dichloroethene	0.50	υ
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	υ
67-64-1	Acetone	5.0	U
		0.50	U
79-20-9	Methyl acetate	0.50	υ
75-09-2	Methylene chloride	0.50	υ
156-60-5	trans-1,2-Dichloroethene	0.50	υ
1634-04-4	Methyl tert-butyl ether	0.50	U
75-34-3	1,1-Dichloroethane	0.50	υ
156-59-2	cis-1,2-Dichloroethene	0.50	υ
78-93-3	2-Butanone	5.0	υ
74-97-5	Bromochloromethane	0.50	υ
67-66-3	Chloroform	1.7	
71-55-6	1,1,1-Trichloroethane	0.50	U
110-82-7	Cyclohexane	0.50	ט
56-23-5	Carbon tetrachloride	25	Е
71-43-2	Benzene	0.50	υ
107-06-2	1,2-Dichloroethane	0.50	ี บ
I		[

Report 1,4-Dioxane for Low-Medium VOA analysis only

.

EPA SAMPLE NO.

BAMW828726

Lab Name: TESTAMERICA BURLINGTON		Contract: 8E-00302	
Lab Code: STLV Case No.: BARNES	Mod. I	Ref No.: SDG No.: 136602	
Matrix: (SOIL/SED/WATER) Water		Lab Sample ID: 824502	
Sample wt/vol: 25.0 (g/mL) m	Ĺ	Lab File ID: 824502	
Level: (TRACE/LOW/MED) TRACE		Date Received: 04/01/2010	
% Moisture: not dec.		Date Analyzed: 04/06/2010	
GC Column: DB-624 ID: 0.53	(mm)	Dilution Factor: 1.0	
Soil Extract Volume:	(uL)	Soil Alíquot Volume:	(uL)
Purge Volume: 25.0	(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/kg) <u>ug/L</u>	Q
=================		=======================================	=======
79-01-6	Trichloroethene	0.50	υ
108-87-2	Methylcyclohexane	0.50	υ
78-87-5	1,2-Dichloropropane	0.50	U
75-27-4	Bromodichloromethane	0.50	υ
10061-01-5	cis-1,3-Dichloropropene	0.50	υ
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	0.50	ַד
10061-02-6	trans-1,3-Dichloropropene	0.50	υ
79-00-5	1,1,2-Trichloroethane	0.50	U
127-18-4	Tetrachloroethene	0.50	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	0.50	U
106-93-4	1,2-Dibromoethane	0.50	υ
108-90-7	Chlorobenzene	0.50	υ
100-41-4	Ethylbenzene	0.50	ט 🛛
95-47-6	o-Xylene	0.50	υ
179601-23-1	m,p-Xylene	0.50	υ
100-42-5	Styrene	0.50	υ.
75-25-2	Bromoform	0.50	υ
98-82-8		0.50	υ
79-34-5	1,1,2,2-Tetrachloroethane	0.50	υ
541-73-1	1,3-Dichlorobenzene	0.50	U
106-46-7	1,4-Dichlorobenzene	0.50	U
95-50-1	1,2-Dichlorobenzene	0.50	ט
96-12-8	1,2-Dibromo-3-chloropropane	0.50	ט
120-82-1	1,2,4-Trichlorobenzene	0.50	ט
87-61-6	1,2,3-Trichlorobenzene	0.50	ט
			l

EPA SAMPLE NO.

BAMW828726

Lab Name: TESTAMERICA BURLINGTON		Contract: 8E-00302	
Lab Code: STLV Case No.: BARNES	Mod.	Ref No.:	SDG No.: 136602
Matrix: (SOIL/SED/WATER) Water		Lab Sample ID: 82450	2
Sample wt/vol: 25.0 (g/mL) mL		Lab File ID: 824502	
Level: (TRACE or LOW/MED) TRACE		Date Received: 04/01	/2010
% Moisture: not dec.		Date Analyzed: 04/06	/2010
GC Column: DB-624 ID: 0.53	(mm)	Dilution Factor: 1.0	
Soil Extract Volume:	(uL)	Soil Aliquot Volume:	(uL
CONCENTRATION UNITS: (ug/L or ug/kg) u	ıg/L	Purge Volume: 25.0	(mL

.

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
		=======	==============	=====
1	Unknown	7.01	3.0	JXB
2				
3				
4			#41-1/10 ⁻¹ -1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	
5			•	l
6				
7				
8				
9				
.0				
.1]			I	
.2				
.3				
.4				
.5				
.6				
.7				****************
.8				
.9				
0				
1			· · · · · · · · · · · · · · · · · · ·	
2				
3				
4				
5				
.6	New York Contract Con			
.7		·	·	
8				
	[
.9				
0				
E966796(1)	Total Alkanes d Registry Number.	N/A		<u> </u>

(1) EPA-designated Registry Number.

EPA SAMPLE NO.

BAPWS328747

Lab Name: TESTAMERICA BURLINGTON		Contract: 8E-00302			
Lab Code: STLV Case No.: BARNES	Mod.	Ref No.:	SDG No.:	136602	
Matrix: (SOIL/SED/WATER) Water		Lab Sample ID: 824	503		
Sample wt/vol: 25.0 (g/mL) mL		Lab File ID: 82450	3		
Level: (TRACE/LOW/MED) TRACE		Date Received: 04/	01/2010		
% Moisture: not dec.		Date Analyzed: 04/	06/2010		
GC Column: DB-624 ID: 0.53	(mm)	Dilution Factor: 1	.0		
Soil Extract Volume:	(uL)	Soil Aliquot Volum	e:		(uL)
Purge Volume: 25.0	(mL)				

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/kg) <u>ug/L</u>	Q
=========			
75-71-8	Dichlorodifluoromethane	0.50	U
74~87-3	Chloromethane	0.50	U
75-01-4	Vinyl chloride	0.50	U
74-83-9		0.50	U
75-00-3	Chloroethane	0.50	U
		0.50	υ
	1,1-Dichloroethene	0.50	U
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	υ
		1.1	JB
	Carbon disulfide	0.50	U
79-20-9	Methyl acetate	0.50	υ
75-09-2	Methylene chloride	0.50	U
156-60-5		0.50	ט ו
1634-04-4	Methyl tert-butyl ether	0.50	ט ו
75-34-3	1,1-Dichloroethane	0.50	ט
156-59-2	cis-1,2-Dichloroethene	0.50	ט
78-93-3	2-Butanone	0.46	JB
74-97-5	Bromochloromethane	0.50	U
67~66-3	Chloroform	0.50	ט
71-55-6	1,1,1-Trichloroethane	0.50	ט
110-82-7	Cyclohexane	0.50	ט
56-23-5	Carbon tetrachloride	0.50	ט
71-43-2	Benzene	0.50	U
107-06-2	1,2-Dichloroethane	0.50	υ
			[

Report 1,4-Dioxane for Low-Medium VOA analysis only

EPA SAMPLE NO.

BAPWS328747

Lab Name: TESTAMERICA BURLINGTON		Contract: 8E-00302	l	ł
Lab Code: STLV Case No.: BARNES	Mod. F	Ref No.:	SDG No.: 136602	
Matrix: (SOIL/SED/WATER) Water		Lab Sample ID: 824	503	·
Sample wt/vol: 25.0 (g/mL) mL		Lab File ID: 82450	3	
Level: (TRACE/LOW/MED) TRACE		Date Received: 04/	01/2010	
% Moisture: not dec.		Date Analyzed: 04/	06/2010	
GC Column: DB-624 ID: 0.53	(mm)	Dilution Factor: 1	0	
Soil Extract Volume:	(uL)	Soil Aliquot Volum	ne:	(uL)
Purge Volume: 25.0	(mL)			

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/kg) <u>ug/L</u>	Q
=============		=======================================	========
79-01-6	Trichloroethene	0.50	ע
108-87-2	Methylcyclohexane	0.50	υ
78-87-5	1,2-Dichloropropane	0.50	υ
75-27-4	Bromodichloromethane	0.50	ט
10061-01-5	cis-1,3-Dichloropropene	0.50	U
108-10-1	4-Methyl-2-pentanone	5.0	υ
108-88-3	Toluene	0.50	υ
10061-02-6	trans-1,3-Dichloropropene	0.50	ט
79-00-5	1,1,2-Trichloroethane	0.50	U
127-18-4	Tetrachloroethene	0.33	J
591-78-6	2-Hexanone	5.0	υ
124-48-1	Dibromochloromethane	0.50	U
106-93-4	1,2-Dibromoethane	0.50	U
108-90-7	Chlorobenzene	0.50	ט
100-41-4	Ethylbenzene	0.50	υ
95-47-6	o-Xylene	0.50	υ
179601-23-1	m,p-Xylene	0.50	υ
100-42-5	Styrene	0.50	υ
75-25-2	Bromoform	0.50	U
98-82-8	Isopropylbenzene	0.50	U
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U
541-73-1	1,3-Dichlorobenzene	0.50	U
106-46-7	1,4-Dichlorobenzene	0.50	ע
95-50-1	1,2-Dichlorobenzene	0.50	ט
96-12-8	1,2-Dibromo-3-chloropropane	0.50	ט
120-82-1	1,2,4-Trichlorobenzene	0.50	ע
87-61-6	1,2,3-Trichlorobenzene	0.50	U

EPA SAMPLE NO.

BAPWS328747

Lab Name: TESTAMERICA BURLINGTON		Contract: 8E-00302		
Lab Code: STLV Case No.: BARNES	Mod.	Ref No.:	SDG No.: 13	6602
Matrix: (SOIL/SED/WATER) Water		Lab Sample ID: 82450	3	
Sample wt/vol: 25.0 (g/mL) mL		Lab File ID: 824503		
Level: (TRACE or LOW/MED) TRACE		Date Received: 04/01	/2010	
% Moisture: not dec.		Date Analyzed: 04/06	/2010	
GC Column: DB-624 ID: 0.53	(mm)	Dilution Factor: 1.0		
Soil Extract Volume:	(uL)	Soil Aliquot Volume:		(uL)
CONCENTRATION UNITS: (ug/L or ug/kg)	ug/L	Purge Volume: 25.0		(mL)

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
	1	======= 7.01	3.1	===: JXB
	Unknown	7.01	J.T	
······	P			
				——
Mart Web a new control of the second s				
			810-140-1-1-1-	
			<u> </u>	
······································		- <u></u>		
			·····	
		·		
			·	
		<u> </u>		
		l		
E966796(1)	Total Alkanes	N/A		

(1) EPA-designated Registry Number.

EPA SAMPLE NO.

BAQCTB28756

Lab Name: TESTAMERICA BURLINGTON		Contract: 8E-00302		
Lab Code: STLV Case No.: BARNES	Mod. R	ef No.:	SDG No.: 136602	
Matrix: (SOIL/SED/WATER) Water		Lab Sample ID: 824	504	
Sample wt/vol: 25.0 (g/mL) mL		Lab File ID: 82450	4	
Level: (TRACE/LOW/MED) TRACE		Date Received: 04/	01/2010	
% Moisture: not dec.		Date Analyzed: 04/	06/2010	
GC Column: DB-624 ID: 0.53	(mm)	Dilution Factor: 1	.0	
Soil Extract Volume:	(uL)	Soil Aliquot Volum	e:	(uL)
Purge Volume: 25.0	(mL)			

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
CAS NO.			
75-71-8	Dichlorodifluoromethane	0.50	υ
1	Chloromethane	0.50	υ
	Vinyl chloride	0.50	υ
1 1	Bromomethane	0.50	υ
75-00-3	Chloroethane	0.50	ט [
75-69-4	Trichlorofluoromethane	0.50	υ
	1,1-Dichloroethene	0.50	ט 🛛
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	υ
67-64-1	Acetone	6.7	В
75-15-0	Carbon disulfide	0.50	Ū ·
79-20-9	Methyl acetate	0.50	U
75-09-2	Methylene chloride	0.50	U
156-60-5	trans-1,2-Dichloroethene	0.50	U
1634-04-4	Methyl tert-butyl ether	0.50	U
75-34-3	1,1-Dichloroethane	0.50	U
156-59-2	cis-1,2-Dichloroethene	0.50	U
	2-Butanone	1.2	JB
74-97-5	Bromochloromethane	0.50	U
67-66-3	Chloroform	0.50	U
71-55-6	1,1,1-Trichloroethane	0.50	U
110-82-7	Cyclohexane	0.50	ប
56-23-5	Carbon tetrachloride	0.50	υ
71-43-2		0.50	U
107-06-2	1,2-Dichloroethane	0.50	υ

Report 1,4-Dioxane for Low-Medium VOA analysis only

EPA SAMPLE NO.

BAQCTB28756

Lab Name: TESTAMERICA BURLINGTON		Contract: 8E-00302	l _{segura}	'
Lab Code: STLV Case No.: BARNES	Mod. R	ef No.:	SDG No.: 136602	
Matrix: (SOIL/SED/WATER) Water		Lab Sample ID: 824	504	
Sample wt/vol: 25.0 (g/mL) mL		Lab File ID: 824504	1	
Level: (TRACE/LOW/MED) TRACE		Date Received: 04/0	01/2010	
% Moisture: not dec.		Date Analyzed: 04/0	06/2010	
GC Column: DB-624 ID: 0.53	(mm)	Dilution Factor: 1	. 0	
Soil Extract Volume:	(uL)	Soil Aliquot Volume	2:	(uL)
Purge Volume: 25.0	(mL)			

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/kg) <u>ug/L</u>	Q
===============			
79-01-6	Trichloroethene	0.34	J
108-87-2	Methylcyclohexane	0.50	Ŭ
78-87-5	1,2-Dichloropropane	0.50	U
75-27-4	Bromodichloromethane	0.50	U
10061-01-5	cis-1,3-Dichloropropene	0.50	U
108-10-1	4-Methyl-2-pentanone	5.0	υ
108-88-3	Toluene	0.52	
10061-02-6	trans-1,3-Dichloropropene	0.50	U
79-00-5	1,1,2-Trichloroethane	0.50	ש
127-18-4	Tetrachloroethene	0.25	J
591-78-6	2-Hexanone	5.0	υ
124-48-1	Dibromochloromethane	0.50	ע
106-93-4	1,2-Dibromoethane	0.50	ע
108-90-7	Chlorobenzene	0.50	υ
100-41-4	Ethylbenzene	0.50	υ
95-47-6	o-Xylene	0.50	σ
179601-23-1	m,p-Xylene	0.50	υ
100-42-5	Styrene	0.50	υ
75-25-2	Bromoform	0.50	υ
98-82-8	Isopropylbenzene	0.50	υ
79-34-5	1,1,2,2-Tetrachloroethane	0.50	υ
541-73-1	1,3-Dichlorobenzene	0.50	ט
106-46-7	1,4-Dichlorobenzene	0.50	ט
95-50-1	1,2-Dichlorobenzene	0.50	U
96-12-8	1,2-Dibromo-3-chloropropane	0.50	υ
120-82-1	1,2,4-Trichlorobenzene	0.50	ט
87-61-6	1,2,3-Trichlorobenzene	0.50	ט
		İ	

EPA SAMPLE NO.

BAQCTB28756

Lab Name: TESTAMERICA BURLINGTON		Contract: 8E-00302		
Lab Code: STLV Case No.: BARNES	Mod.	Ref No.:	SDG No.: 13	36602
Matrix: (SOIL/SED/WATER) Water		Lab Sample ID: 82450	4	
Sample wt/vol: 25.0 (g/mL) mL		Lab File ID: 824504		
Level: (TRACE or LOW/MED) TRACE		Date Received: 04/01	/2010	
% Moisture: not dec.		Date Analyzed: 04/06	/2010	
GC Column: DB-624 ID: 0.53	(mm)	Dilution Factor: 1.0		
Soil Extract Volume:	(uL)	Soil Aliquot Volume:		(uL)
CONCENTRATION UNITS: (ug/L or ug/kg) ug	g/L	Purge Volume: 25.0		(mL)

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q =====
======================================	Unknown	======= 7.01	3 1	===== JXB
)2	UIIKIIOWII	/.01	5.1	
)3			······	
)4			· ·	
)5				
06				
)7				
8				
)9				
_0				<u></u>
-1	_			
_2	_			
_ 3 L4			·	
-* L5				
L6				
L7	-			
L8				
9				
20				
21				
22				
23				
24				
25	_			
26	art	·		
27				
28				
29				
E966796(1)	Total Alkanes	N/A	1.2	J
(1) EPA-designated			1.2	<u> </u>

(1) EPA-designated Registry Number.

EPA SAMPLE NO.

VBLKJH

Lab Name: TESTAMERICA BURLINGTON Contract: 8E-00302 Lab Code: STLV Case No.: BARNES Mod. Ref No.: SDG No.: 136602 Matrix: (SOIL/SED/WATER) Water Lab Sample ID: VBLKJH Lab File ID: JAQB01A Sample wt/vol: 25.0 (g/mL) mL Level: (TRACE/LOW/MED) TRACE Date Received: Date Analyzed: 04/05/2010 % Moisture: not dec. GC Column: DB-624 ID: 0.53 (mm) Dilution Factor: 1.0 Soil Aliquot Volume: (uL) Soil Extract Volume: (uL) (mL) Purge Volume: 25.0

1	·····	CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/kg) <u>ug/L</u>	Q
===============		=======================================	=======
75-71-8	Dichlorodifluoromethane	0.50	U
74-87-3	Chloromethane	0.50	U
75-01-4	Vinyl chloride	0.50	U
74-83-9	Bromomethane	0.50	U
75-00-3	Chloroethane	0.50	U
75-69-4	Trichlorofluoromethane	0.50	U
75-35-4		0.50	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	U
67-64-1		3.0	J
75-15-0	Carbon disulfide	0.50	υ
79-20-9	Methyl acetate	0.50	υ
75-09-2	Methylene chloride	0.50	υ
	trans-1,2-Dichloroethene	0.50	υ
1634-04-4	Methyl tert-butyl ether	0.50	U U
	1,1-Dichloroethane	0.50	υ
156-59-2	cis-1,2-Dichloroethene	0.50	υ
	2-Butanone	1.4	J
74-97-5	Bromochloromethane	0.50	U
67-66-3	Chloroform	0.50	ט ו
71-55-6	1,1,1-Trichloroethane	0.50	U
110-82-7	Cyclohexane	0.50	υ
56-23-5	Carbon tetrachloride	0.50	ט
71-43-2	Benzene	0.50	υ
107-06-2	1,2-Dichloroethane	0.50	ט

Report 1,4-Dioxane for Low-Medium VOA analysis only

EPA SAMPLE NO.

VBLKJH

Lab Name: TESTAMERICA BURLINGTON		Contract: 8E-00302		I
Lab Code: STLV Case No.: BARNES	Mod. 1	Ref No.:	SDG No.: 136602	
Matrix: (SOIL/SED/WATER) Water Lab Sample ID: VBLKJH				
Sample wt/vol: 25.0 (g/mL) mL	ı	Lab File ID: JAQB0	1A	
Level: (TRACE/LOW/MED) TRACE		Date Received:		
% Moisture: not dec. Date Analyzed: 04/05/2010				
GC Column: DB-624 ID: 0.53	(mm)	Dilution Factor: 1	.0	
Soil Extract Volume:	(uL)	Soil Aliquot Volum	e:	(uL)
Purge Volume: 25.0	(mL)			

		CONCENTRATION UNITS:	1
CAS NO.	COMPOUND	(ug/L or ug/kg) <u>ug/L</u>	Q
============		=======================================	
79-01-6	Trichloroethene	0.50	U
108-87-2	Methylcyclohexane	0.50	U
78-87-5	1,2-Dichloropropane	0.50	U
75-27-4	Bromodichloromethane	0.50	U
10061-01-5	cis-1,3-Dichloropropene	0.50	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	0.50	υ
10061-02-6	trans-1,3-Dichloropropene	0.50	υ
79-00-5	1,1,2-Trichloroethane	0.50	U
127-18-4	Tetrachloroethene	0.50	U
591-78-6	2-Hexanone	5.0	Ū
124-48-1	Dibromochloromethane	0.50	U
106-93-4	1,2-Dibromoethane	0.50	U
108-90-7	Chlorobenzene	0.50	υ
100-41-4	Ethylbenzene	0.50	U
95-47-6	o-Xylene	0.50	U
179601-23-1	m,p-Xylene	0.50	U
100-42-5	Styrene	0.50	U
75-25-2	Bromoform	0.50	U
98-82-8	Isopropylbenzene	0.50	U
79-34-5	1,1,2,2-Tetrachloroethane	0.50	υ
541-73-1	1,3-Dichlorobenzene	0.50	U
106-46-7	1,4-Dichlorobenzene	0.50	U
95-50-1	1,2-Dichlorobenzene	0.50	U
96-12-8	1,2-Dibromo-3-chloropropane	0.50	U
120-82-1	1,2,4-Trichlorobenzene	0.50	U
87-61-6	1,2,3-Trichlorobenzene	0.50	υ

EPA SAMPLE NO.

VBLKJH

Lab Name: TESTAMERICA BURLINGTON		Contract: 8E-00302		
Lab Code: STLV Case No.: BARNES	Mod.	Ref No.:	SDG No.:	136602
Matrix: (SOIL/SED/WATER) Water		Lab Sample ID: VBLKJ	H	
Sample wt/vol: 25.0 (g/mL) mL		Lab File ID: JAQB01A		
Level: (TRACE or LOW/MED) TRACE		Date Received:		
% Moisture: not dec.		Date Analyzed: 04/05	/2010	
GC Column: DB-624 ID: 0.53	(mm)	Dilution Factor: 1.0		
Soil Extract Volume:	(uL)	Soil Aliquot Volume:		(uL)
CONCENTRATION UNITS: (ug/L or ug/kg) u	ıg/L	Purge Volume: 25.0		(mL)

	CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
~ 1			========		===== TV
01 02		Unknown	7.01	3.1	JA
02	••••••••••••••••••••••••••••••••••••••				
04	•			 	
05					
06					
07					
08					
09				·	
10					
11					
12					
13					
14					
15					
16					
17					
18	·····				
19					
20	<u> </u>				
21					
22	<u></u>			. <u></u>	
23					
24				·	
25					
26					
27					
28 29		·			
30	······				
301	E966796(1)	Total Alkanes	N/A		
	(1) EPA-designated	LIULAI AIKAIIES Pegistry Number		<u>} </u>	L

(1) EPA-designated Registry Number.

EPA SAMPLE NO.

VBLKJK

Lab Name: TESTAMERICA BURLINGTON Contract: 8E-00302 Lab Code: STLV Case No.: BARNES Mod. Ref No.: SDG No.: 136602 Matrix: (SOIL/SED/WATER) Water Lab Sample ID: VBLKJK Sample wt/vol: 25.0 (g/mL) mL Lab File ID: JAQB01C Level: (TRACE/LOW/MED) TRACE Date Received: % Moisture: not dec. Date Analyzed: 04/06/2010 GC Column: DB-624 ID: 0.53 (mm) Dilution Factor: 1.0 Soil Aliquot Volume: (uL) Soil Extract Volume: (uL) Purge Volume: 25.0 (mL)

CAS NO.COMPOIND(ug/L or ug/kg) ug/LQ===================================			CONCENTRATION UNITS:	_
74-87-3Chloromethane0.50U $75-01-4$ Vinyl chloride0.50U $74-83-9$ Bromomethane0.50U $75-00-3$ Chloroethane0.50U $75-69-4$ Trichlorofluoromethane0.50U $75-35-4$ 1,1-Dichloroethene0.50U $76-13-1$ 1,1,2-Trichloro-1,2,2-trifluoroethane0.50U $67-64-1$ Acetone2.4J $75-09-2$ Methyl acetate0.50U $75-09-2$ Methyl acetate0.50U $75-09-2$ Methyl lene chloride0.50U $156-60-5$ trans-1,2-Dichloroethene0.50U $1634-04-4$ Methyl tert-butyl ether0.50U $156-59-2$ cis-1,2-Dichloroethene0.50U $156-59-2$ cis-1,2-Dichloroethene0.50U $74-97-5$ Bromochloromethane0.50U $74-97-5$ Bromochloromethane0.50U $10-82-7$ Cyclohexane0.50U $10-82-7$ Cyclohexane0.50U $12-32$ Benzene0.50U	CAS NO.	COMPOUND	(ug/L or ug/kg) <u>ug/L</u>	Q
74-87-3Chloromethane0.50U $75-01-4$ Vinyl chloride0.50U $74-83-9$ Bromomethane0.50U $75-00-3$ Chloroethane0.50U $75-69-4$ Trichlorofluoromethane0.50U $75-35-4$ 1,1-Dichloroethene0.50U $76-13-1$ 1,1,2-Trichloro-1,2,2-trifluoroethane0.50U $67-64-1$ Acetone2.4J $75-09-2$ Methyl acetate0.50U $75-09-2$ Methyl acetate0.50U $75-09-2$ Methyl lene chloride0.50U $156-60-5$ trans-1,2-Dichloroethene0.50U $1634-04-4$ Methyl tert-butyl ether0.50U $156-59-2$ cis-1,2-Dichloroethene0.50U $156-59-2$ cis-1,2-Dichloroethene0.50U $74-97-5$ Bromochloromethane0.50U $74-97-5$ Bromochloromethane0.50U $10-82-7$ Cyclohexane0.50U $10-82-7$ Cyclohexane0.50U $12-32$ Benzene0.50U		Diable redificerent hand		======== TT
75 - 01 - 4Vinyl chloride 0.50 U $74 - 83 - 9$ Bromomethane 0.50 U $75 - 00 - 3$ Chloroethane 0.50 U $75 - 69 - 4$ Trichlorofluoromethane 0.50 U $75 - 35 - 4$ $1, 1 - Dichloroethene$ 0.50 U $76 - 13 - 1$ $1, 1, 2 - Trichloro - 1, 2, 2 - trifluoroethane0.50U67 - 64 - 1Acetone2.4J75 - 15 - 0Carbon disulfide0.50U75 - 09 - 2Methyl acetate0.50U75 - 09 - 2Methylene chloride0.50U156 - 60 - 5trans - 1, 2 - Dichloroethene0.50U1634 - 04 - 4Methyl tert - butyl ether0.50U75 - 34 - 31, 1 - Dichloroethane0.50U78 - 93 - 32 - Butanone1.3J74 - 97 - 5Bromochloromethane0.50U67 - 66 - 3Chloroform0.50U71 - 55 - 61, 1, 1 - Trichloroethane0.50U10 - 82 - 7Cyclohexane0.50U56 - 23 - 5Carbon tetrachloride0.50U71 - 43 - 2Benzene0.50U$				- 1
74-83-9Bromomethane 0.50 U $75-00-3$ Chloroethane 0.50 U $75-69-4$ Trichlorofluoromethane 0.50 U $75-35-4$ $1,1-Dichloroethene$ 0.50 U $76-13-1$ $1,1,2-Trichloro-1,2,2-trifluoroethane$ 0.50 U $67-64-1$ Acetone 2.4 J $75-15-0$ Carbon disulfide 0.50 U $79-20-9$ Methyl acetate 0.50 U $75-09-2$ Methylene chloride 0.50 U $156-60-5$ trans-1,2-Dichloroethene 0.50 U $156-60-5$ trans-1,2-Dichloroethene 0.50 U $156-59-2$ cis-1,2-Dichloroethene 0.50 U $156-59-2$ cis-1,2-Dichloroethene 0.50 U $156-59-3$ 2-Butanone 1.3 J $74-97-5$ Bromochloromethane 0.50 U $67-66-3$ Chloroform 0.50 U $71-55-6$ $1,1,1-Trichloroethane0.50U10-82-7Cyclohexane0.50U10-82-7Cyclohexane0.50U71-43-2Benzene0.50U$	1			-
75-00-3Chloroethane 0.50 U $75-69-4$ Trichlorofluoromethane 0.50 U $75-35-4$ $1,1-Dichloroethene$ 0.50 U $76-13-1$ $1,1,2-Trichloro-1,2,2-trifluoroethane$ 0.50 U $67-64-1$ Acetone 2.4 J $75-15-0$ Carbon disulfide 0.50 U $79-20-9$ Methyl acetate 0.50 U $75-09-2$ Methyl acetate 0.50 U $75-09-2$ Methyl echloride 0.50 U $1634-04-4$ Methyl tert-butyl ether 0.50 U $1634-04-4$ Methyl tert-butyl ether 0.50 U $156-59-2$ cis-1,2-Dichloroethene 0.50 U $156-59-2$ cis-1,2-Dichloroethene 0.50 U $74-97-5$ Bromochloromethane 0.50 U $71-55-6$ $1,1,1-Trichloroethane0.50U10-82-7Cyclohexane0.50U10-82-7Cyclohexane0.50U71-43-2Benzene0.50U$				-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				-
75-35-41,1-Dichloroethene0.50U $76-13-1$ 1,1,2-Trichloro-1,2,2-trifluoroethane0.50U $67-64-1$ Acetone2.4J $75-15-0$ Carbon disulfide0.50U $79-20-9$ Methyl acetate0.50U $75-09-2$ Methylene chloride0.50U $75-09-2$ Methylene chloride0.50U $156-60-5$ trans-1,2-Dichloroethene0.50U $1634-04-4$ Methyl tert-butyl ether0.50U $75-34-3$ 1,1-Dichloroethane0.50U $75-34-3$ 2Butanone0.50U $74-97-5$ Bromochloromethane0.50U $71-55-6$ 1,1,1-Trichloroethane0.50U $10-82-7$ Cyclohexane0.50U $56-23-5$ Carbon tetrachloride0.50U $71-43-2$ Benzene0.50U				- 1
76-13-1 $1,1,2-Trichloro-1,2,2-trifluoroethane$ 0.50 U $67-64-1$ Acetone 2.4 J $75-15-0$ Carbon disulfide 0.50 U $79-20-9$ Methyl acetate 0.50 U $75-09-2$ Methylene chloride 0.50 U $156-60-5$ trans-1,2-Dichloroethene 0.50 U $1634-04-4$ Methyl tert-butyl ether 0.50 U $75-34-3$ $1,1-Dichloroethane$ 0.50 U $156-59-2$ cis-1,2-Dichloroethene 0.50 U $78-93-3$ 2 -Butanone 1.3 J $74-97-5$ Bromochloromethane 0.50 U $71-55-6$ $1,1,1$ -Trichloroethane 0.50 U $110-82-7$ Cyclohexane 0.50 U $56-23-5$ Carbon tetrachloride 0.50 U $71-43-2$ Benzene 0.50 U			• • = •	1
67-64-1Acetone 2.4 J $75-15-0$ Carbon disulfide 0.50 U $79-20-9$ Methyl acetate 0.50 U $75-09-2$ Methylene chloride 0.50 U $156-60-5$ trans- $1, 2$ -Dichloroethene 0.50 U $1634-04-4$ Methyl tert-butyl ether 0.50 U $75-34-3$ $1, 1$ -Dichloroethane 0.50 U $156-59-2$ cis- $1, 2$ -Dichloroethene 0.50 U $78-93-3$ 2 -Butanone 1.3 J $74-97-5$ Bromochloromethane 0.50 U $67-66-3$ Chloroform 0.50 U $71-55-6$ $1, 1, 1$ -Trichloroethane 0.50 U $10-82-7$ Cyclohexane 0.50 U $56-23-5$ Carbon tetrachloride 0.50 U $71-43-2$ Benzene 0.50 U				1
75-15-0Carbon disulfide 0.50 U $79-20-9$ Methyl acetate 0.50 U $75-09-2$ Methylene chloride 0.50 U $156-60-5$ trans-1,2-Dichloroethene 0.50 U $1634-04-4$ Methyl tert-butyl ether 0.50 U $75-34-3$ 1,1-Dichloroethane 0.50 U $156-59-2$ cis-1,2-Dichloroethene 0.50 U $78-93-3$ 2-Butanone 1.3 J $74-97-5$ Bromochloromethane 0.50 U $67-66-3$ Chloroform 0.50 U $71-55-6$ 1,1,1-Trichloroethane 0.50 U $10-82-7$ Cyclohexane 0.50 U $56-23-5$ Carbon tetrachloride 0.50 U $71-43-2$ Benzene 0.50 U				1
79-20-9 Methyl acetate 0.50 U 75-09-2 Methylene chloride 0.50 U 156-60-5 trans-1,2-Dichloroethene 0.50 U 1634-04-4 Methyl tert-butyl ether 0.50 U 75-34-3 1,1-Dichloroethane 0.50 U 156-59-2 cis-1,2-Dichloroethene 0.50 U 78-93-3 2-Butanone 1.3 J 74-97-5 Bromochloromethane 0.50 U 67-66-3 Chloroform 0.50 U 71-55-6 1,1,1-Trichloroethane 0.50 U 10-82-7 Cyclohexane 0.50 U 56-23-5 Carbon tetrachloride 0.50 U 71-43-2 Benzene 0.50 U	4			- 1
75-09-2 Methylene chloride 0.50 U 156-60-5 trans-1,2-Dichloroethene 0.50 U 1634-04-4 Methyl tert-butyl ether 0.50 U 75-34-3 1,1-Dichloroethane 0.50 U 156-59-2 cis-1,2-Dichloroethene 0.50 U 156-59-2 cis-1,2-Dichloroethene 0.50 U 78-93-3 2-Butanone 1.3 J 74-97-5 Bromochloromethane 0.50 U 67-66-3 Chloroform 0.50 U 71-55-6 1,1,1-Trichloroethane 0.50 U 110-82-7 Cyclohexane 0.50 U 56-23-5 Carbon tetrachloride 0.50 U 71-43-2 Benzene 0.50 U				
156-60-5 trans-1,2-Dichloroethene 0.50 U 1634-04-4 Methyl tert-butyl ether 0.50 U 75-34-3 1,1-Dichloroethane 0.50 U 156-59-2 cis-1,2-Dichloroethene 0.50 U 156-59-2 cis-1,2-Dichloroethene 0.50 U 78-93-3 2-Butanone 1.3 J 74-97-5 Bromochloromethane 0.50 U 67-66-3 Chloroform 0.50 U 71-55-6 1,1,1-Trichloroethane 0.50 U 110-82-7 Cyclohexane 0.50 U 56-23-5 Carbon tetrachloride 0.50 U 71-43-2 Benzene 0.50 U				-
1634-04-4 Methyl tert-butyl ether 0.50 U 75-34-3 1,1-Dichloroethane 0.50 U 156-59-2 cis-1,2-Dichloroethene 0.50 U 78-93-3 2-Butanone 1.3 J 74-97-5 Bromochloromethane 0.50 U 67-66-3 Chloroform 0.50 U 71-55-6 1,1,1-Trichloroethane 0.50 U 110-82-7 Cyclohexane 0.50 U 56-23-5 Carbon tetrachloride 0.50 U 71-43-2 Benzene 0.50 U				
75-34-3 1,1-Dichloroethane 0.50 U 156-59-2 cis-1,2-Dichloroethene 0.50 U 78-93-3 2-Butanone 1.3 J 74-97-5 Bromochloromethane 0.50 U 67-66-3 Chloroform 0.50 U 71-55-6 1,1,1-Trichloroethane 0.50 U 110-82-7 Cyclohexane 0.50 U 56-23-5 Carbon tetrachloride 0.50 U 71-43-2 Benzene 0.50 U				-
156-59-2 cis-1,2-Dichloroethene 0.50 U 78-93-3 2-Butanone 1.3 J 74-97-5 Bromochloromethane 0.50 U 67-66-3 Chloroform 0.50 U 71-55-6 1,1,1-Trichloroethane 0.50 U 110-82-7 Cyclohexane 0.50 U 56-23-5 Carbon tetrachloride 0.50 U 71-43-2 Benzene 0.50 U				-
78-93-3 2-Butanone 1.3 J 74-97-5 Bromochloromethane 0.50 U 67-66-3 Chloroform 0.50 U 71-55-6 1,1,1-Trichloroethane 0.50 U 110-82-7 Cyclohexane 0.50 U 56-23-5 Carbon tetrachloride 0.50 U 71-43-2 Benzene 0.50 U				-
74-97-5 Bromochloromethane 0.50 U 67-66-3 Chloroform 0.50 U 71-55-6 1,1,1-Trichloroethane 0.50 U 110-82-7 Cyclohexane 0.50 U 56-23-5 Carbon tetrachloride 0.50 U 71-43-2 Benzene 0.50 U				! · · · · · · ·
67-66-3 Chloroform 0.50 U 71-55-6 1,1,1-Trichloroethane 0.50 U 110-82-7 Cyclohexane 0.50 U 56-23-5 Carbon tetrachloride 0.50 U 71-43-2 Benzene 0.50 U				- 1
71-55-6 1,1,1-Trichloroethane 0.50 U 110-82-7 Cyclohexane 0.50 U 56-23-5 Carbon tetrachloride 0.50 U 71-43-2 Benzene 0.50 U				
110-82-7 Cyclohexane 0.50 U 56-23-5 Carbon tetrachloride 0.50 U 71-43-2 Benzene 0.50 U				-
56-23-5 Carbon tetrachloride 0.50 U 71-43-2 Benzene 0.50 U				
71-43-2 Benzene 0.50 U	_			-
				_
				-
		_,		_

Report 1,4-Dioxane for Low-Medium VOA analysis only

.

EPA SAMPLE NO.

VBLKJK

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302
Lab Code: STLV Case No.: BARNES	Mod. Ref No.: SDG No.: 136602
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: VBLKJK
Sample wt/vol: 25.0 (g/mL) mL	Lab File ID: JAQB01C
Level: (TRACE/LOW/MED) TRACE	Date Received:
% Moisture: not dec.	Date Analyzed: 04/06/2010
GC Column: DB-624 ID: 0.53 ((mm) Dilution Factor: 1.0
Soil Extract Volume: ((uL) Soil Aliquot Volume: (uL)
Purge Volume: 25.0 ((mL)

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/kg) ug/L	Q
=================			========
79-01-6	Trichloroethene	0.50	ΰ
108-87-2	Methylcyclohexane	0.50	υ
78-87-5	1,2-Dichloropropane	0.50	υ
75-27-4	Bromodichloromethane	0.50	υ
10061-01-5	cis-1,3-Dichloropropene	0.50	υ
108-10-1	4-Methyl-2-pentanone	5.0	υ
108-88-3	Toluene	0.50	υ
10061-02-6	trans-1,3-Dichloropropene	0.50	υ
79-00-5	1,1,2-Trichloroethane	0.50	υ
127-18-4	Tetrachloroethene	0.50	υ
591-78-6	2-Hexanone	5.0	υ
124-48-1	Dibromochloromethane	0.50	ן ט
106-93-4	1,2-Dibromoethane	0.50	ט
108-90-7	Chlorobenzene	0.50	U
100-41-4	Ethylbenzene	0.50	ט
95-47-6	o-Xylene	0.50	U U
179601-23-1	m,p-Xylene	0.50	υ
100-42-5	Styrene	0.50	υ
75-25-2	Bromoform	0.50	υ
98-82-8	Isopropylbenzene	0.50	U
79-34-5	1,1,2,2-Tetrachloroethane	0.50	ט
541-73-1	1,3-Dichlorobenzene	0.50	υ
106-46-7		0.50	U
95-50-1	1,2-Dichlorobenzene	0.50	U
	1,2-Dibromo-3-chloropropane	0.50	υ
120-82-1	1,2,4-Trichlorobenzene	0.50	U
87-61-6	1,2,3-Trichlorobenzene	0.50	υ
		I	<u> </u>

EPA SAMPLE NO.

VBLKJK

Lab Name: TESTAMERICA BUF	RLINGTON		Contract: 8E-00302		
Lab Code: STLV Case No	D.: BARNES	Mod.	Ref No.:	SDG No.: 13	6602
Matrix: (SOIL/SED/WATER)	Water		Lab Sample ID: VBLKJP	x	
Sample wt/vol: 25.0	(g/mL) mL		Lab File ID: JAQB01C		
Level: (TRACE or LOW/MED)	TRACE		Date Received:		
% Moisture: not dec.			Date Analyzed: 04/06,	/2010	
GC Column: DB-624	ID: 0.53	(mm)	Dilution Factor: 1.0		
Soil Extract Volume:		(uL)	Soil Aliquot Volume:		(uL)
CONCENTRATION UNITS: (ug/I	or ug/kg) ug	/L	Purge Volume: 25.0		(mL)

1	CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
		=======================================	=======	=============	
1		Unknown	7.01	2.8	JX
2					
3					
4	· · · · · · · · · · · · · · · · · · ·				
5	·				
6	· ·				
7					
8	······································			· · · · · · · · · · · · · · · · · · ·	
9					
0					
1					
2					
3					
4					
5					
6					
7					
8					<u> </u>
9					
0	-				
1			1		
2					1
3					
4					
5	<u></u>				
6				· · · · · · · · · · · · · · · · · · ·	
7	warming and the second s				
8					
9				<u> </u>	
0				······································	
	E966796(1) (1)EPA-designated	Total Alkanes	N/A	L.,	1.

(1) EPA-designated Registry Number.

.

EPA SAMPLE NO.

VHBLK01

Lab Name: TESTAMERICA BURLINGTON		Contract: 8E-00302		
Lab Code: STLV Case No.: BARNES	Mod. Re	ef No.:	SDG No.: 136602	
Matrix: (SOIL/SED/WATER) Water		Lab Sample ID: 8245	505	
Sample wt/vol: 25.0 (g/mL) mL		Lab File ID: 824505	5	
Level: (TRACE/LOW/MED) TRACE		Date Received:		
% Moisture: not dec.		Date Analyzed: 04/0	06/2010	
GC Column: DB-624 ID: 0.53	(mm)	Dilution Factor: 1.	. 0	
Soil Extract Volume:	(uL)	Soil Aliquot Volume	2:	(uL)
Purge Volume: 25.0	(mL)			

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/kg) <u>ug/L</u>	Q
=======================================			=======
75-71-8	Dichlorodifluoromethane	0.50	Ŭ
74-87-3	Chloromethane	0.50	υ
75-01-4	Vinyl chloride	0.50	ע
74-83-9	Bromomethane	0.50	U
	Chloroethane	0.50	U
75-69-4	Trichlorofluoromethane	0.50	U
75-35-4	1,1-Dichloroethene	0.50	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	U
67-64-1	Acetone	1.4	JB
75-15-0	Carbon disulfide	0.50	ט ן
79-20-9	Methyl acetate	0.50	U U
75-09-2	Methylene chloride	0.50	U
156-60-5	trans-1,2-Dichloroethene	0.50	ט
1634-04-4	Methyl tert-butyl ether	0.50	υ
75-34-3	1,1-Dichloroethane	0.50	υ
	cis-1,2-Dichloroethene	0.50	υ
78-93-3	2-Butanone	5.0	υ
74-97-5	Bromochloromethane	0.50	υ
67-66-3	Chloroform	0.50	U
71-55-6	1,1,1-Trichloroethane	0.50	υ
110-82-7	Cyclohexane	0.50	υ
56-23-5	Carbon tetrachloride	0.50	U
71-43-2	Benzene	0.50	υ
107-06-2	1,2-Dichloroethane	0.50	U

Report 1,4-Dioxane for Low-Medium VOA analysis only

EPA SAMPLE NO.

VHBLK01

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302	I	1	
Lab Code: STLV Case No.: BARNES	Mod. H	Ref No.:	SDG No.: 136602	
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: 824	505		
Sample wt/vol: 25.0 (g/mL) mL	ı	Lab File ID: 82450	5	
Level: (TRACE/LOW/MED) TRACE	Date Received:			
% Moisture: not dec.		Date Analyzed: 04/	06/2010	
GC Column: DB-624 ID: 0.53	(mm)	Dilution Factor: 1	0	
Soil Extract Volume:	(uL)	Soil Aliquot Volum	ie:	(uL)
Purge Volume: 25.0	(mL)			

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
==============	=======================================		========
79-01-6	Trichloroethene	0.50	υ
108-87-2	Methylcyclohexane	0.50	U
78-87-5	1,2-Dichloropropane	0.50	υ
75-27-4	Bromodichloromethane	0.50	υ
10061-01-5	cis-1,3-Dichloropropene	0.50	υ
108-10-1	4-Methyl-2-pentanone	5.0	υ
108-88-3	Toluene	0.50	U
10061-02-6	trans-1,3-Dichloropropene	0.50	υ
79-00-5	1,1,2-Trichloroethane	0.50	U
127-18-4	Tetrachloroethene	0.50	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	0.50	U U
106-93-4	1,2-Dibromoethane	0.50	ן ש
108-90-7	Chlorobenzene	0.50	U -
100-41-4	Ethylbenzene	0.50	ט
95-47-6	o-Xylene	0.50	ן ט
179601-23-1	m,p-Xylene	0.50	U
100-42-5	Styrene	0.50	U
75-25-2	Bromoform	0.50	υ
98-82-8	Isopropylbenzene	0.50	υ
79-34-5	1,1,2,2-Tetrachloroethane	0.50	υ
541-73-1		0.50	U
106-46-7		0.50	υ
	1,2-Dichlorobenzene	0.50	υ
96-12-8		0.50	υ
	1,2,4-Trichlorobenzene	0.50	υ
87-61-6	1,2,3-Trichlorobenzene	0.50	υ

EPA SAMPLE NO.

VHBLK01

Lab Name: TESTAMERICA BURLINGTON		Contract: 8E-00302		
Lab Code: STLV Case No.: BARNES	Mod.	Ref No.:	SDG No.:	136602
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: 824505			
Sample wt/vol: 25.0 (g/mL) mL		Lab File ID: 824505		
Level: (TRACE or LOW/MED) TRACE		Date Received:		
% Moisture: not dec.		Date Analyzed: 04/06	/2010	
GC Column: DB-624 ID: 0.53	(mm)	Dilution Factor: 1.0		
Soil Extract Volume:	(uL)	Soil Aliquot Volume:		(uL)
CONCENTRATION UNITS: (ug/L or ug/kg) u	ıg/L	Purge Volume: 25.0		(mL)

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q =====
	1 · · · · · · · · · · · · · · · · · · ·	7.01	2.6	
01	Unknown	7.01	2.0	ÛVD
02				
03				
04				
05		-		
06		-		
07		_		
08				
09				
10				
11				
12		_		
13		_	·	
14				
15		_		
16				
17				
18		-		
19		- i		
20		_		
21				
22		-	· · · · · · · · · · · · · · · · · · ·	
23]	-		
24		-		
25		_		
26		-	······································	
27				·
28				-
29		_	·	·
30		- N/A		·
E966796(1)	Total Alkanes	N/A	1	1

(1) EPA-designated Registry Number.

2A - FORM II VOA-1 WATER VOLATILE DEUTERATED MONITORING COMPOUND RECOVERY

.

Lab Name: TESTAMERICA BURLINGTON Contract: 8E-00302

Lab Code: STLV Case No.: BARNES Mod. Ref No.: SDG No.: 136602

Level: (TRACE or LOW) TRACE

	EPA	VDMC1	VDMC2	VDMC3	VDMC4	VDMC5	VDMC6	VDMC7
	SAMPLE NO.	(VCL)#	(CLA) #	(DCE)#	(BUT) #	(CLF) #	(DCA) #	(BEN) #
	=======================================			========				======
01	VBLKJH	90	95	73	102	94	99	95
02	BAMW528722	86	93	73	147	93	101	97
03	BAMW15D28741	85	93	73	136	94	104	97
04	BAMW16S28742	84	89	73	144	93	100	95
05	BAMW16D28743	86	91	73	133	96	103	99
06	BAMW6S28723	87	93	75	145	95	102	98
07	BAPWS328747	87	94	72	122	91 00	98	98
08	BAQCTB28756	89	94	74	155	92	101	95
09	BAMW828726	88	93	75	101	94	96 95	97
10	VBLKJK	91	95	74	85	92		93
11 12	VHBLK01	95	102	77	60	90	86	97
12								
14^{13}								
15				1				
16	· · · ·							· · · · · · · · · · · · · · · · · · ·
17				· · · · ·				
18								·
19								
20								
21								
22					·			
23	•		····					
24								
25								
26								
27								
28								
29	• (i
30							·	

Column to be used to flag recovery values
* Values outside of contract required QC limits Page 1 of 2

2B - FORM II VOA-2 WATER VOLATILE DEUTERATED MONITORING COMPOUND RECOVERY

Lab Name: TESTAMERICA BURLINGTON

Contract: 8E-00302

Lab Code: STLV Case No.: BARNES Mod. Ref No.: SDG No.: 136602

Level: (TRACE or LOW) TRACE

	EPA	VDMC8	VDMC9	VDMC10	VDMC11	VDMC12	VDMC13	VDMC14	TOT
	SAMPLE NO.	(DPA) #	(TOL)#	(TDP)#	(HEX)#	(TCA) #	(DCZ)#	()#	OUT
	============					========	=======	========	=====
01	VBLKJH	85	94	97	98	96	96		0
02	BAMW528722	88	98	103	138*	100	100		1
03	BAMW15D28741	87	96	103	125	101	98		0
04	BAMW16S28742	87	96	101	131	101	98		0
05	BAMW16D28743	87	99	104	122	103	100		0
06	BAMW6528723	89	98	102	136*	102	100		1
07	BAPWS328747	87	98	100	117	95	97		0
08	BAQCTB28756	86	96	99	143*	96	99		1
09	BAMW828726	86	99	97	103	93	103		0
10	VBLKJK	81	95	92	84	88	91		0
11	VHBLK01	80	98	85	57	76	89		0
12									
13									
14									
15									
16									
17									
18									
19									
20									
21									
22									
23									
24									
25	·								
26									
27									
28									·
29									
30									
50									
				l		·	I	I	·

			QC LIMITS
VDMC8	(DPA)	= 1,2-Dichloropropane-d6	(79-124)
VDMC9	(TOL)	= Toluene-d8	(77-121)
VDMC10	(TDP)	= trans-1,3-Dichloropropene-d4	(73-121)
VDMC11	(HEX)	= 2-Hexanone-d5	(28-135)
		= 1,1,2,2-Tetrachloroethane-d2	(73-125)
VDMC13	(DCZ)	= 1,2-Dichlorobenzene-d4	(80-131)

Column to be used to flag recovery values
* Values outside of contract required QC limits

Report 1,4-Dioxane-d8 for Low-Medium VOA analysis only Page 2 of 2

4A - FORM IV VOA VOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

VBLKJH

Lab Name: TESTAMERICA BURLINGTONContract: 8E-00302Lab Code: STLVCase No.: BARNESMod. Ref No.:SDG No.: 136602Lab File ID: JAQB01ALab Sample ID: VBLKJHInstrument ID: J.iMatrix: (SOIL/SED/WATER) WaterDate Analyzed: 04/05/2010Level: (TRACE or LOW/MED) TRACETime Analyzed: 2158GC Column: DB-624ID: 0.53(mm) Heated Purge: (Y/N) N

SAMPLE NO. SAMPLE ID FILE ID ANALYZED ====================================		EPA	LAB	LAB	TIME
02 BAMW15D28741 824498 824499 2329 03 BAMW16528742 824499 824499 2355 04 BAMW16D28743 824500 824500 0022 05 BAMW6528723 824501 824501 0050 06 BAPWS328747 824503 824503 0118 07 BAQCTB28756 824504 824504 0144 08 BAMW828726 824502 0334 0334 09				==================	
03 BAMW16528742 824499 824499 2355 04 BAMW16D28743 824500 824500 0022 05 BAMW6S28723 824501 824501 0050 06 BAPWS328747 824503 824503 0118 07 BAQCTB28756 824504 824502 0334 09	01	BAMW528722	824497	824497	2301
04 BAMW16D28743 824500 824501 0022 05 BAMW6S28723 824501 824501 0050 06 BAPWS328747 824503 824503 0118 07 BAQCTB28756 824504 824502 0334 09	02	BAMW15D28741	824498	824498	2329
05 BAMW6S28723 824501 824501 0050 06 BAPWS328747 824503 824503 0118 07 BAQCTB28756 824504 824502 0334 08 BAMW828726 824502 824502 0334 09	03	BAMW16S28742	824499	824499	2355
05 BAMW6528723 824501 824501 0050 06 BAPWS328747 824503 824503 0118 07 BAQCTB28756 824504 824502 0334 08 BAMW828726 824502 824502 0334 09	04	BAMW16D28743	824500	824500	0022
06 BAPWS328747 824503 824503 0118 07 BAQCTB28756 824504 824502 0334 09	05	BAMW6S28723	824501	824501	0050
08 BAMW828726 824502 0334 09	06			824503	0118
08 BAMW828726 824502 0334 09	07	BAOCTB28756	824504	824504	0144
09	08		824502	824502	0334
11	09				
12	10				
13	11				
14	12				
15	13				
16	14				
17	15				
18	16				
19	17				
20	18				
21	19				
22	20				
23					
24	22				
25	23	l			
26	24				
27	25		·		
28 29	26				
29	27				
30					
	30	l			

COMMENTS:

Page 1 of 1

4A - FORM IV VOA VOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

VBLKJK

Lab Code: STLVCase No.: BARNESMod. Ref No.:SDG No.: 136602Lab File ID: JAQB01CLab Sample ID: VBLKJKInstrument ID: J.iJate Analyzed: 04/06/2010Matrix: (SOIL/SED/WATER) WaterDate Analyzed: 04/06/2010Level: (TRACE or LOW/MED) TRACETime Analyzed: 1222GC Column: DB-624ID: 0.53(mm) Heated Purge: (Y/N) N	Lab Name: TESTAMERICA BURLINGTON		Contract: 8E-00302		
Instrument ID: J.i Matrix: (SOIL/SED/WATER) Water Date Analyzed: 04/06/2010 Level: (TRACE or LOW/MED) TRACE Time Analyzed: 1222	Lab Code: STLV Case No.: BARNES	Mod.	. Ref No.:	SDG No.:	136602
Matrix: (SOIL/SED/WATER) WaterDate Analyzed: 04/06/2010Level: (TRACE or LOW/MED) TRACETime Analyzed: 1222	Lab File ID: JAQB01C		Lab Sample ID: VBLKJK		
Level: (TRACE or LOW/MED) TRACE Time Analyzed: 1222	Instrument ID: J.i				
	Matrix: (SOIL/SED/WATER) Water		Date Analyzed: 04/06/2	2010	
GC Column: DB-624 ID: 0.53 (mm) Heated Purge: (Y/N) N	Level: (TRACE or LOW/MED) TRACE		Time Analyzed: 1222		
	GC Column: DB-624 ID: 0.53	(mm)	Heated Purge: (Y/N) N		

EPA	LAB	LAB	TIME
SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
	================	================	=========
01 VHBLK01	824505	824505	1342
02			
)3			
04			
05			
06			
07			
08			
09			
10			
11			
12			
13			
14			
15			
16			·
17			
18			
19		· · · · · · · · · · · · · · · · · · ·	
20			
21			
22			<u></u>
23			
24			
25			
26			- <u>-</u>
27			
28			
29			
30			

COMMENTS:

Page 1 of 1

5A - FORM V VOA VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

EPA SAMPLE NO.

BFBJG

Lab Name: TESTAMERICA BURLINGTON Contract: 8E-00302 Lab Code: STLV Case No.: BARNES Mod. Ref No.: SDG No.: 136602 BFB Injection Date: 04/05/2010 Lab File ID: JAQ01PV BFB Injection Time: 1223 Instrument ID: J.i GC Column: DB-624 ID: 0.53 (mm)

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	
50	15.0 - 40.0% of mass 95	18.0	
75	30.0 - 80.0% of mass 95	48.7	
95	Base Peak, 100% relative abundance	100.0	
96	5.0 - 9.0% of mass 95	7.0	
173	Less than 2.0% of mass 174	0.0 (0.0)1	
174	50.0 - 120.0% of mass 95	66.9	
175	5.0 - 9.0% of mass 174	6.0 (8.9)1	
176	95.0 - 101.0% of mass 174	66.3 (99.2)1	
177	5.0 - 9.0% of mass 176	4.5 (6.8)2	
l	1 - Value is %mass 174 2 - Value is %ma	ss 176	

1	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
					=========
01	VSTD0.5JG	VSTD0.5JG	JAQ0005V	04/05/2010	1318
02	VSTD001JG	VSTD001JG	JAQ001V	04/05/2010	1345
03	VSTD005JG	VSTD005JG	JAQ005V	04/05/2010	1412
04	VSTD010JG	VSTD010JG	JAQ010V	04/05/2010	1438
04	VSTD020JG	VSTD020JG	JAQ020V	04/05/2010	1505
05	V31D0200G		01120201	01/02/2020	
07					
08					
08					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					
21					
22	1				

Page 1 of 1

5A - FORM V VOA VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: TESTAMERICA BURLINGTONContract: 8E-00302Lab Code: STLVCase No.: BARNESMod. Ref No.:SDG No.: 136602Lab File ID: JA002PVBFB Injection Date: 04/05/2010

BFB Injection Time: 2109

Lab File ID: JAQ02PV

Instrument ID: J.i

GC Column: DB-624 ID: 0.53 (mm)

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
=======	=======================================	=================
50	15.0 - 40.0% of mass 95	16.2
75	30.0 - 80.0% of mass 95	47.5
95	Base Peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	7.2
173	Less than 2.0% of mass 174	0.0 (0.0)1
174	50.0 - 120.0% of mass 95	77.0
175	5.0 - 9.0% of mass 174	5.7 (7.5)1
176	95.0 - 101.0% of mass 174	73.4 (95.3)1
177	5.0 - 9.0% of mass 176	4.3 (5.9)2

1 - Value is %mass 174

2 - Value is %mass 176

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	==========			==========	=========
01	VSTD005JH	VSTD005JH	JAQ005AV	04/05/2010	2130
02	VBLKJH	VBLKJH	JAQB01A	04/05/2010	2158
03	BAMW528722	824497	824497	04/05/2010	2301
04	BAMW15D28741	824498	824498	04/05/2010	2329
05	BAMW16S28742	824499	824499	04/05/2010	2355
06	BAMW16D28743	824500	824500	04/06/2010	0022
07	BAMW6S28723	824501	824501	04/06/2010	0050
08	BAPWS328747	824503	824503	04/06/2010	0118
09	BAQCTB28756	824504	824504	04/06/2010	0144
10	BAMW828726	824502	824502	04/06/2010	0334
11	VSTD005HJ	VSTD005HJ	JAQ05AC1	04/06/2010	0428
12	l				
13					
14					
15		l			
16					
17					
18]				
19				·	
20					
21					
22					

EPA SAMPLE NO. BFBJH

5A - FORM V VOA VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: TESTAMERICA BURLINGTONContract: 8E-00302Lab Code: STLVCase No.: BARNESMod. Ref No.:SDG No.: 136602Lab File ID: JAQ10PVBFB Injection Date: 04/06/2010Instrument ID: J.iBFB Injection Time: 1133GC Column: DB-624ID: 0.53(mm)

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50 75 95 96 173 174 175 176 177	15.0 - 40.0% of mass 95 30.0 - 80.0% of mass 95 Base Peak, 100% relative abundance 5.0 - 9.0% of mass 95 Less than 2.0% of mass 174 50.0 - 120.0% of mass 95 5.0 - 9.0% of mass 174 95.0 - 101.0% of mass 174 5.0 - 9.0% of mass 174	$ \begin{array}{c} =============================$
I	1 - Value is %mass 174 2 - Value is %ma	ISS 176

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
					=========
01	VSTD005JK	VSTD005JK	JAQ005CV	04/06/2010	1156
02	VBLKJK	VBLKJK	JAQB01C	04/06/2010	1222
		824505	824505	04/06/2010	1342
03	VHBLK01		JAQ005C1	04/06/2010	1830
04	VSTD005KJ	VSTD005KJ	JAQUUSCI	04/00/2010	1050
05				·	
06	·				
07					
08					
09					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19		·			
20					
21	<u></u>				
22			l	l	

EPA SAMPLE NO.

BFBJK

6A - FORM VI VOA-1 VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302
Lab Code: STLV Case No.: BARNES	Mod. Ref No.: SDG No.: 136602
Instrument ID: J.i	Calibration Date(s): 04/05/2010 04/05/2010
Heated Purge: (Y/N)N	Calibration Time(s): 1318 1505
Purge Volume: 25.0 (mL)	
GC Column: DB-624 ID: 0.53 (mm)	Length: 75 (m)

	RRF0.5 = JAQ RRF10 = JAQQ			RF1.0 = J RF20 = JA			
COMPOUND	RRF0.5	RRF1.0	RRF5.0	RRF10	RRF20	RRF	%RSD
Dichlorodifluoromethane	0.457	========= 0.437	0.408	0.407	0.415	0.425	5.1
Chloromethane	0.462	1			0.455	0.451	1.9
Vinyl chloride	0.488	1		0.443		0.454	4.4
Bromomethane	0.187	1		0.165	0.170	0.171	5.8
Chloroethane	0.273	1		0.254	0.254	0.263	4.6
Trichlorofluoromethane	0.524	1		0.501	0.502	0.511	2.2
1,1-Dichloroethene	0.320	•	0.300		0.301	0.306	3.3
1,1,2-Trichloro-							
1,2,2-trifluoroethane	0.348	0.330	0.315	0.310		0.323	4.8
Acetone	0.016		0.013	0.013			10.1
Carbon disulfide	1.128		0.959			0.986	8.3
Methyl acetate	0.067	0.054	0.048				16.1
Methylene chloride	0.262	0.252	0.250				3.0
trans-1,2-Dichloroethene	0.336						4.3
Methyl tert-butyl ether	0.403	0.409	0.394				2.5
1,1-Dichloroethane	0.606	0.610	0.595				1.9
cis-1,2-Dichloroethene	0.328	0.321					3.0
2-Butanone	0.029	0.028					3.2
Bromochloromethane	0.093	0.092					3.5
Chloroform	0.531	0.499			1		3.5
1,1,1-Trichloroethane	0.663						4.6
Cyclohexane	0.995	0.891		•			7.0
Carbon tetrachloride	0.554						3.8
Benzene	1.911						4.6
1,2-Dichloroethane	0.215			1			
Trichloroethene	0.440		1	•	1		
Methylcyclohexane	0.708	0.715	0.665	0.662	0.646	0.679	4.5

Report 1,4-Dioxane for Low-Medium VOA analysis only

6B - FORM VI VOA-2 VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302
Lab Code: STLV Case No.: BARNES	Mod. Ref No.: SDG No.: 136602
Instrument ID: J.i	Calibration Date(s): 04/05/2010 04/05/2010
Heated Purge: (Y/N)N	Calibration Time(s): 1318 1505
Purge Volume: 25.0 (mL)	
GC Column: DB-624 ID: 0.53 (mm)	Length: 75 (m)

	0.5 = JA(RF1.0 = J RF20 = JA			
RRF5.0 = JAQ005V RRF	10 = JAQ	JT0V	K.	RF20 = 0P	AQU20V		
COMPOUND	RRF0.5	RRF1.0	RRF5.0	RRF10	RRF20	RRF	%RSD
1,2-Dichloropropane	0.395	0.375	0.374			0.373	3.8
Bromodichloromethane	0.404	0.377	0.383			0.386	2.6
cis-1,3-Dichloropropene	0.507	0.506				0.500	1.2
4-Methyl-2-pentanone	0.096	0.098	0.097			0.096	1.(
Toluene	2.055	1.965	1.891	1.836		1.916	4.9
trans-1,3-Dichloropropene	0.343	0.336	0.348			0.343	1.3
1,1,2-Trichloroethane	0.145	0.173	0.157		0.153	0.156	6.6
Tetrachloroethene	0.361	0.353	0.329				4.6
2-Hexanone	0.059	0.062	0.061	0.061	0.062	0.061	2.0
Dibromochloromethane	0.180	0.177	0.185			0.182	2.3
1,2-Dibromoethane	0.139	0.136	0.137			,	1.3
Chlorobenzene	1.030	1.037	1.003	0.993		1.014	1.9
Ethylbenzene	2.210	2.158	2.092			2.128	2.0
o-Xylene	0.780	0.732	0.712			0.730	4.0
m,p-Xylene	0.804	0.815	0.785	0.777			2.0
Styrene	1.065	1.065	1.069	1.071			0.!
Bromoform	0.173	0.191	0.197	0.198			5.4
Isopropylbenzene	2.046	2.083	2.024	2.024	2.025		1.3
1,1,2,2-Tetrachloroethane	0.144	0.152	0.144	0.147		0.147	2.3
1,3-Dichlorobenzene	1.688	1.654	1.599	1.626	1.601	1.634	2.
1,4-Dichlorobenzene	1.655	1.589	1.520	1.528			3.
1,2-Dichlorobenzene	1.282	1.238	1.179			1	
1,2-Dibromo-3-chloropropane	0.063	0.052	0.044	0.045			16.
1,2,4-Trichlorobenzene	0.546	0.549	0.542				2.
1,2,3-Trichlorobenzene	0.323	0.373	0.373	0.381	0.396	0.369	7.

.

6C - FORM VI VOA-3 VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302
Lab Code: STLV Case No.: BARNES	Mod. Ref No.: SDG No.: 136602
Instrument ID: J.i	Calibration Date(s): 04/05/2010 04/05/2010
Heated Purge: (Y/N)N	Calibration Time(s): 1318 1505
Purge Volume: 25.0 (mL)	
GC Column: DB-624 ID: 0.53 (mm)	Length: 75 (m)

	F0.5 = JAQ F10 = JAQ	Q0005V D10V		RF1.0 = J $RF20 = J$			
COMPOUND	RRF0.5	RRF1.0	RRF5.0	RRF10	RRF20	RRF	%RSD
Vinyl chloride-d3	0.452	0.420		0.389	=======================================	0.411	6.2
Chloroethane-d5	0.316	0.320	0.304	0.305	0.305	0.310	2.4
1,1-Dichloroethene-d2	0.724	0.703	0.670	0.657	0.660	0.683	4.3
2-Butanone-d5	0.026	0.027	0.027	0.027	0.028	0.027	2.3
Chloroform-d	0.571	0.539	0.540	0.525	0.528	0.541	3.3
1,2-Dichloroethane-d4	0.172	0.176	0.167	0.165	0.165	0.169	3.0
Benzene-d6	1.846	1.824	1.730	1.708	1.689	1.760	4.0
1,2-Dichloropropane-d6	0.539	0.500	0.497	0.481	0.478	0.499	4.9
Toluene-d8	1.627	1.628	1.563	1.556	1.543	1.583	2.6
trans-1,3-Dichloropropene-d4	0.319	0.311	0.304	0.309	0.315	0.312	1.9
2-Hexanone-d5	0.032	0.033	0.034	0.034	0.034	0.033	2.9
1,1,2,2-Tetrachloroethane-d2	0.158	0.156	0.148	0.146	0.149	0.151	3.2
1,2-Dichlorobenzene-d4	0.774	0.783	0.759	0.761	0.744	0.764	1.9

Report 1,4-Dioxane-d8 for Low-Medium VOA analysis only

7A - FORM VII VOA-1 VOLATILE CONTINUING CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302	
Lab Code: STLV Case No.: BARNES	Mod. Ref No.: SE	OG No.: 136602
Instrument ID: J.i	Calibration Date: 04/05/201	0 Time: 2130
Lab File ID: JAQ005AV	Init. Calib. Date(s): 04/05	\$/2010 04/05/2010
EPA Sample No.(VSTD#####): VSTD005JH	Init. Calib. Time(s): 1318	1505
Heated Purge: (Y/N)N GC Column: DB-	624 ID: 0.53 (mm) Leng	yth: 75 (m)
Purge Volume: 25.0	mL)	

COMPOUND	RRF	RRF5.0	MIN RRF	%D	MAX %D
Dichlorodifluoromethane	0.425	0.432	0.010	1.7	40.0
Chloromethane	0.451	0.466	0.010	3.4	40.0
Vinyl chloride	0.454	0.470	0.100	3.4	30.0
Bromomethane	0.171	0.173	0.100	1.3	30.0
Chloroethane	0.263	0.270	0.010	2.6	40.0
Trichlorofluoromethane	0.511	0.518	0.010	1.4	40.0
1,1-Dichloroethene	0.306	0.313	0.100	2.2	30.0
1,1,2-Trichloro-1,2,2-trifluoroethane	0.323	0.333	0.010	3.1	40.0
Acetone	0.014	0.013	0.010	-10.0	40.0
Carbon disulfide	0.986	1.087	0.010	10.2	40.0
Methyl acetate	0.053	0.052	0.010	-0.9	40.0
Methylene chloride	0.250	0.250	0.010	-0.3	40.0
trans-1,2-Dichloroethene	0.326	0.331	0.010	1.8	40.0
Methyl tert-butyl ether	0.397	0.367	0.010	-7.5	40.0
1,1-Dichloroethane	0.597	0.613	0.200	2.8	30.0
cis-1,2-Dichloroethene	0.316	0.317	0.010	0.6	40.0
2-Butanone	0.028	0.025	0.010	-9.9	40.0
Bromochloromethane	0.090	0.089	0.050	-0.9	30.0
Chloroform	0.500	0.521	0.200	4.1	30.0
1,1,1-Trichloroethane	0.625	0.628	0.100	0.5	30.0
Cyclohexane	0.890	0.889	0.010	-0.1	40.0
Carbon tetrachloride	0.522	0.536	0.100	2.7	30.0
Benzene	1.820	1.821	0.400	0.1	30.0
1,2-Dichloroethane	0.206	0.208	0.100	1.3	30.0
Trichloroethene	0.427		1	0.0	30.0
Methylcyclohexane	0.679	0.687	0.010	1.1	40.0

Report 1,4-Dioxane for Low-Medium VOA analysis only

7B - FORM VII VOA-2 VOLATILE CONTINUING CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302
Lab Code: STLV Case No.: BARNES	Mod. Ref No.: SDG No.: 136602
Instrument ID: J.i	Calibration Date: 04/05/2010 Time: 2130
Lab File ID: JAQ005AV	Init. Calib. Date(s): 04/05/2010 04/05/2010
EPA Sample No.(VSTD#####): VSTD005JH	Init. Calib. Time(s): 1318 1505
Heated Purge: (Y/N)N GC Column: DB-0	624 ID: 0.53 (mm) Length: 75 (m)
Purge Volume: 25.0 (r	mL)

COMPOUND	RRF	RRF5.0	MIN RRF	%D	MAX %D
1,2-Dichloropropane	0.373	0.379	0.010	1.6	40.0
Bromodichloromethane	0.386	0.383	0.200	-0.9	30.0
cis-1,3-Dichloropropene	0.500	0.503	0.200	0.6	30.0
4-Methyl-2-pentanone	0.096	0.088	0.010	-8.4	40.0
Toluene	1.916	1.915	0.400	-0.0	30.0
trans-1,3-Dichloropropene	0.343	0.340	0.100	-0.9	30.0
1,1,2-Trichloroethane	0.156	0.149	0.100	-4.4	30.0
Tetrachloroethene	0.340	0.344	0.100	1.2	30.0
2-Hexanone	0.061	0.056	0.010	-9.0	40.0
Dibromochloromethane	0.182	0.184	0.100	1.6	30.0
1,2-Dibromoethane	0.137	0.136	0.010	-0.5	30.0
Chlorobenzene	1.014	1.008	0.500	-0.5	30.0
Ethylbenzene	2.128	2.139	0.100	0.5	30.0
o-Xylene	0.730	0.727	0.300	-0.4	30.0
m,p-Xylene	0.793	0.817	0.300	3.1	30.0
Styrene	1.070	1.082	0.300	1.1	30.0
Bromoform	0.191	0.189	0.050	-0.8	30.0
Isopropylbenzene	2.040	2.095	0.010	2.7	40.0
1,1,2,2-Tetrachloroethane	0.147	0.139	0.100	-5.1	30.0
1,3-Dichlorobenzene	1.634	1.679	0.400	2.8	30.0
1,4-Dichlorobenzene	1.560	1.557	0.400	-0.2	30.0
1,2-Dichlorobenzene	1.209	1.192	0.400	-1.4	30.0
1,2-Dibromo-3-chloropropane	0.050	0.040	0.010	-19.2	40.0
1,2,4-Trichlorobenzene	0.553	0.543	0.200	-1.9	30.0
1,2,3-Trichlorobenzene	0.369	0.353	0.200	-4.3	30.0

7C - FORM VII VOA-3 VOLATILE CONTINUING CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302
Lab Code: STLV Case No.: BARNES	Mod. Ref No.: SDG No.: 136602
Instrument ID: J.i	Calibration Date: 04/05/2010 Time: 2130
Lab File ID: JAQ005AV	Init. Calib. Date(s): 04/05/2010 04/05/2010
EPA Sample No.(VSTD#####): VSTD005JH	Init. Calib. Time(s): 1318 1505
Heated Purge: (Y/N)N GC Column: DB-	624 ID: 0.53 (mm) Length: 75 (m)
Purge Volume: 25.0 (mL)

COMPOUND	RRF	RRF5.0	MIN RRF	%D	MAX %D
Vinyl chloride-d3	0.411	0.421	0.010	2.4	30.0
Chloroethane-d5	0.310	0.329	0.010	6.1	40.0
1,1-Dichloroethene-d2	0.683	0.687	0.010	0.6	30.0
2-Butanone-d5	0.027	0.023	0.010	-12.6	40.0
Chloroform-d	0.541	0.537	0.010	-0.8	30.0
1,2-Dichloroethane-d4	0.169	0.168	0.010	-0.4	30.0
Benzene-d6	1.760	1.764	0.400	0.2	30.0
1,2-Dichloropropane-d6	0.499	0.443	0.010	-11.2	40.0
Toluene-d8	1.583	1.601	0.010	1.1	30.0
trans-1,3-Dichloropropene-d4	0.312	0.304	0.010	-2.5	30.0
2-Hexanone-d5	0.033	0.027	0.010	-18.0	40.0
1,1,2,2-Tetrachloroethane-d2	0.151	0.142	0.010	-6.0	30.0
1,2-Dichlorobenzene-d4	0.764	0.745	0.010	-2.5	30.0

Report 1,4-Dioxane-d8 for Low-Medium VOA analysis only

7A - FORM VII VOA-1 VOLATILE CONTINUING CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302
Lab Code: STLV Case No.: BARNES	Mod. Ref No.: SDG No.: 136602
Instrument ID: J.i	Calibration Date: 04/06/2010 Time: 0428
Lab File ID: JAQ05AC1	Init. Calib. Date(s): 04/05/2010 04/05/2010
EPA Sample No.(VSTD#####): VSTD005HJ	Init. Calib. Time(s): 1318 1505
Heated Purge: (Y/N)N GC Column: DB-	624 ID: 0.53 (mm) Length: 75 (m)
Purge Volume: 25.0 (1	nL)

COMPOUND	RRF	RRF5.0	MIN RRF	۶D	MAX %D
COMPOUND					
Dichlorodifluoromethane	0.425	0.435	0.010	2.4	50.0
Chloromethane	0.451	0.468	0.010	3.9	50.0
Vinyl chloride	0.454	0.477	0.010	4.9	50.0
Bromomethane	0.171	0.167	0.010	-2.7	50.0
Chloroethane	0.263	0.265	0.010	0.9	50.0
Trichlorofluoromethane	0.511	0.537	0.010	5.1	50.0
1,1-Dichloroethene	0.306	0.311	0.010	1.7	50.0
1,1,2-Trichloro-1,2,2-trifluoroethane	0.323	0.329	0.010	1.7	50.0
Acetone	0.014	0.012	0.010	-12.9	50.0
Carbon disulfide	0.986	1.006	0.010	1.9	50.0
Methyl acetate	0.053	0.045	0.010	-14.3	50.0
Methylene chloride	0.250	0.253	0.010	1.0	50.0
trans-1,2-Dichloroethene	0.326	0.327	0.010	0.4	50.0
Methyl tert-butyl ether	0.397	0.382	0.010	-3.7	50.0
1,1-Dichloroethane	0.597	0.609	0.010	2.1	50.0
cis-1,2-Dichloroethene	0.316	0.317	0.010	0.4	50.0
2-Butanone	0.028	0.025	0.010	-8.9	50.0
Bromochloromethane	0.090	0.088	0.010	-1.5	50.0
Chloroform	0.500	0.505	0.010	1.0	50.0
1,1,1-Trichloroethane	0.625	0.645	0.010	3.2	50.0
Cyclohexane	0.890	0.917	0.010	3.0	50.0
Carbon tetrachloride	0.522	0.538	0.010	3.1	50.0
Benzene	1.820	1.851	0.010	1.7	50.0
1,2-Dichloroethane	0.206	0.205	0.010	-0.5	50.0
Trichloroethene	0.427	0.441	0.010	3.4	50.0
Methylcyclohexane	0.679	0.698	0.010	2.7	50.0

Report 1,4-Dioxane for Low-Medium VOA analysis only

7B - FORM VII VOA-2 VOLATILE CONTINUING CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302	
Lab Code: STLV Case No.: BARNES	Mod. Ref No.: S	DG No.: 136602
Instrument ID: J.i	Calibration Date: 04/06/20	10 Time: 0428
Lab File ID: JAQ05AC1	<pre>Init. Calib. Date(s): 04/0</pre>	5/2010 04/05/2010
EPA Sample No.(VSTD#####): VSTD005HJ	Init. Calib. Time(s): 1318	1505
Heated Purge: (Y/N)N GC Column: DB-6	524 ID: 0.53 (mm) Len	gth: 75 (m)
Purge Volume: 25.0 (r	nL)	

COMPOUND	RRF	RRF5.0	MIN RRF	₽D	MAX %D
1,2-Dichloropropane	0.373	=======================================	0.010	-0.9	========= 50.0
Bromodichloromethane	0.386	0.390	0.010	1.0	50.0
cis-1,3-Dichloropropene	0.500	0.500	0.010	-0.0	50.0
4-Methyl-2-pentanone	0.096	0.094	0.010	-2.8	50.0
Toluene	1.916	1.928	0.010	0.6	50.0
trans-1,3-Dichloropropene	0.343	0.340	0.010	-0.7	50.0
1,1,2-Trichloroethane	0.156	0.155	0.010	-0.5	50.0
Tetrachloroethene	0.340	0.348	0.010	2.5	50.0
2-Hexanone	0.061	0.060	0.010	-2.1	50.0
Dibromochloromethane	0.182	0.183	0.010	0.8	50.0
1,2-Dibromoethane	0.137	0.135	0.010	-1.2	50.0
Chlorobenzene	1.014	1.034	0.010	2.0	50.0
Ethylbenzene	2.128	2.201	0.010	3.4	50.0
o-Xylene	0.730	0.737	0.010	0.9	50.0
m,p-Xylene	0.793	0.807	0.010	1.9	50.0
Styrene	1.070	1.086	0.010	1.5	50.0
Bromoform	0.191	0.196	0.010	2.8	50.0
Isopropylbenzene	2.040	2.116	0.010	3.7	50.0
1,1,2,2-Tetrachloroethane	0.147	0.142	0.010	-3.4	50.0
1,3-Dichlorobenzene	1.634	1.677	0.010	2.7	50.0
1,4-Dichlorobenzene	1.560	1.594	0.010	2.1	50.0
1,2-Dichlorobenzene	1.209	1.222	0.010	1.1	50.0
1,2-Dibromo-3-chloropropane	0.050	0.043	0.010	-14.0	50.0
1,2,4-Trichlorobenzene	0.553	0.544	0.010	-1.7	50.0
1,2,3-Trichlorobenzene	0.369	0.375	0.010	1.6	50.0

7C - FORM VII VOA-3 VOLATILE CONTINUING CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302
Lab Code: STLV Case No.: BARNES	Mod. Ref No.: SDG No.: 136602
Instrument ID: J.i	Calibration Date: 04/06/2010 Time: 0428
Lab File ID: JAQ05AC1	Init. Calib. Date(s): 04/05/2010 04/05/2010
EPA Sample No.(VSTD#####): VSTD005HJ	Init. Calib. Time(s): 1318 1505
Heated Purge: (Y/N)N GC Column: DB-0	624 ID: 0.53 (mm) Length: 75 (m)
Purge Volume: 25.0 (r	mL)

COMPOUND	RRF	RRF5.0	MIN RRF	*D	MAX %D
Vinyl chloride-d3	0.411	0.422	0.010	========= 2.6	========= 50.0
Chloroethane-d5	0.310	0.321	0.010	3.5	50.0
1,1-Dichloroethene-d2	0.683	0.699	0.010	2.3	50.0
2-Butanone-d5	0.027	0.026	0.010	-4.0	50.0
Chloroform-d	0.541	0.548	0.010	1.3	50.0
1,2-Dichloroethane-d4	0.169	0.167	0.010	-1.3	50.0
Benzene-d6	1.760	1.788	0.010	1.6	50.0
1,2-Dichloropropane-d6	0.499	0.495	0.010	-0.7	50.0
Toluene-d8	1.583	1.617	0.010	2.1	50.0
trans-1,3-Dichloropropene-d4	0.312	0.307	0.010	-1.4	50.0
2-Hexanone-d5	0.033	0.032	0.010	-4.5	50.0
1,1,2,2-Tetrachloroethane-d2	0.151	0.144	0.010	-5.2	50.0
1,2-Dichlorobenzene-d4	0.764	0.775	0.010	1.4	50.0

Report 1,4-Dioxane-d8 for Low-Medium VOA analysis only

7A - FORM VII VOA-1 VOLATILE CONTINUING CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302
Lab Code: STLV Case No.: BARNES	Mod. Ref No.: SDG No.: 136602
Instrument ID: J.i	Calibration Date: 04/06/2010 Time: 1156
Lab File ID: JAQ005CV	Init. Calib. Date(s): 04/05/2010 04/05/2010
EPA Sample No.(VSTD#####): VSTD005JK	Init. Calib. Time(s): 1318 1505
Heated Purge: (Y/N)N GC Column: DB-	624 ID: 0.53 (mm) Length: 75 (m)
Purge Volume: 25.0 (1	nL)

COMPOUND	RRF	RRF5.0	MIN RRF	%D	MAX %D
Dichlorodifluoromethane	0.425	0.445	0.010	4.8	40.0
Chloromethane	0.451	0.488	0.010	8.2	40.0
Vinyl chloride	0.454	0.497	0.100	9.5	30.0
Bromomethane	0.171	0.193	0.100	12.8	30.0
Chloroethane	0.263	0.279	0.010	6.1	40.0
Trichlorofluoromethane	0.511	0.529	0.010	3.4	40.0
1,1-Dichloroethene	0.306	0.315	0.100	3.0	30.0
1,1,2-Trichloro-1,2,2-trifluoroethane	0.323	0.342	0.010	5.6	40.0
Acetone	0.014	0.011	0.010	-20.6	40.0
Carbon disulfide	0.986	0.987	0.010	0.0	40.0
Methyl acetate	0.053	0.045	0.010	-13.6	40.0
Methylene chloride	0.250	0.245	0.010	-2.2	40.0
trans-1,2-Dichloroethene	0.326	0.331	0.010	1.6	40.0
Methyl tert-butyl ether	0.397	0.326	0.010	-17.7	40.0
1,1-Dichloroethane	0.597	0.604	0.200	1.2	30.0
cis-1,2-Dichloroethene	0.316	0.315	0.010	-0.3	40.0
2-Butanone	0.028	0.022	0.010	-20.8	40.0
Bromochloromethane	0.090	0.085	0.050	-5.3	30.0
Chloroform	0.500	0.503	0.200	0.6	30.0
1,1,1-Trichloroethane	0.625	0.663	0.100	6.2	30.0
Cyclohexane	0.890	0.951	0.010	6.9	40.0
Carbon tetrachloride	0.522	0.559	0.100	7.0	30.0
Benzene	1.820	1.883	0.400	3.5	30.0
1,2-Dichloroethane	0.206	0.192	0.100	-6.4	30.0
Trichloroethene	0.427	0.455	0.300	6.7	30.0
Methylcyclohexane	0.679	0.733	0.010	8.0	40.0

Report 1,4-Dioxane for Low-Medium VOA analysis only

7B - FORM VII VOA-2 VOLATILE CONTINUING CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302
Lab Code: STLV Case No.: BARNES	Mod. Ref No.: SDG No.: 136602
Instrument ID: J.i	Calibration Date: 04/06/2010 Time: 1156
Lab File ID: JAQ005CV	Init. Calib. Date(s): 04/05/2010 04/05/2010
EPA Sample No.(VSTD#####): VSTD005JK	Init. Calib. Time(s): 1318 1505
Heated Purge: (Y/N)N GC Column: DB-	624 ID: 0.53 (mm) Length: 75 (m)
Purge Volume: 25.0 (1	mL)

COMPOUND	RRF	RRF5.0	MIN RRF	%D	MAX %D
1,2-Dichloropropane	0.373	0.374	0.010	0.2	40.0
Bromodichloromethane	0.386	0.374	0.200	-3.3	30.0
cis-1,3-Dichloropropene	0.500	0.486	0.200	-2.7	30.0
4-Methyl-2-pentanone	0.096	0.081	0.010	-16.1	40.0
Toluene	1.916	1.959	0.400	2.3	30.0
trans-1,3-Dichloropropene	0.343	0.328	0.100	-4.2	30.0
1,1,2-Trichloroethane	0.156	0.146	0.100	-6.6	30.0
Tetrachloroethene	0.340	0.355	0.100	4.4	30.0
2-Hexanone	0.061	0.050	0.010	-17.7	40.0
Dibromochloromethane	0.182	0.169	0.100	-7.0	30.0
1,2-Dibromoethane	0.137	0.129	0.010	-6.0	30.0
Chlorobenzene	1.014	1.025	0.500	1.1	30.0
Ethylbenzene	2.128	2.246	0.100	5.5	30.0
o-Xylene	0.730	0.742	0.300	1.7	30.0
m,p-Xylene	0.793	0.843	0.300	6.4	30.0
Styrene	1.070	1.080	0.300	0.9	30.0
Bromoform	0.191	0.181	0.050	-4.8	30.0
Isopropylbenzene	2.040	2.209	0.010	8.3	40.0
1,1,2,2-Tetrachloroethane	0.147	0.125	0.100	-14.5	30.0
1,3-Dichlorobenzene	1.634	1.668	0.400	2.1	30.0
1,4-Dichlorobenzene	1.560	1.561	0.400	0.0	30.0
1,2-Dichlorobenzene	1.209	1.183	0.400	-2.1	30.0
1,2-Dibromo-3-chloropropane	0.050	0.040	0.010	-19.4	40.0
1,2,4-Trichlorobenzene	0.553	0.497	0.200	-10.1	30.0
1,2,3-Trichlorobenzene	0.369	0.325	0.200	-11.8	30.0

...

7C - FORM VII VOA-3 VOLATILE CONTINUING CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302
Lab Code: STLV Case No.: BARNES	Mod. Ref No.: SDG No.: 136602
Instrument ID: J.i	Calibration Date: 04/06/2010 Time: 1156
Lab File ID: JAQ005CV	Init. Calib. Date(s): 04/05/2010 04/05/2010
EPA Sample No.(VSTD#####): VSTD005JK	Init. Calib. Time(s): 1318 1505
Heated Purge: (Y/N)N GC Column: DB-	624 ID: 0.53 (mm) Length: 75 (m)
Purge Volume: 25.0 (1	mL)

COMPOUND	RRF	RRF5.0	MIN RRF	%D	MAX %D
Vinyl chloride-d3	0.411	0.431	0.010	4.8	30.0
Chloroethane-d5	0.310	0.334	0.010	7.6	40.0
1,1-Dichloroethene-d2	0.683	0.716	0.010	4.9	30.0
2-Butanone-d5	0.027	0.019	0.010	-28.9	40.0
Chloroform-d	0.541	0.528	0.010	-2.3	30.0
1,2-Dichloroethane-d4	0.169	0.159	0.010	-5.7	30.0
Benzene-d6	1.760	1.784	0.400	1.4	30.0
1,2-Dichloropropane-d6	0.499	0.445	0.010	-10.9	40.0
Toluene-d8	1.583	1.650	0.010	4.2	30.0
trans-1,3-Dichloropropene-d4	0.312	0.289	0.010	-7.1	30.0
2-Hexanone-d5	0.033	0.022	0.010	-34.8	40.0
1,1,2,2-Tetrachloroethane-d2	0.151	0.127	0.010	-16.1	30.0
1,2-Dichlorobenzene-d4	0.764	0.750	0.010	-1.8	30.0

Report 1,4-Dioxane-d8 for Low-Medium VOA analysis only

7A - FORM VII VOA-1 VOLATILE CONTINUING CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302	
Lab Code: STLV Case No.: BARNES	Mod. Ref No.:	SDG No.: 136602
Instrument ID: J.i	Calibration Date: 04/06/2	2010 Time: 1830
Lab File ID: JAQ005C1	Init. Calib. Date(s): 04/	′05/2010 04/05/2010
EPA Sample No.(VSTD#####): VSTD005KJ	Init. Calib. Time(s): 131	L8 1505
Heated Purge: (Y/N)N GC Column: DB-	624 ID: 0.53 (mm) Le	ength: 75 (m)
Purge Volume: 25.0 (1	mL)	

COMPOUND	RRF	RRF5.0	MIN RRF	%D	MAX %D
Dichlorodifluoromethane	0.425	0.430	0.010	1.3	50.0
Chloromethane	0.451	0.458	0.010	1.7	50.0
Vinyl chloride	0.454	0.473	0.010	4.2	50.0
Bromomethane	0.171	0.175	0.010	1.9	50.0
Chloroethane	0.263	0.269	0.010	2.4	50.0
Trichlorofluoromethane	0.511	0.526	0.010	2.9	50.0
1,1-Dichloroethene	0.306	0.306	0.010	0.1	50.0
1,1,2-Trichloro-1,2,2-trifluoroethane	0.323	0.332	0.010	2.8	50.0
Acetone	0.014	0.013	0.010	-10.1	50.0
Carbon disulfide	0.986	0.964	0.010	-2.2	50.0
Methyl acetate	0.053	0.053	0.010	-0.1	50.0
Methylene chloride	0.250	0.255	0.010	1.8	50.0
trans-1,2-Dichloroethene	0.326	0.325	0.010	-0.2	50.0
Methyl tert-butyl ether	0.397	0.394	0.010	-0.7	50.0
1,1-Dichloroethane	0.597	0.608	0.010	2.0	50.0
cis-1,2-Dichloroethene	0.316	0.317	0.010	0.6	50.0
2-Butanone	0.028	0.027	0.010	-3.2	50.0
Bromochloromethane	0.090	0.087	0.010	-2.3	50.0
Chloroform	0.500	0.509	0.010	1.8	50.0
1,1,1-Trichloroethane	0.625	0.646	0.010	3.5	50.0
Cyclohexane	0.890	0.908	0.010	2.0	50.0
Carbon tetrachloride	0.522	0.548	0.010	5.0	50.0
Benzene	1.820	1.853	0.010	1.8	50.0
1,2-Dichloroethane	0.206	0.211	0.010	2.9	50.0
Trichloroethene	0.427	1	0.010	4.4	50.0
Methylcyclohexane	0,679	0.705	0.010	3.7	50.0

Report 1,4-Dioxane for Low-Medium VOA analysis only

7B - FORM VII VOA-2 VOLATILE CONTINUING CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302	
Lab Code: STLV Case No.: BARNES	Mod. Ref No.:	SDG No.: 136602
Instrument ID: J.i	Calibration Date: 04/06/2	2010 Time: 1830
Lab File ID: JAQ005C1	Init. Calib. Date(s): 04,	/05/2010 04/05/2010
EPA Sample No.(VSTD#####): VSTD005KJ	Init. Calib. Time(s): 13	18 1505
Heated Purge: (Y/N)N GC Column: DB-6	524 ID: 0.53 (mm) Le	ength: 75 (m)
Purge Volume: 25.0 (r	nL)	

COMPOUND	RRF	RRF5.0	MIN RRF	%D	MAX %D
1,2-Dichloropropane	l 0.373	0.386	0.010	3.4	======================================
Bromodichloromethane	0.386	0.394	0.010	1.9	50.0
cis-1,3-Dichloropropene	0.500	0.509	0.010	1.8	50.0
4-Methyl-2-pentanone	0.096	0.098	0.010	1.5	50.0
Toluene	1.916	1.962	0.010	2.4	50.0
trans-1,3-Dichloropropene	0.343	0.351	0.010	2.4	50.0
1,1,2-Trichloroethane	0.156	0.158	0.010	1.3	50.0
Tetrachloroethene	0.340	0.353	0.010	3.8	50.0
2-Hexanone	0.061	0.062	0.010	1.8	50.0
Dibromochloromethane	0.182	0.193	0.010	6.1	50.0
1,2-Dibromoethane	0.137	0.141	0.010	2.8	50.0
Chlorobenzene	1.014	1.050	0.010	3.6	50.0
Ethylbenzene	2.128	2.190	0.010	2.9	50.0
o-Xylene	0.730	0.749	0.010	2.6	50.0
m,p-Xylene	0.793	0.831	0.010	4.8	50.0
Styrene	1.070	1.119	0.010	4.6	50.0
Bromoform	0.191	0.194	0.010	1.9	50.0
Isopropylbenzene	2.040	2.135	0.010	4.7	50.0
1,1,2,2-Tetrachloroethane	0.147	0.146	0.010	-0.2	50.0
1,3-Dichlorobenzene	1.634	1.683	0.010	3.0	50.0
1,4-Dichlorobenzene	1.560	1.611	0.010	3.3	50.0
1,2-Dichlorobenzene	1.209	1.240	0.010	2.6	50.0
1,2-Dibromo-3-chloropropane	0.050	0.049	0.010	-1.8	50.0
1,2,4-Trichlorobenzene	0.553	0.566	0.010	2.4	50.0
1,2,3-Trichlorobenzene	0.369	0.373	0.010	1.0	50.0

7C - FORM VII VOA-3 VOLATILE CONTINUING CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302	
Lab Code: STLV Case No.: BARNES	Mod. Ref No.:	SDG No.: 136602
Instrument ID: J.i	Calibration Date: 04/06/2	2010 Time: 1830
Lab File ID: JAQ005C1	Init. Calib. Date(s): 04/	/05/2010 04/05/2010
EPA Sample No.(VSTD#####): VSTD005KJ	Init. Calib. Time(s): 131	18 1505
Heated Purge: (Y/N)N GC Column: DB-6	524 ID: 0.53 (mm) Le	ength: 75 (m)
Purge Volume: 25.0 (r	nL)	,

COMPOUND	RRF	RRF5.0	MIN RRF	%D	MAX %D
Vinyl chloride-d3	0.411	0.419	0.010	1.9	50.0
Chloroethane-d5	0.310	0.327	0.010	5.6	50.0
1,1-Dichloroethene-d2	0.683	0.699	0.010	2.4	50.0
2-Butanone-d5	0.027	0.027	0.010	0.7	50.0
Chloroform-d	0.541	0.549	0.010	1.5	50.0
1,2-Dichloroethane-d4	0.169	0.173	0.010	2.7	50.0
Benzene-d6	1.760	1.806	0.010	2.7	50.0
1,2-Dichloropropane-d6	0.499	0.462	0.010	-7.4	50.0
Toluene-d8	1.583	1.626	0.010	2.7	50.0
trans-1,3-Dichloropropene-d4	0.312	0.329	0.010	5.5	50.0
2-Hexanone-d5	0.033	0.032	0.010	-3.7	50.0
1,1,2,2-Tetrachloroethane-d2	0.151	0.156	0.010	3.0	50.0
1,2-Dichlorobenzene-d4	0.764	0.793	0.010	3.8	50.0

Report 1,4-Dioxane-d8 for Low-Medium VOA analysis only

8A - FORM VIII VOA

VOLATILE INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: TESTAMERICA BURLINGTONContract: 8E-00302Lab Code: STLVCase No.: BARNESMod. Ref No.:SDG No.: 136602GC Column: DB-624ID: 0.53 (mm)Init. Calib. Date(s): 04/05/2010 04/05/2010EPA Sample No.(VSTD#####): VSTD005JHDate Analyzed: 04/05/2010Lab File ID (Standard): JAQ005AVTime Analyzed: 2130Instrument ID: J.iHeated Purge: (Y/N) N

		IS1(CBZ)		IS2(DFB)		IS3 (DCB)	
-		AREA #	RT #	AREA #	RT #	AREA #	RT #
	==================		======	=========	=======	==========	=======
	12 HOUR STD	843821	9.06	1098680	5.67	336756	11.89
	UPPER LIMIT	1181349	9.39	1538152	6.01	471458	12.22
	LOWER LIMIT	506293	8.72	659208	5.34	202054	11.55
		===========	======	==========	======	=========	======
	EPA SAMPLE NO.						
	=============		=======	=========	======	=========	=======
01	VBLKJH	835204	9.06	1081873	5.68	335564	11.89
02	BAMW528722	840789	9.06	1110646	5.67	337947	11.89
03	BAMW15D28741	850857	9.06	1117073	5.68	343617	11.89
04	BAMW16S28742	868105	9.06	1134201	5.68	345489	11.89
05	BAMW16D28743	841941	9.06	1109240	5.68	340335	11.89
06	BAMW6S28723	856014	9.06	1132960	5.68	340023	11.89
07	BAPWS328747	819075	9.06	1095331	5.67	330571	11.89
08	BAQCTB28756	853873	9.06	1117132	5.67	340676	11.89
09	BAMW828726	785239	9.06	1051868	5.68	307325	11.89
10				ļ			
11			ļ				
12					[
13							
14		·					
15							
16							
17							
18							
19							
20							
21					<u> </u>		
22						<u> </u>	
						[ا <u>ــــــ</u> ا

IS1 (CBZ) = Chlorobenzene-d5

IS2 (DFB) = 1,4-Difluorobenzene

IS3 (DCB) = 1,4-Dichlorobenzene-d4

AREA UPPER LIMIT = 200% (Low-Medium Volatiles) and 140% (Trace Volatiles) of internal standard area AREA LOWER LIMIT = 50% (Low-Medium Volatiles) and 60% (Trace Volatiles) of internal standard area RT UPPER LIMIT = + 0.50 (Low-Medium Volatiles) and + 0.33 (Trace Volatiles) minutes of internal standard RT RT LOWER LIMIT = - 0.50 (Low-Medium Volatiles) and - 0.33 (Trace Volatiles) minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk Page 1 of 1

8A - FORM VIII VOA

VOLATILE INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302
Lab Code: STLV Case No.: BARNES	Mod. Ref No.: SDG No.: 136602
GC Column: DB-624 ID: 0.53 (mm)	Init. Calib. Date(s): 04/05/2010 04/05/2010
EPA Sample No.(VSTD#####): VSTD005JK	Date Analyzed: 04/06/2010
Lab File ID (Standard): JAQ005CV	Time Analyzed: 1156
Instrument ID: J.i	Heated Purge: (Y/N) N

		IS1(CBZ)		IS2 (DFB)		IS3 (DCB)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	================	=========			=====		=======
	12 HOUR STD	801919	9.06	1085852	5.67	314389	11.89
	UPPER LIMIT	1122687	9.39	1520193	6.01	440145	12.23
	LOWER LIMIT	481151	8.72	651511	5.34	188633	11.56
	EPA SAMPLE NO.	===========	REPERE	==========			======
	EFA SAMPLE NO.						
01	VBLKJK	851234	9.06	1129708	5.68	334945	11.89
02	VHBLK01	787283	9.05	1084434	5.68	295621	11.89
03							
04							
05							
06							
07							
08 09							
10				· · · · · · · · · · · · · · · · · · ·			
11							
12							
13							
14							
15							
16							
17	****.***						
18							
19				·			
20 21					¦		
21							
	·						
		I	I	I	I	I	I

IS1 (CBZ) = Chlorobenzene-d5

IS2 (DFB) = 1,4-Difluorobenzene

IS3 (DCB) = 1,4-Dichlorobenzene-d4

AREA UPPER LIMIT = 200% (Low-Medium Volatiles) and 140% (Trace Volatiles) of internal standard area AREA LOWER LIMIT = 50% (Low-Medium Volatiles) and 60% (Trace Volatiles) of internal standard area RT UPPER LIMIT = + 0.50 (Low-Medium Volatiles) and + 0.33 (Trace Volatiles) minutes of internal standard RT RT LOWER LIMIT = - 0.50 (Low-Medium Volatiles) and - 0.33 (Trace Volatiles) minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk Page 1 of 1 THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica Laboratories, Inc.

CASE NARRATIVE

Client: Argonne National Laboratory

Project: BARNES (200-1626)

Report Number: 200-1626-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

Receipt

The samples were received on 9/21/2010. Documentation of the condition of the samples at the time of their receipt and any exception to the laboratory's Sample Acceptance Policy is documented in the Sample Handling section of this submittal. The samples, as received, were not acid preserved. On that basis, the laboratory did provide for the analytical work to be performed within seven days of sample collection.

SOM01.2 Volatile Organics (Trace Level Water)

A storage blank was prepared for volatile organics analysis, and stored in association with the storage of the samples. That storage blank, identified as VHBLK01, was carried through the holding period with the samples, and analyzed.

Each sample was analyzed without a dilution. Each of the analyses associated with the sample set exhibited an acceptable internal standard performance. There was an acceptable recovery of each deuterated monitoring compound (DMC) in the analysis of the method blanks associated with the analytical work, and in the analysis of the storage blank associated with the sample set. The analysis of the samples in this sample set did meet the technical acceptance criteria specific to DMC recoveries, although not all DMC recoveries were within the control range in each analysis. The technical acceptance criteria does provide for the recovery of up to three DMCs to fall outside of the control range in the analysis of field samples. Matrix spike and matrix spike duplicate analyses were not performed on samples in this sample set. Trace concentrations of acetone and 1,2,3-trichlorobenzene were identified in the analysis of each method blank associated with the analytical work. The concentration of each compound in each analysis was below the established reporting limit, and each analysis did meet the technical of acceptance criteria for a compliant method blank analysis. A trace concentration of

30 Community Drive, Suite 11 South Burlington, VT 05403 tel 802.660.1990 fax 802.660.1919 www.testamericainc.com

THE LEADER IN ENVIRONMENTAL TESTING

acetone was identified in the analysis of the storage blank associated with the sample set. The concentration of acetone in that analysis was below the established reporting limit, and the analysis did meet the technical acceptance criteria for a compliant storage blank analysis. Present in the method blank and storage blank analyses was a non-target constituent that represents a compound that is related to the DMC formulation. The fact that the presence of this compound is not within the laboratory's control is at issue. The derived results for that compound have been qualified with an "X" qualifier to reflect the source of the contamination.

The responses for each of the target analytes met the relative standard deviation criterion in the initial calibration. The response for each target analyte met the percent difference criterion in each continuing calibration check acquisition. The response for each target analyte met the 50.0 percent difference criterion in each closing calibration check acquisition.

The primary quantitation mass for methylcyclohexane that is specified in the Statement of Work is mass 83. The laboratory did identify a contribution to mass 83 from 1,2-dichloropropane- d_6 , one of the deuterated monitoring compounds (DMCs). The laboratory did change the primary quantitation mass assignment to mass 55 for the quantification of methylcyclohexane.

Manual integration was employed in deriving certain of the analytical results. The values that have been derived from manual integration are qualified on the quantitation reports. Extracted ion current profiles for each manual integration are included in the data package, and further documented in the Sample Preparation section of this submittal.

The analytical results associated with the samples presented in this test report were generated under a quality system that adheres to requirements specified in the NELAC standard. Release of the data in this test report and any associated electronic deliverables is authorized by the Laboratory Director's designee as verified by the following signature.

Kirk F. Young Project Manager

MATRIX: Water	ARG	GON	NE N	IATI	ONAL	LA	BOF	ATO	RY		Shipping Contai	ner No.	
RECEIVING LAB: Test America	C	HAI	N OF	= CU	STOD	YE	RECO	ORD*	r		Shipping Info:		
PROJECT/SITE: Barnes 15					ANA	LYS	IS			Ŕ	ANL Field Conta	act (Name	e & Temporary Phone): 00 イロア フリイ
SAMPLER(S) (Signature)	Number	1				T						·· <u></u>	
	of	V		-									
DATE OF COLLECTION SAMPLE ID NUMBER(S)	con- tainers	00									· ·	REN	IARKS
Sept 17, 2010 BAMW3D-W-28763	2	2									2×40m	6	For VOC
Sept 17, 2010 BAMW 7 - W-28768		2											
										-			
Sept 18, 2010 BAMW155-W-28783	2	2											
Sept 18, 2010 BA Me Oentrich-W-28788	22	2				ļ			·		1	•	
Sept 18, 2010 BA MO Centrich-W-28788 Sept 18, 2010 BAQCTB-W-28801	2	2					ļ				27 40 mL	- for	Voc
	\backslash	\square							X	\square	<u> </u>		
	\backslash												
	V_							\square			<u> </u>	<u> </u>	
e a	Λ					\bowtie						\geq	
	/						\square						
°f					4_			\leq					
5			$-\downarrow$	4					\rightarrow		/		
			4							<u>\</u>			
	<u> </u>												<u> </u>
	ed by (Sig	natu	re)		Relinqu	lishe	ed by	(Sigr	nature)	Date T	ime	Received by (Signature)
9/20/10 12:26												•	
Relinquished by (Signature) Date Time Receive	ed for Lab	orato	ry by	· I	Date			Time	;	F	Remarks		· · · · · · · · · · · · · · · · · · ·
	sta	Ł			9/2	1	10	In	JD				
	The	<u> </u>							10				
Y N FOR LAB USE ONLY					s unde								
Custody seal was intact when shipment received.		1. It is in your possession; or,											
Sample containers were intact when received.		2. It is in your view, after having been in your possession; or,											
Shipment was at required temperature when received.				3. It was in your possession and you locked it up; or,									
	vironmont	4. It is in a designated secure area. ntal Mgt. Group, Environmental Research Division, 9700 S. Cass Avenue, Argonne, IL 60439											
Arguine National Laboratory, Applieu Geosciences & Elf	VITOLIUIA	ai ivit	ji. Gr	oup,		inne	ind f	16265		IVISI	JI, 9700 3. 0855		1 young, il 00403

ER-160 (12-94)

Burlington Facility

Internal Chain of Custody Log (ICOC)

·		Custody Log (ICO	<u>, , , , , , , , , , , , , , , , , , , </u>					•		
Project Inf		· · · ·			11 (App.21)		1. 1 x 1 2 2	÷	· · · ·	· · ·
LOG-IN N	UMBER: 2	00-1626	Method: S	ONOL	2 - Vo	1Tr	-ace			
CLIENT:	Argon	ne	LAB IDs: 2	00-162	16 - 1 +	hru)	00-16	26-5		
ļ	J-			·			· · · · · · · · · · · · · · · · · · ·			
Samples	associated	with this Log-in were	placed into si	torage on	09/21	110		by: ht	Kit-	
					(Da	le)	(Time ²)		Sample Custodian Sig	nature
Storage L	ocation:	VOA Refrige	rator B.	Shelf	Specify	storage loca	tion (refrigerate	or, freezer ID or lab location) for original sample co	ontainers
	Condition:	Refrigeration	Frozen '	19 	Ambier		•			
	ansfer Inforn		·····					T	* · ·	
	Prepared ¹	Lab ID(s)	Transfer	Transfer		pose of Tra		Relinquished	Received	Storage Location
Original	Frepared		Date	Time ²	Prep	Analysis	Storage	By:	By:	Prepared Sample ¹
		1-5	9-21-10	1604				Thomas fighter	Thomas kelp.	~ YOA Brep
~		1-5	9-21-10	1625				Thursoldun	Thomas ballow	VAA Fridge
T			9/23/10	1615				Juin	JA S	Analys.s
age	-	E ^N	9/23/10	1630			\checkmark	DH	M	Storey.
4										0
, .Ħ										
υ ω				·			·······			· · · · · · · · · · · · · · · · · · ·
	· ·	·	-							
	ļ		_		ļ					
				ļ		ļ				
	· · · · · · · · · · · · · · · · · · ·				<u> </u>					
			:							
·				1						
					-				• • · · ·	
								· · ·	-	
			-			<u> </u>				
							1		•	

¹ Extract, digestate, or any other prepared sample that is no longer in original sample container

² Military Time

Burlington Facility

Internal Chain of Custody Log (ICOC)

	, - 3 ()													
Project Information:														
LOG-IN N	UMBER: 2	00-1626	Method: H	B-SON	<u>101,2</u>	Vol	-Tn	ace						
CLIENT:	Argon	ine	LAB IDs:)											
	٢								• • • • • • • • • • • •					
Samples	Samples associated with this Log-in were placed into storage on $OQ/21/iO$ $V4SS$ by: $Max T Sample Custodian Signature Sample Custodian Signature$													
		· ···· ···· ··························			(Da	te)	(Time ²)	- pope	Sample Custodian Sig	nature				
Storage L	ocation:	VOA Refrice	Catas P	SLOLES	Specify			or, freezer ID or lab location	l for original sample co	ntainars				
	Storage Condition: Refrigeration _ Frozen _ Ambient													
	Internal Transfer Information													
	le Type	Lab ID(s)	Transfer	Transfer	i	pose of Tra		Relinquished	Received	Storage Location				
Original	Prepared ¹		Date	Time ²	Prep	Analysis	Storage	By:	Ву:	Prepared Sample ¹				
~		6	9-21-10	1604	~			Thomas liken	Thenas licht	- YOA Pre				
V		6	9-21-10	1625				Thomas kelon	Thomas bill	n VAA Fridso				
11		el	9/24/0	0710				Thomas	Tar	Analysis				
Page		11	9/24/10	0715				24	JA	storage				
ហ							,			0-				
0 Hi		· · · · · · · · · · · · · · · · · · ·												
л ш				÷ ,										
										•				
<u> </u>		· · · · · · · · · · · · · · · · · · ·							1					
			<u> </u>		ļ		<u>.</u>							
	· ·		· ·					· ·						
				1	-	1								
			<u> </u>											
								· · · · · · · · · · · · · · · · · · ·						
		1		1										

¹ Extract, digestate, or any other prepared sample that is no longer in original sample container

² Military Time

2A - FORM II VOA-1

WATER VOLATILE DEUTERATED MONITORING COMPOUND RECOVERY

Lab Name:	TESTAMERICA	BURLING	TON			Contract:	8E-00302	
Lab Code:	STLV Cas	e No.:	BARNES	Mod.	Ref	No.:	SDG No.:	200-1626
Level: (TF	RACE or LOW)	TRACE					· · · · ·	

	EPA	VDMC1	VDMC2	VDMC3	VDMC4	VDMC5	VDMC6	VDMC7
	SAMPLE NO.	(VCL) #	(CLA) #	(DCE) #	(BUT) #	(CLF) #	(DCA) #	(BEN) #
01	VBLKJF	101	101	77	103	102	108	105
02	BAMW3D-W-28763	97	103	77	137	100	108	108
03	BAMW7-W-28768	101	104	78	138	104	109	107
04	BAMW155-W-2878	101	103	79	170 *	103	107	106
	3	•						
05	BAOENTRICH-W-2	97	100	77	132	101	103	104
	8788							
06	BAQCTB-W-28801	101	100	77	192 *	102	105	.103
.07	VBLKJG	97	98	76	98	100	103	104
80	VHBLK01	118	116	90	110	115	117	121

4		QC LIMITS
VDMC1	(VCL) = Vinyl Chloride-d3	(65-131)
VDMC2	(CLA) = Chloroethane-d5	(71-131)
VDMC3	(DCE) = 1, 1-Dichloroethene-d2	(55-104)
VDMC4	(BUT) = 2-Butanone-d5	(49-155)
VDMC5	(CLF) = Chloroform-d	(78-121)
VDMC6	(DCA) = 1, 2-Dichloroethane-d4	(78-129)
VDMC7	(BEN) = Benzene-d6	(77-124)

Column to be used to flag recovery values
* Values outside of contract required QC limits

2B - FORM II VOA-2

WATER VOLATILE DEUTERATED MONITORING COMPOUND RECOVERY

	Lab Name: TESTA	MERICA BU	ract: 8E-00302						
	Lab Code: STLV	Case	No.: BARN	ES Mod. R	ef No.: _		SDG No.:	200-1626	
	Level: (TRACE o	r LOW) TR	ACE						
	EPA	VDMC8	VDMC9	VDMC10	VDMC11	VDMC12	· VDMC13	OTHER	TOT
	SAMPLE NO.	(DPA) #	(TOL) #	(TDP) #	(HEX) #	(TCA) #	(DCZ) #		OUT
01	VBLKJF	93	102	105	102	104	108		0
02	BAMW3D-W-28763	95	103	101	125	109	108		0
03	BAMW7-W-28768	93	105	108	122	107	109		0
04	BAMW155-W-2878 3	95	105	105	159 *	110	111	· ·	2
05	BAOENTRICH-W-2 8788	92	101	99	118	104	108		0
06	BAQCTB-W-28801	92	102	100	184 *	107	109		2
07	VBLKJG	91	100	99	95	101	103		0
80	VHBLK01	105	119	117	110	115	120		0

		QC LIMITS
VDMC8	(DPA) = 1,2-Dichloropropane-d6	(79-124)
VDMC9	(TOL) = Toluene-d8	(77-121)
VDMC10	(TDP) = trans-1,3-Dichloropropene-d4	(73-121)
VDMC11	(HEX) = 2 - Hexanone - d5	(28-135)
VDMC12	(TCA) = 1,1,2,2-Tetrachloroethane-d2	(73-125)
VDMC13	(DCZ) = 1,2-Dichlorobenzene-d4	(80-131)

Column to be used to flag recovery values
* Values outside of contract required QC limits

Report 1,4-Dioxane-d8 for Low-Medium VOA analysis only

Page <u>1</u> of <u>1</u>

4A - FORM IV VOA VOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

VBLKJF

Lab Name: TESTAMERICA BURLINGTON				Contract: 8E-00302					
Lab Code:	STLV	Case No.:	BARNES	Mod.	Ref	No.:		SDG No.: 200-1626	
Lab File I	D: JBMD04	I.D				Lab	Sample ID:	MB 200-7052/4	
Instrument	: ID: <u>J.i</u>							(
Matrix: (S	SOIL/SED/W	MATER) Wat	er			Date	Analyzed:	09/23/2010	
Level: (TF	RACE or LC	W/MED) TR	ACE			Time	e Analyzed:	1622	
GC Column:	DB-624	ID:	0.20	(mi	m)	Heat	ed Purge:	(Y/N) <u>N</u>	

	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	BAMW3D-W-287 63	200-1626-1	JBMD15.D	2138
02	BAMW7-W-2876 8	200-1626-2	JBMD16.D	2206
03	BAMW155-W-28 783	200-1626-3	JBMD17.D	2234
04	BAOENTRICH-W -28788	200-1626-4	JBMD18.D	2302
05	BAQCTB-W-288 01	200-1626-5	JBMD19.D	2330
		· · ·		

COMMENTS:

Page 1 of 1

SOM01.2 (4/2007)

4A - FORM IV VOA

EPA SAMPLE NO.

VOLATILE METHOD BLANK SUMMARY

VBLKJG

Lab Name: TESTAMERICA BUF	RLINGTON		Contract: 8E-00302				
Lab Code: STLV Case N	Io.: BARNES	Mod. Re	f No.:	SDG No.: 200-1626			
Lab File ID: JBME04.D			Lab Sample	ID: MB 200-7048/4			
Instrument ID: J.i							
Matrix: (SOIL/SED/WATER)	Water		Date Analyze	ed: 09/24/2010			
Level: (TRACE or LOW/MED)	TRACE		Time Analyze	ed: 0737			
GC Column: DB-624	ID: 0.20	(mm)	Heated Purge	e: (Y/N) <u>N</u>			
FΡΔ	ΤΛΡ		ΤΛΌ	TI T MT			

	EPA	LAB	LAB	TIME	
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	
01	VHBLK01	200-1626-6	JBME05.D	0814	ĺ

COMMENTS:

Page <u>1</u> of <u>1</u>

SOM01.2 (4/2007)

5A - FORM V VOA VOLATILE ORGANICS INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

EPA SAMPLE NO.

I BFBJB

Lab	Name:	TESTAMERI	ICA BU	JRLIN	GTON		Contract: 8E-00302					
Lab	Code:	STLV	Case	No.:	BARNES	Mod.	Ref	No.:		SDG No	o.: 200-1626	
Lab	File 1	d: JBM01.	D		-			BFB	Injection	Date:	09/21/2010	
Inst	rument	Id: <u>J.i</u>						BFB	Injection	Time:	1417	
GC (Column:	DB-624		ID:	0.20	(1	mm)					

		% RELATIVE
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE
50	15.0 - 40.0% of mass 95	16.2
75	30.0 - 80.0% of mass 95	51.0
95	Base peak, 100% relative abundance	100
96	5.0 - 9.0% of mass 95	6.6
173	Less than 2.0% of mass 174	0.6 (0.7)1
174	50.0 - 120% of mass 95	88.5
175	5.0 - 9.0% of mass 174	6.3 (7.1)1
176	95.0 - 101% of mass 174	88.5 (100)1
177	5.0 - 9.0% of mass 176	5.8 (6.6)2

1 - Value is %mass 174 2 - Value is %mass 176

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
01	VSTD0.5JB	IC 200-6837/2	JBM02.D	09/21/2010	1435
02	VSTD001JB	IC 200-6837/3	JBM03.D	09/21/2010	1503
03	VSTD005JB	ICIS 200-6837/4	JBM04.D	09/21/2010	1531
04	VSTD010JB	IC 200-6837/5	JBM05.D	09/21/2010	1559
05	VSTD020JB	IC 200-6837/8	JBM08.D	09/21/2010	1724

5A - FORM V VOA VOLATILE ORGANICS INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

EPA SAMPLE NO.

BFBJF

Lab Name:	GTON			Contract: <u>8E-00302</u>						
Lab Code:	STLV	Case	No.:	BARNES	Mod.	Ref	No.:		SDG No	D.: 200-1626
Lab File 1	d: JBMD0	1.D					BFB	Injection	Date:	09/23/2010
Instrument	: Id: <u>J.i</u>						BFB	Injection	Time:	1514
GC Column:	DB-624		ID:	0.20		mm)				

		% RELATIVE
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE
50	15.0 - 40.0% of mass 95	17.0
75	30.0 - 80.0% of mass 95	49.8
95	Base peak, 100% relative abundance	100
96	5.0 - 9.0% of mass 95	6.6
173	Less than 2.0% of mass 174	0.4 (0.5)1
174	50.0 - 120% of mass 95	89.8
175	5.0 - 9.0% of mass 174	6.2 (6.9)1
176	95.0 - 101% of mass 174	89.4 (99.5)1
177	5.0 9.0% of mass 176	5.8 (6.5)2

1 - Value is %mass 174 2 - Value is %mass 176

,					
	EPA	LAB	LAB	DATE	TIME .
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
01	VSTD005JF	CCVIS 200-7052/2	JBMD02.D	09/23/2010	1526
02	VBLKJF	MB 200-7052/4	JBMD04.D	09/23/2010	1622
03	BAMW3D-W-2 8763	200-1626-1	JBMD15.D	09/23/2010	2138
04	BAMW7-W-28 768	200-1626-2	JBMD16.D	09/23/2010	2206
05	BAMW155-W- 28783	200-1626-3	JBMD17.D	09/23/2010	2234
06	BAOENTRICH -W-28788	200-1626-4	JBMD18.D	09/23/2010	2302
07	BAQCTB-W-2 8801	200-1626-5	JBMD19.D	09/23/2010	2330
08 [VSTD005FJ	CCVC. 200-7052/25	JBMD25.D	09/24/2010	0218

Page 1 of 1

SOM01.2 (4/2007)

5A - FORM V VOA VOLATILE ORGANICS INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

EPA SAMPLE NO.

BFBJG

Lab	Name:	TESTAMERI	ICA BU	JRLING	GTON	Contract: 8E-00302								
Làb	Code:	STLV	Case	No.:	BARNES	Mod.	Ref	No.:		SDG No	> .:	200-	1626	
Lab	File]	d: JBME01	.D					BFB	Injection	Date:	09/	24/2	010	
Inst	rument	: Id: <u>J.i</u>			<u></u>			BFB	Injection	Time:	062	2		
GC (Column:	DB-624		ID:	0.20	(:	mm)							

	•	% RELATIVE
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE
50	15.0 - 40.0% of mass 95	18.1
75	30.0 - 80.0% of mass 95	51.7
95	Base peak, 100% relative abundance	100
96	5.0 - 9.0% of mass 95	6.3
173	Less than 2.0% of mass 174	0.5 (0.6)1
174	50.0 - 120% of mass 95	85.4
175	5.0 - 9.0% of mass 174	6.6 (7.8)1
176	95.0 - 101% of mass 174	. 84.3 (98.8)1
177	5.0 - 9.0% of mass 176	5.6 (6.7)2

1 - Value is %mass 174 2 - Value is %mass 176

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
01	VSTD005JG	CCVIS 200-7048/2	JBME02.D	09/24/2010	0641
02	VBLKJG	MB 200-7048/4	JBME04.D	09/24/2010	0737 .
03	VHBLK01	200-1626-6	JBME05.D	09/24/2010	0814
04	VSTD005GJ	CCVC 200-7048/17	JBME17.D	09/24/2010	1354

8A - FORM VIII VOA

VOLATILE INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: TESTAMERICA BURLING	TON Contract: <u>8E-0030</u> 2	2
Lab Code: STLV Case No.:	BARNES Mod. Ref No.: SDG 1	No.: 200-1626
GC Column: DB-624 I	D: 0.20 (mm) Init. Calib. Date(s):	09/21/2010 09/21/2010
EPA Sample No.(VSTD#####): VS	TD005JF Date Analyzed: 09	/23/2010
Lab File ID (Standard): JBMD0	2.D Time Analyzed: 152	26
Instrument ID: J.i	Heated Purge: (Y/)	N) N

•		IS1 (CBZ)		IS2 (DFB)		IS3 (DCB)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	12 HOUR STD	581876	8.97	763681	5.59	261228	11.81
	UPPER LIMIT	814626	9.30	1069153	5.92	365719	12.14
	LOWER LIMIT	349126	8.64	458209	5.26	156737	11.48
	EPA SAMPLE NO.				_		
01	VBLKJF	573613	8.97	757287	5.59	247010	11.80
02	BAMW3D-W-28763	557255	8.97	749889	5.60	242195	11.80
03	BAMW7-W-28768	572618	8.97	758359	5.59	241773	11.81
04	BAMW155-W-2878 3	564682	8.97	742457	5.60	238258	11.81
05	BAOENTRICH-W-2 8788	580095	8.97	764820	5.59	242870	11.81
06	BAQCTB-W-28801	577924	8.97	756298	5.60	244965	11.81

IS1 (CBZ) = Chlorobenzene-d5
IS2 (DFB) = 1,4-Difluorobenzene
IS3 (DCB) = 1,4-Dichlorobenzene-d4

AREA UPPER LIMIT = 140% (Trace Volatiles) of internal standard area AREA LOWER LIMIT = 60% (Trace Volatiles) of internal standard area RT UPPER LIMIT = + 0.33 (Trace Volatiles) minutes of internal standard RT RT LOWER LIMIT = - 0.33 (Trace Volatiles) minutes of internal standard RT

Column used to flag values outside contract required QC limits with an asterisk.

Page 1 of 1

SOM01.2 (4/2007)

8A - FORM VIII VOA

VOLATILE INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: TESTAMERICA BURLINGTON			Contract: <u>8E-00302</u>		
Lab Code:	STLV	Case No.: BARNES M	od. Ref No.:	SDG No.: 200-1626	
GC Column:	DB-624	ID: 0.20	(mm) Init. Calib.	. Date(s): 09/21/2010 09/21/2	2010
EPA Sample	e No.(VSTI)#####): <u>VSTD005JG</u>	Date Ana	alyzed: 09/24/2010	
Lab File 1	ID (Standa	rd): JBME02.D	Time Ana	alyzed: 0641	
Instrument	ID: <u>J.i</u>	· · · · · · · · · · · · · · · · · · ·	Heated H	Purge: (Y/N) N	

		IS1 (CBZ)		IS2 (DFB)		IS3 (DCB)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	12 HOUR STD	588298	8.97	772826	5.59	266878	11.80
	UPPER LIMIT.	823617	9.30	1081956	5.92	373629	12.13
	LOWER LIMIT	352979	8.64	463696	5.26	160127	11.47
	EPA SAMPLE NO.					1. I	
01	VBLKJG	578406	8.97	761685	5.59	248197	11.81
02	VHBLK01	472414	8.97	632704	5.59	198085	11.80

IS1 (CBZ) = Chlorobenzene-d5
IS2 (DFB) = 1,4-Difluorobenzene
IS3 (DCB) = 1,4-Dichlorobenzene-d4

AREA UPPER LIMIT = 140% (Trace Volatiles) of internal standard area AREA LOWER LIMIT = 60% (Trace Volatiles) of internal standard area RT UPPER LIMIT = + 0.33 (Trace Volatiles) minutes of internal standard RT RT LOWER LIMIT = - 0.33 (Trace Volatiles) minutes of internal standard RT

Column used to flag values outside contract required QC limits with an asterisk.

Page 14 of 53

used to flag values outside contract required OC limits with an

SOM01.2 (4/2007)

Page 1 of 1

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

BAMW155-W-28783

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302
Lab Code: STLV Case No.: BARNES Mod	d. Ref No.: SDG No.: 200-1626
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: 200-1626-3
Sample wt/vol: 25.0 (g/mL) mL	Lab File ID: JBMD17.D
Level: (TRACE/LOW/MED) TRACE	Date Received: 09/21/2010
% Moisture: not dec.	Date Analyzed: 09/23/2010
GC Column: DB-624 ID: 0.20	(mm) Dilution Factor: 1.0
Soil Extract Volume:	(uL) Soil Aliquot Volume: (uL)
Purge Volume: 25.0	(mL)

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg)ug/L	Q
75-71-8	Dichlorodifluoromethane	0.50	U
74-87-3	Chloromethane	0.50	U
75-01-4	Vinyl chloride	0.50	U
74-83-9	Bromomethane	0.50	U
75-00-3	Chloroethane	0.50	U
75-69-4	Trichlorofluoromethane	0.50	U
75-35-4	1,1-Dichloroethene	0.50	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	U
67-64-1	Acetone	2.1	JB
75-15-0	Carbon disulfide	0.50	U
79-20-9	Methyl acetate	0.50	U
75-09-2	Methylene Chloride	0.50	U
156-60-5	trans-1,2-Dichloroethene	0.50	U
1634-04-4	Methyl tert-butyl ether	0.50	U
75-34-3	1,1-Dichloroethane	0.50	U
156-59-2	cis-1,2-Dichloroethene	0.50	U
78-93-3	2-Butanone	5.0	U
74-97-5	Bromochloromethane	0.50	U
67-66-3	Chloroform	0.50	U
71-55-6	1,1,1-Trichloroethane	0.50	υ
110-82-7	Cyclohexane	0.50	U
56-23-5	Carbon tetrachloride	1.7	
71-43-2	Benzene	0.50	U
107-06-2	1,2-Dichloroethane	0.50	U

Report 1,4-Dioxane for Low-Medium VOA analysis only

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

BAMW155-W-28783

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302
Lab Code: STLV Case No.: BARNES Mod	d. Ref No.: SDG No.: 200-1626
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: 200-1626-3
Sample wt/vol: 25.0 (g/mL) mL	Lab File ID: JBMD17.D
Level: (TRACE/LOW/MED) TRACE	Date Received: 09/21/2010
% Moisture: not dec.	Date Analyzed: 09/23/2010
GC Column: DB-624 ID: 0.20	(mm) Dilution Factor: 1.0
Soil Extract Volume:	(uL) Soil Aliquot Volume: (uL)
Purge Volume: 25.0	(mL)

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg)ug/L	Q
79-01-6	Trichloroethene	0.50	U
108-87-2	Methylcyclohexane	0.50	U
78-87-5	1,2-Dichloropropane	0.50	U
75-27-4	Bromodichloromethane	0.50	U .
10061-01-5	cis-1,3-Dichloropropene	θ.50	U
108-10-1	4-Methyl-2-pentanone	5.0	Ū
108-88-3	Toluene	0.033	J
10061-02-6	trans-1,3-Dichloropropene	0.50	U
79-00-5	1,1,2-Trichloroethane	0.50	Ū
127-18-4	Tetrachloroethene	0.50	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	0.50	U
106-93-4	1,2-Dibromoethane	0.50	Ŭ
108-90-7	Chlorobenzene	0.50	U
100-41-4	Ethylbenzene	0.50	U
95-47-6	o-Xylene	0.50	U
179601-23-1	m,p-Xylene	0.50	U
100-42-5	Styrene	0.50	U.
75-25-2	Bromoform	0.50	U
98-82-8	Isopropylbenzene	0.50	U
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U
541-73-1	1,3-Dichlorobenzene	0.50	U
106-46-7	·1,4-Dichlorobenzene	0.50	U
95-50-1	1,2-Dichlorobenzene	0.50	U
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U
120-82-1	1,2,4-Trichlorobenzene	0.50	U
87-61-6	1,2,3-Trichlorobenzene	0.50	U

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

BAMW155-W-28783

Lab Name: TESTAMERICA BURLINGTON		Contract: <u>8E-00302</u>		
Lab Code: STLV Case No.: BARNES Mo	d. Ref No.:	SDG No.: 200-1626		
Matrix: (SOIL/SED/WATER) Water	Lab Sa	ample ID: 200-1626-3		
Sample wt/vol: 25.0 (g/mL) mL	Lab F	ile ID: JBMD17.D		
Level: (TRACE or LOW/MED) TRACE	Date I	Received: 09/21/2010		
% Moisture: not dec.	Date 2	Analyzed: 09/23/2010		
GC Column: DB-624 ID: 0.20	(mm) Dilut:	ion Factor: 1.0		
Soil Extract Volume:	(uL) Soil A	Aliquot Volume:(uL)		
CONCENTRATION UNITS: (ug/L or ug/kg) ug	/L Purge	Volume: 25.0 (mL)		

	CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
01		Unknown	6.93	. 2.7	ВХЈ
02	541-05-9	Cyclotrisiloxane, hexamethyl-	7.89	0.73	BJN
03	E9667961	Total Alkanes	N/A		

1EPA-designated Registry Number.

SOM01.2 (4/2007)

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

BAMW3D-W-28763

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302
Lab Code: <u>STLV</u> Case No.: <u>BARNES</u> Mo	d. Ref No.: SDG No.: 200-1626
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: 200-1626-1
Sample wt/vol: 25.0 (g/mL) mL	Lab File ID: JBMD15.D
Level: (TRACE/LOW/MED) TRACE	Date Received: 09/21/2010
% Moisture: not dec.	Date Analyzed: 09/23/2010
GC Column: DB-624 ID: 0.20	(mm) Dilution Factor: 1.0
Soil Extract Volume:	(uL) Soil Aliquot Volume: (uL)
Purge Volume: 25.0	(mL)

[·····			
CAS NO.	COMPOUND	CONCENTRATION UNITS:	Q
		(ug/L or ug/kg)ug/L	¥.
75-71-8	Dichlorodifluoromethane	0.50	U
74-87-3	Chloromethane	. 0.50	ΰ
75-01-4	Vinyl chloride	0.50	U
74-83-9	Bromomethane	0.50	U
75-00-3	Chloroethane	0.50	U
75-69-4	Trichlorofluoromethane	0.50	U.
75-35-4	1,1-Dichloroethene	0.50	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	Ū
67-64-1	Acetone	1.3	JB
75-15-0	Carbon disulfide	0.50	U
79-20-9	Methyl acetate	0.50	U
75-09-2	Methylene Chloride	0.50	U
156-60-5	trans-1,2-Dichloroethene	0.50	U
1634-04-4	Methyl tert-butyl ether	0.50	U
75-34-3	1,1-Dichloroethane	0.50	Ų
156-59-2	cis-1,2-Dichloroethene	0.50	U
78-93-3	2-Butanone	5.0	U
74-97-5	Bromochloromethane	0.50	U
67-66-3	Chloroform	0.50	U
71-55-6	1,1,1-Trichloroethane	0.50	U
110-82-7	Cyclohexane	0.50	U
56-23-5	Carbon tetrachloride	0.090	J
71-43-2	Benzene	0.50	U
107-06-2	1,2-Dichloroethane	0.50	Ū

Report 1,4-Dioxane for Low-Medium VOA analysis only

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

BAMW3D-W-28763

Lab Name: TESTAMERICA BURLINGTON	
Lab Code: STLV Case No.: BARNES Mo	d. Ref N
Matrix: (SOIL/SED/WATER) Water	_
Sample wt/vol: 25.0 (g/mL) mL	_
Level: (TRACE/LOW/MED) TRACE	_
% Moisture: not dec.	_
GC Column: DB-624 ID: 0.20	(mm)
Soil Extract Volume:	(uL)
Purge Volume: 25.0	(mL)

Contract: <u>8E-00302</u>	
No.: SDG No.: 200-16	26
Lab Sample ID: 200-1626-1	_
Lab File ID: JBMD15.D	
Date Received: 09/21/2010	
Date Analyzed: 09/23/2010	
Dilution Factor: 1.0	
Soil Aliquot Volume:	(uL)

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg)ug/L	Q
79-01-6	Trichloroethene	0.077	J
108-87-2	Methylcyclohexane	0.50	U
78-87-5	1,2-Dichloropropane	0.50	U
75-27-4	Bromodichloromethane	0.50	U
10061-01-5	cis-1,3-Dichloropropene	0.50	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	0.076	J
10061-02-6	trans-1,3-Dichloropropene	0.50	U
79-00-5	1,1,2-Trichloroethane	0.50	U · ·
127-18-4	Tetrachloroethene	1.3	
591-78-6	2-Hexanone	5.0	U.
124-48-1	Dibromochloromethane	0.50	U
106-93-4	1,2-Dibromoethane	0.50	U
108-90-7	Chlorobenzene	0.50	U
100-41-4	Ethylbenzene	0.50	U
95-47-6	o-Xylene	0.50	U
179601-23-1	m,p-Xylene	0.50	U
100-42-5	Styrene	0.50	U
75-25-2	Bromoform	0.50	U
98-82-8	Isopropylbenzene	0.50	U
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U
541-73-1	1,3-Dichlorobenzene	0.50	Ū
106-46-7	1,4-Dichlorobenzene	0.50	U
95-50-1	1,2-Dichlorobenzene	0.50	Ū
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U
120-82-1	1,2,4-Trichlorobenzene	0.50	Ū
87-61-6	1,2,3-Trichlorobenzene	0.50	U

EPA SAMPLE NO.

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

BAMW3D-W-28763

Lab Name: TESTAMERICA BUR	LINGTON		Contract: 8E-	00302	
Lab Code: STLV Case No	D.: <u>BARNES</u> M	od. Ref	No.:	SDG No.: 200-162	5
Matrix: (SOIL/SED/WATER)	Nater	_	Lab Sample ID	: 200-1626-1	
Sample wt/vol: 25.0	(g/mL) mL		Lab File ID:	JBMD15.D	<u>~</u>
Level: (TRACE or LOW/MED)	TRACE		Date Received	: 09/21/2010	
% Moisture: not dec.			Date Analyzed	: 09/23/2010	
GC Column: DB-624	ID: 0.20	(mm)	Dilution Fact	or: <u>1.0</u>	
Soil Extract Volume:		(uL)	Soil Aliquot	Volume:	(uL)
CONCENTRATION UNITS: (ug/L	or ug/kg) <u>u</u>	g/L	Purge Volume:	25.0	(mL)

	CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
01.		Unknown	1.68	0.79	ВJ
02		Unknown	6.93	2.7	ВХЈ
03	541-05-9	Cyclotrisiloxane, hexamethyl-	7.89	1.4	ВЈМ
04		Unknown siloxane derivative	10.72	1.2	ВJ
05	E9667961	Total Alkanes	N/A		

1EPA-designated Registry Number.

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

BAMW7-W-28768

Lab Name: TESTAMERICA	BURLINGTON	•	Contrac	t: 8E-00302	
Lab Code: <u>STLV</u> Case	e No.: <u>BARNES</u> M	lod. Ref	No.:	SDG No.: 200-1	626
Matrix: (SOIL/SED/WATE)	R) Water		Lab Sam	ple ID: 200-1626-2	
Sample wt/vol: 25.0	(g/mL)		Lab Fil	e ID: JBMD16.D	
Level: (TRACE/LOW/MED)	TRACE		Date Re	ceived: 09/21/2010	
% Moisture: not dec			Date An	alyzed: 09/23/2010	
GC Column: DB-624	ID: 0.20	(mm)	Dilutic	on Factor: 1.0	
Soil Extract Volume:		(uL)	Soil Al	iquot Volume:	(uL)
Purge Volume: 25.0		(mL)			•

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg)ug/L	Q
75-71-8	Dichlorodifluoromethane	0.50	U
74-87-3	Chloromethane	0.50	U .
75-01-4	Vinyl chloride	0.50	U
74-83-9	Bromomethane	0.50	U
75-00-3	Chloroethane	0.50	U
75-69-4	Trichlorofluoromethane	0.50	U
75-35-4	1,1-Dichloroethene	0.50	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	U .
67-64-1	Acetone	2.3	JВ
75-15-0	Carbon disulfide	0.50	U
79-20-9	Methyl acetate	0.50	U
75-09-2	Methylene Chloride	0.16	J
156-60-5	trans-1,2-Dichloroethene	0.50	U
1634-04-4	Methyl tert-butyl ether	0.50	U
75-34-3	1,1-Dichloroethane	0.50	U
156-59-2	cis-1,2-Dichloroethene	0.50	U
78-93-3	2-Butanone	5.0	U
74-97-5	Bromochloromethane	0.50	U
67-66-3	Chloroform	0.21	J
71-55-6	1,1,1-Trichloroethane	0.50	Ŭ ·
110-82-7	Cyclohexane	0.50	U
56-23-5	Carbon tetrachloride	1.9	
71-43-2	Benzene	0.50	υ
107-06-2	1,2-Dichloroethane	0.50	U

Report 1,4-Dioxane for Low-Medium VOA analysis only

1B - FORM I VOA-2

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

BAMW7-W-28768

Lab Name: TESTAMERICA BURLINGTON	Contract: <u>8E-00302</u>
Lab Code: <u>STLV</u> Case No.: <u>BARNES</u> Mod. 1	Ref No.: SDG No.: 200-1626
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: 200-1626-2
Sample wt/vol: 25.0 (g/mL) mL	Lab File ID: JBMD16.D
Level: (TRACE/LOW/MED) TRACE	Date Received: 09/21/2010
% Moisture: not dec.	Date Analyzed: 09/23/2010
GC Column: DB-624 ID: 0.20 (mm) Dilution Factor: 1.0
Soil Extract Volume:(uL) Soil Aliquot Volume:(uL)
Purge Volume: 25.0 (mL)) · · · · · · · · · · · · · · · · · · ·

CAS NO.	COMPOUND	CONCENTRATION UNITS:	
CAS NO.		(ug/L or ug/kg)ug/L	Q
79-01-6	Trichloroethene	0.067	J
108-87-2	Methylcyclohexane	0.50	U
78-87-5	1,2-Dichloropropane	0.50	U
75-27-4	Bromodichloromethane	0.50	U
10061-01-5	cis-1,3-Dichloropropene	0.50	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	0.052	J
10061-02-6	trans-1,3-Dichloropropene	0.50	U
79-00-5	1,1,2-Trichloroethane	0.50	U
127-18-4	Tetrachloroethene	1.4	
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	0.50	U
106-93-4	1,2-Dibromoethane	0.50	U
108-90-7	Chlorobenzene	0.50	U
100-41-4	Ethylbenzene	0.50	U
95-47-6	o-Xylene	0.50	U
179601-23-1	m,p-Xylene	0.50	U ·
100-42-5	Styrene	0.50	U
75-25-2	Bromoform	0.50	U
98-82-8	Isopropylbenzene	0.50	U
79-34-5	1,1,2,2-Tetrachloroethane	. 0.50	Ŭ
541-73-1	1,3-Dichlorobenzene	0.50	U
106-46-7	1,4-Dichlorobenzene	0.50	U
95-50-1	1,2-Dichlorobenzene	0.50	U
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U
120-82-1	1,2,4-Trichlorobenzene	0.50	U
87-61-6	1,2,3-Trichlorobenzene	0.50	U

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

BAMW7-W-28768

Lab Name: TESTAMERICA BURLINGTON	_	Contract: 8E-00302
Lab Code: STLV Case No.: BARNES Mo	d. Ref No	o.: SDG No.: 200-1626
Matrix: (SOIL/SED/WATER) Water	_	Lab Sample ID: 200-1626-2
Sample wt/vol: 25.0 (g/mL) mL	_	Lab File ID: JBMD16.D
Level: (TRACE or LOW/MED) TRACE	-	Date Received: 09/21/2010
% Moisture: not dec.	_	Date Analyzed: 09/23/2010
GC Column: DB-624 ID: 0.20	(mm)	Dilution Factor: 1.0
Soil Extract Volume:	(uL)	Soil Aliquot Volume:(uL)
CONCENTRATION UNITS: (ug/L or ug/kg) ug	l/r	Purge Volume: 25.0 (mL)

	CAS NUMBER	COMPOUND NAME	RT [·]	EST. CONC.	Q
01		Unknown	6.93	2.7	ВХЈ
02	E9667961		N/A	· · · · · · · · · · · · · · · · · · ·	
				· · · · · · · · · · · · · · · · · · ·	·····

1EPA-designated Registry Number.

1A - FORM I VOA-1

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

BAOENTRICH-W-2878

Lab Name: TESTAMERICA BU	RLINGTON		Contract: 8E-0	0302
Lab Code: STLV Case	No.: BARNES M	lod. Ref	No.:S	DG No.: 200-1626
Matrix: (SOIL/SED/WATER)	Water	·	Lab Sample ID:	200-1626-4
Sample wt/vol: 25.0	(g/mL) mL		Lab File ID: J	BMD18.D
Level: (TRACE/LOW/MED) T	RACE		Date Received:	09/21/2010
% Moisture: not dec.			Date Analyzed:	09/23/2010
GC Column: DB-624	ID: 0.20	(mm)	Dilution Facto	r: 1.0
Soil Extract Volume:		(uL)	Soil Aliquot V	olume:(uL)
Purge Volume: 25 0		(mT_{i})	· · · ·	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg)ug/L	Q
75-71-8	Dichlorodifluoromethane	0.50	U
74-87-3	Chloromethane	0.50	Ü
75-01-4	Vinyl chloride	0.50	U
74-83-9	Bromomethane	0.50	U
75-00-3	Chloroethane	0.50	U
75-69-4	Trichlorofluoromethane	0.50	U
75-35-4	1,1-Dichloroethene	0.50	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	U
67-64-1	Acetone	3.6	JB
75-15-0	Carbon disulfide	0.50	U
79-20-9	Methyl acetate	0.50	U
75-09-2	Methylene Chloride	0.50	U .
156-60-5	trans-1,2-Dichloroethene	0.50	U
1634-04-4	Methyl tert-butyl ether	0.50	Ŭ
75-34-3	1,1-Dichloroethane	0.50	U
156-59-2	cis-1,2-Dichloroethene	0.50	U
78-93-3	2-Butanone	5.0	U
74-97-5	Bromochloromethane	0.50	U
67-66-3	Chloroform	0.72	
71-55-6	1,1,1-Trichloroethane	0.50	U
110-82-7	Cyclohexane	0.50	U
56-23-5	Carbon tetrachloride	2.8	·
71-43-2	Benzene	0.50	U
107-06-2	1,2-Dichloroethane	0.50	U

Report 1,4-Dioxane for Low-Medium VOA analysis only

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

IS DATA SHEET BAOENTR

BAOENTRICH-W-2878

(uL)

Lab Name: TESTAMERICA BURLINGTON	Contract: <u>8E-00302</u>
Lab Code: STLV Case No.: BARNES Mo	od. Ref No.: SDG No.: 200-1626
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: 200-1626-4
Sample wt/vol: 25.0 (g/mL) mL	Lab File ID: JBMD18.D
Level: (TRACE/LOW/MED) TRACE	Date Received: 09/21/2010
% Moisture: not dec.	Date Analyzed: 09/23/2010
GC Column: DB-624 ID: 0.20	(mm) Dilution Factor: 1.0
Soil Extract Volume:	(uL) Soil Aliquot Volume:
Purge Volume: 25.0	(mL)

CAS NO.	COMPOUND	CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/kg)ug/L	Q
79-01-6	Trichloroethene	0.50	U
108-87-2	Methylcyclohexane	0.50	U
78-87-5	1,2-Dichloropropane	0.50	U
75-27-4	Bromodichloromethane	0.50	U
10061-01-5	cis-1,3-Dichloropropene	0.50	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	0.50	U
10061-02-6	trans-1,3-Dichloropropene	0.50	U
79-00-5	1,1,2-Trichloroethane	0.50	U
127-18-4	Tetrachloroethene	0.50	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane ·	0.50	U
106-93-4	1,2-Dibromoethane	0.50	U
108-90-7	Chlorobenzene	0.50	U
100-41-4	Ethylbenzene	0.50	U
95-47-6	o-Xylene	0.50	U
179601-23-1	m,p-Xylene	0.50	U
100-42-5	Styrene	0.50	U
75-25-2	Bromoform	0.50	U
98-82-8	Isopropylbenzene	0.50	U
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U ·
541-73-1	1,3-Dichlorobenzene	0.50	Ū
106-46-7	1,4-Dichlorobenzene	0.50	U
95-50-1	1,2-Dichlorobenzene	0.50	U
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U
120-82-1	1,2,4-Trichlorobenzene	0.50	U
87-61-6	1,2,3-Trichlorobenzene	0.50	U

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

BAOENTRICH-W-2878

Lab Name: TESTAMERICA BURLINGTON	Contract: <u>8E-00302</u>
Lab Code: <u>STLV</u> Case No.: <u>BARNES</u> Mc	d. Ref No.: SDG No.: 200-1626
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: 200-1626-4
Sample wt/vol: 25.0 (g/mL) mL	Lab File ID: JBMD18.D
Level: (TRACE or LOW/MED) TRACE	Date Received: 09/21/2010
% Moisture: not dec.	Date Analyzed: 09/23/2010
GC Column: DB-624 ID: 0.20	(mm) Dilution Factor: 1.0
Soil Extract Volume:	(uL) Soil Aliquot Volume: (uL)
CONCENTRATION UNITS: (ug/L or ug/kg) ug	/L Purge Volume: 25.0 (mL)

	CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
01		Unknówn	6.93	2.7	ВХЈ
02	541-05-9	Cyclotrisiloxane, hexamethyl-	7.89	0.55	BJN
03	E9667961	Total Alkanes	N/A		

1EPA-designated Registry Number.

1A - FORM I VOA-1

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

BAQCTB-W-28801

Lab Name: TESTAMERICA BURLINGTON		Contract: <u>8E-00302</u>
Lab Code: <u>STLV</u> Case No.: <u>BARNES</u> Mo	od. Ref N	No.: SDG No.: 200-1626
Matrix: (SOIL/SED/WATER) Water	_	Lab Sample ID: 200-1626-5
Sample wt/vol: 25.0 (g/mL) mL	_	Lab File ID: JBMD19.D
Level: (TRACE/LOW/MED) TRACE		Date Received: 09/21/2010
% Moisture: not dec.		Date Analyzed: 09/23/2010
GC Column: DB-624 ID: 0.20	(mm)	Dilution Factor: 1.0
Soil Extract Volume:	(uL)	Soil Aliquot Volume: (uL)
Purge Volume: 25.0	(mL)	

CAS NO.	COMPOUND	CONCENTRATION UNITS:	Q
		(ug/L or ug/kg) <u>ug/L</u>	
75-71-8	Dichlorodifluoromethane	0.50	U
74-87-3	Chloromethane	0.50	U
75-01-4	Vinyl chloride	0.50	U
74-83-9	Bromomethane	0.50	U
75-00-3	Chloroethane	0.50	U
75-69-4	Trichlorofluoromethane	0.50	U
75-35-4	1,1-Dichloroethene	0.50	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	U
67-64-1	Acetone	6.2	В
75-15-0	Carbon disulfide	0.50	U ·
79-20-9	Methyl acetate	0.50	U
75-09-2	Methylene Chloride	0.50	U
156-60-5	trans-1,2-Dichloroethene	0.50	U.
1634-04-4	Methyl tert-butyl ether	0.50	U
75-34-3	1,1-Dichloroethane	0.50	U
156-59-2	cis-1,2-Dichloroethene	0.50	U
78-93-3	2-Butanone	5.0	U
74-97-5	Bromochloromethane	0.50	U
67-66-3	Chloroform	0.50	U
71-55-6	1,1,1-Trichloroethane	0.50	U
110-82-7	Cyclohexane	0.50	U ·
56-23-5	Carbon tetrachloride	0.50	Ū
71-43-2	Benzene	0.50	U
107-06-2	1,2-Dichloroethane	0.50	U

Report 1,4-Dioxane for Low-Medium VOA analysis only

1B - FORM I VOA-2

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

BAQCTB-W-28801

Lab Name: TESTAMERICA BURLINGTON				Cont	ract: <u>8E-0</u>	8E-00302			
Lab Code:	STLV C	Case No.:	BARNES	Mod.	Ref	No.:	S	DG No.: 2	00-1626
Matrix: (S	OIL/SED/WA	TER) Wate	er			Lab	Sample ID:	200-1626	-5
Sample wt/	vol: <u>25.0</u>	(g/n	nL) <u>mL</u>			Lab	File ID: J	BMD19.D	
Level: (TR	ACE/LOW/ME	D) TRACE				Date	e Received:	09/21/20	10
% Moisture	: not dec.					Date	e Analyzed:	09/23/20	10
GC Column:	DB-624	II): <u>0.20</u>	(mm	.)	Dilu	ution Facto	r: <u>1.0</u>	
Soil Extra	ct Volume:			(uL)	Soil	L Aliquot V	olume:	(uL)
Purge Volu	me: 25.0			(mL)	•			

CAS NO.	COMPOUND	CONCENTRATION UNITS:	-Q-
		(ug/L or ug/kg) <u>ug/L</u>	×
79-01-6	Trichloroethene	0.50	U
108-87-2	Methylcyclohexane	0.50	U
78-87-5	1,2-Dichloropropane	0.50	U
75-27-4	Bromodichloromethane	0.14	J
10061-01-5	cis-1,3-Dichloropropene	0.50	U ·
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	0.10	J
10061-02-6	trans-1,3-Dichloropropene	0.50	U
79-00-5	1,1,2-Trichloroethane	0.50	U
127-18-4	Tetrachloroethene	0.50	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	0.063	J
106-93-4	1,2-Dibromoethane	0.50	U
108-90-7	Chlorobenzene	0.50	U
100-41-4	Ethylbenzene	0.50	U
95-47-6	o-Xylene	0.043	J
179601-23-1	m,p-Xylene	0.50	U
100-42-5	Styrene	0.50	·U
75-25-2	Bromoform	0.50	U
98-82-8	Isopropylbenzene	. 0.50	U ·
79-34-5	1,1,2,2-Tetrachloroethane	0.50	·U
541-73-1	1,3-Dichlorobenzene	0.50	U
106-46-7	1,4-Dichlorobenzene	0.037	J
95-50-1	1,2-Dichlorobenzene .	0.50	U
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U
120-82-1	1,2,4-Trichlorobenzene	0.50	U
87-61-6	1,2,3-Trichlorobenzene	0.50	U

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

BAQCTB-W-28801

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302		
Lab Code: STLV Case No.: BARNES Mod. Ref	SDG No.: 200-1626		
Matrix: (SOIL/SED/WATER) <u>Water</u>	Lab Sample ID: 200-1626-5		
Sample wt/vol: 25.0 (g/mL) mL	Lab File ID: JBMD19.D		
Level: (TRACE or LOW/MED) TRACE	Date Received: 09/21/2010		
% Moisture: not dec.	Date Analyzed: 09/23/2010		
GC Column: DB-624 ID: 0.20 (mm)	Dilution Factor: 1.0		
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)		
CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Purge Volume: 25.0 (mL)		

	CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
01		Unknown	6.93	2.7	ВХЈ
02	541-05-9	Cyclotrisiloxane, hexamethyl-	7.89	0.58	ВЈМ
03	E9667961	Total Alkanes	N/A	-	

1EPA-designated Registry Number.

6A - FORM VI VOA-1 VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON Contract: 8E-00302							
Lab Code: STLV Case No.: H	BARNES MO	d. Ref N	lo.:	SE	G No.: 2	00-1626	
Instrument ID: J.i		Calibra	tion Dat	e(s): 09	/21/2010	09/21/	2010
Heated Purge: (Y/N) N		Calibra	tion Tim	e(s): 14	35	1724	
Purge Volume: 25.0		(mL)					
GC Column: DB-624 II	D: <u>0.20</u>	(mm)	Length:	25	(m)		
LAB FILE ID: RF	RF0.5 = J	BM02.D		RRF1.	0 = JBM0	3.D	
RRF5.0 = JBM04.D RF	RF10 = J	BM05.D	·	RRF20	= JBM0	8.D	
COMPOUND	RRF0.5	RRF1.0	RRF5.0	RRF10	RRF20	RRF	%RSD
Dichlorodifluoromethane	0.475	0.484	0.451	0.459	0.442	0.462	3.7
Chloromethane	0.426	0.401	0.361	0.348	0.328	0.373	10.8
Vinyl chloride	0.389	0.404	0.370	0.371	0.352	0.377	5.3
Bromomethane	0.228	0.221	0.198	0.200	0.203	0.210	6.5
Chloroethane	0.166	0.150	0.225	0.233	0.213	0.198	18.7
Trichlorofluoromethane	0.581	0.610	0,583	0.592	0.563	0.586	2.9
1,1-Dichloroethene	0.289	0.290	0.279	0.287	0.280	0.285	1.8
1,1,2-Trichloro-	0.327	0.337	0.315	0.325	0.326	0.326	2.3
1,2,2-trifluoroethane							
Acetone	0.016	0.016	0.011	0.011		0.013	21.7
Carbon disulfide	0.861	0.829	1	0.773	1		6.2
Methyl acetate	0.033	0.044		0.035	1		12.0
Methylene Chloride	0.211	0.211		0.217		0.213	1.6
trans-1,2-Dichloroethene	0.305	0.311	0.297	0.305		0.303	2.0
Methyl tert-butyl ether	0.311	0.336		0.333	1	0.325	3.1
1,1-Dichloroethane	0.480			0.502	1		4.0
cis-1,2-Dichloroethene	0.286	0.295	1	0.291	1	0.288	1.7
2-Butanone	0.018	0.020		0.019	1		4.1
Bromochloromethane	0.084	0.091	0.086	0.085	1	0.086	3.4
Chloroform	0.474	0.506		0.481	and the second se		3.4
1,1,1-Trichloroethane	0.662	0.692		0.689	E Contraction of the second se	0.671	3.0
Cyclohexane	0.654	0.674					2.6
Carbon tetrachloride	0.589	0.622		0.629		1	2.7
Benzene	1.492	1.607					
1,2-Dichloroethane	0.192	0.196	0.190			0.194	2.2
Trichloroethene	0.423	0.428	1	0.428	0.399	•	2.9
Methylcyclohexane	0.517	0.551	0.536	0.539	0.515	0.532	2.9

Report 1,4-Dioxane for Low-Medium VOA analysis only

6B - FORM VI VOA-2 VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON Contract: 8E-00302								
Lab Code: <u>STLV</u> Case No.:	BARNES Mc	d. Ref N	o.:	SD	G No.: 20	00-1626		
Instrument ID: J.i		Calibra	tion Dat	e(s): 09	/21/2010	09/21/	2010	
Heated Purge: (Y/N) N		Calibra	tion Tim	e(s): 14	35	1724		
Purge Volume: 25.0		(mL)						
GC Column: DB-624 I	D: 0.20	(mm)	Length:	25	(m)			
LAB FILE ID: R	RF0.5 = J	BM02.D		RRF1.	0 = JBM03	3.D		
RRF5.0 = JBM04.D R	RF10 = J	BM05.D		RRF20		8.D		
COMPOUND	RRFQ.5	RRF <u>1.0</u>	RRF5.0	RRF10	RRF20	RRF	%RSD	
1,2-Dichloropropane	0.262	0.296	0.287	0.301	0.282	0.286	5.2	
Bromodichloromethane	0.314	0.351	0.353	0.353	0.344	0.343	4.8	
cis-1,3-Dichloropropene	0.394	0.406	0.418	0.433	0.420	0.414	3.5	
4-Methyl-2-pentanone	0.056	0.064	0.063	0.066	0.062	0.062	6.4	
Toluene	1.605	1.697	1.663	1.702	1.646	1.663	2.4	
trans-1,3-Dichloropropene	0.256	0.287	0.295	0.306	0.297	0.288	6.7	
1,1,2-Trichloroethane	0.117	0.148	0.145	0.145	0.133	0.138	9.3	
Tetrachloroethene	0.368	0.381	0.378	0.384	0.365	0.375	2.2	
2-Hexanone	0.051	0.048	0.043	0.044	0.041	0.045	9.7	
Dibromochloromethane	0.153	0.178	0.183	0.183	0.186	0.177	7.7	
1,2-Dibromoethane	0.120	0.128	0.132	0.135	0.124	0.128	4.6	
Chlorobenzene	0.963	1.022	0.976	1.005	0.964	0.986	2.7	
Ethylbenzene	1.835	1.939	1,953	2.017	1.966	1.942	3.4	
o-Xylene	0.623	0.659	0.679	0.700	0.676	0.667	4.4	
m,p-Xylene	0.704	0.742	0.750	0.782	0.752	0.746	3.8	
Styrene	0.843	0.908	0.965	1.030		0.950	7.9	
Bromoform	0.174	0.161	0.181	0.165	0.181	0.172	5.3	
Isopropylbenzene	1.847	1.942	1.997	2.070	2.014	1.974	4.3	
1,1,2,2-Tetrachloroethane	0.114	0.124	0.126	0.126	0.120	0.122	4.3	
1,3-Dichlorobenzene	1.498	1.516	1.496	1.507	1.482	1.500	0.9	
1,4-Dichlorobenzene	1.507	1.528	1.457	1.468	1.422	1.476	2.8	
1,2-Dichlorobenzene	1.040	1.100	1.099	1.114		1.086	2.7	
1,2-Dibromo-3-Chloropropane	0.035	0.036	0.036	0.036	0.034	0.035	3.0	
1,2,4-Trichlorobenzene	0.674	0.720	0.684	0.712	0.684	0.695	2.8	
1,2,3-Trichlorobenzene	0.429	0.455	0.432	0.456	0.426	0.440	3:4	

6C - FORM VI VOA-3 VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: TESTAMERICA BURLING	Contract: 8E-00302						
Lab Code: STLV Case No.: I	d. Ref N	o.:	S	SDG No.: 200-1626			
Instrument ID: J.i		Calibra	tion Dat	e(s): (9/21/2010	09/21/	2010
Heated Purge: (Y/N) N		Calibra	tion Tim	e(s): 1	.435	1724	
Purge Volume: 25.0		(mL)					•
GC Column: DB-624 II	D: <u>0.20</u>	(mm)	Length:	25	(m)		
LAB FILE ID: RE	RF0.5 = J	BM02.D		RRF1	.0 = JBM0	3.D	
RRF5.0 = JBM04.D RF	RF10 = J	BM05.D		RRF2	20 = JBM0	8.D	
COMPOUND	RRF0.5	RRF1.0	RRF5.0	RRF10	RRF20	RRF	%RSD
Vinyl Chloride-d3	0.329	0.374	0.324	0.332	0.313	0.335	6.9
Chloroethane-d5	0.269	0.297	0.274	0.273	0.259	0.274	5.2
1,1-Dichloroethene-d2	0.534	0.546	0.524	0.531	0.512	0.530	2.3
2-Butanone-d5	0.017	0.022	0.020	0.020	0.020	0.020	7.8
Chloroform-d	0.474	0.497	0.471	0.485	0.471	0.480	2.4
1,2-Dichloroethane-d4	0.158	0.155	0.152	0.153	0.148	0.153	2.5
Benzene-d6	1.364	1.461	1.408	1.443	1.373	1.410	3.0
1,2-Dichloropropane-d6	0.373	0.397	0.385	0.337	0.366	0.372	6.1
Toluene-d8	1.321	1.416	1.382	1.436	1.374	1.386	3.2
trans-1,3-Dichloropropene-d4	0.241	0.251	0.259	0.273	0.260	0.257	4.7
2-Hexanone-d5	0.022	0.025	0.024	0.026		0.024	7.1
1,1,2,2-Tetrachloroethane-d2	0.100	.0.119	0.121	0.123		0.116	8.0
1,2-Dichlorobenzene-d4	0.706	0.698	0.678	0.691	0.676	0.690	1.8

Report 1,4-Dioxane-d8 for Low-Medium VOA analysis only

7A - FORM VII VOA-1 VOLATILE CONTINUING CALIBRATION DATA

Lab Name:	TESTAMER	ICA BURLIN	GTON		Contract: <u>8E-00302</u>				
Lab Code:	STLV	Case No.:	BARNES M	od. Ref	No.:		SDG No.:	200-1626	
Instrument	ID: <u>J.i</u>			_ Cal	ibratio	on Date:	09/23/201	.0 Time: 1	1526
Lab File 1	Id: JBMDO	2.D		Init.	Calib.	Date(s)	:09/21/201	.0 09/21/2	2010
EPA Sample	e No.(VST	D####): <u>Vs</u>	TD005JF	_ İni	t. Cali	b. Time	(s): <u>1435</u>	1724	
Heated Pu	rge: (Y/N) <u>N</u> G	C Column:	DB-624	ID:	<u>0.20</u> (mm)) Length:	<u>25</u> (m)	
Purge Volu	ume: 25.0			(mL)					

COMPOUND	RRF	RRF5.0	MIN RRF	۶D	MAX %D
Dichlorodifluoromethane	0.462	0.479	0.010	3.7	40.0
Chloromethane	0.373	0.374	0.010	0.3	40.0
Vinyl chloride	0.377	0.390	0.010	3.5	30.0
Bromomethane	0.210	0.224	0.100	6.8	30.0
Chloroethane	0.198	0.218	0.010	10.3	40.0
Trichlorofluoromethane	0.586	0.603	0.010	3.0	40.0
1,1-Dichloroethene	0.285	0.290	0.100	1.8	30.0
1,1,2-Trichloro-1,2,2-trifluoroethane	0.326	0.329	0.010	1.0	40.0
Acetone	0.013	0.012	0.010	-8.1	40.0
Carbon disulfide	0.793	0.791	0.010	-0.3	40.0
Methyl acetate	0.037	0.037	0.010	1.0	40.0
Methylene Chloride	0.213	0.220	0.010	3.3	40.0
trans-1,2-Dichloroethene	0.303	0.301	0.010	-0.5	40.0
Methyl tert-butyl ether	0.325	0.317	0.010	-2.3	40.0
1,1-Dichloroethane	0.496	0.512	0.200	3.2	30.0
cis-1,2-Dichloroethene	0.288	0.296	0.010	2.5	40.0
2-Butanone	0.019	0.019	0.010	-1.0	40.0
Bromochloromethane	0.086	0.086	0.050	0.1	30.0
Chloroform	0.479	0.481	0.200	0.4	30.0
1,1,1-Trichloroethane	0.671	0.686	0.100	2.3	30.0
Cyclohexane	0.661	0.679	0.010	2.7	40.0
Carbon tetrachloride	0.610	0.621	0.100	1.9	30.0
Benzene	1.555	1.585	0.400	2.0	30.0
1,2-Dichloroethane	0.194	0.195	0.100	0.4	30.0
Trichloroethene	0.419	0.427	0.300	2.0	30.0
Methylcyclohexane	0.532	0.545	0.010	2.6	40.0

Report 1,4-Dioxane for Low/Medium VOA analysis only

L.

7B - FORM VII VOA-2 • VOLATILE CONTINUING CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON	Contract: <u>8E-00302</u>
Lab Code: <u>STLV</u> Case No.: <u>BARNES</u> M	Mod. Ref No.: SDG No.: 200-1626
Instrument ID: J.i	Calibration Date: <u>09/23/2010</u> Time: <u>1526</u>
Lab File Id: JBMD02.D	Init. Calib. Date(s):09/21/2010 09/21/2010
EPA Sample No.(VSTD####): VSTD005JF	Init. Calib. Time(s): <u>1435</u> <u>1724</u>
Heated Purge: (Y/N) N GC Column:	: <u>DB-624</u> ID: <u>0.20(mm)</u> Length: <u>25</u> (m)
Purge Volume: 25.0	(mL)

COMPOUND	RRF	RRF5.0	MIN RRF	%D	MAX %D
1,2-Dichloropropane	0.286	0.301	0.010	5.3	40.0
Bromodichloromethane	0.343	0.353	0.200	2.9	30.0
cis-1,3-Dichloropropene	0.414	0.414	0.200	-0.1	30.0
4-Methyl-2-pentanone	0.062	0.062	0.010	-1.1	40.0
Toluene	1.663	1.693	0.400	1.8	30.0
trans-1,3-Dichloropropene	0.288	0.293	0.100	1.4	30.0
1,1,2-Trichloroethane	0.138	0.140	0.100	1.5	30.0
Tetrachloroethene	0.375	0.379	0.100	1.0	30.0
2-Hexanone	0.045	0.040	0.010	-11.2	40.0
Dibromochloromethane	0.177	0.185	0.100	4.6	30.0
1,2-Dibromoethane	0.128	0.127	0.010	-0.4	40.0
Chlorobenzene	0.986	1.001	0.500	1.6	30.0
Ethylbenzene	1.942	1.974	0.100	1.7	30.0
o-Xylene	0.667	0.686	0.300	2.8	30.0
m,p-Xylene	0.746	0.767	0.300	2.8	30.0
Styrene	0.950	1.000	0.300	5.3'	30.0
Bromoform	0.172	0.174	0.050	1.3	30.0
Isopropylbenzene	1.974	2.020	0.010	2.3	40.0
1,1,2,2-Tetrachloroethane	0.122	0.121	0.100	-1.3	30.0
1,3-Dichlorobenzene	1.500	1.547	0.400	3.1	30.0
1,4-Dichlorobenzene	1.476	1.475	0.400	-0.1	30.0
1,2-Dichlorobenzene	1.086	1.141	0.400	5.0	30.0
1,2-Dibromo-3-Chloropropane	0.035	0.035	0.010	-2.0	40.0
1,2,4-Trichlorobenzene	0.695	0.701	0.200	1.0	30.0
1,2,3-Trichlorobenzene	0.440	0.452	0.200	2.8	30.0

7C - FORM VII VOA-3 VOLATILE CONTINUING CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302
Lab Code: STLV Case No.: BARNES M	od. Ref No.: SDG No.: 200-1626
Instrument ID: J.i	Calibration Date: 09/23/2010 Time: 1526
Lab File Id: JBMD02.D	Init. Calib. Date(s):09/21/2010 09/21/2010
EPA Sample No.(VSTD####): VSTD005JF	Init. Calib. Time(s): <u>1435</u> 1724
Heated Purge: (Y/N) N GC Column:	DB-624 ID: 0.20(mm) Length: 25 (m)
Purge Volume: 25.0	(mL)

COMPOUND	RRF	RRF5.0	MIN RRF	۶D	MAX %D
Vinyl Chloride-d3	0.335	0.345	0.010	3.1	30.0
Chloroethane-d5	0.274	0.283	0.010	3.3	40.0
1,1-Dichloroethene-d2	0.530	0.524	0.010	-1.1	30.0
2-Butanone-d5	0.020	0.019	0.010	-2.4	40.0
Chloroform-d	0.480	0.494	0.010	3.0	30.0
1,2-Dichloroethane-d4	0.153	0.154	0.010	0.5	30.0
Benzene-d6	1.410	1.446	0.010	2.6	30.0
1,2-Dichloropropane-d6	0.372	0.390	0.010	4.9	40.0
Toluene-d8	1.386	1.401	0.010	1.1	30.0
trans-1,3-Dichloropropene-d4	0.257	0.255	0.010	-0.6	30.0
2-Hexanone-d5	0.024	0.024	0.010	-1.3	40.0
1,1,2,2-Tetrachloroethane-d2	0.116	0.121	0.010	4.4	30.0
1,2-Dichlorobenzene-d4	0.690	0.703	0.010	1.9	30.0

Report 1,4-Dioxane-d8 for Low/Medium VOA analysis only

7A - FORM VII VOA-1 VOLATILE CONTINUING CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON	Contract: <u>8E-00302</u>
Lab Code: STLV Case No.: BARNES Me	Dd. Ref No.: SDG No.: 200-1626
Instrument ID: J.i	Calibration Date: 09/24/2010 Time: 0218
Lab File Id: JBMD25.D	<pre>Init. Calib. Date(s):09/21/2010 09/21/2010</pre>
EPA Sample No.(VSTD####): VSTD005FJ	Init. Calib. Time(s): <u>1435</u> <u>1724</u>
Heated Purge: (Y/N) N GC Column:	DB-624 ID: 0.20(mm) Length: 25 (m)
Purge Volume: 25.0	(mL)

COMPOUND	RRF	RRF <u>5.0</u>	MIN RRF	۶D	MAX %D
Dichlorodifluoromethane	0.462	0.455	0.010	-1.6	50.0
Chloromethane	0.373	0.370	0.010	-0.7	50.0
Vinyl chloride	0.377	0.379	0.010	0.5	50.0
Bromomethane	0.210	0.206	0.010	-1.8	50.0
Chloroethane	0.198	0.217	0.010	10.1	50.0
Trichlorofluoromethane	0.586	0.601	0.010	2.5	50.0
1,1-Dichloroethene	0.285	0.293	0.010	2.9	50.0
1,1,2-Trichloro-1,2,2-trifluoroethane	0.326	0.317	0.010	-2.7	50.0
Acetone	0.013	0.012	0.010	-7.0	50.0
Carbon disulfide	0.793	0.783	0.010	-1.3	50.0
Methyl acetate	0.037	0.031	0.010	-15.5	50.0
Methylene Chloride	0.213	0.217	0.010	2.1	50.0
trans-1,2-Dichloroethene	0.303	0.310	0.010	2.4	50.0
Methyl tert-butyl ether	0.325	0.336	0.010	3.3	50.0
1,1-Dichloroethane	0.496	0.517	0.010	4.3	50.0
cis-1,2-Dichloroethene	0.288	0.293	0.010	1.6	50.0
2-Butanone	0.019	0.020	0.010	4.8	50.0
Bromochloromethane	0.086	0.087	0.010	1.2	. 50.0
Chloroform	0.479	0.489	0.010	2.0	50.0
1,1,1-Trichloroethane	0.671	0.671	0.010	0.0	50.0
Cyclohexane	0.661	0.671	0.010	1.5	50.0
Carbon tetrachloride	0.610	0.618	0.010	1.3	50.0
Benzene	1.555	1.600	0.010	2.9	50.0
1,2-Dichloroethane	0.194	0.199	0.010	2.5	50.0
Trichloroethene	0.419	0.425	0.010	1.4	50.0
Methylcyclohexane	0.532	0.529	0.010	-0.5	50.0

Report 1,4-Dioxane for Low/Medium VOA analysis only

7B - FORM VII VOA-2 VOLATILE CONTINUING CALIBRATION DATA

Lab Name:	TESTAMERICA BURL	INGTON	Contract: <u>8E-00302</u>				
Lab Code:	STLV Case No	.: BARNES Mo	od. Ref	No.:		SDG No.: 2	00-1626
Instrument	ID: J.i		Cal	ibratio	on Date:	09/24/2010	Time: 0218
Lab File I	Id: JBMD25.D		Init.	Calib.	Date(s)	09/21/2010	09/21/2010
EPA Sample	e No.(VSTD####):	VSTD005FJ	_ Ini	t. Cali	b. Time	(s): <u>1435</u>	1724
Heated Pur	rge: (Y/N) N	GC Column:	DB-624	ID:	0.20 (mm)	Length: 2	5 (m)
Purge Volu	me: 25.0		(mL)				

COMPOUND	RRF	RRF <u>5.0</u>	MIN RRF	%D	MAX %D
1,2-Dichloropropane	0.286	0.300	0.010	4.9	50.0
Bromodichloromethane	0.343	0.362	0.010	5.6	50.0
cis-1,3-Dichloropropene	0.414	0.417	0.010	0.6	50.0
4-Methyl-2-pentanone	0.062	0.065	0.010	3.9	50.0
Toluene	1.663	1,683	0.010	1.2	50.0
trans-1,3-Dichloropropene	0.288	0.300	0.010	4.1	50.0
1,1,2-Trichloroethane	0.138	0.143	0.010	3.9	50.0
Tetrachloroethene	0.375	0.374	0.010	-0.4	50.0
2-Hexanone	0.045	0.041	0.010	-9.1	50.0
Dibromochloromethane	0.177	0.196	0.010	11.2	50.0
1,2-Dibromoethane	0.128	0.131	0.010	2.6	50.0
Chlorobenzene	0.986	0.987	0.010	0.1	50.0
Ethylbenzene	1.942	1.959	0.010	0.9	50.0
o-Xylene	0.667	0.677	0.010	1.5	50.0
m,p-Xylene	0.746	0.766	0.010	2.7	50.0
Styrene	0.950	0.978	0.010	3.0	50.0
Bromoform	0.172	0.191	0.010	10.8	50.0
Isopropylbenzene	1.974	1.960	0.010	-0.7	50.0
1,1,2,2-Tetrachloroethane	0.122	0.129	0.010	5.3	50.0
1,3-Dichlorobenzene	1.500	1.510	0.010	0.7	50.0
1,4-Dichlorobenzene	1.476	1.464	0.010	-0.8	50.0
1,2-Dichlorobenzene	1.086	1.127	0.010	3.7	50.0
1,2-Dibromo-3-Chloropropane	0.035	0.037	0.010	3.9	50.0
1,2,4-Trichlorobenzene	0.695	0.646	0.010	-7.0	50.0
1,2,3-Trichlorobenzene	0.440	0.408	0.010	-7.1	50.0

7C - FORM VII VOA-3 VOLATILE CONTINUING CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302
Lab Code: STLV Case No.: BARNES M	od. Ref No.: SDG No.: 200-1626
Instrument ID: J.i	Calibration Date: 09/24/2010 Time: 0218
Lab File Id: JBMD25.D	Init. Calib. Date(s): 09/21/2010 09/21/2010
EPA Sample No.(VSTD####): VSTD005FJ	Init. Calib. Time(s): 1435 1724
Heated Purge: (Y/N) N GC Column:	DB-624 ID: 0.20(mm) Length: 25 (m)
Purge Volume: 25.0	(mL)

COMPOUND	RRF	RRF5.0	MIN RRF	%D.	MAX %D
Vinyl Chloride-d3	0.335	0.340	0.010	1.7	50.0
Chloroethane-d5	0.274	0.276	0.010	0.7	50.0
l,1-Dichloroethene-d2	0.530	0.532	0.010	0.4	50.0
2-Butanone-d5	0.020	0.021	0.010	8.2	50.0
Chloroform-d	0.480	0.508	0.010	5.9	50.0
1,2-Dichloroethane-d4	0.153	0.158	0.010	3.3	50.0
Benzene-d6	1.410	1.453	0.010	3.1	50.0
1,2-Dichloropropane-d6	0.372	0.395	0.010	6.1	50.0
Toluene-d8	1.386	1.406	0.010	1.4	50.0
trans-1,3-Dichloropropene-d4	0.257	0.260	0.010	1.2	50.0
2-Hexanone-d5	0.024	0.025	0.010	4.5	50.0
1,1,2,2-Tetrachloroethane-d2	0.116	0.124	0.010	7.2	50.0
1,2-Dichlorobenzene-d4	0.690	0.716	0.010	3.8	50.0

Report 1,4-Dioxane-d8 for Low/Medium VOA analysis only

7A - FORM VII VOA-1 VOLATILE CONTINUING CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302
Lab Code: STLV Case No.: BARNES Ma	od. Ref No.: SDG No.: 200-1626
Instrument ID: J.i	Calibration Date: 09/24/2010 Time: 0641
Lab File Id: JBME02.D	Init. Calib. Date(s):09/21/2010 09/21/2010
EPA Sample No.(VSTD####): VSTD005JG	Init. Calib. Time(s): <u>1435</u> <u>1724</u>
Heated Purge: (Y/N) N GC Column:	DB-624 ID: 0.20(mm) Length: 25 (m)
Purge Volume: 25.0	(mL)

COMPOUND	RRF	RRF <u>5.0</u>	MIN RRF	۶D	MAX %D
Dichlorodifluoromethane	0.462	0.513	0.010	11.0	40.0
Chloromethane	0.373	0.382	0.010	2.4	40.0
Vinyl chloride	0.377	0.420	0.010	11.4	. 30.0
Bromomethane	0.210	0.245	0.100	16.9	30.0
Chloroethane	0.198	0.240	0.010	21.5	40.0
Trichlorofluoromethane	0.586	0.636	0.010	8.5	40.0
1,1-Dichloroethene	0.285	0.304	0.100	6.8	30.0
1,1,2-Trichloro-1,2,2-trifluoroethane	0.326	0.351	0.010	7.7	40.0
Acetone	0.013	0.012	0.010	-6.8	40.0
Carbon disulfide	0.793	0.859	0.010	8.2	40.0
Methyl acetate	0.037	0.037	0.010	1.1	40.0
Methylene Chloride	0.213	0.232	0.010	8.9	40.0
trans-1,2-Dichloroethene	0.303	0.329	0.010	8.7	40.0
Methyl tert-butyl ether	0.325	0.316	0.010	-2.9	40.0
1,1-Dichloroethane	0.496	0.535	0.200	8.0	30.0
cis-1,2-Dichloroethene	0.288	0.311	0.010	7.8	40.0
2-Butanone	0.019	0.019	0.010	-2.6	40.0
Bromochloromethane	0.086	0.092	0.050	6.4	30.0
Chloroform	0.479	0.504	0.200	5.3	30.0
1,1,1-Trichloroethane	0.671	0.711	0.100	6.1	30.0
Cyclohexane	0.661	0.716	0.010	8.3	40.0
Carbon tetrachloride	0.610	0.655	0.100	7.3	30.0
Benzene	1.555	1.658	0.400	6.6	30.0
1,2-Dichloroethane	0.194	0.201	0.100	3.3	30.0
Trichloroethene	0.419	0.437	0.300	. 4.4	30.0
Methylcyclohexane	0.532	0.577	0.010	8.5	40.0

Report 1,4-Dioxane for Low/Medium VOA analysis only

7B - FORM VII VOA-2 VOLATILE CONTINUING CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302
Lab Code: STLV Case No.: BARNES M	od. Ref No.: SDG No.: 200-1626
Instrument ID: J.i	Calibration Date: <u>09/24/2010</u> Time: <u>0641</u>
Lab File Id: JBME02.D	Init. Calib. Date(s): 09/21/2010 09/21/2010
EPA Sample No.(VSTD####): <u>VSTD005JG</u>	Init. Calib. Time(s): <u>1435</u> <u>1724</u>
Heated Purge: (Y/N) N GC Column:	DB-624 ID: 0.20(mm) Length: 25 (m)
Purge Volume: 25.0	(mL)

COMPOUND	RRF	RRF5.0	MIN RRF	%D	MAX %D
1,2-Dichloropropane	0.286	0.315	0.010	10.2	40.0
Bromodichloromethane	0.343	0.374	0.200	9.0	30.0
cis-1,3-Dichloropropene	0.414	0.438	0.200	5.8	30.0
4-Methyl-2-pentanone	0.062	0.061	0.010	-1.5	40.0
Toluene	1.663	1.785	0.400	7.3	30.0
trans-1,3-Dichloropropene	0.288	0.304	0.100	5.4	30.0
1,1,2-Trichloroethane	0.138	0.142	0.100	3.1	30.0
Tetrachloroethene	0.375	0.403	0.100	7.5	30.0
2-Hexanone	0.045	0.039	0.010	-13.6	40.0
Dibromochloromethane	0.177	0.189	0.100	6.9	30.0
1,2-Dibromoethane	0.128	0.127	0.010	-0.4	40.0
Chlorobenzene	0.986	1.026	0.500	4.1	30.0
Ethylbenzene	1.942	2.100	0.100	8.1	30.0
o-Xylene	0.667	0.718	0.300	7.6	30.0
m,p-Xylene	0.746	0.805	0.300	8.0	30.0
Styrene	0.950	1.020	0.300	7.4	30.0
Bromoform	0.172	0.186	0.050	8.1	30.0
Isopropylbenzene	1.974	2.129	0.010	7.8	40.0
1,1,2,2-Tetrachloroethane	0.122	0.123	0.100	0.5	30.0
1,3-Dichlorobenzene	1.500	1.592	0.400	6.1	30.0
1,4-Dichlorobenzene	1.476	1.533	0.400	3.9	30.0
1,2-Dichlorobenzene	1.086	1.170	0.400	7.7	30.0
1,2-Dibromo-3-Chloropropane	0.035	0.034	0.010	-2.8	40.0
1,2,4-Trichlorobenzene	0.695	0.711	0.200	2.3	30.0
1,2,3-Trichlorobenzene	0.440	0.454	0.200	3.3	30.0

7C - FORM VII VOA-3 VOLATILE CONTINUING CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302
Lab Code: <u>STLV</u> Case No.: <u>BARNES</u> Mc	Dd. Ref No.: SDG No.: 200-1626
Instrument ID: J.i	Calibration Date: 09/24/2010 Time: 0641
Lab File Id: JBME02.D	Init. Calib. Date(s):09/21/2010 09/21/2010
EPA Sample No.(VSTD####): VSTD005JG	Init. Calib. Time(s): 1435 1724
Heated Purge: (Y/N) N GC Column:	DB-624 ID: 0.20(mm) Length: 25 (m)
Purge Volume: 25.0	(mL)

COMPOUND	RRF	RRF5.0	MIN RRF	%D	MAX %D
Vinyl Chloride-d3	0.335	0.372	0.010	11.1	30.0
Chloroethane-d5	0.274	0.296	0.010	8.1	40.0
1,1-Dichloroethene-d2	0.530	0.564	0.010	6.5	30.0
2-Butanone-d5	0.020	0.019	0.010	-1.8	40.0
Chloroform-d	0.480	0.524	0.010	9.1	30.0
1,2-Dichloroethane-d4	0.153	0.161	0.010	4.7	30.0
Benzene-d6	1.410	1.512	0.010	7.2	30.0
1,2-Dichloropropane-d6	0.372	0.353	0.010	-5.0	40.0
Toluene-d8	1.386	1.473	0.010	6.3	30.0
trans-1,3-Dichloropropene-d4	0.257	0.271	0.010	5.5	30.0
2-Hexanone-d5	0.024	0.023	0.010	-4.1	40.0
1,1,2,2-Tetrachloroethane-d2	0.116	0.119	0.010	2.5	30.0
1,2-Dichlorobenzene-d4	0.690	0.728	0.010	5.5	30.0

Report 1,4-Dioxane-d8 for Low/Medium VOA analysis only

7A - FORM VII VOA-1 VOLATILE CONTINUING CALIBRATION DATA

Lab Name:	TESTAMERICA BUR	LINGTON		Conti	ntract: 8E-00302			
Lab Code:	STLV Case N	o.: <u>BARNES</u> Mo	od. Ref	No.:		SDG No.: 2	00-1626	
Instrument	ID: <u>J.i</u>		Cal	ibratio	on Date:	09/24/2010	Time: <u>135</u>	54
Lab File I	Id: JBME17.D		_ Init.	Calib.	Date(s)	09/21/2010	09/21/201	0
EPA Sample	e No.(VSTD####):	VSTD005GJ	Ini	t. Cali	ib. Time	(s): <u>1435</u>	1724	
Heated Pur	rge: (Y/N) <u>N</u>	GC Column:	DB-624	ID:	0.20 (mm)	Length: 2	5_(m)	
Purge Volu	ume: 25.0		(mL)					

COMPOUND	RRF	RRF <u>5.0</u>	MIN RRF	%D	MAX %D
Dichlorodifluoromethane	0.462	0.456	0.010	-1.3	50.0
Chloromethane	0.373	0.376	0.010	0.9	50.0
Vinyl chloride	0.377	0.374	0.010	-0.9	50.0
Bromomethane	0.210	0.209	0.010	-0.6	50.0
Chloroethane	0.198	0.215	0.010	9.0	50.0
Trichlorofluoromethane	0.586	0.607	0.010	3.7	50.0
1,1-Dichloroethene	0.285	0.286	0.010	0.4	50.0
1,1,2-Trichloro-1,2,2-trifluoroethane	0.326	0.328	0.010	0.6	50.0
Acetone	0.013	0.012	0.010	-6.6	50.0
Carbon disulfide	0.793	0.777	0.010	-2.1	50.0
Methyl acetate	0.037	0.036	0.010	-2.2	50.0
Methylene Chloride	0.213	0.220	0.010	3.5	50.0
trans-1,2-Dichloroethene	0.303	0.314	0.010	3.8	50.0
Methyl tert-butyl ether	0.325	0.339	0.010	4.2	50.0
1,1-Dichloroethane	0.496	0.520	0.010	4.8	50.0
cis-1,2-Dichloroethene	0.288	0.300	0.010	4.0	50.0
2-Butanone	0.019	0.019	0.010	0.1	50.0
Bromochloromethane	0.086	0.090	0.010	4.5	50.0
Chloroform	0.479	0.498	0.010	3.8	50.0
1,1,1-Trichloroethane	0.671	0.668	0.010	-0.4	50.0
Cyclohexane	0.661	0.664	0.010	0.5	50.0
Carbon tetrachloride	0.610	0.611	0.010	0.1	50.0
Benzene	1.555	1.575	0.010	1.3	50.0
1,2-Dichloroethane	0.194	0.197	0.010	1.4	50.0
Trichloroethene	0.419	0.427	0.010	1.8	50.0
Methylcyclohexane	0.532	0.533	0.010	0.3	50.0

Report 1,4-Dioxane for Low/Medium VOA analysis only

7B - FORM VII VOA-2 VOLATILE CONTINUING CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302		
Lab Code: STLV Case No.: BARNES M	od. Ref No.: SDG No.: 200-1626		
Instrument ID: J.i	Calibration Date: 09/24/2010 Time: 1354		
Lab File Id: JBME17.D	Init. Calib. Date(s):09/21/2010 09/21/2010		
EPA Sample No.(VSTD####): VSTD005GJ	Init. Calib. Time(s): <u>1435</u> <u>1724</u>		
Heated Purge: (Y/N) N GC Column:	DB-624 ID: 0.20(mm) Length: 25 (m)		
Purge Volume: 25.0	(mL)		

COMPOUND	RRF	RRF <u>5.0</u>	MIN RRF	%D	MAX %D
1,2-Dichloropropane	0.286	0.301	0.010	5.2	50.0
Bromodichloromethane	0.343	0.357	0.010	4.0	50.0
cis-1,3-Dichloropropene	0.414	0.432	0.010	4.2	50.0
4-Methyl-2-pentanone	0.062	0.064	0.010	2.9	50.0
Toluene ,	1.663	1.670	0.010	0.4	50.0
trans-1,3-Dichloropropene	0.288	0.306	0.010	6.2	50.0
1,1,2-Trichloroethane	0.138	0.140	0.010	. 2.1	50.0
Tetrachloroethene	0.375	0.368	0.010	-1.9	50.0
2-Hexanone	0.045	0.042	0.010	-8.2	50.0
Dibromochloromethane	0.177	0.185	0.010	4.8	50.0
1,2-Dibromoethane	0.128	0.132	0.010	3.4	50.0
Chlorobenzene	0.986	0.993	0.010	0.7	50.0
Ethylbenzene	1.942	1.951	0.010	0.5	50.0
o-Xylene	0.667	0.685	0.010	2.7	50.0
m,p-Xylene	0.746	0.755	0.010	1.2	50.0
Styrene	0.950	0.967	0.010	1.8	50.0
Bromoform	0.172	0.187	0.010	8.6	50.0
Isopropylbenzene	1.974	1.966	0.010	-0.4	. 50.0
1,1,2,2-Tetrachloroethane	0.122	0.127	0.010	4.1	50.0
1,3-Dichlorobenzene	1.500	1.515	0.010	1.0	50.0
1,4-Dichlorobenzene	1.476	1.491	0.010	1.0	50.0
1,2-Dichlorobenzene	1.086	1.137	0.010	4.6	50.0
1,2-Dibromo-3-Chloropropane	0.035	0.034	0.010	-3.6	50.0
1,2,4-Trichlorobenzene	0.695	0.687	0.010	-1.1	50.0
1,2,3-Trichlorobenzene	0.440	0.448	0.010	1.9	50.0

والأرب والمروق

7C - FORM VII VOA-3 VOLATILE CONTINUING CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302		
Lab Code: <u>STLV</u> Case No.: <u>BARNES</u> Mo	od. Ref No.: SDG No.: 200-1626		
Instrument ID: J.i	Calibration Date: 09/24/2010 Time: 1354		
Lab File Id: JBME17.D	Init. Calib. Date(s): 09/21/2010 09/21/2010		
EPA Sample No.(VSTD####): VSTD005GJ	Init. Calib. Time(s): <u>1435</u> <u>1724</u>		
Heated Purge: (Y/N) N GC Column:	DB-624 ID: 0.20(mm) Length: 25 (m)		
Purge Volume: 25.0	(mL)		

COMPOUND	RRF	RRF5.0	MIN RRF	۶D	MAX %D
Vinyl Chloride-d3	0.335	0.339	0.010	1.4	50.0
Chloroethane-d5	0.274	0.280	0.010	2.1	50.0
1,1-Dichloroethene-d2	0.530	0.534	0.010	0.8	50.0
2-Butanone-d5	0.020	0.021	0.010	7.4	50.0
Chloroform-d	0.480	0.504	0.010	5.0	50.0
1,2-Dichloroethane-d4	0.153	0.160	0.010	4.3	50.0
Benzene-d6	1.410	1.437	0.010	1.9	50.0
1,2-Dichloropropane-d6	0.372	0.389	0.010	4.6	50.0
Toluene-d8	1.386	1.384	0.010	0.1	50.0
trans-1,3-Dichloropropene-d4	0.257	0.261	0.010	1.5	50.0
2-Hexanone-d5	0.024	0.025	0.010	4.5	50.0
1,1,2,2-Tetrachloroethane-d2	0.116	0.123	0.010	6.2	50.0
1,2-Dichlorobenzene-d4	0.690	0.715	0.010	3.7	50.0

Report 1,4-Dioxane-d8 for Low/Medium VOA analysis only

1A - FORM I VOA-1

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

VBLKJF

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302		
Lab Code: STLV Case No.: BARNES M	od. Ref N	No.: SDG No.: 200-1626	
Matrix: (SOIL/SED/WATER) <u>Water</u>	·	Lab Sample ID: <u>MB 200-7052/4</u>	
Sample wt/vol: 25.0 (g/mL) mL		Lab File ID: JBMD04.D	
Level: (TRACE/LOW/MED) TRACE		Date Received:	
% Moisture: not dec.	_	Date Analyzed: 09/23/2010	
GC Column: DB-624 ID: 0.20	(mm)	Dilution Factor: 1.0	
Soil Extract Volume:	(uL)	Soil Aliquot Volume: (uL)	
Purge Volume: 25.0	(mL)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg)ug/L	Q
75-71-8	Dichlorodifluoromethane	0.50	U
74-87-3	Chloromethane	0.50	U
75-01-4	Vinyl chloride	0.50	U
74-83-9	Bromomethane	. 0.50	U
75-00-3	Chloroethane	0.50	U
75-69-4	Trichlorofluoromethane	0.50	U
75-35-4	1,1-Dichloroethene	0.50	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	U
67-64-1	Acetone	3.0	J
75-15-0	Carbon disulfide	0.50	U
79-20-9	Methyl acetate	0.50	U
75-09-2	Methylene Chloride	0.50	U
156-60-5	trans-1,2-Dichloroethene	0.50	U
1634-04-4	Methyl tert-butyl ether	0.50	U
75-34-3	1,1-Dichloroethane	0.50	U
156-59-2	cis-1,2-Dichloroethene	0.50	U
78-93-3	2-Butanone	5.0	U
74-97-5	Bromochloromethane	0.50	U
67-66-3	Chloroform	0.50	U
71-55-6	1,1,1-Trichloroethane	0.50	U ·
110-82-7	Cyclohexane	0.50	U
56-23-5	Carbon tetrachloride	0.50	U
71-43-2	Benzene	0.50	U
107-06-2	1,2-Dichloroethane	. 0.50	U

Report 1,4-Dioxane for Low-Medium VOA analysis only

1B - FORM I VOA-2

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

VBLKJF

Lab Name: TESTAMERICA BURLINGTON	Contract: <u>8E-00302</u>
Lab Code: STLV Case No.: BARNES Mo	Dd. Ref No.: SDG No.: 200-1626
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: <u>MB 200-7052/4</u>
Sample wt/vol: 25.0 (g/mL) mL	Lab File ID: JBMD04.D
Level: (TRACE/LOW/MED) TRACE	Date Received:
% Moisture: not dec.	Date Analyzed: 09/23/2010
GC Column: DB-624 ID: 0.20	(mm) Dilution Factor: 1.0
Soil Extract Volume:	(uL) Soil Aliquot Volume:(uL)
Purge Volume: 25 0	(mT.)

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg)ug/L	Q
79-01-6	Trichloroethene	0.50	U
108-87-2	Methylcyclohexane	0.50	U
78-87-5	1,2-Dichloropropane	0.50	U
75-27-4	Bromodichloromethane	0.50	U
10061-01-5	cis-1,3-Dichloropropene	0.50	U
108-10-1	4-Methyl-2-pentanone	5.0	U.
108-88-3	Toluene	0.50	U
10061-02-6	trans-1,3-Dichloropropene	0.50	U
79-00-5	1,1,2-Trichloroethane	0.50	U
127-18-4	Tetrachloroethene	0.50	Ū
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	0.50	U
106-93-4	1,2-Dibromoethane	0.50	U
108-90-7	Chlorobenzene	0.50	U
100-41-4	Ethylbenzene	0.50	Ŭ
95-47-6	o-Xylene	0.50	U
179601-23-1	m,p-Xylene	0.50	Ü
100-42-5	Styrene	0.50	U
75-25-2	Bromoform	0.50	U
98-82-8	Isopropylbenzene	0.50	U
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U ·
541-73-1	1,3-Dichlorobenzene	0.50	U
106-46-7	1,4-Dichlorobenzene	0.50	U
95-50-1	1,2-Dichlorobenzene	0.50	U
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U
120-82-1	1,2,4-Trichlorobenzene	0.50	U
87-61-6	1,2,3-Trichlorobenzene	0.066	J

EPA SAMPLE NO.

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

VBLKJF

Lab Name: TESTAMERICA BURLINGTON	_	Contract: <u>8E-00302</u>
Lab Code: STLV Case No.: BARNES Mo	d. Ref	No.: SDG No.: 200-1626
Matrix: (SOIL/SED/WATER) Water	_	Lab Sample ID: MB 200-7052/4
Sample wt/vol: 25.0 (g/mL) mL	_	Lab File ID: JBMD04.D
Level: (TRACE or LOW/MED) TRACE	_	Date Received:
% Moisture: not dec.	_ `	Date Analyzed: 09/23/2010
GC Column: DB-624 ID: 0.20	(mm)	Dilution Factor: 1.0
Soil Extract Volume:	(uL)	Soil Aliquot Volume:(uL)
CONCENTRATION UNITS: (ug/L or ug/kg) ug	ſ/L	Purge Volume: 25.0 (mL)

	CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
01		Unknown	1.68	0.66	J
02		Unknown	6.93	2.8	ХJ
03	541-05-9	Cyclotrisiloxane, hexamethyl-	7.88	1.9	JN
04		Unknown siloxane derivative	10.72	2.3	J
05	E9667961	Total Alkanes	N/A		

1EPA-designated Registry Number.

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

VBLKJG

Lab Name: TESTAMERICA E	BURLINGTON		Contract:	8E-00302	
Lab Code: <u>STLV</u> Case	No.: BARNES	Mod. Ref	No.:	SDG No.: 200-	1626
Matrix: (SOIL/SED/WATEF	R) Water		Lab Sampl	e ID: <u>MB 200-7048</u>	/4
Sample wt/vol: 25.0	(g/mL) <u>mL</u>		Lab File	ID: JBME04.D	
Level: (TRACE/LOW/MED)	TRACE		Date Rece	ived:	
% Moisture: not dec.	• •		Date Anal	yzed: 09/24/2010	
GC Column: DB-624	ID: 0.20	(mm)	Dilution	Factor: <u>1.0</u>	
Soil Extract Volume:		(uL)	Soil Aliq	uot Volume:	(uL)
Purge Volume: 25 0		(mT.)			

CAS NO.	COMPOUND	CONCENTRATION UNITS:	0
		(ug/L or ug/kg) <u>ug/L</u>	Ŷ
75-71-8	Dichlorodifluoromethane	0.50	U
74-87-3	Chloromethane	. 0.50	Ŭ
75-01-4	Vinyl chloride	0.50	Ŭ
74-83-9	Bromomethane	0.50	Ŭ
75-00-3	Chloroethane	0.50	U
75-69-4	Trichlorofluoromethane	0.50	U
75-35-4	1,1-Dichloroethene	0.50	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	U.
67-64-1	Acetone	3.7	J
75-15-0	Carbon disulfide	0.50	U
79-20-9	Methyl acetate	0.50	Ū,
75-09-2	Methylene Chloride	0.50	U
156-60-5	trans-1,2-Dichloroethene	0.50	U
1634-04-4	Methyl tert-butyl ether	0.50	U .
75-34-3	1,1-Dichloroethane	0.50	Ŭ
156-59-2	cis-1,2-Dichloroethene	0.50	U
78-93-3	2-Butanone	5.0	Ŭ
74-97-5	Bromochloromethane	0.50	U
67-66-3	Chloroform	0.50	Ŭ
71-55-6	1,1,1-Trichloroethane	0.50	U
110-82-7	Cyclohexane	0.50	U
56-23-5	Carbon tetrachloride	0.50	U
71-43-2	Benzene	0.50	U
107-06-2	1,2-Dichloroethane	0.50	U

Report 1,4-Dioxane for Low-Medium VOA analysis only

1B - FORM I VOA-2

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

VBLKJG

Lab Name: TESTAMERICA BURLINGTON Contract: 8E-00302				
Lab Code: <u>STLV</u> Case No.:	BARNES MO	od. Ref	No.:	SDG No.: 200-1626
Matrix: (SOIL/SED/WATER) Wate	r		Lab	Sample ID: <u>MB 200-7048/4</u>
Sample wt/vol: 25.0 (g/m	L) <u>mL</u>	_	Lab	File ID: JBME04.D
Level: (TRACE/LOW/MED) TRACE		_	Date	Received:
% Moisture: not dec.		_	Date	Analyzed: 09/24/2010
GC Column: DB-624 ID	: 0.20	(mm)	Dilu	tion Factor: 1.0
Soil Extract Volume:		(uL)	Soil	Aliquot Volume: (uL)
Purge Volume: 25.0		(mL)		· · · · · · · · · · · · · · · · · · ·

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
79-01-6	Trichloroethene.	0.50	U
108-87-2	Methylcyclohexane	0.50	U
78-87-5	1,2-Dichloropropane	0.50	U
75-27-4	Bromodichloromethane	0.50	U
10061-01-5	cis-1,3-Dichloropropene	0.50	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	. 0.50	U
10061-02-6	trans-1,3-Dichloropropene	0.50	U
79-00-5	1,1,2-Trichloroethane	0.50	U
127-18-4	Tetrachloroethene	0.50	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	0.50	U
106-93-4	1,2-Dibromoethane	0.50	U
108-90-7	Chlorobenzene	0.50	U
100-41-4	Ethylbenzene	0.50	U
95-47-6	o-Xylene	0.50	U
179601-23-1	m,p-Xylene	0.50	U
100-42-5	Styrene	0.50	U
75-25-2	Bromoform	0.50	U
98-82-8	Isopropylbenzene	0.50	U
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U.
541-73-1	1,3-Dichlorobenzene	0.50	U
106-46-7	1,4-Dichlorobenzene	0.50	U
95-50-1	1,2-Dichlorobenzene	0.50	U
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U
120-82-1	1,2,4-Trichlorobenzene	0.50	Ŭ
87-61-6	1,2,3-Trichlorobenzene	0.084	J

EPA SAMPLE NO. VBLKJG

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: TESTAMERICA BURLINGTON Contract: 8E-00302 Lab Code: STLV Case No.: BARNES Mod. Ref No.: SDG No.: 200-1626 Lab Sample ID: MB 200-7048/4 Matrix: (SOIL/SED/WATER) Water Sample wt/vol: 25.0 (g/mL) mL Lab File ID: JBME04.D Level: (TRACE or LOW/MED) TRACE Date Received: % Moisture: not dec. Date Analyzed: 09/24/2010 GC Column: DB-624 ID: 0.20 (mm) Dilution Factor: 1.0 Soil Extract Volume: _____(uL) Soil Aliquot Volume: _____(uL) Purge Volume: 25.0 CONCENTRATION UNITS:(ug/L or ug/kg) ug/L (mL)

	CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
01		Unknown	6.93	2.6	ХJ
02	541-05-9	Cyclotrisiloxane, hexamethyl-	7.88	1.1	JN
03		Unknown siloxane derivative	10.72	1.2	J
04	E9667961	Total Alkanes	N/A		

¹EPA-designated Registry Number.

1A - FORM I VOA-1

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

VHBLK01

Lab Name: TESTAMERICA BUE	RLINGTON	_	Contract:	8E-00302
Lab Code: <u>STLV</u> Case N	Io.: <u>BARNES</u> Mc	d. Ref N	io.:	SDG No.: 200-1626
Matrix: (SOIL/SED/WATER)	Water	_	Lab Sample	ID: 200-1626-6
Sample wt/vol: 25.0	(g/mL) mL		Lab File I	D: JBME05.D
Level: (TRACE/LOW/MED) TF	ACE	-	Date Recei	ved:
% Moisture: not dec.			Date Analy	zed: 09/24/2010
GC Column: DB-624	ID: 0.20	(mm)	Dilution F	actor: <u>1.0</u>
Soil Extract Volume:		(uL)	Soil Aliqu	ot Volume:(uL)
Purge Volume: 25.0		(mL)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
75-71-8	Dichlorodifluoromethane	0.50	Ŭ
74-87-3	Chloromethane	0.50	Ŭ
75-01-4	Vinyl chloride	0.50	Ŭ
74-83-9	Bromomethane	0.50	U
75-00-3	Chloroethane	0.50	U
75-69-4	Trichlorofluoromethane	0.50	U
75-35-4	1,1-Dichloroethene	· 0.50	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	U
67-64-1	Acetone	2.5	JB
75-15-0	Carbon disulfide	0.50	U
79-20-9	Methyl acetate	0.50	U .
75-09-2	Methylene Chloride	0.50	U
156-60-5	trans-1,2-Dichloroethene	0.50	U
1634-04-4	Methyl tert-butyl ether	0.50	U
75-34-3	1,1-Dichloroethane	0.50	U
156-59-2	cis-1,2-Dichloroethene	0.50	U
78-93-3	2-Butanone	5.0	U
74-97-5	Bromochloromethane	0.50	U
67-66-3	Chloroform	0.50	Ŭ
71-55-6	1,1,1-Trichloroethane	0.50	U
110-82-7	Cyclohexane	0.50	U
56-23-5	Carbon tetrachloride	0.50	U.
71-43-2	Benzene	0.50	U
107-06-2	1,2-Dichloroethane	0.50	U

Report 1,4-Dioxane for Low-Medium VOA analysis only

1B - FORM I VOA-2

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

VHBLK01

Lab Name:	TESTAMERICA	BURLING	GTON		Contract	: <u>8E-00302</u>
Lab Code:	STLV Ca	se No.:	BARNES	Mod. Ref	No.:	SDG No.: 200-1626
Matrix: (S	SOIL/SED/WAT	ER) <u>Wate</u>	er		Lab Samp	le ID: 200-1626-6
Sample wt/	/vol: 25.0	(g/r	nL) mL	· ·	Lab File	ID: JBME05.D
Level: (TF	RACE/LOW/MED) TRACE			Date Rec	eived:
% Moisture	e: not dec.				Date Ana	lyzed: 09/24/2010
GC Column:	DB-624	II	D: 0.20	(mm)	Dilution	Factor: 1.0
Soil Extra	act Volume:			(uL)	Soil Ali	quot Volume:(uL)
Purge Volu	ıme∙ 25 0			(mT.)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg)ug/L	Q
79-01-6	Trichloroethene	0.50	U
108-87-2	Methylcyclohexane	0.50	U
78-87-5	1,2-Dichloropropane	0.50	U
75-27-4	Bromodichloromethane	0.50	U
10061-01-5	cis-1,3-Dichloropropene	0.50	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	0.50	U .
10061-02-6	trans-1,3-Dichloropropene	0.50	U.
79-00-5	1,1,2-Trichloroethane	0.50	Ŭ
127-18-4	Tetrachloroethene	0.50	U .
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	0.50	U
106-93-4	1,2-Dibromoethane	0.50	U
108-90-7	Chlorobenzene	0.50	U
100-41-4	Ethylbenzene	0.50	U
95-47-6	o-Xylene	0.50	U
179601-23-1	m,p-Xylene	0.50	Ŭ ·
100-42-5	Styrene	0.50	U
75-25-2	Bromoform	0.50	U
98-82-8	Isopropylbenzene	0.50	U
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U
541-73-1	1,3-Dichlorobenzene	0.50	U
106-46-7	1,4-Dichlorobenzene	0.50	U
95-50-1	1,2-Dichlorobenzene	0.50	U
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U
120-82-1	1,2,4-Trichlorobenzene	0.50	U.
87-61-6	1,2,3-Trichlorobenzene	0.50	U

EPA SAMPLE NO.

.1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

VHBLK01

Lab Name: TESTAMERICA BURLINGTON		Contract: 8E-00302			
Lab Code: STLV Case No.: BARNES Mo	d. Ref No	o.:	SDG No.: 200-1626		
Matrix: (SOIL/SED/WATER) Water		Lab Sample I	D: 200-1626-6		
Sample wt/vol: 25.0 (g/mL) mL		Lab File ID:	JBME05.D		
Level: (TRACE or LOW/MED) TRACE		Date Receive	ed:		
% Moisture: not dec.		Date Analyze	ed: 09/24/2010		
GC Column: DB-624 ID: 0.20	(mm)	Dilution Fac	tor: 1.0		
Soil Extract Volume:	(uL)	Soil Aliquot	Volume:	(uL)	
CONCENTRATION UNITS: (ug/L or ug/kg) ug	/L	Purge Volume	: 25.0	(mL)	

	CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	٠Q
01		Unknown	6.93	3.0	ВХЈ
02	541-05-9	Cyclotrisiloxane, hexamethyl-	7.88	1.4	BJN
03		Unknown siloxane derivative	10.72	1.6	ВJ
04	E9667961	Total Alkanes	N/A		

1EPA-designated Registry Number.

Environmental Science Division

Argonne National Laboratory 9700 South Cass Avenue, Bldg. 203 Argonne, IL 60439-4843 www.anl.gov

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC