

Annual Report of Groundwater Monitoring at Centralia, Kansas, in 2010

Environmental Science Division

About Argonne National Laboratory

Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory's main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne and its pioneering science and technology programs, see www.anl.gov.

Availability of This Report

reports@adonis.osti.gov

This report is available, at no cost, at http://www.osti.gov/bridge. It is also available on paper to the U.S. Department of Energy and its contractors, for a processing fee, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone (865) 576-8401 fax (865) 576-5728

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, Argonne National Laboratory, or UChicago Argonne, LLC.

Annual Report of Groundwater Monitoring at Centralia, Kansas, in 2010

by

Applied Geosciences and Environmental Management Section Environmental Science Division, Argonne National Laboratory

March 2011

Contents

No	lotation	v				
1	Introduction and Background	1-1				
2	Sampling and Analysis Activities	2-1				
	 2.1 Measurement of Groundwater Levels	2-1 2-1 2-2 2-2				
3	Results and Discussion	3-1				
	 3.1 Groundwater Level Data 3.2 Groundwater Analysis Results	3-1 3-2 3-2 3-3				
4	Conclusions and Recommendations	4-1				
	4.1 Conclusions4.2 Recommendations	4-1 4-2				
5	References	5-1				
Ap	ppendix A: Sequence of Sampling Activities in 2010	A-1				
Ap	ppendix B: Quality Control Data Summary	B-1				
Ap	ppendix C: Time Series Diagrams for Selected Parameters at IM Monitoring Points	C-1				
Su	upplement 1: Waste Characterization and Disposal Documentation	on CD				
Su	upplement 2: Data Summaries for Verification VOCs Analyses by TestAmerica Laboratories, Inc on CD					

Tables

3.1	Hand-measured water levels at Centralia in 2010	3-6

3.2	Analytical results from the AGEM laboratory for volatile organic compounds in groundwater samples collected from the sitewide monitoring points at Centralia, August 2004 to September 2010	3-7
3.3	Field measurements for groundwater samples collected from the sitewide monitoring points at Centralia, August 2004 to September 2010	3-11
3.4	Analytical results from the AGEM laboratory for volatile organic compounds in groundwater samples collected from the IM pilot test monitoring points at Centralia, September 2008 to September 2010	3-15
3.5	Field measurements for groundwater samples collected from the IM pilot test monitoring points at Centralia, September 2008 to September 2010	3-17
A.1	Sequence of sampling activities at Centralia in 2010	A-2
B.1	Analytical results from the AGEM Laboratory for quality control samples collected in 2010	B-2
B.2	Analytical results for verification groundwater samples analyzed at the AGEM Laboratory and by TestAmerica	B-3

Figures

1.1	Currently approved annual sitewide monitoring network at Centralia	1-3
1.2	Pilot test monitoring points currently approved for annual or twice-yearly sampling	1-4
3.1	Hydrographs summarizing results of long-term water level monitoring at Centralia, January 2009 to September 2010	3-19
3.2	Potentiometric surface at Centralia, based on water levels measured manually on April 28, 2010	3-20
3.3	Carbon tetrachloride concentrations in groundwater in the sitewide monitoring wells sampled in September 2010, with the interpreted lateral extent of the contaminant at intervals during the period August 2004 to September 2010	3-21
3.4	Carbon tetrachloride in groundwater samples collected during the pre-injection baseline sampling, September and November 2007	3-22
3.5	Field-measured results for DO in groundwater samples collected during the pre-injection baseline sampling, September and November 2007	3-23

3.6	Field-measured results for ORP in groundwater samples collected during the pre-injection baseline sampling, September and November 2007	3-24
3.7	Analytical results for carbon tetrachloride in groundwater samples collected in September 2010 and October 2009 at the IM pilot test monitoring points	3-25
3.8	Field-measured results for DO in groundwater samples collected in September 2010 and October 2009 at the IM pilot test monitoring points	3-26
3.9	Field-measured results for ORP in groundwater samples collected in September 2010 and October 2009 at the IM pilot test monitoring points	3-27
C.1	Analytical results for VOCs, DO, and ORP in groundwater samples collected at location MW02, November 2007 to September 2010	C-2
C.2	Analytical results for VOCs, DO, and ORP in groundwater samples collected at location PMP1, January 2008 to September 2010	C-3
C.3	Analytical results for VOCs, DO, and ORP in groundwater samples collected at locations PSB2 and PMP2, November 2007 to September 2010	C-4
C.4	Analytical results for VOCs, DO, and ORP in groundwater samples collected at locations PSB3 and PMP3, November 2007 to September 2010	C-5
C.5	Analytical results for VOCs, DO, and ORP in groundwater samples collected at location PMP4, January 2008 to September 2010	C-6
C.6	Analytical results for VOCs, DO, and ORP in groundwater samples collected at locations PSB5 and PMP5, November 2007 to September 2010	C-7
C.7	Analytical results for VOCs, DO, and ORP in groundwater samples collected at locations PSB6 and PMP6, November 2007 to September 2010	C-8
C.8	Analytical results for VOCs, DO, and ORP in groundwater samples collected at locations PSB7 and PMP7, November 2007 to September 2010	C-9
C.9	Analytical results for VOCs, DO, and ORP in groundwater samples collected at locations PSB8 and PMP8, November 2007 to September 2010	C-10
C.10	Analytical results for VOCs, DO, and ORP in groundwater samples collected at locations PSB9 and PMP9, November 2007 to September 2010	C-11

Notation

AGEM	Applied Geosciences and Environmental Management
AMSL	above mean sea level
BGL	below ground level
°C	degree(s) Celsius
CAS	Corrective Action Study
CCC	Commodity Credit Corporation
CD	compact disc
COC	chain of custody
DO	dissolved oxygen
EPA	U.S. Environmental Protection Agency
ft	foot (feet)
IM	interim measure
in.	inch(es)
ISCR	in situ chemical reduction
KDHE	Kansas Department of Health and Environment
L	liter(s)
µg/L	microgram(s) per liter
µS/cm	microsiemen(s) per centimeter
mg/L	milligram(s) per liter
mi	mile(s)
mV	millivolt(s)
ORP	oxidation-reduction potential
RBSL	risk-based screening level
TOC	top of casing
USDA	U.S. Department of Agriculture
VOC	volatile organic compound
yr	year(s)

Annual Report of Groundwater Monitoring at Centralia, Kansas, in 2010

1 Introduction and Background

In September 2005, periodic sampling of groundwater was initiated by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) in the vicinity of a grain storage facility formerly operated by the CCC/USDA at Centralia, Kansas. The sampling at Centralia is performed on behalf of the CCC/USDA by Argonne National Laboratory, in accord with a monitoring program approved by the Kansas Department of Health and Environment (KDHE). The objective is to monitor levels of carbon tetrachloride contamination identified in the groundwater at Centralia (Argonne 2003, 2004, 2005a).

Under the KDHE-approved monitoring plan (Argonne 2005b), the groundwater was sampled twice yearly from September 2005 until September 2007 for analyses for volatile organic compounds (VOCs), as well as measurement of selected geochemical parameters to aid in the evaluation of possible natural contaminant degradation processes (reductive dechlorination) in the subsurface environment (Argonne 2006, 2007a, 2008a). The results from the two-year sampling program demonstrated the presence of carbon tetrachloride contamination at levels exceeding the KDHE Tier 2 risk-based screening level (RBSL) of 5 μ g/L for this compound, in a localized groundwater plume that has shown little movement. The relative concentrations of chloroform, the primary degradation product of carbon tetrachloride, suggested that some degree of reductive dechlorination or natural biodegradation was talking place *in situ* at the former CCC/USDA facility on a localized scale.

The CCC/USDA subsequently developed an *Interim Measure Conceptual Design* (Argonne 2007b), proposing a pilot test of the Adventus EHC technology for *in situ* chemical reduction (ISCR). The proposed interim measure (IM) was approved by the KDHE in November 2007 (KDHE 2007). Implementation of the pilot test occurred in November-December 2007. The objective was to create highly reducing conditions that would enhance both chemical and biological reductive dechlorination in the injection test area (Argonne 2009a).

The KDHE (2008a) requested that sitewide monitoring continue until a final remedy is selected (as part of a Corrective Action Study [CAS] evaluation) and implemented. In response to this request, the established sampling across the site and additional sampling in the IM pilot test area continued in 2008 (Argonne 2008b, 2009a,b).

On the basis of results of the 2005-2008 sitewide monitoring and the 2008 IM pilot test monitoring, the CCC/USDA recommended a revised sampling program for both the wider site and the IM pilot test area (Section 4.2 in Argonne 2009b). The elements of this *interim monitoring plan* are as follows:

- Annual sampling of
 - Twelve monitoring points across the site (Figure 1.1) and
 - Five outlying IM pilot test monitoring points (PMP4, PMP5, PMP6, PMP7, PMP9; Figure 1.2).
- Twice yearly sampling of five IM pilot test monitoring points inside the injection area (PMP1-PMP3, PMP8, MW02; Figure 1.2).

With the approval of the KDHE (2009), the initial groundwater sampling for VOCs and geochemical analyses under the *interim monitoring plan* outlined above was conducted in 2009 (Argonne 2010). The present report documents the findings of the 2010 monitoring events, conducted on April 5 and September 19-21, 2010.

FIGURE 1.1 Currently approved annual sitewide monitoring network at Centralia.

FIGURE 1.2 Pilot test monitoring points currently approved for annual or twice-yearly sampling.

2 Sampling and Analysis Activities

2.1 Measurement of Groundwater Levels

Pilot test monitoring points PMP1-PMP3, PMP8, and MW02 (Figure 1.2) were sampled on April 5, 2010. Pilot test monitoring points PMP1-PMP9 and MW02 (Figure 1.2) and sitewide monitoring points MW03-MW07, MW09, MW10, SB01, SB04, SB05, SB07R, and SB08 (Figure 1.1) were sampled on September 19-21, 2010. Before each well or piezometer was sampled, a water level indicator was used to measure the depth to groundwater and the total depth of each well from the top of the well casing.

In wells MW01 and MW03-MW06, downhole pressure sensors equipped with automatic data loggers have been gathering long-term data on the groundwater elevation and gradient. During the current review period, the recorded water level data were retrieved from the loggers on April 28 and September 12, 2010. Water levels were also measured manually in these wells on the same dates as the downloads. In addition, manual water level measurements were made in all of the wells sampled on April 5 and September 19-21, 2010. The groundwater level data are presented and discussed in Section 3.1.

Automated measurement of the groundwater levels began in April 2002, and continuous monitoring of the levels in selected wells has been conducted since August 2004. As outlined in Section 3.1, the results of this program, in conjunction with periodic manual determinations of the water levels in all available monitoring points, have demonstrated long-term consistency in both the groundwater levels and the interpreted patterns of groundwater flow across the investigation site. In light of these findings, automated measurement of the groundwater levels was terminated during the current review period; the pressure sensors and data loggers were removed from the site after final downloads on April 5 and September 12, 2010.

2.2 Monitoring Well and Piezometer Sampling and Analyses

After manual measurement of water levels, each monitoring point was purged of a small volume by using a bladder pump or a Waterra pump. With the approval of the KDHE (2008b), the purging was performed by using low-flow techniques in accord with U.S. Environmental Protection Agency (EPA) procedure EPA/540/S-95/504 (Puls and Barcelona 1996) and the

equipment manufacturers' instructions. Field measurements of temperature, pH, conductivity, dissolved oxygen (DO), and oxidation reduction potential (ORP) were taken during purging until the measurements stabilized. Field measurements of iron(II) and carbon dioxide were made as outlined in the (2005-2007) monitoring plan (Argonne 2005b), in accord with procedures in the *Master Work Plan* (Argonne 2002). The sequence of activities during each of the 2010 sampling events (in April and September) is summarized in Appendix A, Table A.1.

Groundwater samples designated for VOCs analyses were collected in appropriate laboratory containers, labeled, packaged, and chilled to 4°C by placement in ice-filled coolers. The samples were shipped by an overnight delivery service to the Applied Geosciences and Environmental Management (AGEM) Laboratory at Argonne for VOCs analyses by EPA Method 524.2 (EPA 1995). Aliquots of selected samples (chosen in the field) were also shipped to TestAmerica Laboratories, Inc., South Burlington, Vermont, for verification VOCs analyses.

The analytical results for groundwater samples are discussed in Section 3.2.

2.3 Handling and Disposal of Investigation-Derived Waste

Purge water generated as potentially contaminated investigation-derived waste was containerized on-site. The accumulated purge water was sampled on September 30, 2010, and analyzed by Pace Analytical Services, Inc., Lenexa, Kansas, on October 3, 2010. Methods used were EPA Method 5030/8260 for VOCs, EPA Method 504.1 for ethylene dibromide, and EPA Method 300 for nitrate as nitrogen. No contamination was detected. The laboratory results are in Supplement 1, on the compact disc (CD) inside the back cover of this report. With the approval of the KDHE, the water was delivered on December 17, 2010 (together with purge water from several other CCC/USDA investigation sites in Kansas), for disposal the Sabetha publicly owned wastewater treatment plant.

2.4 Quality Control for Sample Collection, Handling, and Analysis

Quality assurance/quality control procedures followed during the April and September 2010 monitoring events are described in detail in the *Master Work Plan* (Argonne 2002). The results are summarized as follows:

- Sample collection and handling activities were monitored by the documentation of samples as they were collected and the use of chain-of-custody forms and custody seals to ensure sample integrity during handling and shipment.
- Samples designated for VOCs analyses were received with custody seals intact and at the appropriate preservation temperature. All samples were analyzed within the required holding times.
- Quality control samples were all free of carbon tetrachloride and chloroform contamination. These samples included a field blank, equipment rinsates, and trip blanks collected to monitor sample handling activities (Appendix B, Table B.1), as well as method blanks analyzed with the investigation samples to monitor analytical methodologies.
- Groundwater samples were analyzed for VOCs at the AGEM Laboratory with the purge-and-trap method on a gas chromatograph-mass spectrometer system. Calibration checks with each sample delivery group were required to be within ±20% of the standard. Surrogate standard determinations performed on samples and blanks were within the specified range of 80-120% for all samples, in either the initial analysis or a successful reanalysis.
- Accuracy and precision of the analytical methodology were evident in the analysis of two replicate samples and the duplicate analysis of three additional samples, with average relative percent difference values of 2% between the initial analysis and the associated quality control analysis for both carbon tetrachloride and chloroform (Table B.1 in Appendix B). The groundwater analytical data from the AGEM Laboratory are acceptable for quantitative determination of contaminant distribution.
- In accordance with the quality control procedures defined in the *Master Work Plan* (Argonne 2002), the analyses of water samples at the AGEM Laboratory were verified by a second laboratory. Three groundwater samples collected during the April 2010 monitoring event (from MW02, PMP2, and PMP3) and four samples from the September 2010 event (from MW06, MW07, MW08,

and SB09) were submitted to TestAmerica for verification organic analysis according to EPA Contract Laboratory Program methodology. Results (Table B.2 in Appendix B) showed good agreement over the range of contaminant concentrations detected, with average relative percent difference values of < 10% for both carbon tetrachloride and chloroform. The detection of methylene chloride, a secondary dechlorination by-product of carbon tetrachloride, was confirmed in the verification analyses. The verification organic analyses are on compact disc, in Supplement 2.

3 Results and Discussion

3.1 Groundwater Level Data

Depths to groundwater were measured manually in each of the wells sampled during the monitoring events on April 5 and September 19-21, 2010. Water levels were also measured manually in conjunction with the final data logger downloads on April 28 and September 12, 2010. The hand-measured water level data are in Table 3.1.

Hydrographs depicting the variations in water levels in monitored wells MW01 and MW03-MW06 during the current (2010) and previous (2009) review periods are in Figure 3.1. The water level traces are shown in conjunction with daily precipitation data obtained from the Kansas State University recording weather station in Powhattan, Kansas, approximately 26 mi east of Centralia (http://wdl.agron.ksu.edu/). Figure 3.1 indicates that the groundwater levels at Centralia have fluctuated by approximately 0.5-5 ft in response to both seasonal and shorter-term rainfall events but showed little net change in 2009-2010. The pronounced, transient water level "spikes" indicated in the hydrograph for monitoring well MW06 are believed to reflect localized flooding at the location of this (flush-mounted) monitoring well that occurs during heavy rainfall events, particularly in the spring and early summer. These observations are consistent with the results of the continuous automated monitoring conducted in selected wells since August 2004 (Argonne 2006, 2007a, 2008a,b, 2009b, 2010).

The potentiometric surface at Centralia, as determined from manual measurements on April 28, 2010, is depicted in Figure 3.2. The recent results are consistent with previous interpretations (Argonne 2006, 2007a, 2008a,b, 2009b, 2010), indicating an apparent groundwater flow direction toward the southwest across much of the former CCC/USDA facility. Like previous depictions, Figure 3.2 indicates that groundwater flow appears focused toward a localized low in the potentiometric surface, defined by the water level measurements at SB01, MW04, MW06, and MW07. Argonne's earlier investigations (Argonne 2003, 2004) suggested that the increased hydraulic gradients observed near these wells are a reflection of relatively low-permeability silts and clays that compose the aquifer unit in this portion of the study area, in comparison to the coarser-grained deposits identified in the northern and eastern portions of the site. The results of the sitewide groundwater analyses discussed in Section 3.2.1 support an interpretation of slow groundwater flow (and carbon tetrachloride migration) to the south-southwest, in keeping with the observed water level patterns.

3.2 Groundwater Analysis Results

In September 2010, sitewide groundwater sampling was performed, with the approval of the KDHE (2009), in a suite of 12 monitoring points (Figure 1.1). More detailed sampling in the IM pilot test area was conducted in April and September 2010, in the wells identified in Figure 1.2. The results of the 2010 sitewide (September) and IM pilot test area (April and September) monitoring efforts are summarized, respectively, in Section 3.2.1 and Section 3.2.2.

3.2.1 Sitewide Monitoring Results

The analytical data for VOCs in the groundwater samples collected in the network of sitewide monitoring wells in September 2010 are in Table 3.2, together with data generated since sampling of the monitoring wells began in 2004. The September 2010 data for carbon tetrachloride are illustrated in Figure 3.3, along with the lateral margins of the contaminant distribution, as interpreted on the basis of each of the sitewide groundwater sampling events summarized in Table 3.2.

Carbon tetrachloride was detected in September 2010 at 9 of the 12 sitewide monitoring locations on and downgradient from the former CCC/USDA facility (Figure 3.3), at concentrations ranging from 2.2 μ g/L (at MW04) to a maximum of 374 μ g/L (at SB05). Chloroform concentrations ranging from < 1 μ g/L to 32 μ g/L were detected at 8 of the 12 sampled locations (Table 3.2).

The carbon tetrachloride concentrations identified in the sitewide monitoring wells in September 2010 were generally comparable to the measurements obtained in the previous (2009) monitoring period, with individual wells showing only minor changes. The results in Table 3.2 and Figure 3.3 continue to indicate the longer-term trends (observed previously) of slightly increasing carbon tetrachloride levels at monitoring points SB05, MW04, MW07, and (since 2008) MW05 along the western and southern margins of the groundwater plume and in the apparent direction of groundwater flow.

The results of field measurements on the groundwater samples from wells in the sitewide monitoring network are summarized in Table 3.3. The presence of trace to relatively low levels of chloroform at all of the monitoring points (except for MW04) having detectable levels of

carbon tetrachloride (Table 3.2) suggests that some degradation of carbon tetrachloride is occurring at these locations. The relatively high DO concentrations (2.48-10.48 mg/L) and positive ORP levels (60 mV to 186 mV) identified at the sitewide monitoring points (Table 3.3) do not, however, support the widespread occurrence of anaerobic reducing conditions within the Centralia aquifer.

Table 3.3 indicates that the identified DO concentrations and ORP levels at monitoring well MW06 have fluctuated erratically since the monitoring of these parameters began in 2004. Low DO concentrations (< 1 mg/L) and negative ORP levels (-72 to -96 mV) detected at MW06 in September 2008 and October 2009 (Table 3.3), were interpreted as possibly suggesting the transient development of increasingly anaerobic reducing conditions at this location; however, these results were not reproduced in the current review period.

3.2.2 Monitoring Results for the IM Pilot Test Area

Baseline groundwater sampling was conducted within and adjacent to the IM pilot test area in September and November 2007, prior to the injection of the ISCR materials, to provide a basis for assessment of the ISCR treatment technology over time. The pre-treatment concentrations of carbon tetrachloride and the values of DO and ORP identified during this sampling (Argonne 2009a) are illustrated in Figures 3.4-3.6, respectively.

Injection of the ISCR materials (in November-December 2007) initially generated extremely reducing, oxygen-depleted groundwater conditions (conducive to the reductive dechlorination of carbon tetrachloride) within the injection field, while less dramatic reductions in DO and ORP were observed at monitoring points outside the treatment area. The extremely low DO and ORP levels were, however, maintained for only approximately 5-7 weeks after injection. Subsequent monitoring in 2008 (Argonne 2009a,b) demonstrated that the DO and ORP levels within the injection field remained consistently lower than those at monitoring points outside the injection of further geochemical effects beyond the limits of the injection field.

Reductions of 96-99% in the concentrations of carbon tetrachloride in groundwater within the injection field and of 20-70% at most monitoring points near the injection area were observed in the first 5-7 weeks after injection. Continued monitoring in 2008 showed that carbon

tetrachloride concentrations in the injection field generally remained near the initial postinjection levels or decreased slightly more, while the concentrations at points bordering or outside the injection area showed little consistency and variably decreased, increased, or remained relatively unchanged (Argonne 2009a) after the initial 5-7 weeks following the injection.

The analytical data for VOCs in the groundwater samples collected from the IM pilot test monitoring points (PMP1-PMP9 and MW02; Figure 1.2) in April and September 2010 are in Table 3.4, together with data for the most recent previous sampling events (October 2009, April 2009, and September 2008) at these locations. The corresponding field measurements for these locations and sampling events are in Table 3.5. Time series diagrams summarizing the complete sequence of analysis results for selected parameters (carbon tetrachloride, chloroform, methylene chloride, DO, ORP) at each IM monitoring point since the ISCR pilot test was implemented in November 2007 are in Appendix C, Figures C.1-C.10.

Carbon tetrachloride was detected at 3 of the 5 points sampled in the pilot test area during the April 2010 monitoring event and at 9 of the 10 points sampled in September 2010. In April 2010, carbon tetrachloride concentrations ranging from $< 1 \mu g/L$ to 991 $\mu g/L$ were identified at PMP1, PMP2, and PMP8. In September 2010, concentrations ranging from $< 1 \mu g/L$ (at PMP8) to 779 $\mu g/L$ (at PMP5) were detected at monitoring well MW02 and piezometers PMP1, PMP2, and PMP4-PMP9 (Table 3.4). No carbon tetrachloride was detected at monitoring point PMP3 during either 2010 sampling event.

The results of the September 2010 and October 2009 analyses for carbon tetrachloride are compared in Figure 3.7. The carbon tetrachloride concentrations in groundwater at monitoring points PMP1-PMP4, PMP6, PMP8, and PMP9 decreased from October 2009 to September 2010, with the most significant decrease during this period occurring at point PMP2 (from 1,384 μ g/L in October 2009 to 117 μ g/L in September 2010). The concentrations at MW02, PMP5, and PMP7 increased slightly from October 2009 to September 2010. These relatively short-term variations in carbon tetrachloride levels (from October 2009 to September 2010; Figure 3.7) in several cases do not appear representative, however, of possible longer-term trends in the contaminant concentrations at these monitoring points. The time series diagrams (Figures C.1-C.10 in Appendix C) suggest a net increase in the concentrations of carbon tetrachloride identified at locations PMP5, PMP6, and PMP9 (lying to the east and northwest of the pilot test injection field), and a net decrease in the concentrations at points PMP4 and PMP7

(lying to the southwest and downgradient of the injection field) since the September 2008 sampling event. Except for PMP2, the carbon tetrachloride concentrations at monitoring points in the injection field (MW02, PMP1, PMP3, and PMP8) gave little indication of increasing or decreasing trends during the 2009 and 2010 sampling events.

The DO concentrations and ORP levels identified in the pilot test area in September 2010 and October 2009 are summarized in Table 3.5 and Figures 3.8 and 3.9, respectively. Figure 3.9 and Figures C.1-C.10 in Appendix C illustrate that the observed ORP levels in and near the pilot test injection field remained relatively stable throughout 2009 and 2010. Consistently lower (and predominantly negative) ORP values have persisted in the injection field relative to the levels observed at the nearby monitoring points outside this area, demonstrating the apparent continued, localized influence of the ISCR treatment. Similarly, DO levels at monitoring points within the ISCR injection field (Table 3.5, Figure 3.8, and Figures C.1-C.10) have remained consistently lower, although somewhat more variable, than those at the nearby monitoring points immediately outside this area (with the possible exception of PMP7).

Relatively high levels of chloroform (relative to carbon tetrachloride; Table 3.4 and graphs in Appendix C) were also observed at PMP1, PMP2, and PMP4-PMP7 in the 2010 sampling events, and low levels of methylene chloride were detected at three of the pilot test monitoring locations (PMP2, PMP5, PMP7). Together, these findings confirm that geochemical conditions favorable to the degradation of carbon tetrachloride, via reductive dechlorination, persist in the pilot test area as a result of the November 2007 ISCR injections.

Data discussed previously (Argonne 2010) indicated that DO and ORP values decreased from September 2008 to October 2009 at monitoring points PMP4, PMP6, PMP7, and PMP9 immediately to the south, west, and downgradient of the pilot test injection field. Slightly lower concentrations of carbon tetrachloride were also identified at the PMP4 and PMP7 locations in October 2009 (Table 3.4). These relationships empirically suggested possible slow expansion of the range of influence of the ISCR treatment technology with time, in the direction of natural groundwater flow to the southwest. Additional monitoring in the pilot test area will be necessary, however, to substantiate this hypothesis, as the suggestion of coupled geochemical and concentration trends could not be confirmed on the basis of the 2010 monitoring results.

		April 5, 2010 ^a		April 28, 2010		September 12, 2010		September 19-21, 2010 ^a	
Well	Top of Casing Elevation ^b (ft AMSL)	Depth to Groundwater ^c (ft TOC)	Groundwater Elevation (ft AMSL)	Depth to Groundwater (ft TOC)	Groundwater Elevation (ft AMSL)	Depth to Groundwater (ft TOC)	Groundwater Elevation (ft AMSL)	Depth to Groundwater (ft TOC)	Groundwater Elevation (ft AMSL)
MW01 MW02 MW03 MW04 MW05 MW06 MW07 MW08 MW09 MW10 SB01 SB04 SB03 SB07 SB04 SB05 SB07R SB08 SB09 PMP1 PMP2 PMP3 PMP4 PMP5 PMP6 PMP7	1329.17 1334.67 1334.51 1322.57 1317.97 1329.63 1324.76 1332.34 1310.41 1334.39 1325.15 1335.67 1321.28 1331.57 1332.48 1311.07 1333.67 1334.57 1334.57 1335.07 1335.19 1334.06	18.70 17.25 17.16 17.90	1315.97 1316.45 1316.51 1316.67	9.97 18.08 17.88 20.88 7.93 34.27 24.75 15.76 0.20 17.73 14.07 19.02 6.75 14.95 15.81 4.36	$\begin{array}{c} 1319.20\\ 1316.59\\ 1316.63\\ 1301.69\\ 1310.04\\ 1295.36\\ 1300.01\\ 1316.58\\ 1310.21\\ 1316.66\\ 1311.08\\ 1316.65\\ 1314.53\\ 1316.62\\ 1316.67\\ 1306.71\\ \end{array}$	12.65 19.37 22.35 11.06 34.54	1316.52 1315.14 1300.22 1306.91 1295.09	$12.17 \\ 19.72 \\ 19.42 \\ 22.42 \\ 10.38 \\ 34.96 \\ 25.03 \\ 17.52 \\ 2.66 \\ 19.92 \\ 14.02 \\ 20.42 \\ 10.20 \\ 17.19 \\ 17.23 \\ 6.78 \\ 18.65 \\ 18.68 \\ 19.35 \\ 16.83 \\ 20.20 \\ 20.00 \\ 18.84 \\ 19.75 \\ 18.64 \\ 18.65 \\ 18.64 \\ 19.75 \\ 18.64 \\ 19.75 \\ 18.64 \\ 19.75 \\ 18.64 \\ 19.75 \\ 18.64 \\ 19.75 \\ 18.64 \\ 19.75 \\ 18.84 \\ 19.75 \\ 19.75 \\ 18.84 \\ 19.75 \\ 19.85 $	1317.00 1314.95 1315.09 1300.15 1307.59 1294.67 1299.73 1314.82 1307.75 1314.47 1311.13 1315.25 1304.29 1315.05 1314.99 1315.22 1315.16 1314.87 1315.19 1315.22
PMP8 PMP9	1332.94 1331.83	16.12	1316.82					17.91 15.30	1315.03 1316.53

TABLE 3.1	Hand-measured water levels at Centralia in 2010.
-----------	--

^a Measurements made during sampling.

^b 2009 surveyed elevations.

^c Depths measured from the top of casing (TOC).

TABLE 3.2 Analytical results from the AGEM Laboratory for volatile organic compounds in groundwater samples collected from the sitewide monitoring points at Centralia, August 2004 to September 2010.

	_			Concentration (µg/L)		
Well	Screen Interval (ft BGL)	Sample	Sample Date	Carbon Tetrachloride	Chloroform	Methylene Chloride
MW01	54.5-64.5	CNMW01-W-16158	8/24/04	ND ^a	ND	ND
		CNMW01-W-19276	9/10/05	ND	ND	ND
		CNMW01-W-16308	10/11/05	ND	ND	ND
		CNMW01-W-19890	3/15/06	ND	ND	ND
		CNMW01-W-22501	9/25/06	ND	ND	ND
		CNMW01-W-16326	3/29/07	ND	ND	ND
		CNMW01-W-16228	9/26/07	1.0 R ^b	ND	ND
		CNMW01-W-26023	3/19/08	ND	ND	ND
		CNMW01-W-26673	9/9/08	ND	ND	ND
MW02 ^c	49.5-59.5	CNMW02-W-16159	8/26/04	215	6.2	ND
		CNMW02-W-19282	9/11/05	776	33	ND
		CNMW02-W-16309	10/12/05	528	21	ND
		CNMW02-W-19908	3/16/06	847	21	ND
		CNMW02-W-22508	9/26/06	1233	25	ND
		CNMW02-W-15489	3/26/07	829	14	ND
		CNMW02-W-16227	9/26/07	1138	18	ND
MW03	50.5-60.5	CNMW03-W-16178	8/24/04	1.2	ND	ND
		CNMW03-W-19277	9/10/05	1.6	ND	ND
		CNMW03-W-16310	10/11/05	1.8	ND	ND
		CNMW03-W-19909	3/17/06	2.6	0.2 J ^d	ND
		CNMW03-W-22513	9/26/06	2.7	ND	ND
		CNMW03-W-15494	3/27/07	2.5	ND	ND
		CNMW03-W-16223	9/25/07	3.5	ND	ND
		CNMW03-W-26001	3/12/08	2.3	ND	ND
		CNMW03-W-26675	9/9/08	3.2	0.3 J	ND
		CNMW03-W-27151	10/6/09	6.2	ND	ND
		CNMW03-W-27188	9/19/10	7.5	0.3 J	ND
MW04	37.5-47.5	CNMW04-W-16180	8/24/04	ND	ND	ND
		CNMW04-W-19280	9/11/05	0.9 J	ND	ND
		CNMW04-W-16311	10/11/05	0.8 J	ND	ND
		CNMW04-W-19891	3/15/06	1.3	ND	ND
		CNMW04-W-22506	9/25/06	1.4	0.1 J	ND
		CNMW04-W-16210	3/28/07	2.1	ND	ND
		CNMW04-W-16220	9/24/07	2.0	ND	ND
		CNMW04-W-26024	3/19/08	1.3	ND	ND
		CNMW04-W-26676	9/9/08	2.0	ND	ND
		CNMW04-W-27152	10/7/09	2.9	ND	ND
		CNMW04-W-27189	9/20/10	2.2	ND	ND

TABLE 3.2 (Cont.)

				Concentration (µg/L)		
Well	Screen Interval (ft BGL)	Sample	Sample Date	Carbon Tetrachloride	Chloroform	Methylene Chloride
MW05	34.5-44.5	CNMW05-W-16183 CNMW05-W-19279 CNMW05-W-16312 CNMW05-W-19976 CNMW05-W-22505 CNMW05-W-16213 CNMW05-W-16218 CNMW05-W-26025 CNMW05-W-26677 CNMW05-W-27153 CNMW05-W-27190	8/25/04 9/10/05 10/11/05 3/15/06 9/25/06 3/28/07 9/24/07 3/19/08 9/10/08 10/7/09 9/20/10	ND 1.9 1.5 1.3 1.3 0.5 J 1.2 1.9 13 18 22	ND ND ND ND ND ND ND 0.7 J 1.1 1.4	ND ND ND ND ND ND ND ND ND
MW06	46.5-56.5	CNMW06-W-16184 CNMW06-W-19278 CNMW06-W-16313 CNMW06-W-19889 CNMW06-W-22511 CNMW06-W-16208 CNMW06-W-16222 CNMW06-W-26026 CNMW06-W-26678 CNMW06-W-27154 CNMW06-W-27191	8/25/04 9/10/05 10/11/05 3/15/06 9/27/06 3/27/07 9/24/07 3/19/08 9/9/08 10/6/09 9/20/10	ND ND 0.3 J 0.2 J ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND
MW07	45-55	CNMW07-W-19887 CNMW07-W-22512 CNMW07-W-15492 CNMW07-W-16221 CNMW07-W-26027 CNMW07-W-26679 CNMW07-W-27155 CNMW07-W-27192	3/14/06 9/26/06 3/26/07 9/24/07 3/19/08 9/9/08 10/6/09 9/20/10	0.4 J 1.1 1.8 2.4 3.0 4.0 5.1 6.6	0.6 J ND ND ND 0.2 J 0.6 J 0.3 J	ND ND ND ND ND ND ND
MW08	38-53	CNMW08-W-19284 CNMW08-W-22507 CNMW08-W-15493 CNMW08-W-16226 CNMW08-W-26028 CNMW08-W-26680	3/14/06 9/26/06 3/27/07 9/25/07 3/20/08 9/10/08	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND
MW09	25-35	CNMW09-W-19285 CNMW09-W-22504 CNMW09-W-16209 CNMW09-W-16219 CNMW09-W-26029 CNMW09-W-26681 CNMW09-W-27157 CNMW09-W-27194	3/15/06 9/25/06 3/27/07 9/24/07 3/20/08 9/10/08 10/6/09 9/19/10	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND

TABLE 3.2 (Cont.)

				Concentration (µg/L)		
Well	Screen Interval (ft BGL)	Sample	Sample Date	Carbon Tetrachloride	Chloroform	Methylene Chloride
MW10	30-45	CNMW10-W-19886 CNMW10-W-22510 CNMW10-W-16215 CNMW10-W-16224 CNMW10-W-26030 CNMW10-W-26682 CNMW10-W-27158 CNMW10-W-27195	3/14/06 9/26/06 3/28/07 9/25/07 3/20/08 9/9/08 10/6/09 9/19/10	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND
SB01	40-50	CNSB01-W-16188 CNSB01-W-19274 CNSB01-W-19274 CNSB01-W-19979 CNSB01-W-22516 CNSB01-W-15491 CNSB01-W-16232 CNSB01-W-26031 CNSB01-W-26683 CNSB01-W-27159 CNSB01-W-27196	8/26/04 9/9/05 10/12/05 3/17/06 9/27/06 3/27/07 9/27/07 3/20/08 9/10/08 10/7/09 9/20/10	186 269 288 320 267 222 283 325 378 396 319	6.5 6.8 6.6 5.7 6.3 4.9 4.6 4.8 4.1 5.0 4.7	ND ND ND ND ND ND ND ND ND ND
SB04	51-61	CNSB04-W-16189 CNSB04-W-19273 CNSB04-W-16315 CNSB04-W-19906 CNSB04-W-22503 CNSB04-W-16216 CNSB04-W-16230 CNSB04-W-26002 CNSB04-W-26684 CNSB04-W-27160 CNSB04-W-27197	8/26/04 9/9/05 10/12/05 3/16/06 9/25/06 3/28/07 9/26/07 3/12/08 9/9/08 10/8/09 9/20/10	30 47 44 51 54 44 36 30 15 17 17	ND 0.6 J 0.5 J 0.7 J 0.5 J 0.4 J 0.3 J 0.3 J 0.3 J 0.3 J	ND ND 0.4 J B ^e ND ND ND ND ND ND ND ND
SB05	32-42	CNSB05-W-16190 CNSB05-W-19275 CNSB05-W-16323 CNSB05-W-19904 CNSB05-W-16212 CNSB05-W-16233 CNSB05-W-26032 CNSB05-W-26685 CNSB05-W-27161 CNSB05-W-27198	8/26/04 9/9/05 10/12/05 3/17/06 9/27/06 3/28/07 9/26/07 3/20/08 9/9/08 10/8/09 9/21/10	59 77 54 104 139 138 221 224 256 289 374	5.5 7.2 5.5 7.2 12 12 16 17 20 19 32	ND ND ND ND ND ND ND ND ND
SB07R	45-60	CNSB07R-W-19978 CNSB07R-W-19924 CNSB07R-W-15490 CNSB07R-W-16225 CNSB07R-W-26003 CNSB07R-W-26686 CNSB07R-W-27162 CNSB07R-W-27199	3/15/06 9/26/06 3/26/07 9/25/07 3/12/08 9/9/08 10/7/09 9/20/10	41 30 30 50 13 21 38 42	2.7 1.7 1.7 2.4 0.9 J 1.4 1.7 2.5	ND ND ND ND ND ND ND

TABLE 3.2 (Cont.)

				Con	L)	
Well	Screen Interval (ft BGL)	Sample	Sample Date	Carbon Tetrachloride	Chloroform	Methylene Chloride
SB08	52-62	CNSB08-W-16192 CNSB08-W-19272 CNSB08-W-16317 CNSB08-W-19903 CNSB08-W-22500 CNSB08-W-16214 CNSB08-W-16229 CNSB08-W-26004 CNSB08-W-26687 CBSB08-W-27163 CNSB08-W-27200	8/26/04 9/8/05 10/12/05 3/17/06 9/21/06 3/28/07 9/26/07 3/12/08 9/8/08 10/8/09 9/20/10	79 80 77 91 53 64 68 28 22 29 16	3.1 2.6 2.8 2.7 1.6 2.0 1.8 1.1 1.2 1.2 0.9 J	ND ND ND ND ND ND ND ND ND ND
SB09	32-42	CNSB09-W-16193 CNSB09-W-19281 CNSB09-W-16318 CNSB09-W-19902 CNSB09-W-22502 CNSB09-W-16211 CNSB09-W-16231 CNSB09-W-26033 CNSB09-W-26688	8/26/04 9/11/05 10/11/05 3/17/06 9/25/06 3/28/07 9/26/07 3/20/08 9/10/08	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND

^a ND, not detected at an instrument detection limit of 0.1 µg/L.

^b Qalifier R indicates that the contaminant was present in the associated equipment rinsate.

- ^c Data are for samples collected prior to implementation of the IM ISCR pilot test in November 2007. More recent results are in Table 3.4.
- ^d Qalifier J indicates an estimated concentration below the method quantitation limit of 1.0 µg/L.
- ^e Qualifier B indicates that the contaminant was present in the associated method blank.

TABLE 3.3 Field measureme	ents for groundwater sample	s collected from the s	itewide monitoring points at
Centralia, August 2004 to Se	ptember 2010.		

	0					Concentration (mg/L)			
Well	Screen Interval (ft BGL)	Sample Date	Temperature (°C)	pН	Conductivity (µS/cm)	Dissolved Oxygen	Carbon Dioxide	Iron(II)	ORP (mV)
MW01	54.5-64.5	8/24/04	16.3	7.39	652	0.06	25	0.00	230
		9/10/05	16.3	7.26	599	6.31	_ ^a	0.00	104
		10/11/05	16.4	6.45	634	_	_	_	_
		3/15/06	14.3	7.56	621	9.33	30	0.04	297
		9/25/06	13.3	7.01	782	6.82	50	0.31	92
		3/29/07	16.5	6.54	629	4.39	_	0.00	174
		9/26/07	17.8	7.06	630	0.89	35	0.09	146
		3/19/08	9.5	7.31	613	3.34	_	_	122
		9/9/08	13.9	7.28	595	5.18	20	0.03	28
MW02 ^b	49.5-59.5	8/26/04	14.4	7.31	729	0.16	20	0.12	235
		9/11/05	15.3	7.02	739	1.28	_	_	_
		10/12/05	14.8	6.60	766	_	_	_	_
		3/16/06	14.2	6.78	759	1.24	_	0.00	295
		9/26/06	13.2	6.98	957	3.05	40	0.06	67
		3/26/07	15.7	6.39	739	2.29	50	_	67
		9/26/07	15.4	7.04	763	3.39	25	0.00	156
MW03	50.5-60.5	8/24/04	13.1	7.28	783	0.10	55	0.21	230
		9/10/05	15.1	7.05	715	10.42	65	0.00	142
		10/11/05	16.3	6.46	765	_	_	_	_
		3/17/06	13.8	6.75	753	9.39	77	0.00	290
		9/26/06	13.2	6.92	960	11.57	45	0.08	251
		3/27/07	15.3	6.40	774	7.73	25	_	268
		9/25/07	14.3	6.97	738	8.44	30	0.00	162
		3/12/08	14.6	7.12	777	7.90	_	3.13	88
		9/9/08	14.9	7.13	763	9.60	110	0.12	66
		10/6/09	13.8	7.08	770	9.66	95	0.03	216
		9/19/10	14.7	6.98	762	10.48	_	0.08	178
MW04	37.5-47.5	8/24/04	16.2	7.39	717	0.11	40	0.04	210
		9/11/05	15.4	7.18	665	8.43	60	0.00	226
		10/11/05	14.4	7.14	811	_	_	_	_
		3/15/06	13.5	7.78	675	6.82	55	0.06	283
		9/25/06	_	7.02	613	9.13	40	0.19	46
		3/28/07	15.4	6.47	678	5.46	_	0.00	197
		9/24/07	17.4	7.10	667	6.94	35	0.24	261
		3/19/08	11.2	7.32	636	7.55	_	_	164
		9/9/08	14.2	7.14	648	8.68	100	0.00	72
		10/7/09	13.9	7.17	671	8.64	100	0.02	183
		9/20/10	16.2	7.18	572	8.91	_	0.10	164

TABLE 3.3 (Cont.)

						Conce	_		
Well	Screen Interval (ft BGL)	Sample Date	Temperature (°C)	рН	Conductivity (µS/cm)	Dissolved Oxygen	Carbon Dioxide	Iron(II)	ORP (mV)
MW05	34.5-44.5	8/25/04 9/10/05 10/11/05 3/15/06 9/25/06 3/28/07 9/24/07 3/19/08 9/10/08 10/7/09 9/20/10	14.3 14.2 14.8 14.3 13.6 14.4 15.8 12.9 13.9 14.2 17.2	7.14 6.80 6.35 6.90 6.95 6.44 7.06 7.42 7.11 7.11 7.18	613 620 610 701 768 573 368 642 663 672 675	0.08 1.40 - 0.90 0.09 4.53 3.09 5.42 7.14 7.05 6.07	25 110 - 30 50 35 45 - 95 90 -	0.06 0.00 0.06 0.02 0.00 0.00 0.00 0.00 0.01	215 160 - 156 55 295 182 177 130 194 183
MW06	46.5-56.5	8/25/04 9/10/05 10/11/05 3/15/06 9/27/06 3/27/07 9/24/07 3/19/08 9/9/08 10/6/09 9/20/10	15.9 14.6 15.8 14.1 13.1 19.0 16.8 14.1 14.4 13.5 15.6	7.50 7.23 6.99 7.38 6.16 6.42 7.11 7.01 7.20 6.69 6.97	637 659 638 630 652 466 463 552 437 255 369	0.05 0.04 - 9.87 0.05 0.11 8.00 7.00 0.36 0.61 2.48	15 60 35 45 20 25 105 110 	0.00 0.00 - 0.02 1.12 0.00 0.41 - 0.07 0.06 0.04	215 41 - 263 63 13 191 172 -96 -72 86
MW07	45-55	3/14/06 9/26/06 3/26/07 9/24/07 3/19/08 9/9/08 10/6/09 9/20/10	14.7 13.1 15.8 19.0 12.5 15.6 13.9 16.6	6.61 7.23 6.50 7.18 7.29 7.10 7.19 7.22	709 642 642 609 647 629 618 622	0.34 2.91 1.87 9.05 2.70 1.41 1.42 2.93	- 50 30 60 - 68 70 -	0.03 0.00 0.00 0.18 - 0.00 0.00 0.00	143 261 190 215 16 53 132
MW08	38-53	3/14/06 9/26/06 3/27/07 9/25/07 3/20/08 9/10/08	13.5 13.3 15.8 15.8 13.5 16.3	6.35 6.75 6.31 6.92 7.19 7.03	854 1095 874 627 869 864	5.32 0.16 1.49 1.42 2.11 1.17	- 50 30 45 - 100	0.00 0.18 0.21 0.14 - 0.03	145 37 237 219 185 117
MW09	25-35	3/15/06 9/25/06 3/27/07 9/24/07 3/20/08 9/10/08 10/6/09 9/19/10	17.7 12.8 14.9 16.6 13.5 14.7 13.2 14.6	7.33 6.87 6.35 6.94 7.17 7.02 7.00 6.99	664 859 689 1999 720 706 715 711	0.95 1.59 4.10 3.86 4.70 3.68 3.73 3.60	55 45 30 55 110 110 -	0.09 0.18 0.69 0.14 - 0.07 0.08 0.09	214 90 152 186 173 120 148 159

TABLE 3.3 (Cont.)

						Concentration (mg/L)			_
Well	Screen Interval (ft BGL)	Sample Date	Temperature (°C)	рН	Conductivity (µS/cm)	Dissolved Oxygen	Carbon Dioxide	Iron(II)	ORP (mV)
MW10	30-45	3/14/06 9/26/06 3/28/07 9/25/07 3/20/08 9/9/08 10/6/09 9/19/10	14.8 13.6 17.0 15.8 10.9 14.8 13.7 15.1	6.60 6.87 6.36 6.94 7.18 7.05 7.04 6.95	834 1058 834 827 898 879 883 882	6.42 6.94 5.09 6.64 6.12 7.18 6.67 6.76	65 50 35 35 - 100 95 -	0.00 0.50 0.00 0.21 - 0.06 0.08 0.00	166 51 270 199 187 94 201 186
SB01	40-50	8/26/04 9/9/05 10/12/05 3/17/06 9/27/06 3/27/07 9/27/07 3/20/08 9/10/08 10/7/09 9/20/10	26.0 25.0 13.8 12.4 14.4 18.0 13.5 15.6 16.5 14.8 17.1	7.46 7.11 7.23 7.30 7.03 6.37 7.24 7.29 7.10 7.11 7.24	699 674 686 692 832 659 720 783 676 761 679	5.21 6.25 - 5.98 6.54 3.81 6.55 8.02 2.89 7.69 7.10	30 95 - 55 40 25 45 - 100 105 -	0.00 0.00 - 0.52 0.23 1.04 - 0.17 0.07 0.00	210 140 - 185 198 173 143 182 100 215 163
SB04	51-61	8/26/04 9/9/05 10/12/05 3/16/06 9/25/06 3/28/07 9/26/07 3/12/08 9/9/08 10/8/09 9/20/10	17.9 16.0 13.9 13.0 14.9 16.2 19.8 15.5 16.5 12.2 22.3	7.14 7.09 7.17 7.57 7.16 6.45 7.03 7.04 7.11 7.11 7.04	765 708 813 799 791 850 760 819 802 797 806	3.78 8.67 - 5.96 9.32 6.18 6.61 6.16 6.48 7.43 6.98	55 100 - 30 70 - 30 - 100 95 -	0.37 - - 1.18 0.23 0.00 0.09 0.02 0.09 0.06	230 206 - 276 64 266 202 154 70 238 143
SB05	32-42	8/26/04 9/9/05 10/12/05 3/17/06 3/28/07 9/26/07 3/20/08 9/9/08 10/8/09 9/21/10	15.7 16.9 14.0 13.3 13.7 16.7 15.1 14.5 13.7 12.7 14.4	7.25 6.98 7.00 7.67 6.58 4.03 6.98 7.11 6.79 7.09 7.18	761 687 728 718 763 1100 810 870 890 874 862	- 7.58 - 4.80 4.70 2.58 4.10 5.56 7.60 6.63 7.69	25 100 - 40 50 35 30 - 90 100 -	0.06 - 0.18 0.25 0.07 0.50 - 0.09 0.08 0.54	220 - 253 78 296 221 206 56 209 60
SB07R	45-60	3/15/06 9/26/06 3/26/07 9/25/07 3/12/08 9/9/08 10/7/09 9/20/10	16.8 13.2 19.0 17.4 17.3 14.1 13.3 15.5	7.24 6.89 6.38 7.06 7.18 7.06 7.11 7.04	685 842 668 642 639 631 629 648	7.41 6.17 5.08 6.30 5.33 5.08 6.67 5.87	60 55 40 35 - 100 110 -	0.08 0.26 0.07 0.11 0.00 0.07 0.10 0.13	83 67 237 170 108 55 224 161

TABLE 3.3 (Cont.)

	0					Conce	ntration (m	g/L)	-
Well	Interval (ft BGL)	Sample Date	Temperature (°C)	рН	Conductivity (µS/cm)	Dissolved Oxygen	Carbon Dioxide	Iron(II)	ORP (mV)
SB08	52-62	8/26/04 9/8/05	19.5 21.2	7.31 7.27	635 598	0.16 3.21	20 75	0.53 0.00	235 111
		3/17/06 9/21/06	13.9 12.9 14.1	7.15 7.14 6.96	630 645 809	- 3.40 4.53	40 40	_ 0.00 0.00	_ 246 37
		3/28/07 9/26/07	15.8 17.4	6.53 7.11	645 617	3.57 4.56	35 40	0.24 0.77	208 156
		3/12/08 9/8/08 10/8/09	17.1 13.6 12.3	7.17 7.14 7.22	642 626 617	3.63 2.70 4.43	- 90 95	0.14 0.00 0.00	102 230 221
		9/20/10	15.2	7.12	616	3.73	_	0.05	166
SB09	32-42	8/26/04 9/11/05 10/11/05	30.9 14.6 13.9	7.09 6.71 6.85	910 877 910	0.26 0.13	75 225	0.00 0.00 	185
		3/17/06 9/25/06	11.7 14.2	7.03 7.00	969 976	1.53 0.29	99 70	0.00 0.38	206 86
		3/28/07 9/26/07 3/20/08	14.3 15.2 10.1	6.32 6.77 6.94	957 969 1000	0.89 1.53 1.57	40 45	0.09 0.12	236 199 221
		9/10/08	18.4	6.87	977	0.56	 160	_ 0.11	109

^a No measurement obtained.

^b Data are for samples collected prior to implementation of the IM ISCR pilot test in November 2007. More recent data are in Table 3.5.

TABLE 3.4 Analytical results from the AGEM Laboratory for volatile organic compounds in groundwater samples collected from the IM pilot test monitoring points at Centralia, September 2008 to September 2010.

				Concentration (µg/L)				
Well	Screen Interval (ft BGL)	Sample	Sample Date	Carbon Tetrachloride	Chloroform	Methylene Chloride		
MW02 ^a	49.5-59.5	CNMW02-W-26674	9/8/08	18	57	11		
		CNMW02-W-27140	4/22/09	ND ^b	ND	1.8		
		CNMW02-W-27150	10/8/09	ND	ND	ND		
		CNMW02-W-27179	4/5/10	ND	ND	ND		
		CNMW02-W-27187	9/20/10	1.7	ND	ND		
PMP1	50-60	CNPMP1-W-26689	9/9/08	136	30	ND		
		CNPMP1-W-27141	4/22/09	102	21	ND		
		CNPMP1-W-27165	10/7/09	167	20	ND		
		CNPMP1-W-27180	4/5/10	91	15	ND		
		CNPMP1-W-27202	9/21/10	103	11	ND		
PMP2	50-60	CNPMP2-W-26690	9/9/08	1854	318	5.6		
		CNPMP2-W-27142	4/22/09	1398	299	_c		
		CNPMP2-W-27166	10/7/09	1384	272	6.6		
		CNPMP2-W-27181	4/5/10	991	182	5.1		
		CNPMP2-W-27203	9/21/10	117	55	2.3		
PMP3	50-60	CNPMP3-W-26691	9/9/08	21	57	6.2		
		CNPMP3-W-27143	4/22/09	3.2	5.8	ND		
		CNPMP3-W-27167	10/7/09	0.5 J ^d	3.9	ND		
		CNPMP3-W-27182	4/5/10	ND	ND	ND		
		CNPMP3-W-27204	9/21/10	ND	ND	ND		
PMP4	48.75-58.75	CNPMP4-W-26692	9/9/08	49	4.2	ND		
		CNPMP4-W-27168	10/6/09	39	2.9	ND		
		CNPMP4-W-27205	9/21/10	28	1.8	ND		
PMP5	50-60	CNPMP5-W-26693	9/10/08	418	46	1.6		
		CNPMP5-W-27169	10/8/09	728	43	1.2		
		CNPMP5-W-27206	9/20/10	779	35	0.9 J		
PMP6	50-60	CNPMP6-W-26694	9/8/08	110	7.8	ND		
		CNPMP6-W-27170	10/6/09	199	12	ND		
		CNPMP6-W-27207	9/21/10	143	9.6	ND		
PMP7	50-60	CNPMP7-W-26695	9/9/08	119	13	ND		
		CNPMP7-W-27171	10/6/09	84	23	1.8		
		CNPMP7-W-27208	9/21/10	98	37	4.0		

TABLE 3.4 (Cont.)

				Co	ncentration (µg/	_)
Well	Screen Interval (ft BGL)	Sample	Sample Date	Carbon Tetrachloride	Chloroform	Methylene Chloride
PMP8	50-60	CNPMP8-W-26696 CNPMP8-W-27144 CNPMP8-W-27172 CNPMP8-W-27183 CNPMP8-W-27209	9/9/08 4/22/09 10/7/09 4/5/10 9/21/10	72 3.2 16 0.4 J 0.7 J	125 5.6 21 0.7 J ND	3.4 1.9 1.8 ND ND
PMP9	50-60	CNPMP9-W-26697 CNPMP9-W-27173 CNPMP9-W-27210	9/9/08 10/7/09 9/21/10	7.6 29 24	0.4 J 0.5 J 0.2 J	ND ND ND

^a Data are for samples collected after implementation of the IM ISCR pilot test in November 2007. Earlier data are in Table 3.2.

 $^{b}\,$ ND, not detected at an instrument detection limit of 0.1 $\mu g/L.$

^c No analysis.

^d Qualifier J indicates an estimated concentration below the method quantitation limit of 1.0 μ g/L.

TABLE 3.5	Field measurements for	groundwater samples	s collected from th	e IM pilot test	monitoring points
at Centralia	, September 2008 to Sep	otember 2010.		-	

						Concentration (mg/L)			
Well	Screen Interval (ft BGL)	Sample Date	Temperature (°C)	pН	Conductivity (µS/cm)	Dissolved Oxygen	Carbon Dioxide	lron(II)	ORP (mV)
MW02 ^ª	49.5-59.5	9/8/08 4/22/09 10/8/09 4/5/10 9/20/10	13.1 14.8 12.7 15.0 15.7	6.12 6.71 6.98 8.79 6.98	6821 2943 1829 1675 1608	0.40 0.60 0.44 0.08 0.01	50 110 50 115 -	3.30 ^b 2.70 3.06 2.36 3.30 ^b	-74 -131 -138 -72 -139
PMP1	50-60	9/9/08 4/22/09 10/7/09 4/5/10 9/21/10	14.4 15.1 13.8 15.0 15.8	5.54 6.97 7.30 7.13 6.83	700 667 623 545 617	1.37 3.62 0.56 0.24 0.53	115 115 110 110 -	0.23 0.60 0.33 0.00 0.67	40 -79 -34 53 34
PMP2	50-60	9/9/08 4/22/09 10/7/09 4/5/10 9/21/10	14.4 15.0 13.9 13.6 15.8	7.09 6.91 7.65 7.05 6.82	997 829 775 667 747	0.05 3.57 0.19 0.22 0.21	180 150 160 140 -	1.68 1.36 1.53 1.87 3.06	-41 -101 -89 -93 -90
PMP3	50-60	9/9/08 4/22/09 10/7/09 4/5/10 9/21/10	14.5 14.3 14.0 13.3 16.1	6.98 7.13 8.06 7.59 7.28	1301 506 472 433 492	0.03 2.64 0.17 0.16 2.02	150 130 140 140 -	3.30 ^b 2.51 0.37 0.24 1.18	-150 -114 -129 -175 -138
PMP4	48.75-58.75	9/9/08 10/6/09 9/21/10	14.3 13.2 15.5	4.97 6.46 7.15	738 705 747	4.87 2.20 5.66	100 110 —	0.49 0.08 0.25	134 43 36
PMP5	50-60	9/10/08 10/8/09 9/20/10	16.9 10.7 20.0	7.20 7.10 7.05	875 839 904	2.51 3.18 3.35	105 100 —	0.18 0.00 0.12	117 43 92
PMP6	50-60	9/8/08 10/6/09 9/21/10	13.2 13.5 15.5	6.87 6.80 7.22	787 692 777	3.32 2.30 1.90	75 80 –	0.09 0.07 0.59	173 159 91
PMP7	50-60	9/9/08 10/6/09 9/21/10	14.2 13.4 15.2	6.30 6.74 7.23	807 655 664	2.18 0.46 0.20	70 70 —	0.18 0.12 0.07	15 -13 -38
PMP8	50-60	9/9/08 4/22/09 10/7/09 4/5/10 9/21/10	14.4 15.2 13.9 13.3 14.8	7.05 7.30 7.69 7.46 7.44	1388 776 688 555 592	0.03 1.74 0.81 0.19 2.00	60 150 120 145 -	2.72 2.03 0.27 0.92 1.66	-129 -139 -155 -156 -138

TABLE 3.5 (Cont.)

	0					Concentration (mg/L)			
Well	Screen Interval (ft BGL)	Sample Date	Temperature (°C)	pН	Conductivity (µS/cm)	Dissolved Oxygen	Carbon Dioxide	lron(II)	ORP (mV)
PMP9	50-60	9/9/08 10/7/09 9/21/10	14.0 13.7 15.2	6.36 7.50 7.26	606 568 605	7.78 5.82 6.67	120 125 –	0.10 0.06 0.15	45 -1 44

^a Data are for samples collected after implementation of the IM ISCR pilot test in November 2007. Earlier results are in Table 3.3.

^b Maximum reading from instrument.

FIGURE 3.1 Hydrographs summarizing results of long-term water level monitoring at Centralia, January 2009 to September 2010.

FIGURE 3.2 Potentiometric surface at Centralia, based on water levels measured manually on April 28, 2010.

FIGURE 3.3 Carbon tetrachloride concentrations in groundwater in the sitewide monitoring wells sampled in September 2010, with the interpreted lateral extent of the contaminant at intervals during the period August 2004 to September 2010.

FIGURE 3.4 Carbon tetrachloride in groundwater samples collected during the pre-injection baseline sampling, September and November 2007.

FIGURE 3.5 Field-measured results for DO in groundwater samples collected during the pre-injection baseline sampling, September and November 2007.

FIGURE 3.6 Field-measured results for ORP in groundwater samples collected during the pre-injection baseline sampling, September and November 2007.

FIGURE 3.7 Analytical results for carbon tetrachloride in groundwater samples collected in September 2010 and October 2009 at the IM pilot test monitoring points.

FIGURE 3.8 Field-measured results for DO in groundwater samples collected in September 2010 and October 2009 at the IM pilot test monitoring points.

FIGURE 3.9 Field-measured results for ORP in groundwater samples collected in September 2010 and October 2009 at the IM pilot test monitoring points.

4 Conclusions and Recommendations

4.1 Conclusions

The findings of the sitewide monitoring in September 2010 support the following conclusions for the wider investigation area:

- Manual and automated measurements of groundwater levels continued to indicate a groundwater flow direction to the south-southwest across the former CCC/USDA facility. After six years of continuous automated measurement of groundwater levels, the pressure sensors and data loggers were removed from the site after final downloads on April 5 and September 12, 2010.
- The September 2010 carbon tetrachloride data for monitoring points in the approved sitewide network were generally consistent with previous results. Continuing longer-term trends of slightly increasing carbon tetrachloride concentrations along the western and southern margins of the contaminant distribution in groundwater suggest very slow downgradient expansion of the plume.
- The presence of trace to relatively low levels of chloroform at all but one of the sitewide monitoring points having detectable levels of carbon tetrachloride suggests that some degradation of carbon tetrachloride is occurring at these locations.
- The relatively high DO concentrations and positive ORP levels identified at the sitewide monitoring points indicate that —notwithstanding the observed chloroform concentrations anaerobic reducing conditions conducive to the reductive dechlorination of carbon tetrachloride are not widely developed sitewide.
- Although the low DO concentrations and negative ORP levels detected at monitoring well MW06 in September 2008 and October 2009 hinted at possible development of increasingly anaerobic reducing conditions at this location, such values did not persist in the current review period. The

variability in these parameters (particularly the negative ORP levels) is somewhat greater at MW06 than at other monitoring locations, for reasons that are not clear.

The findings of the IM pilot test monitoring in April and September 2010 support the following conclusions for the pilot test area:

- The results of sampling in April and September 2010 indicate that the concentrations of carbon tetrachloride identified in groundwater in the IM pilot test injection field remained low or continued to decrease. The most significant reduction (by approximately an order of magnitude) occurred at piezometer PMP2. This is the location where a large increase in carbon tetrachloride concentrations was observed after ISCR injection (Section 4.2.5 in Argonne 2009a). The concentration at this location has now returned to approximately the pre-injection value.
- The 2010 results confirmed that relatively oxygen-depleted, chemically reducing conditions favorable to the degradation of carbon tetrachloride via reductive dechlorination persist in the injection field as a result of the ISCR injections in November 2007. The apparent lifetime (3 yr to date) suggested by these observations for the ISCR material is in the range of 1-5 yr estimated by the manufacturer (Adventus references cited in Argonne 2007b).
- Decreases in DO and ORP values observed from September 2008 to October 2009 at monitoring locations immediately southwest and downgradient of the pilot test injection field suggested that the range of influence of the injected ISCR treatment technology might be slowly increasing with time, in the direction of natural groundwater flow. Data from the 2010 sampling events did not, however, confirm this trend.

4.2 Recommendations

The groundwater sampling conducted at Centralia in April and September 2010 represented the second year of monitoring performed under the interim site monitoring plan (Section 1) approved by the KDHE (2009). The results support the following recommendations:

- Analytical results continue to indicate that groundwater movement and contaminant migration are slow and predictable. These findings demonstrate that the present KDHE-approved frequency for monitoring of the groundwater at Centralia is sufficient to remain protective of human health and the environment.
- Continued monitoring in the pilot test area is appropriate, because the injected ISCR material is still active. The full effects of the treatment and the lifetime of the material under the subsurface conditions at Centralia remain to be determined.
- Continued monitoring is needed to evaluate and confirm observations made in the 3 yr of monitoring after treatment. Examples are as follows:
 - More time is needed to test the hypothesis (suggested by geochemical and contaminant concentrations observed in 2009) that the range of influence of the ISCR material is expanding slowly with time in the direction of natural groundwater flow.
 - The concentration at location PMP2, where contaminant levels rose significantly after injection, is still changing rapidly. Whether these concentrations reach a stable level and what that level might be are issues of interest.
- Manual water level measurements in conjunction with groundwater sampling will be adequate to confirm the established groundwater flow direction.
- In keeping with the approved interim monitoring program, sampling will occur in 2011 on the following schedule:

- *April 2011* Sampling at IM pilot test monitoring points PMP1-PMP3, PMP8, and MW02 (Figure 1.2) inside the injection area.
- September 2011 Sampling at sitewide monitoring points MW03-MW07, MW09, MW10, SB01, SB04, SB05, SB07R, and SB08 (Figure 1.1), as well as at IM pilot test monitoring points PMP1-PMP9 and MW02 (Figure 1.2).

5 References

Argonne, 2002, *Final Master Work Plan: Environmental Investigations at Former CCC/USDA Facilities in Kansas, 2002 Revision*, ANL/ER/TR-02/004, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, December.

Argonne, 2003, *Final Phase I Report and Phase II Work Plan: QuickSite® Investigation, Centralia, Kansas*, ANL/ER/TR-02/009, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, March.

Argonne, 2004, *Final Phase II Report: QuickSite® Investigation, Centralia, Kansas,* ANL/ER/TR-03/006, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, March.

Argonne, 2005a, *Final Report: 2004 Monitoring Well Installation and Sampling at Centralia, Kansas*, ANL/ER/TR-04/011, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, October.

Argonne, 2005b, *Final Work Plan: Groundwater Monitoring at Centralia, Kansas,* ANL/ER/TR-05/004, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, August.

Argonne, 2006, *Final Report: Groundwater Monitoring at Centralia, Kansas, in September-October 2005 and March 2006, with Expansion of the Monitoring Network in January 2006,* ANL/EVS/AGEM/TR-06-06, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, October.

Argonne, 2007a, *March 2007 Monitoring Results for Centralia, Kansas*, ANL/EVS/AGEM/TR-07-08, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, June.

Argonne, 2007b, Interim Measure Conceptual Design for Remediation at the Former CCC/USDA Grain Storage Facility at Centralia, Kansas: Pilot Test and Remedy

Implementation, ANL/EVS/AGEM/TR-07-11, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, October.

Argonne, 2008a, *September 2007 Monitoring Results for Centralia, Kansas*, ANL/EVS/AGEM/TR-08-01, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, January.

Argonne, 2008b, *March 2008 Monitoring Results for Centralia, Kansas*, ANL/EVS/AGEM/TR-08-08, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, May.

Argonne, 2009a, *Progress Report and Technical Evaluation of the ISCR Pilot Test Conducted at the Former CCC/USDA Grain Storage Facility in Centralia, Kansas*, ANL/EVS/AGEM/TR-08-18, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, January.

Argonne, 2009b, *September 2008 Monitoring Results for Centralia, Kansas,* ANL/EVS/AGEM/TR-09-01, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, February.

Argonne, 2010, *Annual Report of Groundwater Monitoring at Centralia, Kansas, in 2009*, ANL/EVS/AGEM/TR-10-07, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, October.

EPA, 1995, *Method 524.2: Measurement of Purgeable Organic Compounds in Water by Capillary Column Gas Chromatography/Mass Spectrometry, Revision 4.1*, edited by J.W. Munch, National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio.

KDHE, 2007, letter from C. Carey (Bureau of Environmental Remediation, Kansas Department of Health and Environment, Topeka, Kansas) to C. Roe (Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C.), regarding review of *Interim Measure Conceptual Design* for Centralia, Kansas, November 9.

KDHE, 2008a, letter from C. Carey (Bureau of Environmental Remediation, Kansas Department of Health and Environment, Topeka, Kansas) to C. Roe (Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C.), regarding *September 2007 Monitoring Results for Centralia, Kansas*, March 12.

KDHE, 2008b, electronic mail message from C. Carey (Bureau of Environmental Remediation, Kansas Department of Health and Environment, Topeka, Kansas) to L. LaFreniere (Argonne National Laboratory, Argonne, Illinois), regarding use of the low-flow sampling technique at Centralia, February 11.

KDHE, 2009, letter from E. Finzer (Bureau of Environmental Remediation, Kansas Department of Health and Environment, Topeka, Kansas) to C. Roe (Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C.), regarding Centralia monitoring reports for 2008 and the progress report for the ISCR pilot test, April 6.

Puls, R.W., and M.J. Barcelona, 1996, "Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures," EPA/540/S-95/504, in *Ground Water Issue*, Superfund Technology Support Center for Ground Water, National Risk Management Research Laboratory, Ada, Oklahoma, April (www.epa.gov/tio/tsp/download/lwflw2a.pdf).

Appendix A:

Sequence of Sampling Activities in 2010

Sample Date	Time	Sample	Sample Type ^a	Location	Depth (ft BGL)	Chain of Custody	Shipping Date	Sample Description
April 2010 monitoring								
4/5/10	18:32	CNPMP1-W-27180	MW	PMP1	50-60	2623	4/6/10	Depth to water = 17.25 ft. Depth of 0.5-in. well = 60 ft. Sample collected by using a Waterra pump positioned at 55 ft after
4/5/10	18:42	CNMW02-W-27179	MW	MW02	49.5-59.5	2623	4/6/10	Depth to water = 18.7 ft. Depth of 4-in. well = 59.5 ft. Sample collected by using a low-flow bladder pump positioned at 54.5 ft after purging of 8 l
4/5/10	18:50	CNQCIR-W-27184 ^b	RI	QC	_	2623	4/6/10	Rinsate of decontaminated sampling line after collection of sample CNMW02-W- 27179
4/5/10	19:10	CNPMP2-W-27181	MW	PMP2	50-60	2623	4/6/10	Depth to water = 17.16 ft. Depth of 0.5-in. well = 60 ft. Sample collected by using a Waterra pump positioned at 55 ft after purging of 5.3 L.
4/5/10	19:40	CNPMP3-W-27182	MW	PMP3	50-60	2623	4/6/10	Depth to water = 17.9 ft. Depth of 0.5-in. well = 60 ft. Sample collected by using a Waterra pump positioned at 55 ft after purging of 5.75 L.
4/5/10	20:05	CNPMP8-W-27183	MW	PMP8	50-60	2623	4/6/10	Depth to water = 16.12 ft. Depth of 0.5-in. well = 60 ft. Sample collected by using a Waterra pump positioned at 55 ft after purging of 5.3 l
4/5/10	20:30	CNQCTB-W-27185 ^b	ТВ	QC	-	2623	4/6/10	Trip blank sent to the AGEM Laboratory for organic analysis with water samples listed on chain-of-custody form (COC) 2623.
September 2	2010 mon	itoring						
9/19/10	15:06	CNMW08-W-27193	MW	MW08	38-53	2689	9/20/10	Depth to water = 17.52 ft. Depth of 2-in. well = 53 ft. Sample collected by using a low-flow bladder pump positioned at 45.5 ft after purging of 7.5 L.

TABLE A.1 Sequence of sampling activities at Centralia in 2010.

TABLE A.1 (Cont.)

Sample Date	Time	Sample	Sample Type ^a	Location	Depth (ft BGL)	Chain of Custody	Shipping Date	Sample Description		
September 2010 monitoring (cont.)										
9/19/10	15:42	CNSB09-W-27201	CPT/P	SB09	32-42	2689	9/20/10	Depth to water = 6.78 ft. Depth of 1-in. well = 42 ft. Sample collected by using a low-flow bladder pump positioned at 37 ft after purging of 2 l		
9/19/10	16:10	CNMW10-W-27195	MW	MW10	30-45	2689	9/20/10	Depth to water = 19.92 ft. Depth of 2-in. well = 45 ft. Sample collected by using a low-flow bladder pump positioned at 37.5 ft after purging of 9 L.		
9/19/10	16:51	CNMW09-W-27194	MW	MW09	25-35	2689	9/20/10	Depth to water = 2.66 ft. Depth of 2-in. well = 35 ft. Sample collected by using a low-flow bladder pump positioned at 30 ft after purging of 7 L.		
9/19/10	16:52	CNMW09DUP-W-27212b	MW	MW09	25-35	2689	9/20/10	Replicate of sample CNMW09-W-27194.		
9/19/10	17:02	CNMW03-W-27188	MW	MW03	50.5-60.5	2689	9/20/10	Depth to water = 19.42 ft. Depth of 4-in. well = 60.5 ft. Sample collected by using a low-flow bladder pump positioned at 55.5 ft after purging of 8 L.		
9/19/10	17:03	CNMW03DUP-W-27211 ^b	MW	MW03	50.5-60.5	2689	9/20/10	Replicate of sample CNMW03-W-27188.		
9/20/10	11:06	CNMW07-W-27192	MW	MW07	45-55	2689	9/20/10	Depth to water = 25.03 ft. Depth of 2-in. well = 55 ft. Sample collected by using a low-flow bladder pump positioned at 50 ft after purging of 4 L.		
9/20/10	11:44	CNMW06-W-27191	MW	MW06	46.5-56.5	2689	9/20/10	Depth to water = 34.96. ft. Depth of 4-in. well = 56.5 ft. Sample collected by using a low-flow bladder pump positioned at 51.5 ft after purging of 20 L.		
9/20/10	12:21	CNMW04-W-27189	MW	MW04	37.5-47.5	2689	9/20/10	Depth to water = 22.42 ft. Depth of 4-in. well = 47.5 ft. Sample collected by using a low-flow bladder pump positioned at 42.5 ft after purging of 13 L.		
9/20/10	12:42	CNMW02-W-27187	MW	MW02	49.5-59.5	2689	9/20/10	Depth to water = 19.72 ft. Depth of 4-in. well = 59.5 ft. Sample collected by using a low-flow bladder pump positioned at 54.5 ft after purging of 9 L.		

TABLE A.1 (Cont.)

Sample Date	Time	Sample	Sample Type ^a	Location	Depth (ft BGL)	Chain of Custody	Shipping Date	Sample Description	
September 2010 monitoring (cont.)									
9/20/10	12:42	CNQCTB-W-27216 ^b	ТВ	QC	-	2689	9/20/10	Trip blank sent to the AGEM Laboratory for organic analysis with water samples listed on COC 2689.	
9/20/10	13:24	CNMW05-W-27190	MW	MW05	34.5-44.5	2717	9/21/10	Depth to water = 10.38 ft. Depth of 4-in. well = 44.5 ft. Sample collected by using a low-flow bladder pump positioned at 39.5 ft after purging of 8 L.	
9/20/10	13:40	CNMW01-W-27186	MW	MW01	54.5-64.5	2717	9/21/10	Depth to water = 12.17 ft. Depth of 4-in. well = 64.5 ft. Sample collected by using a low-flow bladder pump positioned at 59.5 ft after purging of 9.5 L	
9/20/10	13:50	CNQCIR-W-27214 ^b	RI	QC	-	2717	9/21/10	Rinsate of decontaminated sampling line after collection of sample CNMW05-W- 27190.	
9/20/10	14:52	CNPMP5-W-27206	MW	PMP5	50-60	2717	9/21/10	Depth to water = 20.2 ft. Depth of 1-in. well = 60 ft. Sample collected by using a low-flow bladder pump positioned at 55 ft after purging of 3 L.	
9/20/10	14:55	CNSB01-W-27196	CPT/P	SB01	40-50	2717	9/21/10	Depth to water = 14.02 ft. Depth of 1-in. well = 50 ft. Sample collected by using a low-flow bladder pump positioned at 45 ft after purging of 2 L.	
9/20/10	15:46	CNSB04-W-27197	CPT/P	SB04	51-61	2717	9/21/10	Depth to water = 20.42 ft. Depth of 1-in. well = 61 ft. Sample collected by using a low-flow bladder pump positioned at 56 ft after purging of 4.1 l	
9/20/10	16:16	CNQCIR-W-27213 ^b	RI	QC	-	2689	9/20/10	Rinsate of decontaminated sampling line after collection of sample CNMW10-W- 27195.	
9/20/10	16:40	CNSB07R-W-27199	CPT/P	SB07R	45-60	2717	9/21/10	Depth to water = 17.19 ft. Depth of 2-in. well = 60 ft. Sample collected by using a low-flow bladder pump positioned at 52.5 ft after purging of 6 L.	

TABLE A.1 (Cont.)

Sample Date	Time	Sample	Sample Type ^a	Location	Depth (ft BGL)	Chain of Custody	Shipping Date	Sample Description		
September 2010 monitoring (cont.)										
9/20/10	17:30	CNSB08-W-27200	CPT/P	SB08	52-62	2717	9/21/10	Depth to water = 17.23 ft. Depth of 1-in. well = 62 ft. Sample collected by using a low-flow bladder pump positioned at		
9/21/10	10:44	CNPMP1-W-27202	MW	PMP1	50-60	2716	9/21/10	Depth to water = 18.65 ft. Depth of 0.5-in. well = 60 ft. Sample collected by using a low-flow bladder pump positioned at 55 ft after purging of 6 l		
9/21/10	11:09	CNPMP2-W-27203	MW	PMP2	50-60	2716	9/21/10	Depth to water = 18.68 ft. Depth of 0.5-in. well = 60 ft. Sample collected by using a low-flow bladder pump positioned at 55 ft after purging of 6 l		
9/21/10	11:42	CNPMP3-W-27204	MW	PMP3	50-60	2716	9/21/10	Depth to water = 19.35 ft. Depth of 0.5-in. well = 60 ft. Sample collected by using a low-flow bladder pump positioned at 55 ft after purging of 6 l		
9/21/10	12:11	CNPMP4-W-27205	MW	PMP4	48.75-58.75	2716	9/21/10	Depth to water = 16.83 ft. Depth of 0.5-in. well = 58.75 ft. Sample collected by using a low-flow bladder pump positioned at 53.75 ft after purging of 6.5 l		
9/21/10	12:32	CNPMP7-W-27208	MW	PMP7	50-60	2716	9/21/10	Depth to water = 18.84 ft. Depth of 0.5-in. well = 60 ft. Sample collected by using a low-flow bladder pump positioned at 55 ft after purging of 7 l		
9/21/10	12:47	CNPMP8-W-27209	MW	PMP8	50-60	2716	9/21/10	Depth to water = 17.91 ft. Depth of 0.5-in. well = 60 ft. Sample collected by using a low-flow bladder pump positioned at 55 ft after purging of 7 l		
9/21/10	13:11	CNPMP9-W-27210	MW	PMP9	50-60	2716	9/21/10	Depth to water = 15.30 ft. Depth of 0.5-in. well = 60 ft. Sample collected by using a low-flow bladder pump positioned at 55 ft after purging of 6.7 L.		

TABLE A.1 (Cont.)

Sample Date	Time	Sample	Sample Type ^a	Location	Depth (ft BGL)	Chain of Custody	Shipping Date	Sample Description	
September 2010 monitoring (cont.)									
9/21/10	13:42	CNSB05-W-27198	CPT/P	SB05	32-42	2716	9/21/10	Depth to water = 10.20 ft. Depth of 1-in. well = 42 ft. Sample collected by using a low-flow bladder pump positioned at 37 ft after purging of 15 L.	
9/21/10	14:16	CNPMP6-W-27207	MW	PMP6	50-60	2716	9/21/10	Depth to water = 20.00 ft. Depth of 0.5-in. well = 60 ft. Sample collected by using a low-flow bladder pump positioned at 55 ft after purging of 7 L.	
9/21/10	15:32	CNQCTB-W-27217 ^b	ТВ	QC	-	2716	9/21/10	Trip blank sent to the AGEM Laboratory for organic analysis with water samples listed on COCs 2717 and 2716	
9/21/10	15:40	CNDIH2O-W-27215 ^b	FB	QC	-	2716	9/21/10	Blank of water used for equipment decontamination.	

^a Sample types: CPT/P, piezometer; FB, field blank; MW, monitoring well; RI, rinsate; TB, trip blank.

^b Quality control sample.

Appendix B:

Quality Control Data Summary

				Con	-		
Location	Sample	Sample Date	Depth (ft BGL)	Carbon Tetrachloride	Chloroform	Methylene Chloride	Analysis Type
PMP8 PMP8	CNPMP8-W-27183 CNPMP8-W-27183DUP	4/5/10 4/5/10	50-60 50-60	0.4 J ^a 0.4 J	0.7 J 0.7 J	ND ^b ND	Primary sample Duplicate analysis
QC	CNQCIR-W-27184	4/5/10	-	ND	ND	ND	Equipment rinsate
QC	CNQCTB-W-27185	4/5/10	-	ND	ND	ND	Trip blank
MW03 MW03	CNMW03-W-27188 CNMW03DUP-W-27211	9/19/10 9/19/10	50.5-60.5 50.5-60.5	7.5 7.8	0.3 J 0.3 J	ND ND	Primary sample Replicate
MW09 MW09	CNMW09-W-27194 CNMW09DUP-W-27212	9/19/10 9/19/10	25-35 25-35	ND ND	ND ND	ND ND	Primary sample Replicate
SB07R SB07R	CNSB07R-W-27199 CNSB07R-W-27199DUP	9/20/10 9/20/10	45-60 45-60	42 41	2.5 2.4	ND ND	Primary sample Duplicate analysis
QC	CNQCIR-W-27213	9/20/10	-	ND	ND	ND	Equipment rinsate
QC	CNQCIR-W-27214	9/20/10	-	ND	ND	ND	Equipment rinsate
QC	CNQCTB-W-27216	9/20/10	-	ND	ND	ND	Trip blank
PMP4 PMP4	CNPMP4-W-27205 CNPMP4-W-27205DUP	9/21/10 9/21/10	48.75-58.75 48.75-58.75	28 29	1.8 1.7	ND ND	Primary sample Duplicate analysis
QC	CNDIH2O-W-27215	9/21/10	-	ND	ND	ND	Field blank
QC	CNQCTB-W-27217	9/21/10	-	ND	ND	ND	Trip blank

TABLE B.1 Analytical results from the AGEM Laboratory for quality control samples collected in 2010.

^a Qualifier J indicates an estimated concentration below the purge-and-trap method quantitation limit of 1.0 µg/L.

 b ND, not detected at an instrument detection limit of 0.1 $\mu\text{g/L}.$

-

TABLE B.2 Analytical results for verification groundwater samples analyzed at the AGEM Laboratrory and by TestAmerica.

				Concentration (µg/L)							
				AG	EM Laborarory						
Location	Sample	Sample Date	Depth (ft BGL)	Carbon Tetrachloride	Chloroform	Methylene Chloride	Carbon Tetrachloride	Chloroform	Methylene Chloride		
MW02 PMP2 PMP3	CNMW02-W-27179 CNPMP2-W-27181 CNPMP3-W-27182	4/5/10 4/5/10 4/5/10	49.5-59.5 50-60 50-60	ND ^a 991 ND	ND 182 ND	ND 5.1 ND	ND 670 ND	ND 130 ND	ND 4.3 ND		
MW06 MW07 MW08 SB09	CNMW06-W-27191 CNMW07-W-27192 CNMW08-W-27193 CNSB09-W-27201	9/20/10 9/20/10 9/19/10 9/19/10	46.5-56.5 45-55 38-53 32-42	ND 6.6 ND ND	ND 0.3 J ND ND	ND ND ND ND	0.15 J ^b 5.2 ND ND	ND ND ND ND	ND ND ND ND		

^a ND, not detected at an instrument detection limit of 0.1 µg/L.

^b Qualifier J indicates an estimated concentration below the method quantitation limit of 1.0 µg/L for analyses at the AGEM Laboratory or 0.5 µg/L for analyses by TestAmerica.

Appendix C:

Time Series Diagrams for Selected Parameters at IM Monitoring Points

1.5

1

0.5

01/18/08

04/11/08

07/04/08

09/26/08

12/19/08

Date

06/05/09

08/28/09

11/20/09

02/12/10

05/07/10

07/30/10

10/22/10

03/13/09

-100

-150

-200

-250

FIGURE C.2 Analytical results for VOCs, DO, and ORP in groundwater samples collected at location PMP1, January 2008 to September 2010.

FIGURE C.3 Analytical results for VOCs, DO, and ORP in groundwater samples collected at locations PSB2 and PMP2, November 2007 to September 2010.

FIGURE C.4 Analytical results for VOCs, DO, and ORP in groundwater samples collected at locations PSB3 and PMP3, November 2007 to September 2010.

FIGURE C.5 Analytical results for VOCs, DO, and ORP in groundwater samples collected at location PMP4, January 2008 to September 2010.

FIGURE C.6 Analytical results for VOCs, DO, and ORP in groundwater samples collected at locations PSB5 and PMP5, November 2007 to September 2010.

FIGURE C.7 Analytical results for VOCs, DO, and ORP in groundwater samples collected at locations PSB6 and PMP6, November 2007 to September 2010.

FIGURE C.8 Analytical results for VOCs, DO, and ORP in groundwater samples collected at locations PSB7 and PMP7, November 2007 to September 2010.

FIGURE C.9 Analytical results for VOCs, DO, and ORP in groundwater samples collected at locations PSB8 and PMP8, November 2007 to September 2010.

FIGURE C.10 Analytical results for VOCs, DO, and ORP in groundwater samples collected at locations PSB9 and PMP9, November 2007 to September 2010.

Supplement 1:

Waste Characterization and Disposal Documentation

Pace Analytical Services, Inc. 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

October 14, 2010

Mr. Travis Kamler TCW Construction Inc 141 M Street Lincoln, NE 68508

RE: Project: Kansas Waste Water Pace Project No.: 6086606

Dear Mr. Kamler:

Enclosed are the analytical results for sample(s) received by the laboratory on October 01, 2010. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Judy Sipson

Trudy Gipson

trudy.gipson@pacelabs.com Project Manager

Enclosures

cc: Mr. David Surgnier

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 1 of 19

CERTIFICATIONS

Project: Kansas Waste Water

Pace Project No.: 6086606

Kansas Certification IDs

9608 Loiret Boulevard, Lenexa, KS 66219 A2LA Certification #: 2456.01 Arkansas Certification #: 05-008-0 Illinois Certification #: 001191 Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212008A Oklahoma Certification #: 9205/9935 Texas Certification #: T104704407-08-TX Utah Certification #: 9135995665

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

SAMPLE SUMMARY

Project:Kansas Waste WaterPace Project No.:6086606

Lab ID	Sample ID	Matrix	Date Collected	Date Received
6086606001	BAPURGE-W-930101	Water	09/30/10 09:00	10/01/10 09:15
6086606002	CNPURGE-W-930102	Water	09/30/10 10:00	10/01/10 09:15
6086606003	EVPURGE-W-930103	Water	09/30/10 11:32	10/01/10 09:15
6086606004	MRPURGE-W-930104	Water	09/30/10 13:42	10/01/10 09:15

REPORT OF LABORATORY ANALYSIS

SAMPLE ANALYTE COUNT

Project: Kansas Waste Water Pace Project No.: 6086606

Lab ID	Sample ID	Method	Analysts	Analytes Reported	
6086606001	BAPURGE-W-930101	EPA 504.1	NAW	1	
		EPA 5030B/8260	HMW	70	
		EPA 300.0	RAB	1	
6086606002	CNPURGE-W-930102	EPA 504.1	NAW	1	
		EPA 5030B/8260	HMW	70	
		EPA 300.0	RAB	1	
6086606003	EVPURGE-W-930103	EPA 504.1	NAW	1	
		EPA 5030B/8260	HMW	70	
		EPA 300.0	RAB	1	
6086606004	MRPURGE-W-930104	EPA 504.1	NAW	1	
		EPA 5030B/8260	HMW	70	
		EPA 300.0	RAB	1	

REPORT OF LABORATORY ANALYSIS

Project: Kansas Waste Water

Pace Project No.: 6086606

Sample: BAPURGE-W-930101	Lab ID: 6086606001	Collected: 09/30/10	00:00	Received: 10	/01/10 09:15 N	latrix: Water	
Parameters	Results Unit	s Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
504 GCS EDB and DBCP	Analytical Method: EPA	A 504.1 Preparation Meth	nod: EF	PA 504.1			
1,2-Dibromoethane (EDB)	ND ug/L	0.029	1	10/07/10 00:00	10/07/10 21:23	106-93-4	
8260 MSV	Analytical Method: EPA	A 5030B/8260					
Acetone	293 ug/L	10.0	1		10/03/10 12:46	67-64-1	
Benzene	ND ug/L	1.0	1		10/03/10 12:46	71-43-2	
Bromobenzene	ND ug/L	1.0	1		10/03/10 12:46	108-86-1	
Bromochloromethane	ND ug/L	1.0	1		10/03/10 12:46	74-97-5	
Bromodichloromethane	ND ug/L	1.0	1		10/03/10 12:46	75-27-4	
Bromoform	ND ug/L	1.0	1		10/03/10 12:46	75-25-2	
Bromomethane	ND ug/L	1.0	1		10/03/10 12:46	74-83-9	
2-Butanone (MEK)	ND ug/L	10.0	1		10/03/10 12:46	78-93-3	
n-Butylbenzene	ND ug/L	1.0	1		10/03/10 12:46	104-51-8	
sec-Butylbenzene	ND ug/L	1.0	1		10/03/10 12:46	135-98-8	
tert-Butylbenzene	ND ug/L	1.0	1		10/03/10 12:46	98-06-6	
Carbon disulfide	ND ug/L	5.0	1		10/03/10 12:46	75-15-0	L3
Carbon tetrachloride	ND ug/L	1.0	1		10/03/10 12:46	56-23-5	
Chlorobenzene	ND ug/L	1.0	1		10/03/10 12:46	108-90-7	L3
Chloroethane	ND ug/L	1.0	1		10/03/10 12:46	75-00-3	
Chloroform	ND ug/L	1.0	1		10/03/10 12:46	67-66-3	
Chloromethane	ND ug/L	1.0	1		10/03/10 12:46	74-87-3	
2-Chlorotoluene	ND ug/L	1.0	1		10/03/10 12:46	95-49-8	
4-Chlorotoluene	ND ug/L	1.0	1		10/03/10 12:46	106-43-4	
1.2-Dibromo-3-chloropropane	ND ug/L	2.5	1		10/03/10 12:46	96-12-8	
Dibromochloromethane	ND ug/l	1.0	1		10/03/10 12:46	124-48-1	
1 2-Dibromoethane (EDB)		1.0	1		10/03/10 12:46	106-93-4	
Dibromomethane		1.0	1		10/03/10 12:46	74-95-3	
1 2-Dichlorobenzene		1.0	1		10/03/10 12:46	95-50-1	
1 3-Dichlorobenzene	ND ug/L	1.0	1		10/03/10 12:46	541-73-1	
1 4-Dichlorobenzene	ND ug/L	1.0	1		10/03/10 12:46	106-46-7	
Dichlorodifluoromethane	ND ug/L	1.0	1		10/03/10 12:40	75-71-8	
1 1-Dichloroethane	ND ug/L	1.0	1		10/03/10 12:40	75-34-3	
1.2-Dichloroethane	ND ug/L	1.0	1		10/03/10 12:40	107-06-2	
1.2 Dichloroothono (Total)		1.0	1		10/03/10 12:40	540 50 0	
1,2-Dichloroethene		1.0	1		10/03/10 12:40	75 25 <i>4</i>	
r, r-Dichloroethene		1.0	1		10/03/10 12:40	15-55-4	
trans 1.2 Dichloroothono		1.0	1		10/03/10 12:40	150-59-2	
		1.0	1		10/03/10 12.40	70.07.5	
1,2-Dichloropropane	ND ug/L	1.0	1		10/03/10 12:46	18-81-5	
1,3-Dichloropropane	ND ug/L	1.0	1		10/03/10 12:46	142-28-9	
2,2-Dichloropropane	ND ug/L	1.0	1		10/03/10 12:46	594-20-7	
1,1-Dichloropropene	ND ug/L	1.0	1		10/03/10 12:46	563-58-6	
	ND ug/L	1.0	1		10/03/10 12:46	10061-01-5	1.0
trans-1,3-Dicnioropropene	ND ug/L	1.0	1		10/03/10 12:46	10061-02-6	L3
Etnyibenzene	ND ug/L	1.0	1		10/03/10 12:46	100-41-4	
Hexachloro-1,3-butadiene	ND ug/L	1.0	1		10/03/10 12:46	87-68-3	
2-Hexanone	ND ug/L	10.0	1		10/03/10 12:46	591-78-6	
Isopropylbenzene (Cumene)	ND ug/L	1.0	1		10/03/10 12:46	98-82-8	L3
p-Isopropyltoluene	ND ug/L	1.0	1		10/03/10 12:46	99-87-6	

Date: 10/14/2010 11:06 AM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc..

Page 5 of 19

Project: Kansas Waste Water

Pace Project No.: 6086606

Sample: BAPURGE-W-930101	Lab ID: 608660600	1 Collected: 09/30/10 0	9:00 Received	d: 10/01/10 09:15 N	latrix: Water	
Parameters	ResultsUni	ts Report Limit D	F Prepar	ed Analyzed	CAS No.	Qual
8260 MSV	Analytical Method: EP	A 5030B/8260				
Methylene chloride	ND ug/L	1.0	1	10/03/10 12:46	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND ug/L	10.0	1	10/03/10 12:46	108-10-1	
Methyl-tert-butyl ether	ND ug/L	1.0	1	10/03/10 12:46	1634-04-4	
Naphthalene	ND ug/L	10.0	1	10/03/10 12:46	91-20-3	
n-Propylbenzene	ND ug/L	1.0	1	10/03/10 12:46	103-65-1	
Styrene	ND ug/L	1.0	1	10/03/10 12:46	100-42-5	
1,1,1,2-Tetrachloroethane	ND ug/L	1.0	1	10/03/10 12:46	630-20-6	
1,1,2,2-Tetrachloroethane	ND ug/L	1.0	1	10/03/10 12:46	79-34-5	
Tetrachloroethene	ND ug/L	1.0 2	1	10/03/10 12:46	127-18-4	
Toluene	ND ug/L	1.0	1	10/03/10 12:46	108-88-3	
1,2,3-Trichlorobenzene	ND ug/L	1.0	1	10/03/10 12:46	87-61-6	
1,2,4-Trichlorobenzene	ND ug/L	1.0 2	1	10/03/10 12:46	120-82-1	
1,1,1-Trichloroethane	ND ug/L	1.0 2	1	10/03/10 12:46	71-55-6	
1,1,2-Trichloroethane	ND ug/L	1.0 2	1	10/03/10 12:46	79-00-5	
Trichloroethene	ND ug/L	1.0	1	10/03/10 12:46	79-01-6	
Trichlorofluoromethane	ND ug/L	1.0	1	10/03/10 12:46	75-69-4	
1,2,3-Trichloropropane	ND ug/L	2.5	1	10/03/10 12:46	96-18-4	
1,2,4-Trimethylbenzene	ND ug/L	1.0 2	1	10/03/10 12:46	95-63-6	
1,3,5-Trimethylbenzene	ND ug/L	1.0 2	1	10/03/10 12:46	108-67-8	
Vinyl chloride	ND ug/L	1.0 2	1	10/03/10 12:46	75-01-4	
Xylene (Total)	ND ug/L	3.0	1	10/03/10 12:46	1330-20-7	
4-Bromofluorobenzene (S)	93 %	87-113 ²	1	10/03/10 12:46	460-00-4	
Dibromofluoromethane (S)	103 %	86-112 2	1	10/03/10 12:46	1868-53-7	
1,2-Dichloroethane-d4 (S)	98 %	82-119	1	10/03/10 12:46	17060-07-0	
Toluene-d8 (S)	102 %	90-110	1	10/03/10 12:46	2037-26-5	
Preservation pH	7.0	0.10	1	10/03/10 12:46		
300.0 IC Anions	Analytical Method: EP	A 300.0				
Nitrate as N	2.7 mg/L	0.10	1	10/01/10 18:59	14797-55-8	

Date: 10/14/2010 11:06 AM

REPORT OF LABORATORY ANALYSIS

Page 6 of 19

Project: Kansas Waste Water

Pace Project No.: 6086606

Sample: CNPURGE-W-930102	Lab ID: 608660600	2 Collected: 09/30/1	0 10:00	Received: 10	/01/10 09:15 N	latrix: Water	
Parameters	ResultsUni	ts Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
504 GCS EDB and DBCP	Analytical Method: EP	A 504.1 Preparation Met	nod: EF	PA 504.1			
1,2-Dibromoethane (EDB)	ND ug/L	0.029	1	10/07/10 00:00	10/07/10 21:34	106-93-4	
8260 MSV	Analytical Method: EP	A 5030B/8260					
Acetone	474 ug/L	10.0	1		10/03/10 13:01	67-64-1	
Benzene	ND ug/L	1.0	1		10/03/10 13:01	71-43-2	
Bromobenzene	ND ug/L	1.0	1		10/03/10 13:01	108-86-1	
Bromochloromethane	ND ug/L	1.0	1		10/03/10 13:01	74-97-5	
Bromodichloromethane	ND ug/L	1.0	1		10/03/10 13:01	75-27-4	
Bromoform	ND ug/L	1.0	1		10/03/10 13:01	75-25-2	
Bromomethane	ND ug/L	1.0	1		10/03/10 13:01	74-83-9	
2-Butanone (MEK)	ND ug/L	10.0	1		10/03/10 13:01	78-93-3	
n-Butylbenzene	ND ug/L	1.0	1		10/03/10 13:01	104-51-8	
sec-Butylbenzene	ND ug/L	1.0	1		10/03/10 13:01	135-98-8	
tert-Butylbenzene	ND ug/L	1.0	1		10/03/10 13:01	98-06-6	
Carbon disulfide	ND ug/L	5.0	1		10/03/10 13:01	75-15-0	L3
Carbon tetrachloride	ND ug/L	1.0	1		10/03/10 13:01	56-23-5	-
Chlorobenzene	ND ug/L	1.0	1		10/03/10 13:01	108-90-7	L3
Chloroethane	ND ug/l	1.0	1		10/03/10 13:01	75-00-3	
Chloroform	ND ug/L	1.0	1		10/03/10 13:01	67-66-3	
Chloromethane	ND ug/L	1.0	1		10/03/10 13:01	74-87-3	
2-Chlorotoluene	ND ug/L	1.0	1		10/03/10 13:01	95-49-8	
4-Chlorotoluene	ND ug/L	1.0	1		10/03/10 13:01	106-43-4	
1 2-Dibromo-3-chloropropane	ND ug/L	2.5	1		10/03/10 13:01	96-12-8	
Dibromochloromethane	ND ug/L	1.0	1		10/03/10 13:01	124-48-1	
1 2-Dibromoethane (EDB)	ND ug/L	1.0	1		10/03/10 13:01	106-93-4	
Dibromomethane	ND ug/L	1.0	1		10/03/10 13:01	74-95-3	
1 2-Dichlorobenzene	ND ug/L	1.0	1		10/03/10 13:01	95-50-1	
1.2 Dichlorobonzono		1.0	1		10/03/10 13:01	541 72 1	
1,3-Dichlorobenzene	ND ug/L	1.0	1		10/03/10 13:01	106 46 7	
Diebloredifluoremethane	ND ug/L	1.0	1		10/03/10 13:01	75 71 9	
1 1 Dichloroothana	ND ug/L	1.0	1		10/03/10 13:01	75-71-0	
1,1-Dichloroethane		1.0	1		10/03/10 13:01	107.06.0	
1,2-Dichloroethane		1.0	1		10/03/10 13:01	107-06-2	
1,2-Dichloroethene (Total)		1.0	1		10/03/10 13:01	540-59-0	
	ND ug/L	1.0	1		10/03/10 13:01	75-35-4	
cis-1,2-Dichloroethene		1.0	1		10/03/10 13:01	156-59-2	
trans-1,2-Dichloroethene	ND ug/L	1.0	1		10/03/10 13:01	156-60-5	
1,2-Dichloropropane	ND ug/L	1.0	1		10/03/10 13:01	/8-8/-5	
1,3-Dichloropropane	ND ug/L	1.0	1		10/03/10 13:01	142-28-9	
2,2-Dichloropropane	ND ug/L	1.0	1		10/03/10 13:01	594-20-7	
1,1-Dichloropropene	ND ug/L	1.0	1		10/03/10 13:01	563-58-6	
cis-1,3-Dichloropropene	ND ug/L	1.0	1		10/03/10 13:01	10061-01-5	
trans-1,3-Dichloropropene	ND ug/L	1.0	1		10/03/10 13:01	10061-02-6	L3
Ethylbenzene	ND ug/L	1.0	1		10/03/10 13:01	100-41-4	
Hexachloro-1,3-butadiene	ND ug/L	1.0	1		10/03/10 13:01	87-68-3	
2-Hexanone	ND ug/L	10.0	1		10/03/10 13:01	591-78-6	
Isopropylbenzene (Cumene)	ND ug/L	1.0	1		10/03/10 13:01	98-82-8	L3
p-Isopropyltoluene	ND ug/L	1.0	1		10/03/10 13:01	99-87-6	

Date: 10/14/2010 11:06 AM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc..

Page 7 of 19

Project: Kansas Waste Water

Pace Project No.: 6086606

Sample: CNPURGE-W-930102	Lab ID: 608660600	2 Collected: 09/30/10 10	0:00 Received:	10/01/10 09:15 N	latrix: Water	
Parameters	ResultsUni	ts Report Limit D	F Prepare	d Analyzed	CAS No.	Qual
8260 MSV	Analytical Method: EP	A 5030B/8260				
Methylene chloride	ND ug/L	1.0 1		10/03/10 13:01	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND ug/L	10.0 1		10/03/10 13:01	108-10-1	
Methyl-tert-butyl ether	ND ug/L	1.0 1		10/03/10 13:01	1634-04-4	
Naphthalene	ND ug/L	10.0 1		10/03/10 13:01	91-20-3	
n-Propylbenzene	ND ug/L	1.0 1		10/03/10 13:01	103-65-1	
Styrene	ND ug/L	1.0 1		10/03/10 13:01	100-42-5	
1,1,1,2-Tetrachloroethane	ND ug/L	1.0 1		10/03/10 13:01	630-20-6	
1,1,2,2-Tetrachloroethane	ND ug/L	1.0 1		10/03/10 13:01	79-34-5	
Tetrachloroethene	ND ug/L	1.0 1		10/03/10 13:01	127-18-4	
Toluene	ND ug/L	1.0 1		10/03/10 13:01	108-88-3	
1,2,3-Trichlorobenzene	ND ug/L	1.0 1		10/03/10 13:01	87-61-6	
1,2,4-Trichlorobenzene	ND ug/L	1.0 1		10/03/10 13:01	120-82-1	
1,1,1-Trichloroethane	ND ug/L	1.0 1		10/03/10 13:01	71-55-6	
1,1,2-Trichloroethane	ND ug/L	1.0 1		10/03/10 13:01	79-00-5	
Trichloroethene	ND ug/L	1.0 1		10/03/10 13:01	79-01-6	
Trichlorofluoromethane	ND ug/L	1.0 1		10/03/10 13:01	75-69-4	
1,2,3-Trichloropropane	ND ug/L	2.5 1		10/03/10 13:01	96-18-4	
1,2,4-Trimethylbenzene	ND ug/L	1.0 1		10/03/10 13:01	95-63-6	
1,3,5-Trimethylbenzene	ND ug/L	1.0 1		10/03/10 13:01	108-67-8	
Vinyl chloride	ND ug/L	1.0 1		10/03/10 13:01	75-01-4	
Xylene (Total)	ND ug/L	3.0 1		10/03/10 13:01	1330-20-7	
4-Bromofluorobenzene (S)	96 %	87-113 1		10/03/10 13:01	460-00-4	
Dibromofluoromethane (S)	105 %	86-112 1		10/03/10 13:01	1868-53-7	
1,2-Dichloroethane-d4 (S)	100 %	82-119 1		10/03/10 13:01	17060-07-0	
Toluene-d8 (S)	101 %	90-110 1		10/03/10 13:01	2037-26-5	
Preservation pH	7.0	0.10 1		10/03/10 13:01		
300.0 IC Anions	Analytical Method: EP	A 300.0				
Nitrate as N	1.7 mg/L	0.10 1		10/01/10 19:15	14797-55-8	

Date: 10/14/2010 11:06 AM

REPORT OF LABORATORY ANALYSIS

Page 8 of 19

Project: Kansas Waste Water

Pace Project No.: 6086606

Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual 504 GCS EDB and DBCP Analytical Method: EPA 50.1 0.029 1 10/07/10 00:00 10/07/10 21:44 108-93.4 2820 MSV Analytical Method: EPA 5000B-260 10/03/10 13:16 67-64.1 E.P.2 Benzenae ND ug/L 1.0 1 10/03/10 13:16 67-64.1 E.P.2 Benzenae ND ug/L 1.0 1 10/03/10 13:16 67-64.1 E.P.2 Benzenae ND ug/L 1.0 1 10/03/10 13:16 67-64.1 E.P.2 Benzenae ND ug/L 1.0 1 10/03/10 13:16 67-64.1 E.P.2 Benzenathormethane ND ug/L 1.0 1 10/03/10 13:16 67-64.1 E.P.2 Benzenathormethane ND ug/L 1.0 1 10/03/10 13:16 67-64.3 E.P.2 Benzenathormethane ND ug/L 1.0 1 10/03/10 13:16 67-64.3 <t< th=""><th>Sample: EVPURGE-W-930103</th><th>Lab ID: 6080</th><th>6606003</th><th>Collected: 09/30/</th><th>10 11:32</th><th>2 Received: 10</th><th>/01/10 09:15 N</th><th>latrix: Water</th><th></th></t<>	Sample: EVPURGE-W-930103	Lab ID: 6080	6606003	Collected: 09/30/	10 11:32	2 Received: 10	/01/10 09:15 N	latrix: Water	
Sub QCS EDB and DECP Analytical Method: EPA 504.1 PERP 504.1 1.2-Dibromoethane (EDB) ND ug/L 0.029 1 1007/10 00.00 1007/10 21.44 106-39.4 8260 MSV Analytical Method: EPA 5030B/8260 1003/10 13.16 67-64.1 E.P.2 Bornane ND ug/L 1.0 1 1003/10 13.16 71-43-2 E.P.2 Bromochinomethane ND ug/L 1.0 1 1003/10 13.16 74-87-5 E.P.2 Bromochinomethane ND ug/L 1.0 1 1003/10 13.16 74-87-5 E.P.2 Bromochinomethane ND ug/L 1.0 1 1003/10 13.16 75-87-4 E.P.2 Bromochinomethane ND ug/L 1.0 1 1003/10 13.16 75-87-3 E.P.2 Bromochinomethane ND ug/L 1.0 1 1003/10 13.16 78-87-3 E.P.2 Bromochinomethane ND ug/L 1.0 1 1003/10 13.16 78-45-3 L.3 Cathori Suti/Denzeme ND ug/L 1.0 1	Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
1.2 Dibromeethane (EDB) ND ug/L 0.029 1 1007/10 00:00 1007/10 21:44 1069-04 8280 MSV Analytical Method: EPA 5030B/3201 Acetone 797 ug/L 10.0 1 1003/01 03:16 67-64-1 F.P2 Binnache ND ug/L 10.0 1 1003/01 03:16 76-84-1 F.P2 Binnachformethane ND ug/L 10.0 1 1003/01 03:16 76-87-1 F.P2 Binnachfohromethane ND ug/L 10.0 1 1003/01 03:16 76-87-1 F.P3 Binnachfohromethane ND ug/L 10.0 1 1003/01 03:16 76-87-3 F.P3 Binnachfohromethane ND ug/L 10.0 1 1003/01 03:16 76-87-3 F.P3 Binnachfohromethane ND ug/L 10.0 1 1003/01 03:16 76-87-3 F.P3 Binnachfohromethane ND ug/L 10.0 1 1003/01 03:16 76-87-3 F.P3 Charbon durachfohromethane ND ug/L 10.0 1 1003/01 03:16 76-87-3 F.P3 Charbon durachfohrom ND ug/L 10.0 <td>504 GCS EDB and DBCP</td> <td>Analytical Meth</td> <td>nod: EPA 5</td> <td>04.1 Preparation Me</td> <td>thod: El</td> <td>PA 504.1</td> <td></td> <td></td> <td></td>	504 GCS EDB and DBCP	Analytical Meth	nod: EPA 5	04.1 Preparation Me	thod: El	PA 504.1			
Backense 787 ugl. 100. 1 1003/10 316 67-64. F.P.2 Bronzene ND ugl. 1.0 1 1003/10 316 74-37. F.P.2 Bronzenkoromethane ND ugl. 1.0 1 1003/10 316 74-37.5 Bronzenkoromethane ND ugl. 1.0 1 1003/10 1316 74-37.5 Bronzenkoromethane ND ugl. 1.0 1 1003/10 1316 75-25.2 Stomonchinomethane ND ugl. 1.00 1 1003/10 1316 75-85.2 Stomonchinomethane ND ugl. 1.00 1 1003/10 1316 78-83.3 Stomonchinomethane ND ugl. 1.00 1 1003/10 1316 158-85 Stomonchinomethane ND ugl. 1.00 1 1003/10 1316 78-83.3 Stomonchinomethane ND ugl. 1.00 1 1003/10 1316 76-63.3 Carbon tarakinoride ND ugl. 1.00 1 1003/10 1316 76-63.3 Chiorobenzene ND ugl. 1.0	1,2-Dibromoethane (EDB)	ND ug	/L	0.029	1	10/07/10 00:00	10/07/10 21:44	106-93-4	
Acetone 787 ug/L 10.0 1 1003/10 316 67-64-1 E,P2 Banzene ND ug/L 1.0 1 1003/10 1316 71-43-2 T Bromochizomethane ND ug/L 1.0 1 1003/10 1316 72-87-5 T Bromochizomethane ND ug/L 1.0 1 1003/10 1316 72-87-5 T Bromochizomethane ND ug/L 1.0 1 1003/10 1316 72-87-5 T Bromochizomethane ND ug/L 1.0 1 1003/10 1316 75-25-2 T Semomethane ND ug/L 1.0 1 1003/10 1316 75-87-8 T Seluyibenzene ND ug/L 1.0 1 1003/10 1316 75-87-8 T Carbon disulfie ND ug/L 1.0 1 1003/10 1316 75-07-3 T Carbon disulfie ND ug/L 1.0 1 1003/10 1316 76-87-3 T Carbon disulfie ND ug/L 1.0 1 10003/10	8260 MSV	Analytical Meth	nod: EPA 5	030B/8260					
Benzene ND ug/L 1.0 1 1003/10 13:16 71-43-2 Bromochoromethane ND ug/L 1.0 1 1003/10 13:16 71-43-2 Bromochoromethane ND ug/L 1.0 1 1003/10 13:16 73-27-4 Bromochoromethane ND ug/L 1.00 1 1003/10 13:16 75-25-2 Bromochoromethane ND ug/L 1.00 1 1003/10 13:16 75-25-2 Bromochoromethane ND ug/L 1.00 1 1003/10 13:16 75-25-2 Bromochoromethane ND ug/L 1.00 1 1003/10 13:16 75-28-3 Bromochoromethane ND ug/L 1.00 1 1003/10 13:16 75-83-3 Carbon disulfide ND ug/L 1.00 1 1003/10 13:16 75-83-3 Carbon disulfide ND ug/L 1.00 1 1003/10 13:16 75-03-3 Carbon disulfide ND ug/L 1.00 1 1003/10 13:16 75-03-3 Chiorobenzane ND ug/L 1.00 1 1003/1	Acetone	787 ug	/L	10.0	1		10/03/10 13:16	67-64-1	E,P2
Bromochoromethane ND ug/L 1.0 1 100/3/10 13:6 75-34 Bromochi/conventhane ND ug/L 1.0 1 100/3/10 13:6 75-27-4 Bromochi/conventhane ND ug/L 1.0 1 100/3/10 13:16 75-27-2 Bromochi/conventhane ND ug/L 1.0 1 100/3/10 13:16 75-25-2 2-Buranone (MEK) ND ug/L 1.0 1 100/3/10 13:16 15-88-8 2-Buranone (MEK) ND ug/L 1.0 1 100/3/10 13:16 15-88-8 1-Burybenzene ND ug/L 1.0 1 100/3/10 13:16 15-88-8 Carbon disulfide ND ug/L 1.0 1 100/3/10 13:16 15-88-8 Carbon disulfide ND ug/L 1.0 1 100/3/10 13:16 75-15-0 L3 Carbon disulfide ND ug/L 1.0 1 100/3/10 13:16 75-0-3 Chirorobarne ND ug/L 1.0 1 100/3/10 13:16 75-6-3 Chirorobarne ND ug/L 1.0 1<	Benzene	ND ug	/L	1.0	1		10/03/10 13:16	71-43-2	
Bromechikonemethane ND ug/L 1.0 1 1003/101316 75-27 Bromechikonemethane ND ug/L 1.0 1 1003/101316 75-27 Bromechikonemethane ND ug/L 1.0 1 1003/101316 75-27 Bromechikonemethane ND ug/L 1.0 1 1003/101316 75-26-2 Bromechikonemethane ND ug/L 1.0 1 1003/101316 75-26-2 Sec-Butylbenzene ND ug/L 1.0 1 1003/101316 75-8-3 Carbon disulfide ND ug/L 1.0 1 1003/101316 75-8-3 L3 Carbon terachloride ND ug/L 1.0 1 1003/101316 75-0-3 L3 Chiorobenzene ND	Bromobenzene	ND ug	/L	1.0	1		10/03/10 13:16	108-86-1	
Bromodion ND ug/L 1.0 1 100/3/10 13:16 75-27-4 Bromodorm ND ug/L 1.0 1 10/03/10 13:16 74-33-3 2-Butanone (MEK) ND ug/L 1.0 1 10/03/10 13:16 74-83-3 2-Butanone (MEK) ND ug/L 1.0 1 10/03/10 13:16 74-83-3 asc-Butybenzene ND ug/L 1.0 1 10/03/10 13:16 164-51-8 asc-Butybenzene ND ug/L 1.0 1 10/03/10 13:16 68-9-5 Carbon trancholoide ND ug/L 1.0 1 10/03/10 13:16 68-9-7 L3 Chiorobenzene ND ug/L 1.0 1 10/03/10 13:16 67-66-3 Chiorobenzene ND ug/L 1.0 1 10/03/10 13:16 67-68-3 Chiorobenzene ND ug/L 1.0 1 10/03/10 13:16 67-68-3 Chiorobenzene ND ug/L 1.0 1 10/03/10 13:16 68-12-8 Chiorobenzene ND ug/L 1.0 1 10/03/10	Bromochloromethane	ND ug	/L	1.0	1		10/03/10 13:16	74-97-5	
Bromodrom ND ug/L 1.0 1 100/3/10 13:16 74:53-2 Semomentane ND ug/L 10.0 1 100/3/10 13:16 74:83-3 2-Butanone (MEK) ND ug/L 10.0 1 100/3/10 13:16 74:83-93 n=Butylbenzene ND ug/L 1.0 1 100/3/10 13:16 135:98-8 carbon disulfide ND ug/L 1.0 1 100/3/10 13:16 75:85-3 Carbon disulfide ND ug/L 1.0 1 100/3/10 13:16 75:05-3 Carbon disulfide ND ug/L 1.0 1 100/3/10 13:16 75:65-3 Chlorothane ND ug/L 1.0 1 100/3/10 13:16 75:66-3 Chlorothane ND ug/L 1.0 1 100/3/10 13:16 74:8-3 2-Chlorothuene ND ug/L 1.0 1 100/3/10 13:16 74:8-3 2-Chlorothuene ND ug/L 1.0 1 100/3/10 13:16 64:9-4 1-Dibromothane ND ug/L 1.0 1 100/3/10 13:16	Bromodichloromethane	ND ug	/L	1.0	1		10/03/10 13:16	75-27-4	
Bromomethane ND ug/L 1.0 1 100/3/10 13:16 7.48.3-9 2-Butanone (MEK) ND ug/L 1.0 1 10/03/10 13:16 74-83-9 n-Butylbenzene ND ug/L 1.0 1 10/03/10 13:16 74-51-8 sec-Butylbenzene ND ug/L 1.0 1 10/03/10 13:16 75-15-0 L3 Carbon tetrachonide ND ug/L 1.0 1 10/03/10 13:16 56-2-5 Chlorobenzene ND ug/L 1.0 1 10/03/10 13:16 56-2-5 Chlorobenzene ND ug/L 1.0 1 10/03/10 13:16 67-66-3 Chlorobenzene ND ug/L 1.0 1 10/03/10 13:16 67-68-3 Chlorobentane ND ug/L 1.0 1 10/03/10 13:16 67-68-3 Chlorobenzene ND ug/L 1.0 1 10/03/10 13:16 68-49-4 Chlorobenzene ND ug/L 1.0 1 10/03/10 13:16 68-69-5 Dibromochinoenthane ND ug/L 1.0 1 <t< td=""><td>Bromoform</td><td>ND ug</td><td>/L</td><td>1.0</td><td>1</td><td></td><td>10/03/10 13:16</td><td>75-25-2</td><td></td></t<>	Bromoform	ND ug	/L	1.0	1		10/03/10 13:16	75-25-2	
2-Butanne (MEK) ND ug/L 10.0 1 1003/10 13:16 78-93-3 n-Butybenzene ND ug/L 1.0 1 1003/10 13:16 16-15-8 sac-Butybenzene ND ug/L 1.0 1 1003/10 13:16 155-98-8 Carbon disulfide ND ug/L 0.0 1 1003/10 13:16 75-15-0 L3 Carbon disulfide ND ug/L 0.0 1 1003/10 13:16 75-10-0 L3 Chiorobenzene ND ug/L 0.0 1 1003/10 13:16 75-00-3 Chiorobenzene Chiorobenzene ND ug/L 1.0 1 1003/10 13:16 76-47-3 1<	Bromomethane	ND ug	/L	1.0	1		10/03/10 13:16	74-83-9	
n-Butylbenzene ND ug/L 1.0 1 1003/10 13:16 134-51.8 sec-Butylbenzene ND ug/L 1.0 1 1003/10 13:16 135-98.8 tert-Butylbenzene ND ug/L 1.0 1 1003/10 13:16 75-15-0 L3 Carbon tetracholide ND ug/L 1.0 1 1003/10 13:16 75-15-0 L3 Carbon tetracholide ND ug/L 1.0 1 1003/10 13:16 75-15-0 L3 Chiorobenzene ND ug/L 1.0 1 1003/10 13:16 75-03.3 Chiorobenzene ND ug/L 1.0 1 1003/10 13:16 95-04-8 -Chiorobenzene ND ug/L 1.0 1 1003/10 13:16 95-04-8 -Dichorobenzene ND ug/L 1.0 1 1003/10 13:16 104-8-1 -L2-Dichorobenzene ND ug/L 1.0 1 1003/10 13:16 104-8-1 -L2-Dichorobenzene ND ug/L 1.0 1 1003/10 13:16 104-8-1 -L2-Dichorobenzene ND ug/L 1.0 1 1003/10 13:16 104-8-1 -L3-Dichorobenzene ND ug/L 1.0 1 1003/10 13:16 104-8-1 -L3-Dichorobenzene ND ug/L 1.0 1 1003/10 13:16 104-8-7 -Dichorodifluoromethane ND ug/L 1.0 1 1003/10 13:16 105-05-0 -L1-Dichorobenzene ND ug/L 1.0 1 1003/10 13:16 105-05-2 -L2-Dichorobenzene ND ug/L 1.0 1 1003/10 13:16 105-05-2 -L2-Dichoropenzene ND ug/L 1.0 1 1003/10 13:16 10	2-Butanone (MEK)	ND ug	/L	10.0	1		10/03/10 13:16	78-93-3	
sec-Bulybenzene ND ug/L 1.0 1 1/0/3/10 13:16 13-98-8 tert-Bulybenzene ND ug/L 5.0 1 10/03/10 13:16 75-15-0 L3 Carbon disulfide ND ug/L 1.0 1 10/03/10 13:16 57-15-0 L3 Chlorobenzene ND ug/L 1.0 1 10/03/10 13:16 57-85-3 L3 Chlorobenzene ND ug/L 1.0 1 10/03/10 13:16 75-00-3 L3 Chlorobenzene ND ug/L 1.0 1 10/03/10 13:16 67-66-3 Chlorobenzene ND ug/L 1.0 1 10/03/10 13:16 67-48-7 Chlorobenzene ND ug/L 1.0 1 10/03/10 13:16 67-48-3 Chlorobenzene ND ug/L 1.0 1 10/03/10 13:16 67-49-8 Chlorobenzene ND ug/L 1.0 1 10/03/10 13:16 67-49-8 Chlorobenzene ND ug/L 1.0 1 10/03/10 13:16 67-47-8 Chlorobenzene ND ug/L 1.0 1 10/03/10 13:16 7-49-5-3 L2.	n-Butylbenzene	ND ug	/L	1.0	1		10/03/10 13:16	104-51-8	
tert-Burybenzene ND ug/L 1.0 1 1/0/3/10 13:16 50-06-6 Carbon disulfide ND ug/L 5.0 1 1/0/3/10 13:16 56-23-5 Chlorobenzene ND ug/L 1.0 1 1/0/3/10 13:16 56-23-5 Chlorobenzene ND ug/L 1.0 1 1/0/3/10 13:16 56-23-5 Chlorobenzene ND ug/L 1.0 1 1/0/3/10 13:16 67-66-3 Chlorobentane ND ug/L 1.0 1 1/0/3/10 13:16 67-66-3 Chlorobentane ND ug/L 1.0 1 1/0/3/10 13:16 67-66-3 Chlorobentane ND ug/L 1.0 1 1/0/3/10 13:16 67-64-3 2-Chlorobluene ND ug/L 1.0 1 1/0/3/10 13:16 67-64-3 1_2-Dibromo-3-chloropropane ND ug/L 1.0 1 1/0/0/10 13:16 67-49-8 1_2-Dibromo-3-chloropropane ND ug/L 1.0 1 1/0/0/10 13:16 55-60-1 1_2-Dibrhorobenzene ND ug/L 1.0 1	sec-Butylbenzene	ND ug	/L	1.0	1		10/03/10 13:16	135-98-8	
Carbon disulfide ND ug/L 5.0 1 1003/10 13:16 75:15-0 L3 Carbon tetrachloride ND ug/L 1.0 1 1003/10 13:16 68:23-5 L3 Chlorobenzene ND ug/L 1.0 1 1003/10 13:16 68:23-5 L3 Chlorothane ND ug/L 1.0 1 1003/10 13:16 67:66:3 Chlorothane ND ug/L 1.0 1 1003/10 13:16 67:66:3 Chlorothane ND ug/L 1.0 1 1003/10 13:16 74:87:3 Chlorothuene ND ug/L 1.0 1 1003/10 13:16 74:87:3 Chlorothuene ND ug/L 1.0 1 1003/10 13:16 74:87:3 Chlorothuene ND ug/L 1.0 1 1003/10 13:16 76:47:3 Chlorothane ND ug/L 1.0 1 1003/10 13:16 76:47:3 Chlorothane ND ug/L 1.0 1 1003/10 13:16 76:47:3 Chlorothane ND ug/L 1.0 1 1003/10 13:16 76:47:3 1 1.2 1.2 1.2 1.0 </td <td>tert-Butylbenzene</td> <td>ND ug</td> <td>/L</td> <td>1.0</td> <td>1</td> <td></td> <td>10/03/10 13:16</td> <td>98-06-6</td> <td></td>	tert-Butylbenzene	ND ug	/L	1.0	1		10/03/10 13:16	98-06-6	
Carbon tetrachloride ND ug/L 1.0 1 1003/10 13:16 56-23-5 Chlorobenzene ND ug/L 1.0 1 1003/10 13:16 75-00-3 Chlorothane ND ug/L 1.0 1 1003/10 13:16 75-00-3 Chlorothane ND ug/L 1.0 1 1003/10 13:16 67-66-3 Chlorothuene ND ug/L 1.0 1 1003/10 13:16 95-49-8 4-Chlorothuene ND ug/L 1.0 1 1003/10 13:16 95-49-8 2-Chlorothuene ND ug/L 1.0 1 1003/10 13:16 95-49-8 4-Chlorothuene ND ug/L 1.0 1 1003/10 13:16 95-49-8 2-Dibromochane(EDB) ND ug/L 1.0 1 1003/10 13:16 16-49-5 Dibromothane ND ug/L 1.0 1 1003/10 13:16 16-49-7 1.2-Dichlorobenzene ND ug/L 1.0 1 1003/10 13:16 16-46-7 1.3-Dichlorobenzene ND ug/L 1.0 1 1003/10 13:16	Carbon disulfide	ND ug	/L	5.0	1		10/03/10 13:16	75-15-0	L3
Chlorobenzene ND ug/L 1.0 1 10/03/10 13:16 10:8-90-7 L3 Chlorobenhane ND ug/L 1.0 1 10/03/10 13:16 75-00-3 Image the second	Carbon tetrachloride	ND ug	/L	1.0	1		10/03/10 13:16	56-23-5	
Chlorosthane ND ug/L 1.0 1 10/03/10 13:16 75-00-3 Chlorosthane ND ug/L 1.0 1 10/03/10 13:16 67-66-3 Chlorosthane ND ug/L 1.0 1 10/03/10 13:16 74-87-3 2-Chlorosthane ND ug/L 1.0 1 10/03/10 13:16 96-12-8 2-Chlorosthane ND ug/L 1.0 1 10/03/10 13:16 96-12-8 1.2-Dibromo-3-chloropropane ND ug/L 1.0 1 10/03/10 13:16 96-12-8 Dibromosthane (EDB) ND ug/L 1.0 1 10/03/10 13:16 96-12-8 1.2-Dichorobenzene ND ug/L 1.0 1 10/03/10 13:16 76-95-3 1.2-Dichorobenzene ND ug/L 1.0 1 10/03/10 13:16 75-76-3 1.4-Dichorobenzene ND ug/L 1.0 1 10/03/10 13:16 75-71-8 1.1-Dichoroethane ND ug/L 1.0 1 10/03/10 13:16 75-71-8 1.2-Dichoroethane ND ug/L 1.0 1	Chlorobenzene	ND ug	/L	1.0	1		10/03/10 13:16	108-90-7	L3
Chloroform ND ug/L 1.0 1 10/03/10 13:16 67-66-3 Chloromethane ND ug/L 1.0 1 10/03/10 13:16 57-87-3 2-Chlorotoluene ND ug/L 1.0 1 10/03/10 13:16 57-48-8 4-Chlorotoluene ND ug/L 2.5 1 10/03/10 13:16 57-48-8 1,2-Dibromo-3-chloropropane ND ug/L 1.0 1 10/03/10 13:16 57-48-8 1,2-Dibromo-sthane (EDB) ND ug/L 1.0 1 10/03/10 13:16 57-48-3 1,2-Dichorobenzene ND ug/L 1.0 1 10/03/10 13:16 55-50-1 1,3-Dichlorobenzene ND ug/L 1.0 1 10/03/10 13:16 55-50-1 1,4-Dichlorobenzene ND ug/L 1.0 1 10/03/10 13:16 55-50-1 1,1-Dichloroethane ND ug/L 1.0 1 10/03/10 13:16 55-50-1 1,1-Dichloroethane ND ug/L 1.0 1 10/03/10 13:16 55-43-3 1,2-Dichloroethane ND ug/L 1.0	Chloroethane	ND ug	/L	1.0	1		10/03/10 13:16	75-00-3	
Chloromethane ND ug/L 1.0 1 10/03/10 13:16 74-87-3 2-Chlorotoluene ND ug/L 1.0 1 10/03/10 13:16 95-49-8 4-Chlorotoluene ND ug/L 1.0 1 10/03/10 13:16 16-63-4 1,2-Dibromo-3-chloropropane ND ug/L 1.0 1 10/03/10 13:16 124-48-1 1,2-Dibromoethane (EDB) ND ug/L 1.0 1 10/03/10 13:16 74-85-3 1,2-Dichorobenzene ND ug/L 1.0 1 10/03/10 13:16 74-85-3 1,2-Dichorobenzene ND ug/L 1.0 1 10/03/10 13:16 74-85-3 1,2-Dichorobenzene ND ug/L 1.0 1 10/03/10 13:16 74-85-3 1,4-Dichorobenzene ND ug/L 1.0 1 10/03/10 13:16 75-73-1 1,4-Dichorobenzene ND ug/L 1.0 1 10/03/10 13:16 75-74-8 1,1-Dichoroethane ND ug/L 1.0 1 10/03/10 13:16 76-85-9-2 1,2-Dichloroethane ND ug/L 1.0	Chloroform	ND ug	/L	1.0	1		10/03/10 13:16	67-66-3	
2-Chlorotoluene ND ug/L 1.0 1 10/03/10 13:16 95-49-8 4-Chlorotoluene ND ug/L 1.0 1 10/03/10 13:16 96-43-4 1.2-Dibromo-3-chloropropane ND ug/L 2.5 1 10/03/10 13:16 96-12-8 Dibromochloromethane ND ug/L 1.0 1 10/03/10 13:16 124-48-1 1.2-Dibromoethane (EDB) ND ug/L 1.0 1 10/03/10 13:16 74-95-3 1.2-Dichlorobenzene ND ug/L 1.0 1 10/03/10 13:16 75-95-1 1.3-Dichlorobenzene ND ug/L 1.0 1 10/03/10 13:16 75-14- 1.4-Dichlorobenzene ND ug/L 1.0 1 10/03/10 13:16 75-71-8 1.1-Dichloroethane ND ug/L 1.0 1 10/03/10 13:16 75-71-8 1.2-Dichloroethane ND ug/L 1.0 1 10/03/10 13:16 75-34-3 1.2-Dichloroethene (Total) ND ug/L 1.0 1 10/03/10 13:16 75-35-4 1.2-Dichloroethene ND ug/L	Chloromethane	ND ug	/L	1.0	1		10/03/10 13:16	74-87-3	
4-Chlorotoluene ND ug/L 1.0 1 10/03/10 13:16 106-43-4 1,2-Dibromo-3-chloropropane ND ug/L 2.5 1 10/03/10 13:16 12-48 Dibromochloromethane ND ug/L 1.0 1 10/03/10 13:16 124-48-1 1,2-Dibromoethane (EDB) ND ug/L 1.0 1 10/03/10 13:16 166-93-4 1,2-Dibromoethane ND ug/L 1.0 1 10/03/10 13:16 749-5-3 1,2-Dibromoethane ND ug/L 1.0 1 10/03/10 13:16 541-73-1 1,3-Dichlorobenzene ND ug/L 1.0 1 10/03/10 13:16 547-73-1 1,4-Dichlorobenzene ND ug/L 1.0 1 10/03/10 13:16 75-71-8 1,1-Dichloroethane ND ug/L 1.0 1 10/03/10 13:16 75-34-3 1,2-Dichloroethane ND ug/L 1.0 1 10/03/10 13:16 75-34-3 1,2-Dichloroethene ND ug/L 1.0 1 10/03/10 13:16 75-34-3 1,2-Dichloroethene ND ug/L <td< td=""><td>2-Chlorotoluene</td><td>ND ug</td><td>/L</td><td>1.0</td><td>1</td><td></td><td>10/03/10 13:16</td><td>95-49-8</td><td></td></td<>	2-Chlorotoluene	ND ug	/L	1.0	1		10/03/10 13:16	95-49-8	
1,2-Dibromo-3-chloropropane ND ug/L 2.5 1 10/03/10 13:16 96-12-8 Dibromochloromethane ND ug/L 1.0 1 10/03/10 13:16 124-8-1 1,2-Dibromoethane (EDB) ND ug/L 1.0 1 10/03/10 13:16 74-95-3 1,2-Dichlorobenzene ND ug/L 1.0 1 10/03/10 13:16 541-73-1 1,3-Dichlorobenzene ND ug/L 1.0 1 10/03/10 13:16 541-73-1 1,4-Dichlorobenzene ND ug/L 1.0 1 10/03/10 13:16 541-73-1 1,4-Dichlorobenzene ND ug/L 1.0 1 10/03/10 13:16 75-74-8 1,1-Dichloroethane ND ug/L 1.0 1 10/03/10 13:16 75-34-3 1,2-Dichloroethane ND ug/L 1.0 1 10/03/10 13:16 75-34-3 1,2-Dichloroethene (Total) ND ug/L 1.0 1 10/03/10 13:16 75-34-3 1,2-Dichloroethene ND ug/L 1.0 1 10/03/10 13:16 75-34-3 1,2-Dichloroethene ND ug/L 1.0 1 10/03/10 13:16 75-34-3 1,2-	4-Chlorotoluene	ND ug	/L	1.0	1		10/03/10 13:16	106-43-4	
Dibromochloromethane ND ug/L 1.0 1 10/03/10 13:16 124-48-1 1,2-Dibromoethane (EDB) ND ug/L 1.0 1 10/03/10 13:16 106-93-4 Dibromomethane ND ug/L 1.0 1 10/03/10 13:16 74-95-3 1,2-Dichlorobenzene ND ug/L 1.0 1 10/03/10 13:16 55-0-1 1,3-Dichlorobenzene ND ug/L 1.0 1 10/03/10 13:16 56-1 1,4-Dichlorobenzene ND ug/L 1.0 1 10/03/10 13:16 75-71-8 1,1-Dichloroethane ND ug/L 1.0 1 10/03/10 13:16 75-71-8 1,2-Dichloroethane ND ug/L 1.0 1 10/03/10 13:16 75-73-8 1,2-Dichloroethane ND ug/L 1.0 1 10/03/10 13:16 75-73-8 1,2-Dichloroethene ND ug/L 1.0 1 10/03/10 13:16 75-73-8 1,2-Dichloroethene ND ug/L 1.0 1 10/03/10 13:16 75-73-4 1,2-Dichloroethene ND ug/L 1.0	1,2-Dibromo-3-chloropropane	ND ug	/L	2.5	1		10/03/10 13:16	96-12-8	
1,2-Dibromoethane (EDB) ND ug/L 1.0 1 10/03/10 13:16 106-93-4 Dibromomethane ND ug/L 1.0 1 10/03/10 13:16 74-95-3 1,2-Dichlorobenzene ND ug/L 1.0 1 10/03/10 13:16 95-50-1 1,3-Dichlorobenzene ND ug/L 1.0 1 10/03/10 13:16 541-73-1 1,4-Dichlorobenzene ND ug/L 1.0 1 10/03/10 13:16 75-71-8 Dichlorodifluoromethane ND ug/L 1.0 1 10/03/10 13:16 75-71-8 1,1-Dichloroethane ND ug/L 1.0 1 10/03/10 13:16 75-73-3 1,2-Dichloroethane ND ug/L 1.0 1 10/03/10 13:16 75-73-3 1,2-Dichloroethane ND ug/L 1.0 1 10/03/10 13:16 75-53-3 1,2-Dichloroethene (Total) ND ug/L 1.0 1 10/03/10 13:16 75-35-4 1,2-Dichloroethene ND ug/L 1.0 1 10/03/10 13:16 75-55-4 1,2-Dichloroethene ND ug/L 1.0 1 10/03/10 13:16 75-55-4 1,2-Dichloroethe	Dibromochloromethane	ND ug	/L	1.0	1		10/03/10 13:16	124-48-1	
Dibromomethane ND ug/L 1.0 1 10/03/10 13:16 74-95-3 1,2-Dichlorobenzene ND ug/L 1.0 1 10/03/10 13:16 95-50-1 1,3-Dichlorobenzene ND ug/L 1.0 1 10/03/10 13:16 541-73-1 1,4-Dichlorobenzene ND ug/L 1.0 1 10/03/10 13:16 541-73-1 1,4-Dichlorobenzene ND ug/L 1.0 1 10/03/10 13:16 166-46-7 Dichloroethane ND ug/L 1.0 1 10/03/10 13:16 75-71-8 1,1-Dichloroethane ND ug/L 1.0 1 10/03/10 13:16 75-34-3 1,2-Dichloroethane (Total) ND ug/L 1.0 1 10/03/10 13:16 75-35-4 cis-1,2-Dichloroethene (Total) ND ug/L 1.0 1 10/03/10 13:16 75-35-4 1,2-Dichloroethene ND ug/L 1.0 1 10/03/10 13:16 156-60-5 1,2-Dichloroethene ND ug/L 1.0 1 10/03/10 13:16 156-60-5 1,3-Dichloropropane ND ug/L	1,2-Dibromoethane (EDB)	ND ug	/L	1.0	1		10/03/10 13:16	106-93-4	
1,2-Dichlorobenzene ND ug/L 1.0 1 10/03/10 13:16 95-50-1 1,3-Dichlorobenzene ND ug/L 1.0 1 10/03/10 13:16 541-73-1 1,4-Dichlorobenzene ND ug/L 1.0 1 10/03/10 13:16 541-73-1 Dichlorodifluoromethane ND ug/L 1.0 1 10/03/10 13:16 75-71-8 1,1-Dichloroethane ND ug/L 1.0 1 10/03/10 13:16 75-34-3 1,2-Dichloroethane ND ug/L 1.0 1 10/03/10 13:16 75-34-3 1,2-Dichloroethene (Total) ND ug/L 1.0 1 10/03/10 13:16 75-35-4 1,1-Dichloroethene ND ug/L 1.0 1 10/03/10 13:16 75-35-4 cis-1,2-Dichloroethene ND ug/L 1.0 1 10/03/10 13:16 75-35-4 icas-1,2-Dichloroethene ND ug/L 1.0 1 10/03/10 13:16 75-35-4 1,2-Dichloroptopane ND ug/L 1.0 1 10/03/10 13:16 78-87-5 1,3-Dichloropropane ND ug/L 1.0 1 10/03/10 13:16 594-20-7 1,1-D	Dibromomethane	ND ug	/L	1.0	1		10/03/10 13:16	74-95-3	
1,3-Dichlorobenzene ND ug/L 1.0 1 10/03/10 13:16 541-73-1 1,4-Dichlorobenzene ND ug/L 1.0 1 10/03/10 13:16 75-71-8 Dichlorodifluoromethane ND ug/L 1.0 1 10/03/10 13:16 75-71-8 1,1-Dichloroethane ND ug/L 1.0 1 10/03/10 13:16 75-34-3 1,2-Dichloroethane ND ug/L 1.0 1 10/03/10 13:16 75-34-3 1,2-Dichloroethane (Total) ND ug/L 1.0 1 10/03/10 13:16 75-35-4 1,1-Dichloroethene (Total) ND ug/L 1.0 1 10/03/10 13:16 75-35-4 1,2-Dichloroethene (Total) ND ug/L 1.0 1 10/03/10 13:16 75-35-4 1,2-Dichloroethene ND ug/L 1.0 1 10/03/10 13:16 78-87-5 1,3-Dichloroptopane ND ug/L 1.0 1 10/03/10 13:16 78-87-5 1,3-Dichloroptopane ND ug/L 1.0 1 10/03/10 13:16 542-07-7 1,3-Dichloroptopene ND ug/L 1.0 1 10/03/10 13:16 542-07-7 <t< td=""><td>1,2-Dichlorobenzene</td><td>ND ug</td><td>/L</td><td>1.0</td><td>1</td><td></td><td>10/03/10 13:16</td><td>95-50-1</td><td></td></t<>	1,2-Dichlorobenzene	ND ug	/L	1.0	1		10/03/10 13:16	95-50-1	
1,4-Dichlorobenzene ND ug/L 1.0 1 10/03/10 13:16 106-46-7 Dichlorodifluoromethane ND ug/L 1.0 1 10/03/10 13:16 75-71-8 1,1-Dichloroethane ND ug/L 1.0 1 10/03/10 13:16 75-34-3 1,2-Dichloroethane ND ug/L 1.0 1 10/03/10 13:16 75-34-3 1,2-Dichloroethane ND ug/L 1.0 1 10/03/10 13:16 75-35-4 1,1-Dichloroethene ND ug/L 1.0 1 10/03/10 13:16 75-35-4 cis-1,2-Dichloroethene ND ug/L 1.0 1 10/03/10 13:16 156-59-2 trans-1,2-Dichloroethene ND ug/L 1.0 1 10/03/10 13:16 78-87-5 1,2-Dichloroptopane ND ug/L 1.0 1 10/03/10 13:16 78-87-5 1,2-Dichloroptopane ND ug/L 1.0 1 10/03/10 13:16 78-87-5 1,3-Dichloroptopane ND ug/L 1.0 1 10/03/10 13:16 78-87-5 1,3-Dichloroptopene ND ug/L 1.0 1 10/03/10 13:16 594-20-7 1,3-Dichloro	1,3-Dichlorobenzene	ND ug	/L	1.0	1		10/03/10 13:16	541-73-1	
Dichlorodifluoromethane ND ug/L 1.0 1 10/03/10 13:16 75-71-8 1,1-Dichloroethane ND ug/L 1.0 1 10/03/10 13:16 75-34-3 1,2-Dichloroethane ND ug/L 1.0 1 10/03/10 13:16 75-34-3 1,2-Dichloroethane ND ug/L 1.0 1 10/03/10 13:16 540-59-0 1,1-Dichloroethene (Total) ND ug/L 1.0 1 10/03/10 13:16 540-59-0 1,1-Dichloroethene ND ug/L 1.0 1 10/03/10 13:16 560-55 cis-1,2-Dichloroethene ND ug/L 1.0 1 10/03/10 13:16 75-35-4 1,2-Dichloroptopane ND ug/L 1.0 1 10/03/10 13:16 76-60-5 1,3-Dichloroptopane ND ug/L 1.0 1 10/03/10 13:16 78-87-5 1,3-Dichloroptopane ND ug/L 1.0 1 10/03/10 13:16 54-20-7 1,1-Dichloroptopene ND ug/L<	1,4-Dichlorobenzene	ND ug	/L	1.0	1		10/03/10 13:16	106-46-7	
1,1-Dichloroethane ND ug/L 1.0 1 10/03/10 13:16 75-34-3 1,2-Dichloroethane ND ug/L 1.0 1 10/03/10 13:16 107-06-2 1,2-Dichloroethene (Total) ND ug/L 1.0 1 10/03/10 13:16 540-59-0 1,1-Dichloroethene ND ug/L 1.0 1 10/03/10 13:16 75-35-4 1,1-Dichloroethene ND ug/L 1.0 1 10/03/10 13:16 75-35-4 cis-1,2-Dichloroethene ND ug/L 1.0 1 10/03/10 13:16 75-35-4 trans-1,2-Dichloroethene ND ug/L 1.0 1 10/03/10 13:16 75-35-4 1,3-Dichloropropane ND ug/L 1.0 1 10/03/10 13:16 75-35-4 1,3-Dichloropropane ND ug/L 1.0 1 10/03/10 13:16 76-35-5 1,1-Dichloropropane ND ug/L 1.0 1 10/03/10 13:16 54-20-7 1,1-Dichloropropene ND ug/L 1.0 1 10/03/10 13:16 54-20-7 1,1-Dichloropropene ND ug/L 1.0 1 10/03/10 13:16 54-20-7 1,1-Dichlo	Dichlorodifluoromethane	ND ug	/L	1.0	1		10/03/10 13:16	75-71-8	
1,2-Dichloroethane ND ug/L 1.0 1 10/03/10 13:16 107-06-2 1,2-Dichloroethene (Total) ND ug/L 1.0 1 10/03/10 13:16 540-59-0 1,1-Dichloroethene ND ug/L 1.0 1 10/03/10 13:16 75-35-4 cis-1,2-Dichloroethene ND ug/L 1.0 1 10/03/10 13:16 156-59-2 trans-1,2-Dichloroethene ND ug/L 1.0 1 10/03/10 13:16 156-60-5 1,2-Dichloroptopane ND ug/L 1.0 1 10/03/10 13:16 142-28-9 1,3-Dichloroptopane ND ug/L 1.0 1 10/03/10 13:16 542-20-7 1,3-Dichloroptopane ND ug/L 1.0 1 10/03/10 13:16 542-20-7 1,1-Dichloroptopene ND ug/L 1.0 1 10/03/10 13:16 563-58-6 cis-1,3-Dichloroptopene ND ug/L 1.0 1 10/03/10 13:16 10061-01-5 trans-1,3-Dichloroptopene ND ug/L 1.0 1 10/03/10 13:16 100-41-4 Hexachloro-1,3-butadiene ND ug/L 1.0 1 10/03/10 13:16 10-41-4	1,1-Dichloroethane	ND ug	/L	1.0	1		10/03/10 13:16	75-34-3	
1,2-Dichloroethene (Total) ND ug/L 1.0 1 1/0/03/10 13:16 540-59-0 1,1-Dichloroethene ND ug/L 1.0 1 10/03/10 13:16 75-35-4 cis-1,2-Dichloroethene ND ug/L 1.0 1 10/03/10 13:16 156-59-2 trans-1,2-Dichloroethene ND ug/L 1.0 1 10/03/10 13:16 156-60-5 1,2-Dichloroptopane ND ug/L 1.0 1 10/03/10 13:16 78-87-5 1,3-Dichloroptopane ND ug/L 1.0 1 10/03/10 13:16 78-87-5 1,3-Dichloroptopane ND ug/L 1.0 1 10/03/10 13:16 594-20-7 1,1-Dichloroptopane ND ug/L 1.0 1 10/03/10 13:16 594-20-7 1,1-Dichloroptopane ND ug/L 1.0 1 10/03/10 13:16 563-58-6 cis-1,3-Dichloroptopene ND ug/L 1.0 1 10/03/10 13:16 10061-01-5 trans-1,3-Dichloroptopene ND ug/L 1.0 1 10/03/10 13:16 10061-02-6 L3 Ethylbenzene ND ug/L 1.0 1 10/03/10 13:16 100-41-4	1,2-Dichloroethane	ND ug	/L	1.0	1		10/03/10 13:16	107-06-2	
1,1-Dichloroethene ND ug/L 1.0 1 10/03/10 13:16 75-35-4 cis-1,2-Dichloroethene ND ug/L 1.0 1 10/03/10 13:16 156-59-2 trans-1,2-Dichloroethene ND ug/L 1.0 1 10/03/10 13:16 156-60-5 1,2-Dichloropropane ND ug/L 1.0 1 10/03/10 13:16 78-87-5 1,3-Dichloropropane ND ug/L 1.0 1 10/03/10 13:16 594-20-7 1,1-Dichloropropane ND ug/L 1.0 1 10/03/10 13:16 594-20-7 1,1-Dichloropropane ND ug/L 1.0 1 10/03/10 13:16 563-58-6 cis-1,3-Dichloropropene ND ug/L 1.0 1 10/03/10 13:16 563-58-6 cis-1,3-Dichloropropene ND ug/L 1.0 1 10/03/10 13:16 10061-01-5 trans-1,3-Dichloropropene ND ug/L 1.0 1 10/03/10 13:16 10061-02-6 L3 Ethylbenzene ND ug/L 1.0 1 10/03/10 13:16 87-68-3 2 2-Hexanone ND ug/L 1.0 1 10/03/10 13:16 591-78-6	1,2-Dichloroethene (Total)	ND ug	/L	1.0	1		10/03/10 13:16	540-59-0	
cis-1,2-Dichloroethene ND ug/L 1.0 1 10/03/10 13:16 156-59-2 trans-1,2-Dichloroethene ND ug/L 1.0 1 10/03/10 13:16 156-60-5 1,2-Dichloropropane ND ug/L 1.0 1 10/03/10 13:16 78-87-5 1,3-Dichloropropane ND ug/L 1.0 1 10/03/10 13:16 142-28-9 2,2-Dichloropropane ND ug/L 1.0 1 10/03/10 13:16 594-20-7 1,1-Dichloropropane ND ug/L 1.0 1 10/03/10 13:16 563-58-6 cis-1,3-Dichloropropene ND ug/L 1.0 1 10/03/10 13:16 10061-01-5 trans-1,3-Dichloropropene ND ug/L 1.0 1 10/03/10 13:16 10061-02-6 L3 Ethylbenzene ND ug/L 1.0 1 10/03/10 13:16 100-41-4 Hexachloro-1,3-butadiene ND ug/L 1.0 1 10/03/10 13:16 591-78-6 Isopropylbenzene (Cumene) ND ug/L 10.0 1 10/03/10 13:16 591-78-6 Isopropy	1,1-Dichloroethene	ND ug	/L	1.0	1		10/03/10 13:16	75-35-4	
trans-1,2-Dichloroethene ND ug/L 1.0 1 10/03/10 13:16 156-60-5 1,2-Dichloropropane ND ug/L 1.0 1 10/03/10 13:16 78-87-5 1,3-Dichloropropane ND ug/L 1.0 1 10/03/10 13:16 142-28-9 2,2-Dichloropropane ND ug/L 1.0 1 10/03/10 13:16 594-20-7 1,1-Dichloropropane ND ug/L 1.0 1 10/03/10 13:16 563-58-6 cis-1,3-Dichloropropene ND ug/L 1.0 1 10/03/10 13:16 10061-01-5 trans-1,3-Dichloropropene ND ug/L 1.0 1 10/03/10 13:16 10061-02-6 L3 Ethylbenzene ND ug/L 1.0 1 10/03/10 13:16 100-41-4 Hexachloro-1,3-butadiene ND ug/L 1.0 1 10/03/10 13:16 87-68-3 2-Hexanone ND ug/L 1.0 1 10/03/10 13:16 591-78-6 Isopropylbenzene (Curmene) ND ug/L 1.0 1 10/03/10 13:16 98-82-8 L3 p-lsopropyltoluene ND ug/L 1.0 1 10/03/10 13:16 99-87-6	cis-1,2-Dichloroethene	ND ug	/L	1.0	1		10/03/10 13:16	156-59-2	
1,2-Dichloropropane ND ug/L 1.0 1 10/03/10 13:16 78-87-5 1,3-Dichloropropane ND ug/L 1.0 1 10/03/10 13:16 142-28-9 2,2-Dichloropropane ND ug/L 1.0 1 10/03/10 13:16 594-20-7 1,1-Dichloropropane ND ug/L 1.0 1 10/03/10 13:16 563-58-6 cis-1,3-Dichloropropene ND ug/L 1.0 1 10/03/10 13:16 10061-01-5 trans-1,3-Dichloropropene ND ug/L 1.0 1 10/03/10 13:16 10061-02-6 L3 Ethylbenzene ND ug/L 1.0 1 10/03/10 13:16 100-41-4 Hexachloro-1,3-butadiene ND ug/L 1.0 1 10/03/10 13:16 87-68-3 2-Hexanone ND ug/L 1.0 1 10/03/10 13:16 591-78-6 Isopropylbenzene (Curmene) ND ug/L 1.0 1 10/03/10 13:16 98-82-8 L3 p-lsopropyltoluene ND ug/L 1.0 1 10/03/10 13:16 98-82-8 L3	trans-1,2-Dichloroethene	ND ug	/L	1.0	1		10/03/10 13:16	156-60-5	
1,3-Dichloropropane ND ug/L 1.0 1 10/03/10 13:16 142-28-9 2,2-Dichloropropane ND ug/L 1.0 1 10/03/10 13:16 594-20-7 1,1-Dichloropropene ND ug/L 1.0 1 10/03/10 13:16 563-58-6 cis-1,3-Dichloropropene ND ug/L 1.0 1 10/03/10 13:16 10061-01-5 trans-1,3-Dichloropropene ND ug/L 1.0 1 10/03/10 13:16 10061-02-6 L3 Ethylbenzene ND ug/L 1.0 1 10/03/10 13:16 100-41-4 Hexachloro-1,3-butadiene ND ug/L 1.0 1 10/03/10 13:16 87-68-3 2-Hexanone ND ug/L 1.0 1 10/03/10 13:16 591-78-6 Isopropylbenzene (Currene) ND ug/L 1.0 1 10/03/10 13:16 98-82-8 L3 p-lsopropylbenzene ND ug/L 1.0 1 10/03/10 13:16 98-82-8 L3	1,2-Dichloropropane	ND ug	/L	1.0	1		10/03/10 13:16	78-87-5	
2,2-Dichloropropane ND ug/L 1.0 1 10/03/10 13:16 594-20-7 1,1-Dichloropropene ND ug/L 1.0 1 10/03/10 13:16 563-58-6 cis-1,3-Dichloropropene ND ug/L 1.0 1 10/03/10 13:16 10061-01-5 trans-1,3-Dichloropropene ND ug/L 1.0 1 10/03/10 13:16 10061-02-6 L3 Ethylbenzene ND ug/L 1.0 1 10/03/10 13:16 100-41-4 Hexachloro-1,3-butadiene ND ug/L 1.0 1 10/03/10 13:16 87-68-3 2-Hexanone ND ug/L 10.0 1 10/03/10 13:16 591-78-6 Isopropylbenzene (Currene) ND ug/L 1.0 1 10/03/10 13:16 98-82-8 L3 p-lsopropyltoluene ND ug/L 1.0 1 10/03/10 13:16 98-82-8 L3	1,3-Dichloropropane	ND ug	/L	1.0	1		10/03/10 13:16	142-28-9	
1,1-Dichloropropene ND ug/L 1.0 1 10/03/10 13:16 563-58-6 cis-1,3-Dichloropropene ND ug/L 1.0 1 10/03/10 13:16 10061-01-5 trans-1,3-Dichloropropene ND ug/L 1.0 1 10/03/10 13:16 10061-02-6 L3 Ethylbenzene ND ug/L 1.0 1 10/03/10 13:16 100-41-4 Hexachloro-1,3-butadiene ND ug/L 1.0 1 10/03/10 13:16 87-68-3 2-Hexanone ND ug/L 10.0 1 10/03/10 13:16 591-78-6 Isopropylbenzene (Cumene) ND ug/L 1.0 1 10/03/10 13:16 98-82-8 L3 p-lsopropyltoluene ND ug/L 1.0 1 10/03/10 13:16 99-87-6	2,2-Dichloropropane	ND ug	/L	1.0	1		10/03/10 13:16	594-20-7	
cis-1,3-Dichloropropene ND ug/L 1.0 1 10/03/10 13:16 10061-01-5 trans-1,3-Dichloropropene ND ug/L 1.0 1 10/03/10 13:16 10061-02-6 L3 Ethylbenzene ND ug/L 1.0 1 10/03/10 13:16 100-41-4 Hexachloro-1,3-butadiene ND ug/L 1.0 1 10/03/10 13:16 87-68-3 2-Hexanone ND ug/L 10.0 1 10/03/10 13:16 591-78-6 Isopropylbenzene (Cumene) ND ug/L 1.0 1 10/03/10 13:16 98-82-8 L3 p-lsopropyltoluene ND ug/L 1.0 1 10/03/10 13:16 99-87-6	1.1-Dichloropropene	ND ug	/L	1.0	1		10/03/10 13:16	563-58-6	
trans-1,3-Dichloropropene ND ug/L 1.0 1 10/03/10 13:16 10061-02-6 L3 Ethylbenzene ND ug/L 1.0 1 10/03/10 13:16 100-41-4 Hexachloro-1,3-butadiene ND ug/L 1.0 1 10/03/10 13:16 87-68-3 2-Hexanone ND ug/L 10.0 1 10/03/10 13:16 591-78-6 Isopropylbenzene (Cumene) ND ug/L 1.0 1 10/03/10 13:16 98-82-8 L3 p-lsopropyltoluene ND ug/L 1.0 1 10/03/10 13:16 99-87-6	cis-1,3-Dichloropropene	ND ug	/L	1.0	1		10/03/10 13:16	10061-01-5	
Ethylbenzene ND ug/L 1.0 1 10/03/10 13:16 100-41-4 Hexachloro-1,3-butadiene ND ug/L 1.0 1 10/03/10 13:16 87-68-3 2-Hexanone ND ug/L 10.0 1 10/03/10 13:16 591-78-6 Isopropylbenzene (Cumene) ND ug/L 1.0 1 10/03/10 13:16 98-82-8 L3 p-Isopropyltoluene ND ug/L 1.0 1 10/03/10 13:16 99-87-6	trans-1,3-Dichloropropene	ND ua	/L	1.0	1		10/03/10 13:16	10061-02-6	L3
Hexachloro-1,3-butadiene ND ug/L 1.0 1 10/03/10 13:16 87-68-3 2-Hexanone ND ug/L 10.0 1 10/03/10 13:16 591-78-6 Isopropylbenzene (Cumene) ND ug/L 1.0 1 10/03/10 13:16 98-82-8 L3 p-Isopropyltoluene ND ug/L 1.0 1 10/03/10 13:16 99-87-6	Ethylbenzene	ND ua	/L	1.0	1		10/03/10 13:16	100-41-4	-
2-Hexanone ND ug/L 10.0 1 10/03/10 13:16 591-78-6 Isopropylbenzene (Cumene) ND ug/L 1.0 1 10/03/10 13:16 98-82-8 L3 p-Isopropyltoluene ND ug/L 1.0 1 10/03/10 13:16 99-87-6	Hexachloro-1.3-butadiene	ND ug	/L	1.0	1		10/03/10 13:16	87-68-3	
Isopropylbenzene (Cumene) ND ug/L 1.0 1 10/03/10 13:16 98-82-8 L3 p-lsopropyltoluene ND ug/L 1.0 1 10/03/10 13:16 99-87-6	2-Hexanone	ND ug	/L	10.0	1		10/03/10 13:16	591-78-6	
p-lsopropyltoluene ND ug/L 1.0 1 10/03/10 13:16 99-87-6	Isopropylbenzene (Cumene)	ND un	/L	1.0	1		10/03/10 13:16	98-82-8	L3
	p-Isopropyltoluene	ND uq	/L	1.0	1		10/03/10 13:16	99-87-6	

Date: 10/14/2010 11:06 AM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc..

Page 9 of 19

Project: Kansas Waste Water

Pace Project No.: 6086606

Sample: EVPURGE-W-930103	Lab ID: 608660600	3 Collected: 09/30/10 1	1:32 Received	l: 10/01/10 09:15 N	latrix: Water	
Parameters	ResultsUni	its Report Limit D	F Prepare	ed Analyzed	CAS No.	Qual
8260 MSV	Analytical Method: EP	A 5030B/8260				
Methylene chloride	ND ug/L	1.0	1	10/03/10 13:16	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND ug/L	10.0	1	10/03/10 13:16	108-10-1	
Methyl-tert-butyl ether	ND ug/L	1.0	1	10/03/10 13:16	1634-04-4	
Naphthalene	ND ug/L	10.0	1	10/03/10 13:16	91-20-3	
n-Propylbenzene	ND ug/L	1.0	1	10/03/10 13:16	103-65-1	
Styrene	ND ug/L	1.0	1	10/03/10 13:16	100-42-5	
1,1,1,2-Tetrachloroethane	ND ug/L	1.0	1	10/03/10 13:16	630-20-6	
1,1,2,2-Tetrachloroethane	ND ug/L	1.0	1	10/03/10 13:16	79-34-5	
Tetrachloroethene	ND ug/L	1.0	1	10/03/10 13:16	127-18-4	
Toluene	ND ug/L	1.0	1	10/03/10 13:16	108-88-3	
1,2,3-Trichlorobenzene	ND ug/L	1.0	1	10/03/10 13:16	87-61-6	
1,2,4-Trichlorobenzene	ND ug/L	1.0	1	10/03/10 13:16	120-82-1	
1,1,1-Trichloroethane	ND ug/L	1.0	1	10/03/10 13:16	71-55-6	
1,1,2-Trichloroethane	ND ug/L	1.0	1	10/03/10 13:16	79-00-5	
Trichloroethene	ND ug/L	1.0	1	10/03/10 13:16	79-01-6	
Trichlorofluoromethane	ND ug/L	1.0	1	10/03/10 13:16	75-69-4	
1,2,3-Trichloropropane	ND ug/L	2.5	1	10/03/10 13:16	96-18-4	
1,2,4-Trimethylbenzene	ND ug/L	1.0	1	10/03/10 13:16	95-63-6	
1,3,5-Trimethylbenzene	ND ug/L	1.0	1	10/03/10 13:16	108-67-8	
Vinyl chloride	ND ug/L	1.0	1	10/03/10 13:16	75-01-4	
Xylene (Total)	ND ug/L	3.0	1	10/03/10 13:16	1330-20-7	
4-Bromofluorobenzene (S)	96 %	87-113	1	10/03/10 13:16	460-00-4	
Dibromofluoromethane (S)	98 %	86-112	1	10/03/10 13:16	1868-53-7	
1,2-Dichloroethane-d4 (S)	92 %	82-119	1	10/03/10 13:16	17060-07-0	
Toluene-d8 (S)	100 %	90-110	1	10/03/10 13:16	2037-26-5	
Preservation pH	7.0	0.10	1	10/03/10 13:16		
300.0 IC Anions	Analytical Method: EP	A 300.0				
Nitrate as N	2.0 ma/L	0.10	1	10/01/10 19:32	14797-55-8	

Date: 10/14/2010 11:06 AM

REPORT OF LABORATORY ANALYSIS

Page 10 of 19

Project: Kansas Waste Water

Pace Project No.: 6086606

Sample: MRPURGE-W-930104	Lab ID: 608660600	4 Collected: 09/30/10	0 13:42	Received: 10	/01/10 09:15 M	latrix: Water	
Parameters	Results Uni	ts Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
504 GCS EDB and DBCP	Analytical Method: EP	A 504.1 Preparation Meth	nod: EP	A 504.1			
1,2-Dibromoethane (EDB)	ND ug/L	0.029	1	10/07/10 00:00	10/07/10 21:55	106-93-4	
8260 MSV	Analytical Method: EP	A 5030B/8260					
Acetone	351 ug/L	10.0	1		10/03/10 13:31	67-64-1	
Benzene	ND ug/L	1.0	1		10/03/10 13:31	71-43-2	
Bromobenzene	ND ug/L	1.0	1		10/03/10 13:31	108-86-1	
Bromochloromethane	ND ug/L	1.0	1		10/03/10 13:31	74-97-5	
Bromodichloromethane	ND ug/L	1.0	1		10/03/10 13:31	75-27-4	
Bromoform	ND ug/L	1.0	1		10/03/10 13:31	75-25-2	
Bromomethane	ND ug/L	1.0	1		10/03/10 13:31	74-83-9	
2-Butanone (MEK)	ND ug/L	10.0	1		10/03/10 13:31	78-93-3	
n-Butylbenzene	ND ug/L	1.0	1		10/03/10 13:31	104-51-8	
sec-Butvlbenzene	ND ug/L	1.0	1		10/03/10 13:31	135-98-8	
tert-Butylbenzene	ND ug/L	1.0	1		10/03/10 13:31	98-06-6	
Carbon disulfide	ND ug/l	5.0	1		10/03/10 13:31	75-15-0	13
Carbon tetrachloride	ND ug/L	1.0	1		10/03/10 13:31	56-23-5	
Chlorobenzene	ND ug/L	1.0	1		10/03/10 13:31	108-90-7	13
Chloroethane	ND ug/L	1.0	1		10/03/10 13:31	75-00-3	
Chloroform	ND ug/L	1.0	1		10/03/10 13:31	67-66-3	
Chloromethane	ND ug/L	1.0	1		10/03/10 13:31	74-87-3	
2-Chlorotoluene		1.0	1		10/03/10 13:31	95-49-8	
4-Chlorotoluene	ND ug/L	1.0	1		10/03/10 13:31	106-43-4	
1 2-Dibromo-3-chloropropape	ND ug/L	2.5	1		10/03/10 13:31	96-12-8	
Dibromochloromethane		2.0	1		10/03/10 13:31	124-48-1	
1.2 Dibromoothana (EDB)		1.0	1		10/03/10 13:31	124-40-1	
Dibromomothano		1.0	1		10/03/10 13:31	74 05 2	
		1.0	1		10/03/10 13:31	05 50 1	
		1.0	1		10/03/10 13.31	511 72 1	
	ND ug/L	1.0	1		10/03/10 13:31	341-73-1	
Disklare diffuences others	ND ug/L	1.0	1		10/03/10 13:31	100-40-7	
Dichlorodinuoromethane	ND ug/L	1.0	1		10/03/10 13:31	75-71-8	
	ND ug/L	1.0	1		10/03/10 13:31	75-34-3	
1,2-Dichloroethane	ND ug/L	1.0	1		10/03/10 13:31	107-06-2	
1,2-Dichloroethene (Total)	ND ug/L	1.0	1		10/03/10 13:31	540-59-0	
	ND Ug/L	1.0	1		10/03/10 13:31	75-35-4	
cis-1,2-Dichloroethene	ND ug/L	1.0	1		10/03/10 13:31	156-59-2	
trans-1,2-Dichloroethene	ND ug/L	1.0	1		10/03/10 13:31	156-60-5	
1,2-Dichloropropane	ND ug/L	1.0	1		10/03/10 13:31	78-87-5	
1,3-Dichloropropane	ND ug/L	1.0	1		10/03/10 13:31	142-28-9	
2,2-Dichloropropane	ND ug/L	1.0	1		10/03/10 13:31	594-20-7	
1,1-Dichloropropene	ND ug/L	1.0	1		10/03/10 13:31	563-58-6	
cis-1,3-Dichloropropene	ND ug/L	1.0	1		10/03/10 13:31	10061-01-5	
trans-1,3-Dichloropropene	ND ug/L	1.0	1		10/03/10 13:31	10061-02-6	L3
Ethylbenzene	ND ug/L	1.0	1		10/03/10 13:31	100-41-4	
Hexachloro-1,3-butadiene	ND ug/L	1.0	1		10/03/10 13:31	87-68-3	
2-Hexanone	ND ug/L	10.0	1		10/03/10 13:31	591-78-6	
Isopropylbenzene (Cumene)	ND ug/L	1.0	1		10/03/10 13:31	98-82-8	L3
p-Isopropyltoluene	ND ug/L	1.0	1		10/03/10 13:31	99-87-6	

Date: 10/14/2010 11:06 AM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc..

Page 11 of 19

Project: Kansas Waste Water

Pace Project No.: 6086606

Sample: MRPURGE-W-930104	Lab ID: 608660600	04 Collected: 09/30/10	13:42	Received: 10	/01/10 09:15 N	latrix: Water	
Parameters	ResultsUr	its Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical Method: EF	PA 5030B/8260					
Methylene chloride	ND ug/L	1.0	1		10/03/10 13:31	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND ug/L	10.0	1		10/03/10 13:31	108-10-1	
Methyl-tert-butyl ether	ND ug/L	1.0	1		10/03/10 13:31	1634-04-4	
Naphthalene	ND ug/L	10.0	1		10/03/10 13:31	91-20-3	
n-Propylbenzene	ND ug/L	1.0	1		10/03/10 13:31	103-65-1	
Styrene	ND ug/L	1.0	1		10/03/10 13:31	100-42-5	
1,1,1,2-Tetrachloroethane	ND ug/L	1.0	1		10/03/10 13:31	630-20-6	
1,1,2,2-Tetrachloroethane	ND ug/L	1.0	1		10/03/10 13:31	79-34-5	
Tetrachloroethene	ND ug/L	1.0	1		10/03/10 13:31	127-18-4	
Toluene	ND ug/L	1.0	1		10/03/10 13:31	108-88-3	
1,2,3-Trichlorobenzene	ND ug/L	1.0	1		10/03/10 13:31	87-61-6	
1,2,4-Trichlorobenzene	ND ug/L	1.0	1		10/03/10 13:31	120-82-1	
1,1,1-Trichloroethane	ND ug/L	1.0	1		10/03/10 13:31	71-55-6	
1,1,2-Trichloroethane	ND ug/L	1.0	1		10/03/10 13:31	79-00-5	
Trichloroethene	ND ug/L	1.0	1		10/03/10 13:31	79-01-6	
Trichlorofluoromethane	ND ug/L	1.0	1		10/03/10 13:31	75-69-4	
1,2,3-Trichloropropane	ND ug/L	2.5	1		10/03/10 13:31	96-18-4	
1,2,4-Trimethylbenzene	ND ug/L	1.0	1		10/03/10 13:31	95-63-6	
1,3,5-Trimethylbenzene	ND ug/L	1.0	1		10/03/10 13:31	108-67-8	
Vinyl chloride	ND ug/L	1.0	1		10/03/10 13:31	75-01-4	
Xylene (Total)	ND ug/L	3.0	1		10/03/10 13:31	1330-20-7	
4-Bromofluorobenzene (S)	95 %	87-113	1		10/03/10 13:31	460-00-4	
Dibromofluoromethane (S)	105 %	86-112	1		10/03/10 13:31	1868-53-7	
1,2-Dichloroethane-d4 (S)	98 %	82-119	1		10/03/10 13:31	17060-07-0	
Toluene-d8 (S)	103 %	90-110	1		10/03/10 13:31	2037-26-5	
Preservation pH	7.0	0.10	1		10/03/10 13:31		
300.0 IC Anions	Analytical Method: EF	PA 300.0					
Nitrate as N	0.99 mg/L	0.10	1		10/01/10 19:48	14797-55-8	

Date: 10/14/2010 11:06 AM

REPORT OF LABORATORY ANALYSIS

Page 12 of 19

Project:	Kansas Waste V	/ater									
Pace Project No.:	6086606										
QC Batch:	OEXT/25923		Analysi	s Method:	E	PA 504.1					
QC Batch Method:	EPA 504.1		Analysi	s Descripti	on: G	CS 504 I	EDB DBC	CP CP			
Associated Lab San	nples: 6086606	6001, 6086606002,	6086606003,	60866060	04						
METHOD BLANK:	713551		N	latrix: Wate	er						
Associated Lab San	nples: 6086606	001, 6086606002,	6086606003,	60866060	04						
			Blank	Re	eporting						
Paran	neter	Units	Result		Limit	Ana	lyzed	Qualif	iers		
1,2-Dibromoethane	(EDB)	ug/L		ND	0.030	10/07/	10 20:50				
LABORATORY CON	NTROL SAMPLE	& LCSD: 713552	2	7	13553						
			Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Paran	neter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
1,2-Dibromoethane	(EDB)	ug/L	.25	0.29	0.28	3 114	112	70-130	2	2 20	

Date: 10/14/2010 11:06 AM

REPORT OF LABORATORY ANALYSIS

Page 13 of 19

Project: Kansas Waste Water

Pace Project No.: 6086606

QC Batch:	MSV/32160	Analysis Method:	EPA 5030B/8260	
QC Batch Method:	EPA 5030B/8260	Analysis Description:	8260 MSV Water 7 day	
Associated Lab Sam	ples: 6086606001, 6086606002	, 6086606003, 6086606004		
	711201	Motrix: Motor		

METHOD	BLAINK:	711291	

Matrix: Water Associated Lab Samples: 6086606001, 6086606002, 6086606003, 6086606004

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L		1.0	10/03/10 11:44	
1,1,1-Trichloroethane	ug/L	ND	1.0	10/03/10 11:44	
1,1,2,2-Tetrachloroethane	ug/L	ND	1.0	10/03/10 11:44	
1,1,2-Trichloroethane	ug/L	ND	1.0	10/03/10 11:44	
1,1-Dichloroethane	ug/L	ND	1.0	10/03/10 11:44	
1,1-Dichloroethene	ug/L	ND	1.0	10/03/10 11:44	
1,1-Dichloropropene	ug/L	ND	1.0	10/03/10 11:44	
1,2,3-Trichlorobenzene	ug/L	ND	1.0	10/03/10 11:44	
1,2,3-Trichloropropane	ug/L	ND	2.5	10/03/10 11:44	
1,2,4-Trichlorobenzene	ug/L	ND	1.0	10/03/10 11:44	
1,2,4-Trimethylbenzene	ug/L	ND	1.0	10/03/10 11:44	
1,2-Dibromo-3-chloropropane	ug/L	ND	2.5	10/03/10 11:44	
1,2-Dibromoethane (EDB)	ug/L	ND	1.0	10/03/10 11:44	
1,2-Dichlorobenzene	ug/L	ND	1.0	10/03/10 11:44	
1,2-Dichloroethane	ug/L	ND	1.0	10/03/10 11:44	
1,2-Dichloroethene (Total)	ug/L	ND	1.0	10/03/10 11:44	
1,2-Dichloropropane	ug/L	ND	1.0	10/03/10 11:44	
1,3,5-Trimethylbenzene	ug/L	ND	1.0	10/03/10 11:44	
1,3-Dichlorobenzene	ug/L	ND	1.0	10/03/10 11:44	
1,3-Dichloropropane	ug/L	ND	1.0	10/03/10 11:44	
1,4-Dichlorobenzene	ug/L	ND	1.0	10/03/10 11:44	
2,2-Dichloropropane	ug/L	ND	1.0	10/03/10 11:44	
2-Butanone (MEK)	ug/L	ND	10.0	10/03/10 11:44	
2-Chlorotoluene	ug/L	ND	1.0	10/03/10 11:44	
2-Hexanone	ug/L	ND	10.0	10/03/10 11:44	
4-Chlorotoluene	ug/L	ND	1.0	10/03/10 11:44	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	10.0	10/03/10 11:44	
Acetone	ug/L	ND	10.0	10/03/10 11:44	
Benzene	ug/L	ND	1.0	10/03/10 11:44	
Bromobenzene	ug/L	ND	1.0	10/03/10 11:44	
Bromochloromethane	ug/L	ND	1.0	10/03/10 11:44	
Bromodichloromethane	ug/L	ND	1.0	10/03/10 11:44	
Bromoform	ug/L	ND	1.0	10/03/10 11:44	
Bromomethane	ug/L	ND	1.0	10/03/10 11:44	
Carbon disulfide	ug/L	ND	5.0	10/03/10 11:44	
Carbon tetrachloride	ug/L	ND	1.0	10/03/10 11:44	
Chlorobenzene	ug/L	ND	1.0	10/03/10 11:44	
Chloroethane	ug/L	ND	1.0	10/03/10 11:44	
Chlorotorm	ug/L	ND	1.0	10/03/10 11:44	
Chloromethane	ug/L	ND	1.0	10/03/10 11:44	
cis-1,2-Dichloroethene	ug/L	ND	1.0	10/03/10 11:44	
cis-1,3-Dichloropropene	ug/L	ND	1.0	10/03/10 11:44	
Dipromochloromethane	ug/L	ND	1.0	10/03/10 11:44	

Date: 10/14/2010 11:06 AM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc..

Project: Kansas Waste Water

Pace Project No.: 6086606									
METHOD BLANK: 711291		Matrix:	Water						
Associated Lab Samples: 60	Associated Lab Samples: 6086606001, 6086606002, 6086606003, 6086606004								
	, ,	Blank	Reporting						
Parameter	Units	Result	Limit	Analyzed	Qualifiers				
Dibromomethane		ND	1.0	10/03/10 11:44					
Dichlorodifluoromethane	ug/L	ND	1.0	10/03/10 11:44					
Ethylbenzene	ug/L	ND	1.0	10/03/10 11:44					
Hexachloro-1,3-butadiene	ug/L	ND	1.0	10/03/10 11:44					
Isopropylbenzene (Cumene)	ug/L	ND	1.0	10/03/10 11:44					
Methyl-tert-butyl ether	ug/L	ND	1.0	10/03/10 11:44					
Methylene chloride	ug/L	ND	1.0	10/03/10 11:44					
n-Butylbenzene	ug/L	ND	1.0	10/03/10 11:44					
n-Propylbenzene	ug/L	ND	1.0	10/03/10 11:44					
Naphthalene	ug/L	ND	10.0	10/03/10 11:44					
p-Isopropyltoluene	ug/L	ND	1.0	10/03/10 11:44					
sec-Butylbenzene	ug/L	ND	1.0	10/03/10 11:44					
Styrene	ug/L	ND	1.0	10/03/10 11:44					
tert-Butylbenzene	ug/L	ND	1.0	10/03/10 11:44					
Tetrachloroethene	ug/L	ND	1.0	10/03/10 11:44					
Toluene	ug/L	ND	1.0	10/03/10 11:44					
trans-1,2-Dichloroethene	ug/L	ND	1.0	10/03/10 11:44					
trans-1,3-Dichloropropene	ug/L	ND	1.0	10/03/10 11:44					
Trichloroethene	ug/L	ND	1.0	10/03/10 11:44					
Trichlorofluoromethane	ug/L	ND	1.0	10/03/10 11:44					
Vinyl chloride	ug/L	ND	1.0	10/03/10 11:44					
Xylene (Total)	ug/L	ND	3.0	10/03/10 11:44					
1,2-Dichloroethane-d4 (S)	%	93	82-119	10/03/10 11:44					
4-Bromofluorobenzene (S)	%	101	87-113	10/03/10 11:44					
Dibromofluoromethane (S)	%	102	86-112	10/03/10 11:44					
Toluene-d8 (S)	%	102	90-110	10/03/10 11:44					

LABORATORY CONTROL SAMPLE: 711292

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	20	22.0	110	79-116	
1,1,1-Trichloroethane	ug/L	20	21.2	106	77-113	
1,1,2,2-Tetrachloroethane	ug/L	20	18.9	94	68-122	
1,1,2-Trichloroethane	ug/L	20	20.9	104	82-117	
1,1-Dichloroethane	ug/L	20	20.7	103	67-122	
1,1-Dichloroethene	ug/L	20	23.7	118	70-119	
1,1-Dichloropropene	ug/L	20	21.1	106	81-115	
1,2,3-Trichlorobenzene	ug/L	20	19.9	99	66-135	
1,2,3-Trichloropropane	ug/L	20	18.4	92	76-126	
1,2,4-Trichlorobenzene	ug/L	20	19.7	99	66-126	
1,2,4-Trimethylbenzene	ug/L	20	19.8	99	78-115	
1,2-Dibromo-3-chloropropane	ug/L	20	24.1	121	58-147	
1,2-Dibromoethane (EDB)	ug/L	20	21.2	106	84-121	
1,2-Dichlorobenzene	ug/L	20	20.9	105	79-116	
1,2-Dichloroethane	ug/L	20	19.2	96	74-119	

Date: 10/14/2010 11:06 AM

REPORT OF LABORATORY ANALYSIS

Page 15 of 19

Project: Kansas Waste Water

Pace Project No.: 6086606

LABORATORY CONTROL SAMPLE: 711292

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dichloroethene (Total)	ug/L		44.0		78-117	
1,2-Dichloropropane	ug/L	20	19.6	98	77-115	
1,3,5-Trimethylbenzene	ug/L	20	19.5	98	83-117	
1,3-Dichlorobenzene	ug/L	20	21.7	108	79-112	
1,3-Dichloropropane	ug/L	20	20.7	103	82-119	
1,4-Dichlorobenzene	ug/L	20	21.8	109	78-111	
2,2-Dichloropropane	ug/L	20	22.1	110	57-130	
2-Butanone (MEK)	ug/L	100	89.9	90	41-157	
2-Chlorotoluene	ug/L	20	20.1	100	82-118	
2-Hexanone	ug/L	100	96.1	96	57-137	
4-Chlorotoluene	ug/L	20	22.5	112	83-114	
4-Methyl-2-pentanone (MIBK)	ug/L	100	92.9	93	62-118	
Acetone	ug/L	100	93.6	94	38-174	
Benzene	ug/L	20	19.5	97	79-116	
Bromobenzene	ug/L	20	18.9	95	81-115	
Bromochloromethane	ug/L	20	20.3	102	72-123	
Bromodichloromethane	ug/L	20	21.9	110	76-113	
Bromoform	ug/L	20	22.9	115	62-129	
Bromomethane	ug/L	20	23.6	118	24-168	
Carbon disulfide	ug/L	20	28.3	142	45-129 l	L3
Carbon tetrachloride	ug/L	20	19.7	99	67-124	
Chlorobenzene	ug/L	20	23.0	115	79-113 I	L3
Chloroethane	ug/L	20	21.4	107	57-153	
Chloroform	ug/L	20	21.3	107	74-116	
Chloromethane	ug/L	20	17.7	88	51-138	
cis-1,2-Dichloroethene	ug/L	20	21.0	105	77-120	
cis-1,3-Dichloropropene	ug/L	20	22.9	114	76-116	
Dibromochloromethane	ug/L	20	23.0	115	73-115	
Dibromomethane	ug/L	20	19.1	95	75-115	
Dichlorodifluoromethane	ug/L	20	13.9	69	6-181	
Ethylbenzene	ug/L	20	19.8	99	76-122	
Hexachloro-1,3-butadiene	ug/L	20	20.4	102	68-129	
Isopropylbenzene (Cumene)	ug/L	20	21.4	107	71-104 l	L3
Methyl-tert-butyl ether	ug/L	20	21.4	107	62-131	
Methylene chloride	ug/L	20	22.8	114	61-137	
n-Butylbenzene	ug/L	20	20.7	104	75-124	
n-Propylbenzene	ug/L	20	20.0	100	79-116	
Naphthalene	ug/L	20	18.3	91	60-145	
p-Isopropyltoluene	ug/L	20	19.4	97	79-114	
sec-Butylbenzene	ug/L	20	20.4	102	83-119	
Styrene	ug/L	20	21.0	105	70-125	
tert-Butylbenzene	ug/L	20	22.2	111	81-118	
Tetrachloroethene	ug/L	20	23.1	116	77-117	
Toluene	ug/L	20	20.3	101	75-120	
trans-1,2-Dichloroethene	ug/L	20	23.0	115	76-119	
trans-1,3-Dichloropropene	ug/L	20	21.3	106	64-105 l	L3
Trichloroethene	ug/L	20	19.4	97	78-118	
Trichlorofluoromethane	ug/L	20	20.9	105	73-118	

Date: 10/14/2010 11:06 AM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 16 of 19

Project: Kansas Waste Water

Pace Project No.: 6086606

LABORATORY CONTROL SAMPLE: 711292

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Vinyl chloride	ug/L	20	22.6	113	60-122	
Xylene (Total)	ug/L	60	61.1	102	74-124	
1,2-Dichloroethane-d4 (S)	%			89	82-119	
4-Bromofluorobenzene (S)	%			97	87-113	
Dibromofluoromethane (S)	%			105	86-112	
Toluene-d8 (S)	%			101	90-110	

REPORT OF LABORATORY ANALYSIS

Page 17 of 19

Project:	Kansas Was	te Water											
Pace Project No.:	6086606												
QC Batch:	WETA/141	91		Analys	sis Method	l: E	PA 300.0						
QC Batch Method:	EPA 300.0			Analys	sis Descrip	otion: 3	00.0 IC Anio	ons					
Associated Lab Sar	mples: 6086	606001, 608	6606002, 6	086606003	8, 6086606	6004							
METHOD BLANK:	710224			١	Matrix: Wa	ater							
Associated Lab Sar	nples: 6086	606001, 608	6606002, 6	086606003	8, 6086606	6004							
				Blank	k F	Reporting							
Parar	neter	I	Units	Resu	lt	Limit	Analyz	red	Qualifiers				
Nitrate as N		mg/L			ND	0.10	10/01/10	18:26					
LABORATORY CO	NTROL SAMP	LE: 71022	5										
Parar	neter	I	Units	Spike Conc.	LC Res	S ult	LCS % Rec	% Rec Limits	c Q	ualifiers			
Nitrate as N		mg/L		5	5	4.9	99	90)-110		-		
MATRIX SPIKE SA	MPLE:	71022	6										
				60866	06004	Spike	MS	N	IS	% Rec			
Parar	neter	I	Units	Res	ult	Conc.	Result	%	Rec	Limits		Qualif	iers
Nitrate as N		mg/L			0.99	5	5	5.5	91	68-	120		
MATRIX SPIKE & N	MATRIX SPIKE		: 71022 ⁻	7		710228							
				MS	MSD								
		608	86604004	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parame	ter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Nitrate as N		mg/L	0.18	5	5	5.1	5.2	99	100	68-120	1	16	

Date: 10/14/2010 11:06 AM

REPORT OF LABORATORY ANALYSIS

Page 18 of 19

QUALIFIERS

Project: Kansas Waste Water

Pace Project No.: 6086606

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

BATCH QUALIFIERS

Batch: MSV/32160

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

ANALYTE QUALIFIERS

- E Analyte concentration exceeded the calibration range. The reported result is estimated.
- L3 Analyte recovery in the laboratory control sample (LCS) exceeded QC limits. Analyte presence below reporting limits in associated samples. Results unaffected by high bias.
- P2 Re-extraction or re-analysis could not be performed due to insufficient sample amount.

REPORT OF LABORATORY ANALYSIS

Sa	mple Condition	Upon Receipt		
Pace Analytical [*] Client Name	E TCU)	Project #	s Slelesle
Courier: Fed Ex UPS USPS Clie Tracking #: 87 7 9523 1713 Pac	nt Commercial e Shipping Label Used?	□ Pace □ Other _ ? □ Yes □	No Optional Proj. Due Dat Proj. Name:	e: 10/13
Custody Seal on Cooler/Box Present: Yes	No. Seals in	ntact: 🚺 Yes 📋	No L	
Packing Material: Bubble Wrap Bubble	Bags Foam	.None Dther		
Thermometer Used: T91 T-194	Type of Ice: Wet	Biue None	Samples on ice, cooling p	ocess has begun
Cooler Temperature: 2.2 Temperature should be above freezing to 6°C		Comments:	Date and Initials of perso contents:	on examining
Chain of Custody present:		1		· · · · · · · · · · · · · · · · · · ·
Chain of Custody filled out:	Yes INO IN/A	2		
Chain of Custody relinquished:	DYAS DNO DNIA	3		
Sampler name & signature on COC:		4.		
Samples arrived within holding time:		5	·····	
Short Hold Time analyses (<72hr):	JZYes DNO DN/A	6. NO 3		
Rush Turn Around Time requested:	□Yes ☑No □N/A	7.		
Sufficient volume:		8	······································	
Correct containers used:	, IZYes □No □N/A	9.		
-Pace containers used:	□Yes DNO □N/A	······································		
Containers intact:	Yes No N/A	10		
Unpreserved 5035A soils frozen w/in 48hrs?		11.		
Filtered volume received for dissolved tests	□Yes □No □N/A	12.		·
Sample labels match COC:	Yes 🗆 No 🗆 N/A	13.		
-Includes date/time/ID/analyses Matrix:	WT,			
All containers needing preservation have been checked.	□Yes □No ☑N/A	14.		
All containers needing preservation are found to be in compliance with EPA recommendation.				
Exceptions VOA coliform, TOC, O&G, WI-DRO (water),	ØYes □Ng	Initial when completed	Lot # of added preservative	
Trip Blank present:		15.		
Pace Trip Blank lot # (if purchased):				······
Headspace in VOA vials (>6mm):	□Yes ⊅ No □N/A	16		
Project sampled in USDA Regulated Area:	□Yes □No □N/A	17. List State:		
Client Notification/ Resolution: Cor	by COC to Client? Y	· / N	Field Data Required?	Y / N
Person Contacted:	Date/T	ime:		
Comments/ Resolution:				
		······································		· · · · · · · · · · · · · · · · · · ·
			<u></u>	
- hall			10 1	10
Project Manager Review:			Date: 10-1	

\$

· · ·

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

X

Pace Analytical[®]

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section A	Section B			Section C	_			Page	1	of	1
Company:	Report To:			Attention:	ation:		1	-		1272	142
Address:	Copy To:	A B TOW Construi	ction.com	Company Nan	ravis hamle	cr					
191 M Street	Surgnier	@ prodigy .ne+	•	Address:	166		REGULATORT	AGENCY			
Lindoln NE 68508	Purchase Order No			Pace Quote		<u></u>	I NPDES		DWATER		GWATER
+Komler Qten Construction	Preiost Nemer			Reference:			I UST I	RCRA		OTHER	
402 416 7255		as Waste Wa	ter	Manager:	Irudy Gipso	<u>n</u>	Site Location	VS			
Requested Due Date/TAT:	Project Number:			Pace Profile #:	• •		STATE:	<u> </u>	[
						Requested	Analysis Filtere	d (Y/N)			
Section D Matrix C Required Client Information MATRIX / Drinking Wate Water Waste Water Product SAMPLE ID Oil	Sodes Units (1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (3) (2) (2) (2) (3) (2) (3) (2) (3) (2) (3) (2) (3) (2) (3) (2) (3) (2) (3) (2) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (4) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4)	COLLECTED COMPOSITE COMPO START END/G	COLLECTION		Preservatives	NI V EFR			ne (Y/N)		
(A-Z, 0-9 /,-) Air Sample IDs MUST BE UNIQUE Tissue Other	Q SJ B d A A A A A A A A A A A A A A A A A A		AIII SAMPLE TEMP A	# OF CONTAINE Unpreserved H ₂ SO ₄	HNO ₃ HCI NaOH Na ₂ S ₂ O ₃ Methanol Other	B B B B E B E E B E E S C B E E S S C E S S C E S S C E S S S S S S			Residual Chlori	Lo 8(L) Pace Project N	lo./ Lab I.D.
1 BAPHRGE-W-930/01	WWC3	/10 9/30	91 00 59	53	1	221			1 16	21 2/04	94)211497 (SS
2 CNP4RGE - W- 93010	2 W/C 4	1/10 9-30	00060	153		221	+ $+$ $+$ $+$ $+$		++	II	- er
3 EVPURGE-W- 93010	3 WWC 4	1/10 9-30	113265	15 3	2	221					25
4 MR PURGE - W - 930/0	4 WWC 4	10 9-30	342	3 2		221	+ $+$ $+$ $+$ $+$ $+$ $+$			⊬ V	1 Van
5				\square					+	1	
6	-										~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
7							\mathbb{N}		++		
8											
9											
10								\downarrow			
11							+ $+$ $+$ $+$ $+$	+N			
12											
ADDITIONAL COMMENTS	RELINQUISH	ED BY / AFFILIATION	DATE	TIME	ACCEPTED B	Y / AFFILIATION	DATE	TIME		SAMPLE CONDIT	IONS
All samples Collected		2 /TCW	9-30-10	1830	Junt	2	18XI po	0915	2.2	$Y \mid V$	¥
trom 50 gal Urum Stored						·				· /	/
at each site				ļ							
		SAMPLER NAME A	ND SIGNATUR	RE					v 5	eler oli	tact
	ORIGINAL	PRINT Nan	ne of SAMPLER	: Trav	is Kamler				p in '	(V/N (V/N)	(N)
		SIGNATUF	RE of SAMPLER			DATE Signed (MM/DD/YY):	09/30/	10	Tem	Sealer Cu	Sampl C

*Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days.

F-ALL-Q-020rev.07, 15-May-2007

. ee

Sold To:

Mr. Travis Kamler

Lincoln, NE 68508 402-475-5030

141 M Street

TCW Construction Inc

Invoice Number: 106081867 Date: 10/14/2010 Total Amount Due: \$592.00

Please Remit To:

Pace Analytical Services, Inc. P.O. Box 684056 Milwaukee, WI 53268-4056

Clien	t Number/Client ID	Purchase Order No	Pace Project Mg	r Terms	Page
60-50	08440 / TCW Const	Credit Card	Trudy Gipson	Net 30 Days**	1
Client F Pace Proj Report S Com	Project: Kansas Waste Water ect No: 6086606 ent To: Mr. David Surgnier, Mr. Travis Kamler, TCV ments:	V Construction Inc	Client Name: TCW C Sample Received: 10/1/20	Construction Inc 010	
		ANALYTICAL C	HARGES		
Quantity Unit	Description	Method	Matrix	Price	Total
4 Ea	300.0 IC Anions-Nitrate	EPA 300.0	Water	\$18.00	\$72.00
4 Ea	504 GCS EDB DBCP	EPA 504.1	Water	\$60.00	\$240.00
4 Ea	8260 VOC by GC/MS-Full Sc	an EPA 5030B/8	260 Water	\$70.00	\$280.00
				Analytical Subtotal	\$592.00
		Total Number of Charge	s 12	Total Invoice Amount	\$592.00
Samples Receiv	ved for analysis:				
Lab ID	Client Sample ID	Received			
6086606001	BAPURGE-W-930101	10/1/2010 9:15:00			

 6086606001
 BAPURGE-W-930101
 10/1/2010 9:15:00

 6086606002
 CNPURGE-W-930102
 10/1/2010 9:15:00

 6086606003
 EVPURGE-W-930103
 10/1/2010 9:15:00

 6086606004
 MRPURGE-W-930104
 10/1/2010 9:15:00

If you have any questions or to pay by credit card, please contact Trudy Gipson at Pace. Phone: 1(913)563-1405 Email: trudy.gipson@pacelabs.com

**1.5% MONTHLY FINANCE CHARGE ASSESSED AFTER 30 DAYS OR TERMS OF CONTRACT. PLEASE REFERENCE THE INVOICE NUMBER ON ALL REMITTANCE ADVICE.

AN EQUAL OPPORTUNITY EMPLOYER

Please complete and return copy of invoice with your payment.

INVOICE TOTAL \$592.00

Amount Paid: \$_____

Check No:

Customer No: 60-508440 Invoice No: 106081867

Page 1 of 1

AGEM 40 L

CITY OF SABETHA Cash - Matt 805 MAIN PO BOX 187 SABETHA KS 66534 785-284-2158 Dec 17, 2010 Receipt No: 2.001326 TCW Construction B WASTEWATER FUND-MISC MISCELLANEOUS INCOME-purg A 50.00 ed water Total: 50.00 ----50.00 Cash Total Applied: .00 Change Tendered: -----

12/17/10 01:28PM

 \ddot{x}

Supplement 2:

Data Summaries for Verification VOCs Analyses by TestAmerica Laboratories, Inc.

TestAmerica Laboratories, Inc.

April 28, 2010

Mr. Clyde Dennis Argonne National Laboratory 9700 S. Cass Avenue Building 203, Office B149 Argonne, IL 60439

Re: Laboratory Project No. 21005 Case: CNTRALIA; SDG: 136697

Dear Mr. Dennis:

Enclosed are analytical results for samples that were received by TestAmerica Burlington on April 7th, 2010. Laboratory identification numbers were assigned, and designated as follows:

Lab ID	Client	Sample	Sample
	Sample ID	<u>Date</u>	<u>Matrix</u>
	Received: 04/07/10 ETR No:	136697	
825166	CNMW02-W-27179	04/05/10	WATER
825167	CNPMP2-W-27181	04/05/10	WATER
825168	CNPMP3-W-27182	04/05/10	WATER
825169	CNQCTB-W-27185	04/05/10	WATER
825170	VHBLK01	04/07/10	WATER

Documentation of the condition of the samples at the time of their receipt and any exception to the laboratory's Sample Acceptance Policy is documented in the Sample Handling section of this submittal. The samples, as received, were not acid preserved. On that basis, the laboratory did provide for the analytical work to be performed within seven days of sample collection.

In order to accommodate field length limitations in processing the data summary forms, the laboratory did, in certain instances, abbreviate the sample identifier. The electronically formatted data provides for the full sample identifier.

SOM01.2 Volatile Organics (Trace Level Water)

A storage blank was prepared for volatile organics analysis, and stored in association with the storage of the samples. That storage blank, identified as VHBLK01, was carried through the holding period with the samples, and analyzed.

30 Community Drive, Suite 11 South Burlington, VT 05403 tel 802.660.1990 fax 802.660.1919 www.testamericainc.com

THE LEADER IN ENVIRONMENTAL TESTING

Samples CNMW02-W-27179 and CNPMP2-W-27181 were analyzed at a dilution in order to provide quantification within the range of calibrated instrument response. An additional, more concentrated analysis was performed on each of those samples in order to provide for a lower reporting limit for those compounds that were not identified in the primary analysis. Both sets of results for the analysis of samples CNMW02-W-27179 and CNPMP2-W-27181 are included in this submittal.

Each of the analyses associated with the sample set exhibited an acceptable internal standard performance, and there was an acceptable recovery of each deuterated monitoring compound (DMC) in each analysis. Matrix spike and matrix spike duplicate analyses were not performed on samples in this sample set. Trace concentrations of acetone and 2-butanone were identified in the analysis of each method blank associated with the analytical work. The concentration of each compound in each analysis was below the established reporting limit, and each analysis did meet the technical acceptance criteria for a compliant method blank analysis. Trace concentrations of acetone, 2-butanone, and chloroform were identified in the analysis of the storage blank associated with the sample set. The concentration of each compound in that analysis was below the established reporting limit, and the analysis did meet the technical acceptance criteria for a compliant. The concentration of each compound in that analysis was below the established reporting limit, and the analysis did meet the technical acceptance criteria for a compliant storage blank analysis. Present in the method blank and storage blank analyses was a non-target constituent that represented a compound that is related to the DMC formulation. The fact that the presence of this compound is not within the laboratory's control is at issue. The derived results for that compound have been qualified with an "X" qualifier to reflect the source of the contamination.

The responses for each of the target analytes met the relative standard deviation criterion in the initial calibration. The response for each target analyte met the percent difference criterion in each continuing calibration check acquisition. The response for each target analyte met the 50.0 percent difference criterion in each closing calibration check acquisition.

The primary quantitation mass for methylcyclohexane that is specified in the Statement of Work is mass 83. The laboratory did identify a contribution to mass 83 from 1,2-dichloropropane- d_6 , one of the deuterated monitoring compounds (DMCs). The laboratory did change the primary quantitation mass assignment to mass 55 for the quantification of methylcyclohexane.

Manual integration was employed in deriving certain of the analytical results. The values that have been derived from manual integration are qualified on the quantitation reports. Extracted ion current profiles for each manual integration are included in the data package, and further documented in the Sample Preparation section of this submittal.

Any reference within this report to Severn Trent Laboratories, Inc. or STL, should be understood to refer to TestAmerica Laboratories, Inc. (formerly known as Severn Trent Laboratories, Inc.) The analytical results associated with the samples presented in this test report were generated under a quality system that adheres to requirements specified in the NELAC standard. Release of the data in this test report and any associated electronic deliverables is authorized by the Laboratory Director's designee as verified by the following signature.

If there are any questions regarding this submittal, please contact me at 802 660-1990.

Sincerely,

Kirk F. Young Project Manager

KFY/hsf Enclosure

Z	6	2	4

~	1-										
F	edEx	Ŧ	#	8	558	7	769	32 0	7668		
MATRIX: Water	ARC	GON	NE N	ITA	IONAL	LABC	ORAT	ORY	Shipping Con	tainer No.	
RECEIVING LAB: Test A merica] c	HAI	N OI	F CL	JSTOD	Y REC	COR	D*	Shipping Info:		, , , , , , , , , , , , , , , , , , ,
PROJECT/SITE:				•					ANL Field Co	ntact (Name	& Temporary Phone):
Centralig RS	_					YSIS			Dave 5	urgnier	630 408 7114
SAMPLER(S) (Signature)	Number	$ _{U}$								Ŭ.	
	of	0									
	con-	C								DEL	
DAME OF COLLECTION SAME LE ID NOMBER(S)	tainers									REN	IARKS
April 5, 2010 CNMW02 - W-27179	12	2		-+					2440	al C	LICC
1 1 CNPMP2-W-27181	2	2								The For	1
CNPMP3-W-27182	12	2							<u>├</u>		·····
April 5, 2010 CNQCTB - W-27185	12	a						1	2 × 40	mh	, 1700
	1	Ň									
	Λ										
	$\overline{\mathbf{N}}$			\Box							
	\Box									<u> </u>	
										$\overline{}$	
											<u> </u>
							\square				
							<u> </u>				
Relinquished by (Signature) Date Time Received	/ed by (Sig	gnatu	re)		Relinqu	lished	by (S	ignature)	Date	Time	Received by (Signature)
4-6-10 16:41											
Relinquished by (Signature) Date Time Receiv	ved for Lat	orato	ory by	v	Date		Ti	me	Remarks		
	$\sim l$.Or	~	-	412	10	1	6/10	To	2 0	•
	1 au KC	<u>ve</u>				110		090	IEm	1p 3:0)
Y N FOR LAB USE ONLY		*/	A san	nple	is unde	· custo	dy if:			•	
Custody seal was intact when shipment received.		1	. It is	in yo	our poss	ession	n; o r ,				
Sample containers were intact when received.		2	. It is	in yo	our view	after	havin	g been in	your possession;	or,	
Shipment was at required temperature when receiv	ed.	3	. It wa	as in	your po	ssessi	ion ar	nd you loo	ked it up; or,		
Sample labels, lags and COC agree.		4	. It is	in a	designa	ted se	cure a	area.			24"
Argonne National Laboratory, Applied Geosciences & E	nvironmen	tal M	gt. Gi	roup,	, Enviro	nmenta	al Res	search Di	vision, 9700 S. Ca	ss Avenue, A	vrgonne, IL 60439

ER-160 (12-94)

THE LEADER IN ENVIRONMENTAL TESTING

Sample Data Summary – SOM01.2 Volatiles – Trace

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

MW02W27179 Lab Name: TESTAMERICA BURLINGTON Contract: 8E-00302 Lab Code: STLV Case No.: CNTRALIA Mod. Ref No.: SDG No.: 136697 Matrix: (SOIL/SED/WATER) Water Lab Sample ID: 825166 Sample wt/vol: 25.0 (g/mL) mL Lab File ID: 825166D2 Date Received: 04/07/2010 Level: (TRACE/LOW/MED) TRACE Date Analyzed: 04/09/2010 % Moisture: not dec. GC Column: DB-624 ID: 0.53 (mm) Dilution Factor: 11.0 Soil Aliquot Volume: (uL) Soil Extract Volume: (uL) Purge Volume: 25.0 (mL)

			CONCENTRATION UNITS:	
ļ	CAS NO.	COMPOUND	(ug/L or ug/kg) <u>ug/L</u>	Q
	==============		=======================================	=======
ļ	75-71-8	Dichlorodifluoromethane	5.5	U
ļ	74-87-3	Chloromethane	5.5	U
	75-01-4	Vinyl chloride	5.5	U
	74-83-9	Bromomethane	5.5	U
	75-00-3	Chloroethane	5.5	U
	75-69-4	Trichlorofluoromethane	5.5	U
	75-35-4	1,1-Dichloroethene	5.5	U
	76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	5.5	υ
	67-64-1	Acetone	55	U
	75-15-0	Carbon disulfide	5.5	U U
	79-20-9	Methyl acetate	5.5	U
	75-09-2	Methylene chloride	5.5	U
	156-60-5	trans-1,2-Dichloroethene	5.5	υ
	1634-04-4	Methyl tert-butyl ether	5.5	υ
	75-34-3	1,1-Dichloroethane	5.5	υ
	156-59-2	cis-1,2-Dichloroethene	5.5	υ
	78-93-3	2-Butanone	55	U
	74-97-5	Bromochloromethane	5.5	υ
	67-66-3	Chloroform	5.5	U
	71-55-6	1,1,1-Trichloroethane	5.5	U
	110-82-7	Cyclohexane	5.5	U
	56-23-5	Carbon tetrachloride	5.5	U
	71-43-2	Benzene	5.5	U
	107-06-2	1,2-Dichloroethane	5.5	υ
		•	İ	

Report 1,4-Dioxane for Low-Medium VOA analysis only

SOM01.2

EPA SAMPLE NO.

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

MW02W27179

Lab Name: TESTAMERICA BURLINGTON		Contract: 8E-00302	l	I
Lab Code: STLV Case No.: CNTRAL	IA Mod. H	Ref No.:	SDG No.: 136697	
Matrix: (SOIL/SED/WATER) Water		Lab Sample ID: 8251	66	
Sample wt/vol: 25.0 (g/mL) m	L	Lab File ID: 825166	D2	
Level: (TRACE/LOW/MED) TRACE		Date Received: 04/0	7/2010	
% Moisture: not dec.		Date Analyzed: 04/0	9/2010	
GC Column: DB-624 ID: 0.53	(mm)	Dilution Factor: 11	. 0	
Soil Extract Volume:	(uL)	Soil Aliquot Volume	:	(uL)
Purge Volume: 25.0	(mL)			

CAS NO. 	COMPOUND ====================================	(ug/L or ug/kg) <u>ug/L</u> ====================================	Q ======= U U
 79-01-6 108-87-2	Trichloroethene Methylcyclohexane 1,2-Dichloropropane Bromodichloromethane	5.5 5.5 5.5 5.5	======= U U
79-01-6	Trichloroethene Methylcyclohexane 1,2-Dichloropropane Bromodichloromethane	5.5 5.5 5.5	บ บ
108-87-2	Methylcyclohexane 1,2-Dichloropropane Bromodichloromethane	5.5 5.5	υ
	1,2-Dichloropropane Bromodichloromethane	5.5	
78-87-5	Bromodichloromethane		υ
75-27-4		5.5	ט 🛛
10061-01-5	cis-1,3-Dichloropropene	5.5	ט ו
108-10-1	4-Methyl-2-pentanone	55	υ
108-88-3	Toluene	940	Е
10061-02-6	trans-1,3-Dichloropropene	5.5	υ
79-00-5	1,1,2-Trichloroethane	5.5	ט ו
127-18-4	Tetrachloroethene	5.5	υ
591-78-6	2-Hexanone	55	υ
124-48-1	Dibromochloromethane	5.5	υ
106-93-4	1,2-Dibromoethane	5.5	υ
108-90-7	Chlorobenzene	5.5	υ
100-41-4	Ethylbenzene	25	
95-47-6	o-Xylene	5.5	υ
179601-23-1	m,p-Xylene	5.5	υ
100-42-5	Styrene	5.5	υ
75-25-2	Bromoform	5.5	υ
98-82-8	Isopropylbenzene	5.5	υ
79-34-5	1,1,2,2-Tetrachloroethane	5.5	U
541-73-1	1,3-Dichlorobenzene	5.5	υ
106-46-7	1,4-Dichlorobenzene	5.5	υ
95-50-1	1,2-Dichlorobenzene	5.5	υ
96-12-8	1,2-Dibromo-3-chloropropane	5.5	υ
120-82-1	1,2,4-Trichlorobenzene	5.5	U
87-61-6	1,2,3-Trichlorobenzene	5.5	U

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

MW02W27179

Lab Name: TESTAMERICA BURLINGTON Contract: 8E-00302				
Lab Code: STLV Case No.: CNTRALIA	Mod.	Ref No.:	SDG No.: 1	36697
Matrix: (SOIL/SED/WATER) Water		Lab Sample ID: 82516	6	
Sample wt/vol: 25.0 (g/mL) mL		Lab File ID: 825166D2	2	
Level: (TRACE or LOW/MED) TRACE		Date Received: 04/07,	/2010	
% Moisture: not dec.		Date Analyzed: 04/09,	/2010	
GC Column: DB-624 ID: 0.53	(mm)	Dilution Factor: 11.0	D	
Soil Extract Volume:	(uL)	Soil Aliquot Volume:		(uL)
CONCENTRATION UNITS: (ug/L or ug/kg) ug	/L	Purge Volume: 25.0		(mL)

	CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
01	=====================================	Unknown	7.01	31	JXB
02					
03					
04					
05					
06					
07					
80					
09					
10				•	
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					·····
21					
22					
23					
24					
25	From	///			
26					
27					
28					
29					
30					
	<u> </u>	Total Alkanes	N/A		

(1) EPA-designated Registry Number.

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

MW02W27179DL

Lab Name: TESTAMERICA BURLINGTON		Contract: 8E-00302		
Lab Code: STLV Case No.: CNTRALIA	Mod. R	ef No.:	SDG No.: 136697	
Matrix: (SOIL/SED/WATER) Water		Lab Sample ID: 8253	166D1	
Sample wt/vol: 25.0 (g/mL) mL		Lab File ID: 825166	5D	
Level: (TRACE/LOW/MED) TRACE		Date Received: 04/0	07/2010	
% Moisture: not dec.		Date Analyzed: 04/0	09/2010	
GC Column: DB-624 ID: 0.53	(mm)	Dilution Factor: 12	29.4	
Soil Extract Volume:	(uL)	Soil Aliquot Volume	2:	(uL)
Purge Volume: 25.0	(mL)			

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/kg) <u>ug/L</u>	Q
==============			=======
75-71-8	Dichlorodifluoromethane	65	U
74-87-3	Chloromethane	65	υ
75-01-4	Vinyl chloride	65	υ
74-83-9	Bromomethane	65	υ
75-00-3	Chloroethane	65	υ
75-69-4	Trichlorofluoromethane	65	U
75-35-4	1,1-Dichloroethene	65	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	65	U
67-64-1	Acetone	170	DJB
75-15-0	Carbon disulfide	65	υ
79-20-9	Methyl acetate	65	U
75-09-2	Methylene chloride	65	U
156-60-5	trans-1,2-Dichloroethene	65	υ
1634-04-4	Methyl tert-butyl ether	65	υ
75-34-3	1,1-Dichloroethane	65	υ
156-59-2	cis-1,2-Dichloroethene	65	υ
78-93-3	2-Butanone	650	υ
74-97-5	Bromochloromethane	65	υ
67-66-3	Chloroform	55	DJ
71-55-6	1,1,1-Trichloroethane	65	U
110-82-7	Cyclohexane	65	U
56-23-5	Carbon tetrachloride	65	U
71-43-2	Benzene	65	υ
107-06-2	1,2-Dichloroethane	65	U

Report 1,4-Dioxane for Low-Medium VOA analysis only

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

MW02W27179DL

Lab Name: TESTAMERICA BURLINGTON		Contract: 8E-00302	
Lab Code: STLV Case No.: CNTR	ALIA Mod.	Ref No.: SDG No.: 13	6697
Matrix: (SOIL/SED/WATER) Water		Lab Sample ID: 825166D1	
Sample wt/vol: 25.0 (g/mL)	mL	Lab File ID: 825166D	
Level: (TRACE/LOW/MED) TRACE		Date Received: 04/07/2010	
% Moisture: not dec.		Date Analyzed: 04/09/2010	
GC Column: DB-624 ID: 0.53	(mm)	Dilution Factor: 129.4	
Soil Extract Volume:	(uL)	Soil Aliquot Volume:	(uL)
Purge Volume: 25.0	(mL)		

		CONCENTRATION UNITS:	
CAS NO.		(ug/L or ug/kg) <u>ug/L</u>	Q
79-01-6	Trichloroethene	65	U
108-87-2	Methylcyclohexane	65	Ū
78-87-5	1,2-Dichloropropane	65	Ū
75-27-4	Bromodichloromethane	65	Ū
10061-01-5	cis-1,3-Dichloropropene	65	υ
108-10-1	4-Methyl-2-pentanone	650	υ
108-88-3	Toluene	1600	D
10061-02-6	trans-1,3-Dichloropropene	65	U
79-00-5	1,1,2-Trichloroethane	65	U
127-18-4	Tetrachloroethene	65	υ
591-78-6	2-Hexanone	650	υ
124-48-1	Dibromochloromethane	65	υ
106-93-4	1,2-Dibromoethane	65	U
108-90-7	Chlorobenzene	65	υ
100-41-4	Ethylbenzene	27	DJ
95-47-6	o-Xylene	65	ט ו
179601-23-1	m,p-Xylene	65	ט ו
100-42-5	Styrene	65	υ
75-25-2	Bromoform	65	ט
98-82-8	Isopropylbenzene	65	ט
79-34-5	1,1,2,2-Tetrachloroethane	65	ט
541-73-1	1,3-Dichlorobenzene	65	U U
106-46-7	1,4-Dichlorobenzene	65	ט
95-50-1	1,2-Dichlorobenzene	65	ט
96-12-8	1,2-Dibromo-3-chloropropane	65	ט
120-82-1	1,2,4-Trichlorobenzene	65	ט
87-61-6	1,2,3-Trichlorobenzene	65	ט

SOM01.2

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

MW02W27179DL

Lab Name: TESTAMERICA BURLINGTON		Contract: 8E-00302		
Lab Code: STLV Case No.: CNTRALIA	Mod.	Ref No.:	SDG No.:	136697
Matrix: (SOIL/SED/WATER) Water		Lab Sample ID: 82516	6D1	
Sample wt/vol: 25.0 (g/mL) mL		Lab File ID: 825166D		
Level: (TRACE or LOW/MED) TRACE		Date Received: 04/07	/2010	
% Moisture: not dec.		Date Analyzed: 04/09	/2010	
GC Column: DB-624 ID: 0.53	(mm)	Dilution Factor: 129	.4	
Soil Extract Volume:	(uL)	Soil Aliquot Volume:		(uL)
CONCENTRATION UNITS: (ug/L or ug/kg) ug	/L	Purge Volume: 25.0		(mL)

	CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
01		Unknown	7.01	350	JXBD
02					
03	· · · · · · · · · · · · · · · · · · ·				····
04					
05					
06					
07					
08				<u></u>	
09					
10					
11					
12		····			
13		. <u> </u>		· ······	
14					•
15		······································			·
16		····			
10				·····	
10	••••••••				
20			·		
20					········
22					
23					
24				· ·	
25					<u></u>
26					
27					
28					
29					
30					
	E966796(1)	Total Alkanes	N/A		

(1) EPA-designated Registry Number.

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

PMP2W27181

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302
Lab Code: STLV Case No.: CNTRALIA Mod	l. Ref No.: SDG No.: 136697
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: 825167
Sample wt/vol: 25.0 (g/mL) mL	Lab File ID: 825167D2
Level: (TRACE/LOW/MED) TRACE	Date Received: 04/07/2010
% Moisture: not dec.	Date Analyzed: 04/08/2010
GC Column: DB-624 ID: 0.53 (mm)	Dilution Factor: 4.0
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)
Purge Volume: 25.0 (mL)	

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/kg) ug/L	Q
================		=======================================	=======
75-71-8	Dichlorodifluoromethane	2.0	υ
74-87-3	Chloromethane	2.0	υ
75-01-4	Vinyl chloride	2.0	ט
74-83-9	Bromomethane	2.0	ט
75-00-3	Chloroethane	2.0	σ
75-69-4	Trichlorofluoromethane	2.0	υ
75-35-4	1,1-Dichloroethene	2.0	υ
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	2.0	U U
67-64-1	Acetone	100	В
75-15-0	Carbon disulfide	1.0	J
79-20-9	Methyl acetate	2.0	ប
75-09-2	Methylene chloride	4.3	
156-60-5	trans-1,2-Dichloroethene	2.0	Ū
1634-04-4	Methyl tert-butyl ether	2.0	υ
75-34-3	1,1-Dichloroethane	2.0	υ
156-59-2	cis-1,2-Dichloroethene	2.0	υ
78-93-3	2-Butanone	68	в
74-97-5	Bromochloromethane	2.0	ΰ
67-66-3	Chloroform	120	E
71-55-6	1,1,1-Trichloroethane	2.0	υ
110-82-7	Cyclohexane	2.0	ប
56-23-5	Carbon tetrachloride	690	Е
71-43-2	Benzene	2.0	υ
107-06-2	1,2-Dichloroethane	2.0	υ

Report 1,4-Dioxane for Low-Medium VOA analysis only

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

PMP2W27181

Lab Name: TESTAMERICA BURLINGTON Contract: 8E-00302 Lab Code: STLV Case No.: CNTRALIA Mod. Ref No.: SDG No.: 136697 Matrix: (SOIL/SED/WATER) Water Lab Sample ID: 825167 Sample wt/vol: 25.0 (g/mL) mL Lab File ID: 825167D2 Level: (TRACE/LOW/MED) TRACE Date Received: 04/07/2010 % Moisture: not dec. Date Analyzed: 04/08/2010 GC Column: DB-624 ID: 0.53 (mm) Dilution Factor: 4.0 Soil Extract Volume: Soil Aliquot Volume: (uL) (uL) Purge Volume: 25.0 (mL)

	CONCENTRATION UNITS:		
CAS NO.	COMPOUND	(ug/L or ug/kg) <u>ug/L</u>	Q
================		=======================================	========
79-01-6	Trichloroethene	2.0	ט
108-87-2	Methylcyclohexane	2.0	ט (
78-87-5	1,2-Dichloropropane	2.0	ט
75-27-4	Bromodichloromethane	2.0	ט
10061-01-5	cis-1,3-Dichloropropene	2.0	ט (
108-10-1	4-Methyl-2-pentanone	20	ט (
108-88-3	Toluene	290	E
10061-02-6	trans-1,3-Dichloropropene	2.0	ט
79-00-5	1,1,2-Trichloroethane	2.0	U
127-18-4	Tetrachloroethene	2.0	υ
591-78-6	2-Hexanone	20	ט
124-48-1	Dibromochloromethane	2.0	υ
106-93-4	1,2-Dibromoethane	2.0	υ
108-90-7	Chlorobenzene	2.0	υ
100-41-4	Ethylbenzene	2.0	U
95-47-6	o-Xylene	2.0	U
179601-23-1	m,p-Xylene	2.0	υ
100-42-5	Styrene	2.0	U
75-25-2	Bromoform	2.0	U
98-82-8	Isopropylbenzene	2.0	ע
79-34-5	1,1,2,2-Tetrachloroethane	2.0	ט (
541-73-1	1,3-Dichlorobenzene	2.0	ט
106-46-7	1,4-Dichlorobenzene	2.0	ט
95-50-1	1,2-Dichlorobenzene	2.0	ט
96-12-8	1,2-Dibromo-3-chloropropane	2.0	ט
120-82-1	1,2,4-Trichlorobenzene	2.0	ט
87-61-6	1,2,3-Trichlorobenzene	2.0	ט
			ĺ

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

PMP2W27181

Lab Name: TESTAMERICA BURLINGTON		Contract: 8E-00302		
Lab Code: STLV Case No.: CNTRALIA	Mod.	Ref No.:	SDG No.:	136697
Matrix: (SOIL/SED/WATER) Water		Lab Sample ID: 82516	7	
Sample wt/vol: 25.0 (g/mL) mL		Lab File ID: 825167D2	2	
Level: (TRACE or LOW/MED) TRACE		Date Received: 04/07,	/2010	
% Moisture: not dec.		Date Analyzed: 04/08,	/2010	
GC Column: DB-624 ID: 0.53	(mm)	Dilution Factor: 4.0		
Soil Extract Volume:	(uL)	Soil Aliquot Volume:		(uL)
CONCENTRATION UNITS: (ug/L or ug/kg) ug	/L	Purge Volume: 25.0		(mL)

	CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
01	=====================================	Dimethyl sulfide	2.65	17	NJ
02		Unknown	7.01	11	JXB
03	624-92-0	Disulfide, dimethyl	7.14	3.3	NJ
04		Unknown	11.69	3.9	J
05					
06					
07					
80					
09					
10					
11					1
12					
13					
14					
15					
16					
17					
18				+	
19					
20					
21					
22					
23					
24			·		
25					
26					
27					
28					
29					
30					
	[_ <u>ЕЭррідо(т)</u>	TOLAL AIKANES	N/A	L	1

(1) EPA-designated Registry Number.
1A ~ FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

PMP2W27181DL

Lab Name: TESTAMERICA BURLINGTON		Contract: 8E-00302		
Lab Code: STLV Case No.: CNTRALIA	Mod. R	ef No.:	SDG No.: 136697	
Matrix: (SOIL/SED/WATER) Water		Lab Sample ID: 825	167D1	
Sample wt/vol: 25.0 (g/mL) mL		Lab File ID: 82516	7D	
Level: (TRACE/LOW/MED) TRACE		Date Received: 04/0	07/2010	
% Moisture: not dec.		Date Analyzed: 04/0	08/2010	
GC Column: DB-624 ID: 0.53	(mm)	Dilution Factor: 40	5.3	
Soil Extract Volume:	(uL)	Soil Aliquot Volume	e:	(uL)
Purge Volume: 25.0	(mL)			

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/kg) <u>ug/L</u>	Q
======================================	=======================================	=======================================	========
75-71-8	Dichlorodifluoromethane	23	υ
74-87-3	Chloromethane	23	υ
75-01-4	Vinyl chloride	23	υ
74-83-9	Bromomethane	23	υ
75-00-3	Chloroethane	23	υ
75-69-4	Trichlorofluoromethane	23	υ
75-35-4	1,1-Dichloroethene	23	υ
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	23	υ
67-64-1	Acetone	140	DJB
75-15-0	Carbon disulfide	23	υ
79-20-9	Methyl acetate	23	υ
75-09-2	Methylene chloride	23	υ
156-60-5	trans-1,2-Dichloroethene	23	υ
1634-04-4	Methyl tert-butyl ether	23	υ
75-34-3	1,1-Dichloroethane	23	υ
156-59-2	cis-1,2-Dichloroethene	23	υ
78-93-3	2-Butanone	80	, DJB
74-97-5	Bromochloromethane	23	υ
67-66-3	Chloroform	130	D
71-55-6	1,1,1-Trichloroethane	23	U
110-82-7	Cyclohexane	23	U U
56-23-5	Carbon tetrachloride	670	D
71-43-2	Benzene	23	ט
107-06-2	1,2-Dichloroethane	23	ט

Report 1,4-Dioxane for Low-Medium VOA analysis only

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

PMP2W27181DL

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302
Lab Code: STLV Case No.: CNTRALIA	Mod. Ref No.: SDG No.: 136697
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: 825167D1
Sample wt/vol: 25.0 (g/mL) mL	Lab File ID: 825167D
Level: (TRACE/LOW/MED) TRACE	Date Received: 04/07/2010
% Moisture: not dec.	Date Analyzed: 04/08/2010
GC Column: DB-624 ID: 0.53	(mm) Dilution Factor: 46.3
Soil Extract Volume:	(uL) Soil Aliquot Volume: (uL)
Purge Volume: 25.0	(mL)

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/kg) <u>ug/L</u>	Q
70 01 6	my chloroothere		========
		23	U
		23	U
	Dremedicklausekkeur	23	U
	Biomodichioromethane	23	U
10061-01-5	Cls-1, 3-Dichioropropene	23	U
108-10-1	4-Methy1-2-pentanone	230	U
108-88-3	Toluene	390	D
10061-02-6	trans-1,3-Dichloropropene	23	U
79-00-5	1,1,2-Trichloroethane	23	U
127-18-4	Tetrachloroethene	23	U
591-78-6	2-Hexanone	230	υ
124-48-1	Dibromochloromethane	23	U
106-93-4	1,2-Dibromoethane	23	υ
108-90-7	Chlorobenzene	23	U
100-41-4	Ethylbenzene	23	U
95-47-6	o-Xylene	23	υ
179601-23-1	m,p-Xylene	23	υ
100-42-5	Styrene	23	υ
75-25-2	Bromoform	23	ט
98-82-8	Isopropylbenzene	23	ט
79-34-5	1,1,2,2-Tetrachloroethane	23	U
541-73-1	1,3-Dichlorobenzene	23	υ
106-46-7	1,4-Dichlorobenzene	23	ี บ
95-50-1	1,2-Dichlorobenzene	23	U U
96-12-8	1,2-Dibromo-3-chloropropane	23	υ
120-82-1	1,2,4-Trichlorobenzene	23	U
87-61-6	1,2,3-Trichlorobenzene	23	U U

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

PMP2W27181DL

Lab Name: TESTAMERICA BURLINGTON		Contract: 8E-00302		
Lab Code: STLV Case No.: CNTRALIA	Mod.	Ref No.:	SDG No.:	136697
Matrix: (SOIL/SED/WATER) Water		Lab Sample ID: 82516	7D1	
Sample wt/vol: 25.0 (g/mL) mL		Lab File ID: 825167D		
Level: (TRACE or LOW/MED) TRACE		Date Received: 04/07	/2010	
% Moisture: not dec.		Date Analyzed: 04/08	/2010	
GC Column: DB-624 ID: 0.53	(mm)	Dilution Factor: 46.	3	
Soil Extract Volume:	(uL)	Soil Aliquot Volume:		(uL)
CONCENTRATION UNITS: (ug/L or ug/kg) ug	g/L	Purge Volume: 25.0		(mL)

	CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
01			=======================================	=======================================	JXBD
021		BIRLIOWI	,.01	100	UNDD
03					
04					
05					
06					
07					
08					
09					
10					
11					
12					
13	•••••••				
14					
15					
16					
17					
18					
19					
20					
21					
22					
23		· · · · · · · · · · · · · · · · · · ·			
25					
26					
27					
28					1
29					
30					
	E966796(1)	Total Alkanes	N/A		

(1) EPA-designated Registry Number.

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

PMP3W27182 Lab Name: TESTAMERICA BURLINGTON Contract: 8E-00302 Lab Code: STLV Case No.: CNTRALIA Mod. Ref No.: SDG No.: 136697 Matrix: (SOIL/SED/WATER) Water Lab Sample ID: 825168 Sample wt/vol: 25.0 (g/mL) mL Lab File ID: 825168 Level: (TRACE/LOW/MED) TRACE Date Received: 04/07/2010 % Moisture: not dec. Date Analyzed: 04/08/2010 GC Column: DB-624 ID: 0.53 (mm) Dilution Factor: 1.0 Soil Aliquot Volume: Soil Extract Volume: (uL) (uL) Purge Volume: 25.0 (mL)

			CONCENTRATION UNITS:	
	CAS NO.	COMPOUND	(ug/L or ug/kg) <u>ug/L</u>	Q
	=========================	=======================================	=============================	=======
	75-71-8	Dichlorodifluoromethane	0.50	υ
	74-87-3	Chloromethane	0.50	υ
	75-01-4	Vinyl chloride	0.50	υ
	74-83-9	Bromomethane	0.50	υ
	75-00-3	Chloroethane	0.50	υ
	75-69-4	Trichlorofluoromethane	0.50	υ
	75-35-4	1,1-Dichloroethene	0.50	υ
	76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	υ
	67-64-1	Acetone	1.1	JB
	75-15-0	Carbon disulfide	0.50	υ
	79-20-9	Methyl acetate	0.50	υ
	75-09-2	Methylene chloride	0.50	υ
	156-60-5	trans-1,2-Dichloroethene	0.50	υ
	1634-04-4	Methyl tert-butyl ether	0.50	υ
	75-34-3	1,1-Dichloroethane	0.50	υ
	156-59-2	cis-1,2-Dichloroethene	0.50	U U
	78-93-3	2-Butanone	0.52	JB
	74-97-5	Bromochloromethane	0.50	U
	67-66-3	Chloroform	0.21	J
	71-55-6	1,1,1-Trichloroethane	0.50	U U
	110-82-7	Cyclohexane	0.50	U U
	56-23-5	Carbon tetrachloride	0.50	U
	71-43-2	Benzene	0.50	U
Ì	107-06-2	1,2-Dichloroethane	0.50	U U
ĺ				

Report 1,4-Dioxane for Low-Medium VOA analysis only

SOM01.2

EPA SAMPLE NO.

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

PMP3W27182

Lab Name: TESTAMERICA BURLINGTON Contract: 8E-00302 Lab Code: STLV Case No.: CNTRALIA Mod. Ref No.: SDG No.: 136697 Matrix: (SOIL/SED/WATER) Water Lab Sample ID: 825168 Sample wt/vol: 25.0 (g/mL) mL Lab File ID: 825168 Level: (TRACE/LOW/MED) TRACE Date Received: 04/07/2010 % Moisture: not dec. Date Analyzed: 04/08/2010 GC Column: DB-624 ID: 0.53 (mm) Dilution Factor: 1.0 Soil Aliquot Volume: Soil Extract Volume: (uL) (uL) Purge Volume: 25.0 (mL)

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/kg) ug/L	Q
79-01-6	Trichloroethene		=
108-87-2	Methylcyclohexane	0.50	U U
78-87-5	1 2-Dichloropropane	0.50	Π
75-27-4	Bromodichloromethane	0.50	U TT
10061-01-5	cis-1 3-Dichloropropene	0.50	U TT
	4-Methyl-2-pentanone	5.0	
108-88-3	Toluene	3 7	. 0
10061-02-6	trans-1 3-Dichloropropene	0.50	TT
79-00-5	1 1 2-Trichloroethane	0.50	Π
127-18-4	Tetrachloroethene	0.50	τ
591-78-6	2-Hexanone	5.0	Π
124-48-1	Dibromochloromethane	0.50	υ
106-93-4	1.2-Dibromoethane	0.50	υ
108-90-7	Chlorobenzene	0.50	Ū
100-41-4	Ethylbenzene	0.50	Ū
95-47-6	o-Xvlene	0.50	U
179601-23-1	m,p-Xvlene	0.40	J
100-42-5	Styrene	0.50	υ
75-25-2	Bromoform	0.50	υ
98-82-8	Isopropylbenzene	0.50	υ
79-34-5	1,1,2,2-Tetrachloroethane	0.50	υ
541-73-1	1,3-Dichlorobenzene	0.50	U
106-46-7	1,4-Dichlorobenzene	0.50	U
95-50-1	1,2-Dichlorobenzene	0.50	U
96-12-8	1,2-Dibromo-3-chloropropane	0.50	υ
120-82-1	1,2,4-Trichlorobenzene	0.50	ט
87-61-6	1,2,3-Trichlorobenzene	0.50	ט (

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

PMP3W27182

Lab Name: TESTAMERICA BURLINGTON		Contract: 8E-00302		
Lab Code: STLV Case No.: CNTRALIA	Mod.	Ref No.:	SDG No.: 3	136697
Matrix: (SOIL/SED/WATER) Water		Lab Sample ID: 825168	3	
Sample wt/vol: 25.0 (g/mL) mL		Lab File ID: 825168		
Level: (TRACE or LOW/MED) TRACE		Date Received: 04/07,	/2010	
% Moisture: not dec.		Date Analyzed: 04/08,	/2010	
GC Column: DB-624 ID: 0.53	(mm)	Dilution Factor: 1.0		
Soil Extract Volume:	(uL)	Soil Aliquot Volume:		(uL)
CONCENTRATION UNITS: (ug/L or ug/kg) ug	·/L	Purge Volume: 25.0		(mL)

	CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
01		Unknown	== ====================================	3.0	JXB
2					
03					
04					
05					
06					• • • • • • • • • • • • • • • • • • • •
07					
08					
09 _				· · · · · · · · · · · · · · · · · · ·	
10 -					
11	· · · · · · · · · · · · · · · · · · ·				
12					
13					
14					
15			(······································	
16					
17					
18					
19	·····				
20					
21					
22					
23					
24					
25 _					
26					
27					
28					
29 _					
30 _				·	
	E966796(1)	Total Alkanes	N/A		

(1) EPA-designated Registry Number.

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

QCTBW27185 Lab Name: TESTAMERICA BURLINGTON Contract: 8E-00302 Lab Code: STLV Case No.: CNTRALIA Mod. Ref No.: SDG No.: 136697 Matrix: (SOIL/SED/WATER) Water Lab Sample ID: 825169 Sample wt/vol: 25.0 (g/mL) mL Lab File ID: 825169 Level: (TRACE/LOW/MED) TRACE Date Received: 04/07/2010 % Moisture: not dec. Date Analyzed: 04/08/2010 GC Column: DB-624 ID: 0.53 (mm) Dilution Factor: 1.0 Soil Extract Volume: Soil Aliquot Volume: (uL) (uL) Purge Volume: 25.0 (mL)

			CONCENTRATION UNITS:	
ĺ	CAS NO.	COMPOUND	(ug/L or ug/kg) <u>ug/L</u>	Q
ļ	===============	*======================================	=======================================	=======
	75-71-8	Dichlorodifluoromethane	0.50	υ
	74-87-3	Chloromethane	0.50	υ
	75-01-4	Vinyl chloride	0.50	U
	74-83-9	Bromomethane	0.50	U
	75-00-3	Chloroethane	0.50	U U
	75-69-4	Trichlorofluoromethane	0.50	U
	75-35-4	1,1-Dichloroethene	0.50	U U
	76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	U U
	67-64-1	Acetone	8.4	В
	75-15-0	Carbon disulfide	0.50	ט (
	79-20-9	Methyl acetate	0.50	U
	75-09-2	Methylene chloride	0.50	U
	156-60-5	trans-1,2-Dichloroethene	0.50	U U
	1634-04-4	Methyl tert-butyl ether	0.50	υ
	75-34-3	1,1-Dichloroethane	0.50	ט (
	156-59-2	cis-1,2-Dichloroethene	0.50	ט
	78-93-3	2-Butanone	1.2	JB
	74-97-5	Bromochloromethane	0.50	υ
	67-66-3	Chloroform	0.50	υ
	71-55-6	1,1,1-Trichloroethane	0.50	U
	110-82-7	Cyclohexane	0.50	U
	56-23-5	Carbon tetrachloride	0.50	U
	71-43-2	Benzene	0.34	J
	107-06-2	1,2-Dichloroethane	0.50	ប

Report 1,4-Dioxane for Low-Medium VOA analysis only

SOM01.2

EPA SAMPLE NO.

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

QCTBW27185

Lab Name: TESTAMERICA BURLINGTON Contract: 8E-00302 Lab Code: STLV Case No.: CNTRALIA Mod. Ref No.: SDG No.: 136697 Matrix: (SOIL/SED/WATER) Water Lab Sample ID: 825169 Lab File ID: 825169 Sample wt/vol: 25.0 (g/mL) mL Level: (TRACE/LOW/MED) TRACE Date Received: 04/07/2010 % Moisture: not dec. Date Analyzed: 04/08/2010 GC Column: DB-624 ID: 0.53 (mm) Dilution Factor: 1.0 Soil Aliquot Volume: Soil Extract Volume: (uL) (uL) Purge Volume: 25.0 (mL)

1		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/kg) <u>ug/L</u>	Q
		=======================================	========
79-01-6	Trichloroethene	0.50	U
108-87-2	Methylcyclohexane	0.50	U
78-87-5	1,2-Dichloropropane	0.50	U
75-27-4	Bromodichloromethane	0.50	U
10061-01-5	cis-1,3-Dichloropropene	0.50	U U
108-10-1	4-Methyl-2-pentanone	5.0	ט
108-88-3	Toluene	1.6	
10061-02-6	trans-1,3-Dichloropropene	0.50	ט
79-00-5	1,1,2-Trichloroethane	0.50	ט
127-18-4	Tetrachloroethene	0.50	ט
591-78-6	2-Hexanone	5.0	ט
124-48-1	Dibromochloromethane	0.50	ט
106-93-4	1,2-Dibromoethane	0.50	ט
108-90-7	Chlorobenzene	0.50	U U
100-41-4	Ethylbenzene	0.14	J
95-47-6	o-Xylene	0.50	ប
179601-23-1	m,p-Xylene	0.61	
100-42-5	Styrene	0.50	Ū
75-25-2	Bromoform	0.50	ט
98-82-8	Isopropylbenzene	0.50	U
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U
541-73-1	1,3-Dichlorobenzene	0.50	U
106-46-7	1,4-Dichlorobenzene	0.50	U
95-50-1	1,2-Dichlorobenzene	0.50	U
96-12-8	1,2-Dibromo-3-chloropropane	0.50	U U
120-82-1	1,2,4-Trichlorobenzene	0.50	ט
87-61-6	1,2,3-Trichlorobenzene	0.50	ט

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

QCTBW27185

Lab Name: TESTAMERICA BURLINGTON		Contract: 8E-00302		
Lab Code: STLV Case No.: CNTRALIA	Mod.	Ref No.:	SDG No.: 13	6697
Matrix: (SOIL/SED/WATER) Water		Lab Sample ID: 825169	9	
Sample wt/vol: 25.0 (g/mL) mL		Lab File ID: 825169		
Level: (TRACE or LOW/MED) TRACE		Date Received: 04/07,	/2010	
% Moisture: not dec.		Date Analyzed: 04/08,	/2010	
GC Column: DB-624 ID: 0.53	(mm)	Dilution Factor: 1.0		
Soil Extract Volume:	(uL)	Soil Aliquot Volume:		(uL)
CONCENTRATION UNITS: (ug/L or ug/kg) ug	/L	Purge Volume: 25.0		(mL)

	CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
01 ⁼		Unknown	7.01	2.9	JXB
2					
D3 🗍	- d - i	· · · · · · · · · · · · · · · · · · ·			
04		······································			
25	and the first of the second				•. •
06				······	
סק					
08∫					
09 _					
10[<u></u>		
11 _					
12 _					
13 _					
14					
15 _					
16					
17 _					
18					
19 _					.
20 _					
21 _					<u></u>
22					
23			· · · · · · · · · · · · · · · · · · ·		
24					
25					.
26 _					
27 _					
28 -					<u> </u>
29 -	Ann an a				
<u>-</u> ⁰					
یے ا	E300/30(T)	TOTAL AIKanes	N/A	0.57	J

(1) EPA-designated Registry Number.

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

.

EPA SAMPLE NO.

	VBLKJM	
Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302	
Lab Code: STLV Case No.: CNTRALIA Mod.	Ref No.: SDG No.: 136697	
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: VBLKJM	
Sample wt/vol: 25.0 (g/mL) mL	Lab File ID: JAQB03E	
Level: (TRACE/LOW/MED) TRACE	Date Received:	
% Moisture: not dec.	Date Analyzed: 04/08/2010	
GC Column: DB-624 ID: 0.53 (mm)	Dilution Factor: 1.0	
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL	')
Purge Volume: 25.0 (mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/kg) ug/L	Q
=======================================		=======================================	=======
75-71-8	Dichlorodifluoromethane	0.50	U
74-87-3	Chloromethane	0.50	U
75-01-4	Vinyl chloride	0.50	U U
74-83-9	Bromomethane	0.50	U U
75-00-3	Chloroethane	0.50	U
75-69-4	Trichlorofluoromethane	0.50	U
75-35-4	1,1-Dichloroethene	0.50	U U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	ี บ
67-64-1	Acetone	3.0	J
75-15-0	Carbon disulfide	0.50	U
79-20-9	Methyl acetate	0.50	U
75-09-2	Methylene chloride	0.50	U U
156-60-5	trans-1,2-Dichloroethene	0.50	U
1634-04-4	Methyl tert-butyl ether	0.50	U
75-34-3	1,1-Dichloroethane	0.50	U
156-59-2	cis-1,2-Dichloroethene	0.50	U
78-93-3	2-Butanone	1.2	J
74-97-5	Bromochloromethane	0.50	U
67-66-3	Chloroform	0.50	U
71-55-6	1,1,1-Trichloroethane	0.50	U
110-82-7	Cyclohexane	0.50	U
56-23-5	Carbon tetrachloride	0.50	U
71-43-2	Benzene	0.50	ט 🛛
107-06-2	1,2-Dichloroethane	0.50	U
		l	

Report 1,4-Dioxane for Low-Medium VOA analysis only

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

	VBLKJM
Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302
Lab Code: STLV Case No.: CNTRALIA	Mod. Ref No.: SDG No.: 136697
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: VBLKJM
Sample wt/vol: 25.0 (g/mL) mL	Lab File ID: JAQB03E
Level: (TRACE/LOW/MED) TRACE	Date Received:
% Moisture: not dec.	Date Analyzed: 04/08/2010
GC Column: DB-624 ID: 0.53 (mr	m) Dilution Factor: 1.0
Soil Extract Volume: (u)	L) Soil Aliquot Volume: (uL)
Purge Volume: 25.0 (m)	L)

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/kg) uq/L	Q
	***************************************	=======================================	========
79-01-6	Trichloroethene	0.50	U
108-87-2	Methylcyclohexane	0.50	υ
78-87-5	1,2-Dichloropropane	0.50	់ ប
75-27-4	Bromodichloromethane	0.50	U
10061-01-5	cis-1,3-Dichloropropene	0.50	U
108-10-1	4-Methyl-2-pentanone	5.0	υ
108-88-3	Toluene	0.50	υ
10061-02-6	trans-1,3-Dichloropropene	0.50	υ
79-00-5	1,1,2-Trichloroethane	0.50	υ
127-18-4	Tetrachloroethene	0.50	U
591-78-6	2-Hexanone	5.0	υ
124-48-1	Dibromochloromethane	0.50	υ
106-93-4	1,2-Dibromoethane	0.50	U
108-90-7	Chlorobenzene	0.50	υ
100-41-4	Ethylbenzene	0.50	υ
95-47-6	o-Xylene	0.50	υ
179601-23-1	m,p-Xylene	0.50	υ
100-42-5	Styrene	0.50	υ
75-25-2	Bromoform	0.50	υ
98-82-8	Isopropylbenzene	0.50	U
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U
541-73-1	1,3-Dichlorobenzene	0.50	ี ד
106-46-7	1,4-Dichlorobenzene	0.50	ט
95-50-1	1,2-Dichlorobenzene	0.50	U U
96-12-8	1,2-Dibromo-3-chloropropane	0.50	U U
120-82-1	1,2,4-Trichlorobenzene	0.50	ע
87-61-6	1,2,3-Trichlorobenzene	0.50	ע

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

VBLKJM

Lab Name: TESTAMERICA BURLINGTON		Contract: 8E-00302		
Lab Code: STLV Case No.: CNTRALIA	Mod.	Ref No.:	SDG No.:	136697
Matrix: (SOIL/SED/WATER) Water		Lab Sample ID: VBLKJ	М	
Sample wt/vol: 25.0 (g/mL) mL		Lab File ID: JAQB03E		
Level: (TRACE or LOW/MED) TRACE		Date Received:		
% Moisture: not dec.		Date Analyzed: 04/08,	/2010	
GC Column: DB-624 ID: 0.53	(mm)	Dilution Factor: 1.0		
Soil Extract Volume:	(uL)	Soil Aliquot Volume:		(uL)
CONCENTRATION UNITS: (ug/L or ug/kg) ug	ſ/L	Purge Volume: 25.0		(mL)

	CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
01		Unknown	7.01	2.9	===== JX
02					
03			here	······································	
04	ter i de la construcción de la cons				
05					
06					
07					
08					
09					
10					
11					
12		·			
13					
14		[
15					
16					
17					
18					<u> </u>
19					
20					
21			· `		
22					
23					
24					
25					
26					
2/		[
∠8 					
29		[
<u> </u> ں د	EOCC7OC(1)				. <u> </u>
Ι.	<u> </u>	TOLAL AIKANES	N/A		

(1) EPA-designated Registry Number.

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

VBLKJN

Lab Name: TESTAMERICA BURLINGTON Contract: 8E-00302 Lab Code: STLV Case No.: CNTRALIA Mod. Ref No.: SDG No.: 136697 Matrix: (SOIL/SED/WATER) Water Lab Sample ID: VBLKJN (g/mL) mL Lab File ID: JAQB02F Sample wt/vol: 25.0 Level: (TRACE/LOW/MED) TRACE Date Received: % Moisture: not dec. Date Analyzed: 04/09/2010 GC Column: DB-624 ID: 0.53 (mm) Dilution Factor: 1.0 Soil Extract Volume: Soil Aliquot Volume: (uL) (uL) Purge Volume: 25.0 (mL)

		CONCENTRATION UNITS:	[
CAS NO.	COMPOUND	(ug/L or ug/kg) <u>ug/L</u>	Q
=======================================			========
75-71-8	Dichlorodifluoromethane	0.50	Ū
74-87-3	Chloromethane	0.50	U
75-01-4	Vinyl chloride	0.50	U
74-83-9	Bromomethane	0.50	U
75-00-3	Chloroethane	0.50	U
75-69-4	Trichlorofluoromethane	0.50	ט (
75-35-4	1,1-Dichloroethene	0.50	Ū
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	U
67-64-1	Acetone	2.6	J
75-15-0	Carbon disulfide	0.50	U
79-20-9	Methyl acetate	0.50	U U
75-09-2	Methylene chloride	0.50	υ
156-60-5	trans-1,2-Dichloroethene	0.50	υ
1634-04-4	Methyl tert-butyl ether	0.50	υ
75-34-3	1,1-Dichloroethane	0.50	υ
156-59-2	cis-1,2-Dichloroethene	0.50	υ
78-93-3	2-Butanone	1.1	J
74-97-5	Bromochloromethane	0.50	U
67-66-3	Chloroform	0.50	U U
71-55-6	1,1,1-Trichloroethane	0.50	U
110-82-7	Cyclohexane	0.50	U
56-23-5	Carbon tetrachloride	0.50	U
71-43-2	Benzene	0.50	ט
107-06-2	1,2-Dichloroethane	0.50	ט

Report 1,4-Dioxane for Low-Medium VOA analysis only

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

VBLKJN

Contract: 8E-00302 Lab Name: TESTAMERICA BURLINGTON Lab Code: STLV Case No.: CNTRALIA Mod. Ref No.: SDG No.: 136697 Matrix: (SOIL/SED/WATER) Water Lab Sample ID: VBLKJN Sample wt/vol: 25.0 (g/mL) mL Lab File ID: JAQB02F Level: (TRACE/LOW/MED) TRACE Date Received: % Moisture: not dec. Date Analyzed: 04/09/2010 GC Column: DB-624 ID: 0.53 (mm) Dilution Factor: 1.0 Soil Extract Volume: (uL) Soil Aliquot Volume: (uL) Purge Volume: 25.0 (mL)

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/kg) <u>ug/L</u>	Q
=============	***************************************		=======
79-01-6	Trichloroethene	0.50	υ
108-87-2	Methylcyclohexane	0.50	υ
78-87-5	1,2-Dichloropropane	0.50	υ
75-27-4	Bromodichloromethane	0.50	U
10061-01-5	cis-1,3-Dichloropropene	0.50	υ
108-10-1	4-Methyl-2-pentanone	5.0	υ
108-88-3	Toluene	0.50	U
10061-02-6	trans-1,3-Dichloropropene	0.50	U
79-00-5	1,1,2-Trichloroethane	0.50	U
127-18-4	Tetrachloroethene	0.50	ט
591-78-6	2-Hexanone	5.0	ט
124-48-1	Dibromochloromethane	0.50	ט
106-93-4	1,2-Dibromoethane	0.50	ט
108-90-7	Chlorobenzene	0.50	ט (
100-41-4	Ethylbenzene	0.50	ט
95-47-6	o-Xylene	0.50	ן ד
179601-23-1	m,p-Xylene	0.50	ט
100-42-5	Styrene	0.50	U U
75-25-2	Bromoform	0.50	ט
98-82-8	Isopropylbenzene	0.50	U
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U
541-73-1	1,3-Dichlorobenzene	0.50	U U
106-46-7	1,4-Dichlorobenzene	0.50	U U
95-50-1	1,2-Dichlorobenzene	0.50	U U
96-12-8	1,2-Dibromo-3-chloropropane	0.50	U U
120-82-1	1,2,4-Trichlorobenzene	0.50	U
87-61-6	1,2,3-Trichlorobenzene	0.50	U
			ĺ

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

VBLKJN

Lab Name: TESTAMERICA BURLINGTON		Contract: 8E-00302		
Lab Code: STLV Case No.: CNTRALIA	. Mod.	Ref No.:	SDG No.: 13	6697
Matrix: (SOIL/SED/WATER) Water		Lab Sample ID: VBLKJ	N	
Sample wt/vol: 25.0 (g/mL) mL		Lab File ID: JAQB02F		
Level: (TRACE or LOW/MED) TRACE		Date Received:		
% Moisture: not dec.		Date Analyzed: 04/09	/2010	
GC Column: DB-624 ID: 0.53	(mm)	Dilution Factor: 1.0		
Soil Extract Volume:	(uL)	Soil Aliquot Volume:		(uL)
CONCENTRATION UNITS:(ug/L or ug/kg)	ug/L	Purge Volume: 25.0		(mL)

	CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
01		Unknown	7.01	2.9	JX
02					
03					
04	****				
05					
06					
07					
08					
09					
10					
11					
12					
13					
14					
15					
16					
17					·····
18	••••••••••••••••••••••••••••••••••••••				
19	.			······	
20	4-1744-01-01-01-01-01-01-01-01-01-01-01-01-01-				
21					
22					
23				<u>, </u>	
24	·······			••••••••••••••••••••••••••••••••••••••	
25	******				
20				· ·	
2/					
20					
20	<u></u>				
50	E966796(1)	Total Alkanes	N/A		

(1) EPA-designated Registry Number.

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

VBLKJO

Lab Name: TESTAMERICA BURLINGTON Contract: 8E-00302 Lab Code: STLV Case No.: CNTRALIA Mod. Ref No.: SDG No.: 136697 Lab Sample ID: VBLKJO Matrix: (SOIL/SED/WATER) Water (g/mL) mL Lab File ID: JAQB02G Sample wt/vol: 25.0 Level: (TRACE/LOW/MED) TRACE Date Received: Date Analyzed: 04/10/2010 % Moisture: not dec. GC Column: DB-624 ID: 0.53 (mm) Dilution Factor: 1.0 Soil Aliquot Volume: (uL) Soil Extract Volume: (uL) Purge Volume: 25.0 (mL)

1		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/kg) <u>ug/L</u>	Q
=======================================	=======================================	================================	=======
75-71-8	Dichlorodifluoromethane	0.50	U
74-87-3	Chloromethane	0.50	U
75-01-4	Vinyl chloride	0.50	U
74-83-9	Bromomethane	0.50	U
75-00-3	Chloroethane	0.50	U
75-69-4	Trichlorofluoromethane	0.50	U
75-35-4	1,1-Dichloroethene	0.50	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	U
67-64-1	Acetone	2.6	J
75-15-0	Carbon disulfide	0.50	U
79-20-9	Methyl acetate	0.50	U
75-09-2	Methylene chloride	0.50	ט
156-60-5	trans-1,2-Dichloroethene	0.50	ט
1634-04-4	Methyl tert-butyl ether	0.50	U
75-34-3	1,1-Dichloroethane	0.50	U
156-59-2	cis-1,2-Dichloroethene	0.50	U
78-93-3	2-Butanone	1.3	J
74-97-5	Bromochloromethane	0.50	U
67-66-3	Chloroform	0.50	U
71-55-6	1,1,1-Trichloroethane	0.50	ט
110-82-7	Cyclohexane	0.50	ט
56-23-5	Carbon tetrachloride	0.50	ט
71-43-2	Benzene	0.50	ט
107-06-2	1,2-Dichloroethane	0.50	ט
			İ

Report 1,4-Dioxane for Low-Medium VOA analysis only

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

VBLKJO

Lab Name: TESTAMERICA BURLINGTON Contract: 8E-00302 Lab Code: STLV Case No.: CNTRALIA Mod. Ref No.: SDG No.: 136697 Matrix: (SOIL/SED/WATER) Water Lab Sample ID: VBLKJO Sample wt/vol: 25.0 (g/mL) mL Lab File ID: JAQB02G Level: (TRACE/LOW/MED) TRACE Date Received: % Moisture: not dec. Date Analyzed: 04/10/2010 GC Column: DB-624 ID: 0.53 (mm) Dilution Factor: 1.0 Soil Aliquot Volume: Soil Extract Volume: (uL) (uL) Purge Volume: 25.0 (mL)

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/kg) <u>ug/L</u>	Q
70 01 6	Trichloroothono		
		0.50	
		0.50	
	1,2-Dichioropropane	0.50	
10061 01 5	gig 1 2 Dichloropropono	0.50	U
10061-01-5	A Methyl 2 pertonone	0.50	U
	4-Methyl-2-pentanone	5.0	
100C1 02 C	IOIUene	0.50	
10061-02-6	1 1 0 Thisklemethere	0.50	
/9-00-5	T, 1, 2-Trichloroethane	0.50	
		0.50	
591-78-6	2-Hexanone	5.0	
124-48-1	Dibromochioromethane	0.50	
106-93-4	1,2-Dibromoethane	0.50	
108-90-7	Chlorobenzene	0.50	
100-41-4	Ethylbenzene	0.50	U
95-47-6	o-Xylene	0.50	ע א
179601-23-1	m,p-Xylene	0.50	υ
100-42-5	Styrene	0.50	υ
75-25-2	Bromoform	0.50	U
98-82-8	Isopropylbenzene	0.50	υ
79-34-5	1,1,2,2-Tetrachloroethane	0.50	ט
541-73-1	1,3-Dichlorobenzene	0.50	ט
106-46-7	1,4-Dichlorobenzene	0.50	ט
95-50-1	1,2-Dichlorobenzene	0.50	ט
96-12-8	1,2-Dibromo-3-chloropropane	0.50	U
120-82-1	1,2,4-Trichlorobenzene	0.50	U
87-61-6	1,2,3-Trichlorobenzene	0.50	U

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

VBLKJO

Lab Name: TESTAMERICA BURLINGTON Contract: 8E-00302					
Lab Code: STLV Case No.: CNTRALIA	Mod.	Ref No.:	SDG No.: 1	36697	
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: VBLKJO	C			
Sample wt/vol: 25.0 (g/mL) mL		Lab File ID: JAQB02G			
Level: (TRACE or LOW/MED) TRACE		Date Received:			
% Moisture: not dec.		Date Analyzed: 04/10/	/2010		
GC Column: DB-624 ID: 0.53	(mm)	Dilution Factor: 1.0			
Soil Extract Volume:	(uL)	Soil Aliquot Volume:		(uL)	
CONCENTRATION UNITS: (ug/L or ug/kg) ug	r/L	Purge Volume: 25.0		(mL)	

	CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
01		Unknown	7.01	2.9	
02					
03					
04				the second second second second second second second second second second second second second second second s	
05					
06				·	
07					
08					
09					
10					
11					
12					
13	*******				
14					
15					
10					
1 /					
10					
20					
20					
22		· · · · · · · · · · · · · · · · · · ·		•••••••••••••••••••••••••••••••••••••••	
23	·				·
24					
25				····	
26				•	
27					•
28	•••••				
29				·	
30					
	E966796(1)	Total Alkanes	N/A		

(1) EPA-designated Registry Number.

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

VHBLK01

Contract: 8E-00302 Lab Name: TESTAMERICA BURLINGTON Lab Code: STLV Case No.: CNTRALIA Mod. Ref No.: SDG No.: 136697 Lab Sample ID: 825170 Matrix: (SOIL/SED/WATER) Water (g/mL) mL Lab File ID: 825170 Sample wt/vol: 25.0 Level: (TRACE/LOW/MED) TRACE Date Received: Date Analyzed: 04/10/2010 % Moisture: not dec. GC Column: DB-624 ID: 0.53 (mm) Dilution Factor: 1.0 Soil Aliquot Volume: (uL) Soil Extract Volume: (uL) Purge Volume: 25.0 (mL)

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/kg) <u>ug/L</u>	Q
=======================================	***************************************	=======================================	========
75-71-8	Dichlorodifluoromethane	0.50	U
74-87-3	Chloromethane	0.50	U
75-01-4	Vinyl chloride	0.50	U
74-83-9	Bromomethane	0.50	U
75-00-3	Chloroethane	0.50	U
75-69-4	Trichlorofluoromethane	0.50	υ
75-35-4	1,1-Dichloroethene	0.50	ט
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	ט
67-64-1	Acetone	1.3	JB
75-15-0	Carbon disulfide	0.50	U
79-20-9	Methyl acetate	0.50	U U
75-09-2	Methylene chloride	0.50	U U
156-60-5	trans-1,2-Dichloroethene	0.50	ט
1634-04-4	Methyl tert-butyl ether	0.50	ט
75-34-3	1,1-Dichloroethane	0.50	U
156-59-2	cis-1,2-Dichloroethene	0.50	U
78-93-3	2-Butanone	0.46	JB
74-97-5	Bromochloromethane	0.50	U U
67-66-3	Chloroform	0.36	J
71-55-6	1,1,1-Trichloroethane	0.50	ט
110-82-7	Cyclohexane	0.50	ט
56-23-5	Carbon tetrachloride	0.50	ט
71-43-2	Benzene	0.50	ט
107-06-2	1,2-Dichloroethane	0.50	U

Report 1,4-Dioxane for Low-Medium VOA analysis only

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

VHBLK01

Lab Name: TESTAMERICA BURLINGTON Contract: 8E-00302 Lab Code: STLV Case No.: CNTRALIA Mod. Ref No.: SDG No.: 136697 Matrix: (SOIL/SED/WATER) Water Lab Sample ID: 825170 Sample wt/vol: 25.0 (g/mL) mL Lab File ID: 825170 Level: (TRACE/LOW/MED) TRACE Date Received: Date Analyzed: 04/10/2010 % Moisture: not dec. Dilution Factor: 1.0 GC Column: DB-624 ID: 0.53 (mm) Soil Aliquot Volume: Soil Extract Volume: (uL) (uL) Purge Volume: 25.0 (mL)

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/kg) $\underline{ug/L}$	Q
============	=====================================		========
79-01-6	Trichloroethene	0.50	U
108-87-2	Methylcyclohexane	0.50	U
78-87-5	1,2-Dichloropropane	0.50	U
75-27-4	Bromodichloromethane	0.50	U U
10061-01-5	cis-1,3-Dichloropropene	0.50	ט
108-10-1	4-Methyl-2-pentanone	5.0	U U
108-88-3	Toluene	0.50	U
10061-02-6	trans-1,3-Dichloropropene	0.50	U
79-00-5	1,1,2-Trichloroethane	0.50	U U
127-18-4	Tetrachloroethene	0.50	ט (
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	0.50	U
106-93-4	1,2-Dibromoethane	0.50	U U
108-90-7	Chlorobenzene	0.50	ט
100-41-4	Ethylbenzene	0.50	ט
95-47-6	o-Xylene	0.50	U
179601-23-1	m,p-Xylene	0.50	U
100-42-5	Styrene	0.50	U U
75-25-2	Bromoform	0.50	ט
98-82-8	Isopropylbenzene	0.50	U
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U
541-73-1	1,3-Dichlorobenzene	0.50	U
106-46-7	1,4-Dichlorobenzene	0.50	U
95-50-1	1,2-Dichlorobenzene	0.50	U
96-12-8	1,2-Dibromo-3-chloropropane	0.50	U
120-82-1	1,2,4-Trichlorobenzene	0.50	ן ט
87-61-6	1,2,3-Trichlorobenzene	0.50	ע

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

VHBLK01

Lab Name: TESTAMERICA BURLINGTON		Contract: 8E-00302		
Lab Code: STLV Case No.: CNTRALIA	Mod.	Ref No.:	SDG No.: 1	36697
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: 825170	D		
Sample wt/vol: 25.0 (g/mL) mL		Lab File ID: 825170		
Level: (TRACE or LOW/MED) TRACE		Date Received:		
% Moisture: not dec.		Date Analyzed: 04/10,	/2010	
GC Column: DB-624 ID: 0.53	(mm)	Dilution Factor: 1.0		
Soil Extract Volume:	(uL)	Soil Aliquot Volume:		(uL)
CONCENTRATION UNITS: (ug/L or ug/kg) ug	/L	Purge Volume: 25.0		(mL)

	CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
01		Unknown	7.01	2.6	JXB
02					
03					
04				· · · · · · · · · · · · · · · · · · ·	
05	· · · · · · · · · · · · · · · · · · ·	-			
06					
07					
08					
09					
10					
11					
12					
13					
14					
15					
16		_			
17					
18					
19					
20					
21					
22					
23			[<u></u>		
24					
25					
26					
27					
28					
29					·
30					
	T200/20(T)	I IULAI AIKANES		J	I

(1) EPA-designated Registry Number.

2A - FORM II VOA-1 WATER VOLATILE DEUTERATED MONITORING COMPOUND RECOVERY

Lab Name: TESTAMERICA BURLINGTON Contract: 8E-00302 Lab Code: STLV Case No.: CNTRALIA Mod. Ref No.: SDG No.: 136697 Level: (TRACE or LOW) TRACE

	EPA	VDMC1	VDMC2	VDMC3	VDMC4	VDMC5	VDMC6	VDMC7
	SAMPLE NO.	(VCL)#	(CLA)#	(DCE)#	(BUT)#	(CLF)#	(DCA)#	(BEN)#
01	VBLKJM	93	98	75	90	91	94	95
02	QCTBW27185	95	102	77	83	92	96	100
03	PMP3W27182	87	94	75	127	91	97	98
04	PMP2W27181DL	87	94	72	96	92	95	91
05	PMP2W27181	86	95	72	107	109	90	93
06	VBLKJN	93	97	75	82	91	94	96
07	MW02W27179DL	95	101	80	68	83	90	100
80	MW02W27179	86	95	74	103	87	90	97
09	VBLKJO	94	99	76	88	94	95	97
10	VHBLK01	98	105	78	53	85	88	103
11				 				
12								
13								
14					. <u>.</u>			
15								
16					·····			
17								
18								
19								
20			<u></u>					
21							· ·	
22							. <u> </u>	
23								
24		·						
25								
26	·						······	·
27					· ·			
28 20								·
<u> ムフ</u> 2 ヘ								
50								
								1

		QC LIMITS
VDMC1	(VCL) = Vinyl chloride-d3	(65-131)
VDMC2	(CLA) = Chloroethane-d5	(71-131)
VDMC3	(DCE) = 1,1-Dichloroethene-d2	(55-104)
VDMC4	(BUT) = 2-Butanone-d5	(49-155)
VDMC5	(CLF) = Chloroform-d	(78-121)
VDMC6	(DCA) = 1, 2-Dichloroethane-d4	(78-129)
VDMC7	(BEN) = Benzene-d6	(77-124)

Column to be used to flag recovery values
* Values outside of contract required QC limits
Page 1 of 2

2B - FORM II VOA-2 WATER VOLATILE DEUTERATED MONITORING COMPOUND RECOVERY

Lab Name: TESTAMERICA BURLINGTON Contract: 8E-00302 Lab Code: STLV Case No.: CNTRALIA Mod. Ref No.: SDG No.: 136697 Level: (TRACE or LOW) TRACE

	EPA SAMPLE NO.	VDMC8 (DPA)#	VDMC9 (TOL)#	VDMC10 (TDP)#	VDMC11 (HEX)#	VDMC12 (TCA)#	VDMC13 (DCZ)#	VDMC14 ()#	TOT OUT
	=======================================								=====
01	VBLKJM	82	95	94	82	88	95		0
02	QCTBW27185	89	101	95	81	89	96		0
03	PMP3W27182	86	98	98	122	94	100		0
04	PMP2W27181DL	81	94	91	89	87	92]	0
05	PMP2W27181	83	94	89	98	83	93		0
06	VBLKJN	83	96	93	79	88	94		0
07	MW02W27179DL	85	102	88	68	79	97		0
80	MW02W27179	82	96	88	100	87	93		0
09	VBLKJO	84	98	94	83	91	96		0
10	VHBLK01	83	104	87	49	78	94		0
11									
12									
13									
14]							
15									
16									
17									
18									
19									
20]							
21									
22									
23									
24									
25									
26	I								
27						 			
28									
29									
30									

				QC LIMIT	S
VDMC8	(DPA)	==	1,2-Dichloropropane-d6	(79-124)
VDMC9	(TOL)	=	Toluene-d8	(77-121)
VDMC10	(TDP)	=	trans-1,3-Dichloropropene-d4	(73-121)
VDMC11	(HEX)	=	2-Hexanone-d5	(28-135)
VDMC12	(TCA)	=	1,1,2,2-Tetrachloroethane-d2	(73-125)
VDMC13	(DCZ)	=	1,2-Dichlorobenzene-d4	(80-131)

Column to be used to flag recovery values
* Values outside of contract required QC limits

Report 1,4-Dioxane-d8 for Low-Medium VOA analysis only Page 2 of 2

4A - FORM IV VOA VOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

VBLKJM

Lab Name: TESTAMERICA BURLINGTON Contract: 8E-00302 Lab Code: STLV Case No.: CNTRALIA Mod. Ref No.: SDG No.: 136697 Lab File ID: JAQB03E Lab Sample ID: VBLKJM Instrument ID: J.i Matrix: (SOIL/SED/WATER) Water Date Analyzed: 04/08/2010 Level: (TRACE or LOW/MED) TRACE Time Analyzed: 0919 GC Column: DB-624 ID: 0.53 (mm) Heated Purge: (Y/N) N

	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
	=============	================================	=================	===========
01	QCTBW27185	825169	825169	1048
02	PMP3W27182	825168	825168	1115
03	PMP2W27181DL	825167D1	825167D	1544
04	PMP2W27181	825167	825167D2	1611
05				
06				
07				
80				
09				
10				
11		H. V		
12				
13				
14		·		
15				
16				
1/				
18				
19				
20		·		
21			 	
22	••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·	·	
23	·····	·		
24				
20 26				
20			,	
21				
20				
29				
30	• Martin Tankasan		·····	I

COMMENTS:

4A - FORM IV VOA VOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

VBLKJN

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302
Lab Code: STLV Case No.: CNTRALIA Mod	d. Ref No.: SDG No.: 136697
Lab File ID: JAQB02F	Lab Sample ID: VBLKJN
Instrument ID: J.i	
Matrix: (SOIL/SED/WATER) Water	Date Analyzed: 04/09/2010
Level: (TRACE or LOW/MED) TRACE	Time Analyzed: 0833
GC Column: DB-624 ID: 0.53 (mm)	Heated Purge: (Y/N) N

	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
	=============	=======================================	===============================	=======================================
01	MW02W27179DL	825166D1	825166D	0910
02	MW02W27179	825166	825166D2	0937
03	N			
04				
05		• • • • • • • • • • • • • • • • • • •		
00		· · · · · · · · · · · · · · · · · · ·		
08	· · · · · · · · · · · · · · · · · · ·			
09				
10		·	······································	
11				
12				
13				
14				
15				
16			······	
17				
18				
19				
20	PR			
21				
22				
24				
25	·			
26				
27				
28		And and a state of the state of		
29				
30				

COMMENTS: _____

4A - FORM IV VOA VOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

VBLKJO

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302
Lab Code: STLV Case No.: CNTRALIA Mo	d. Ref No.: SDG No.: 136697
Lab File ID: JAQB02G	Lab Sample ID: VBLKJO
Instrument ID: J.i	
Matrix: (SOIL/SED/WATER) Water	Date Analyzed: 04/10/2010
Level: (TRACE or LOW/MED) TRACE	Time Analyzed: 1042
GC Column: DB-624 ID: 0.53 (mm)	Heated Purge: (Y/N) N

	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
			=================	==========
01	VHBLK01	825170	825170	1125
02				
03				
04				
05				
06				
07				
08				
09				
10	·			
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				
26				
27				
28			· · ·	
29				
30				
	·	1		·

COMMENTS:

5A - FORM V VOA VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

EPA SAMPLE NO.

BFBJG

Contract: 8E-00302 Lab Name: TESTAMERICA BURLINGTON Lab Code: STLV Case No.: CNTRALIA Mod. Ref No.: SDG No.: 136697 BFB Injection Date: 04/05/2010 Lab File ID: JAQ01PV BFB Injection Time: 1223 Instrument ID: J.i GC Column: DB-624 ID: 0.53 (mm)

m/e	ION ABUNDANCE CRITERIA	& RE ABU	LATIVE NDANCE
======		======	=========
50	15.0 - 40.0% of mass 95	18.0	
75	30.0 - 80.0% of mass 95	48.7	
95	Base Peak, 100% relative abundance	100.0	
96	5.0 - 9.0% of mass 95	7.0	
173	Less than 2.0% of mass 174	0.0	(0.0)1
174	50.0 - 120.0% of mass 95	66.9	
175	5.0 - 9.0% of mass 174	6.0	(8.9)1
176	95.0 - 101.0% of mass 174	66.3	(99.2)1
177	5.0 - 9.0% of mass 176	4.5	(6.8)2
I	1 - Value is %mass 174 2 - Value is %ma	ss 176	

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	==================	=======================================	=============	===============	
01	VSTD0.5JG	VSTD0.5JG	JAQ0005V	04/05/2010	1318
02	VSTD001JG	VSTD001JG	JAQ001V	04/05/2010	1345
03	VSTD005JG	VSTD005JG	JAQ005V	04/05/2010	1412
04	VSTD010JG	VSTD010JG	JAQ010V	04/05/2010	1438
05	VSTD020JG	VSTD020JG	JAQ020V	04/05/2010	1505
06					
07					
80					
09			<u>.</u>		
10					
11					
12					
13					
14					
15					
10 17	·		<u> </u>		
10			<u></u>		
10					
20					
∠∪ 21					
21					
22		I		I	I

EPA SAMPLE NO.

BFBJM

Lab Name: TESTAMERICA BURLINGTON Contract: 8E-00302 Lab Code: STLV Case No.: CNTRALIA Mod. Ref No.: SDG No.: 136697 BFB Injection Date: 04/08/2010 Lab File ID: JAQ13PV BFB Injection Time: 0716 GC Column: DB-624 ID: 0.53 (mm)

m/e	ION ABUNDANCE CRITERIA	8 RE ABU	LATIVE NDANCE
=======	=======================================		
50	15.0 - 40.0% of mass 95	17.5	
75	30.0 - 80.0% of mass 95	48.9	
95	Base Peak, 100% relative abundance	100.0	
96	5.0 - 9.0% of mass 95	5.7	
173	Less than 2.0% of mass 174	0.2	(0.3)1
174	50.0 - 120.0% of mass 95	69.8	
175	5.0 - 9.0% of mass 174	5.5	(7.8)1
176	95.0 - 101.0% of mass 174	68.9	(98.7)1
177	5.0 - 9.0% of mass 176	4.9	(7.1)2
	1 - Value is %mass 174 2 - Value is %mas	ss 176	

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	=======================================				==========
01	VSTD005JM	VSTD005JM	JAQ005EV	04/08/2010	0852
02	VBLKJM	VBLKJM	JAQB03E	04/08/2010	0919
03	QCTBW27185	825169	825169	04/08/2010	1048
04	PMP3W27182	825168	825168	04/08/2010	1115
05	PMP2W27181DL	825167D1	825167D	04/08/2010	1544
06	PMP2W27181	825167	825167D2	04/08/2010	1611
07	VSTD005MJ	VSTD005MJ	JAQ05EC1	04/08/2010	1757
08					
09					
10					
11				·····	
12					
13					
14	. <u> </u>				
15					
16					
17					
18					
19					
20		And Addition of the Control of Co			
21					
22		1			

Page 1 of 1

Instrument ID: J.i

5A - FORM V VOA VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

EPA SAMPLE NO.

BFBJN

Lab Name: TESTAMERICA BURLINGTON Contract: 8E-00302 Lab Code: STLV Case No.: CNTRALIA Mod. Ref No.: SDG No.: 136697 BFB Injection Date: 04/09/2010 Lab File ID: JAQ15PV BFB Injection Time: 0722 Instrument ID: J.i GC Column: DB-624 ID: 0.53 (mm)

m/e	ION ABUNDANCE CRITERIA	% RE ABU	LATIVE NDANCE
======			=======
50	15.0 - 40.0% of mass 95	16.3	
75	30.0 - 80.0% of mass 95	46.3	
95	Base Peak, 100% relative abundance	100.0	
96	5.0 - 9.0% of mass 95	6.0	
173	Less than 2.0% of mass 174	0.6	(0.7)1
174	50.0 - 120.0% of mass 95	75.0	
175	5.0 - 9.0% of mass 174	6.1	(8.1)1
176	95.0 - 101.0% of mass 174	74.5	(99.3)1
177	5.0 - 9.0% of mass 176	5.3	(7.2)2
	1 - Value is %mass 174 2 - Value is %mas	ss 176	

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	===========	==================	=============	==========	=========
01	VSTD005JN	VSTD005JN	JAQ002FV	04/09/2010	0806
02	VBLKJN	VBLKJN	JAQB02F	04/09/2010	0833
03	MW02W27179DL	825166D1	825166D	04/09/2010	0910
04	MW02W27179	825166	825166D2	04/09/2010	0937
05	VSTD005NJ	VSTD005NJ	JAQ05FC1	04/09/2010	1740
06					
07					
08					
09					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					. <u></u>
21					
22					

5A - FORM V VOA VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

EPA SAMPLE NO.

BFBJO

Lab Name: TESTAMERICA BURLINGTONContract: 8E-00302Lab Code: STLVCase No.: CNTRALIAMod. Ref No.:SDG No.: 136697Lab File ID: JAQ16PVBFB Injection Date: 04/10/2010Instrument ID: J.iBFB Injection Time: 0920GC Column: DB-624ID: 0.53 (mm)

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
=======		================
50	15.0 - 40.0% of mass 95	18.1
75	30.0 - 80.0% of mass 95	48.8
95	Base Peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	6.6
173	Less than 2.0% of mass 174	0.2 (0.2)1
174	50.0 - 120.0% of mass 95	65.8
175	5.0 - 9.0% of mass 174	5.8 (8.9)1
176	95.0 - 101.0% of mass 174	64.1 (97.4)1
177	5.0 - 9.0% of mass 176	4.9 (7.7)2

2 - Value is %mass 176

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	===========	=======================================	=================		========
01	VSTD005JO	VSTD005JO	JAQ005GV	04/10/2010	1015
02	VBLKJO	VBLKJO	JAQB02G	04/10/2010	1042
03	VHBLK01	825170	825170	04/10/2010	1125
04	VSTD0050J	VSTD0050J	JAQ05GC1	04/10/2010	1925
05					
06			·····		
07					
80					
09		·····			
10		***********			
11				· <u> </u>	
12		· · · · · · · · · · · · · · · · · · ·			
13					
14			<u> </u>		······································
15					·
10		· · · · · · · · · · · · · · · · · · ·			
1/	······	····			
10					
19					
20					
21					
22		I	I		

6A - FORM VI VOA-1 VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: TESTAMERICA	BURLINGTON	Contract: 8E-00302	
Lab Code: STLV Case	e No.: CNTRALIA	Mod. Ref No.:	SDG No.: 136697
Instrument ID: J.i		Calibration Date(s):	04/05/2010 04/05/2010
Heated Purge: (Y/N)N		Calibration Time(s):	1318 1505
Purge Volume: 25.0	(mL)		
GC Column: DB-624	ID: 0.53 (mm)	Length: 75 (m)	

.....

LAB FILE ID:	RRF0.5 = JAQ	Q0005V	RRF1.0 = JAQ001V				
RRF5.0 = JAQ005V	RRF10 = JAQ0	010V	RI	RF20 = JZ	AQ020V		
				55514			8 D G D
COMPOUND	RRF0.5	RRFI.0	RRF5.0	RRFIU	RRF20		*RSD
Dichlorodifluoromethane	======================================	========= 0 437	L 0.408	0.407	0.415	0.425	5.1
Chloromethane	0.462	0.439	0.449	0.448	0.455	0.451	1.9
Vinyl chloride	0.488	0.458	0.442	0.443	0.442	0.454	4.4
Bromomethane	0.187	0.173	0.161	0.165	0.170	0.171	5.8
Chloroethane	0.273	0.279	0.254	0.254	0.254	0.263	4.6
Trichlorofluoromethane	0.524	0.522	0.507	0.501	0.502	0.511	2.2
1.1-Dichloroethene	0.320	0.313	0.300	0.296	0.301	0.306	3.3
1.1.2-Trichloro-							
1.2.2-trifluoroethane	0.348	0.330	0.315	0.310	0.314	0.323	4.8
Acetone	0.016	0.015	0.013	0.013	0.013	0.014	10.1
Carbon disulfide	1.128	0.982	0.959	0.931	0.933	0.986	8.3
Methvl acetate	0.067	0.054	0.048	0.047	0.047	0.053	16.1
Methylene chloride	0.262	0.252	0.250	0.242	0.246	0.250	3.0
trans-1,2-Dichloroethene	0.336	0.344	0.321	0.313	0.314	0.326	4.3
Methyl tert-butyl ether	0.403	0.409	0.394	0.383	0.395	0.397	2.5
1,1-Dichloroethane	0.606	0.610	0.595	0.588	0.584	0.597	1.9
cis-1,2-Dichloroethene	0.328	0.321	0.316	0.305	0.308	0.316	3.0
2-Butanone	0.029	0.028	0.027	0.027	0.028	0.028	3.2
Bromochloromethane	0.093	0.092	0.091	0.086	0.087	0.090	3.5
Chloroform	0.531	0.499	0.491	0.488	0.493	0.500	3.5
1,1,1-Trichloroethane	0.663	0.647	0.610	0.604	0.599	0.625	4.6
Cyclohexane	0.995	0.891	0.871	0.854	0.838	0.890	7.0
Carbon tetrachloride	0.554	0.529	0.509	0.510	0.507	0.522	3.8
Benzene	1.911	1.904	1.793	1.765	1.725	1.820	4.6
1,2-Dichloroethane	0.215	0.208	0.206	0.200	0.199	0.206	3.1
Trichloroethene	0.440	0.432	0.423	0.420	0.419	0.427	2.1
Methylcyclohexane	0.708	0.715	0.665	0.662	0.646	0.679	4.5

Report 1,4-Dioxane for Low-Medium VOA analysis only

6B - FORM VI VOA-2 VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302	
Lab Code: STLV Case No.: CNTRALI	A Mod. Ref No.:	SDG No.: 136697
Instrument ID: J.i	Calibration Date(s):	04/05/2010 04/05/2010
Heated Purge: (Y/N)N	Calibration Time(s):	1318 1505
Purge Volume: 25.0 (m	L)	
GC Column: DB-624 ID: 0.53 (m	m) Length: 75 (m)	

LAB FILE ID:	RRF0.5 = JA(Q0005V	RRF1.0 = JAQ001V				
RRF5.0 = JAQ005V	RRF10 = JAQ	010V	RRF20 = JAQ020V				
		1	r	I.			
COMPOUND	RRF0.5	RRF1.0	RRF5.0	RRF10	RRF20	RRF	%RSD
1,2-Dichloropropane	0.395	0.375	0.374	0.364	0.359	0.373	3.8
Bromodichloromethane	0.404	0.377	0.383	0.382	0.386	0.386	2.6
cis-1,3-Dichloropropene	0.507	0.506	0.496	0.496	0.495	0.500	1.2
4-Methyl-2-pentanone	0.096	0.098	0.097	0.095	0.097	0.096	1.0
Toluene	2.055	1.965	1.891	1.836	1.831	1.916	4.9
trans-1,3-Dichloropropene	0.343	0.336	0.348	0.343	0.345	0.343	1.3
1,1,2-Trichloroethane	0.145	0.173	0.157	0.153	0.153	0.156	6.6
Tetrachloroethene	0.361	0.353	0.329	0.327	0.329	0.340	4.6
2-Hexanone	0.059	0.062	0.061	0.061	0.062	0.061	2.0
Dibromochloromethane	0.180	0.177	0.185	0.180	0.186	0.182	2.1
1,2-Dibromoethane	0.139	0.136	0.137	0.136	0.136	0.137	1.1
Chlorobenzene	1.030	1.037	1.003	0.993	1.006	1.014	1.9
Ethylbenzene	2.210	2.158	2.092	2.087	2.091	2.128	2.6
o-Xylene	0.780	0.732	0.712	0.713	0.711	0.730	4.0
m,p-Xylene	0.804	0.815	0.785	0.777	0.783	0.793	2.0
Styrene	1.065	1.065	1.069	1.071	1.078	1.070	0.5
Bromoform	0.173	0.191	0.197	0.198	0.195	0.191	5.4
Isopropylbenzene	2.046	2.083	2.024	2.024	2.025	2.040	1.3
1,1,2,2-Tetrachloroethane	0.144	0.152	0.144	0.147	0.146	0.147	2.1
1,3-Dichlorobenzene	1.688	1.654	1.599	1.626	1.601	1.634	2.3
1,4-Dichlorobenzene	1.655	1.589	1.520	1.528	1.510	1.560	3.9
1,2-Dichlorobenzene	1.282	1.238	1.179	1.183	1.162	1.209	4.1
1,2-Dibromo-3-chloropropane	0.063	0.052	0.044	0.045	0.044	0.050	16.8
1,2,4-Trichlorobenzene	0.546	0.549	0.542	0.558	0.571	0.553	2.1
1,2,3-Trichlorobenzene	0.323	0.373	0.373	0.381	0.396	0.369	7.5

6C - FORM VI VOA-3 VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302	
Lab Code: STLV Case No.: CNTRALIA	Mod. Ref No.:	SDG No.: 136697
Instrument ID: J.i	Calibration Date(s): (04/05/2010 04/05/2010
Heated Purge: (Y/N)N	Calibration Time(s): 3	1318 1505
Purge Volume: 25.0 (mL)		
GC Column: DB-624 ID: 0.53 (mm)	Length: 75 (m)	

LAB FILE ID: RRF	0.5 = JA	Q0005V	RI	RF1.0 = 1	JAQ001V		
RRF5.0 = JAQ005V RRF10 = JAQ01			RI	RF20 = JX	AQ020V		
COMPOUND	RRF0.5	RRF1.0	RRF5.0	RRF10	RRF20	RRF	%RSD
Vinyl chloride-d3	0.452	0.420	0.399	0.389	0.396	0.411	6.2
Chloroethane-d5	0.316	0.320	0.304	0.305	0.305	0.310	2.4
1,1-Dichloroethene-d2	0.724	0.703	0.670	0.657	0.660	0.683	4.3
2-Butanone-d5	0.026	0.027	0.027	0.027	0.028	0.027	2.3
Chloroform-d	0.571	0.539	0.540	0.525	0.528	0.541	3.3
1,2-Dichloroethane-d4	0.172	0.176	0.167	0.165	0.165	0.169	3.0
Benzene-d6	1.846	1.824	1.730	1.708	1.689	1.760	4.0
1,2-Dichloropropane-d6	0.539	0.500	0.497	0.481	0.478	0.499	4.9
Toluene-d8	1.627	1.628	1.563	1.556	1.543	1.583	2.6
trans-1,3-Dichloropropene-d4	0.319	0.311	0.304	0.309	0.315	0.312	1.9
2-Hexanone-d5	0.032	0.033	0.034	0.034	0.034	0.033	2.9
1,1,2,2-Tetrachloroethane-d2	0.158	0.156	0.148	0.146	0.149	0.151	3.2
1,2-Dichlorobenzene-d4	0.774	0.783	0.759	0.761	0.744	0.764	1.9

Report 1,4-Dioxane-d8 for Low-Medium VOA analysis only

7A - FORM VII VOA-1 VOLATILE CONTINUING CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302
Lab Code: STLV Case No.: CNTRALIA	Mod. Ref No.: SDG No.: 136697
Instrument ID: J.i	Calibration Date: 04/08/2010 Time: 0852
Lab File ID: JAQ005EV	<pre>Init. Calib. Date(s): 04/05/2010 04/05/2010</pre>
EPA Sample No.(VSTD#####): VSTD005JM	Init. Calib. Time(s): 1318 1505
Heated Purge: (Y/N)N GC Column: DB-6	524 ID: 0.53 (mm) Length: 75 (m)
Purge Volume: 25.0 (r	nL)

			MIN		
COMPOUND	RRF	RRF5.0	RRF	%D	MAX %D
Dichlorodifluoromethane	0.425	0.404	0.010	-4.9	40.0
Chloromethane	0.451	0.462	0.010	2.6	40.0
Vinyl chloride	0.454	0.455	0.100	0.0	30.0
Bromomethane	0.171	0.161	0.100	-6.2	30.0
Chloroethane	0.263	0.257	0.010	-2.3	40.0
Trichlorofluoromethane	0.511	0.501	0.010	-2.0	40.0
1,1-Dichloroethene	0.306	0.292	0.100	-4.5	30.0
1,1,2-Trichloro-1,2,2-trifluoroethane	0.323	0.317	0.010	-1.8	40.0
Acetone	0.014	0.012	0.010	-13.8	40.0
Carbon disulfide	0.986	0.925	0.010	-6.2	40.0
Methyl acetate	0.053	0.046	0.010	-12.5	40.0
Methylene chloride	0.250	0.229	0.010	-8.7	40.0
trans-1,2-Dichloroethene	0.326	0.316	0.010	-3.1	40.0
Methyl tert-butyl ether	0.397	0.350	0.010	-11.9	40.0
1,1-Dichloroethane	0.597	0.583	0.200	-2.2	30.0
cis-1,2-Dichloroethene	0.316	0.299	0.010	-5.4	40.0
2-Butanone	0.028	0.024	0.010	-14.0	40.0
Bromochloromethane	0.090	0.084	0.050	-5.8	30.0
Chloroform	0.500	0.476	0.200	-4.8	30.0
1,1,1-Trichloroethane	0.625	0.632	0.100	1.1	30.0
Cyclohexane	0.890	0.886	0.010	-0.4	40.0
Carbon tetrachloride	0.522	0.532	0.100	1.9	30.0
Benzene	1.820	1.771	0.400	-2.7	30.0
1,2-Dichloroethane	0.206	0.191	0.100	-7.2	30.0
Trichloroethene	0.427	0.432	0.300	1.3	30.0
Methylcyclohexane	0.679	0.694	0.010	2.1	40.0

Report 1,4-Dioxane for Low-Medium VOA analysis only

7B - FORM VII VOA-2 VOLATILE CONTINUING CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302
Lab Code: STLV Case No.: CNTRALIA	Mod. Ref No.: SDG No.: 136697
Instrument ID: J.i	Calibration Date: 04/08/2010 Time: 0852
Lab File ID: JAQ005EV	Init. Calib. Date(s): 04/05/2010 04/05/2010
EPA Sample No.(VSTD#####): VSTD005JM	Init. Calib. Time(s): 1318 1505
Heated Purge: (Y/N)N GC Column: DB-6	524 ID: 0.53 (mm) Length: 75 (m)
Purge Volume: 25.0 (r	nL)

COMPOUND	RRF	RRF5.0	MIN RRF	%D	MAX %D
	===========				=======
1,2-Dichloropropane	0.373	0.369	0.010	-1.1	40.0
Bromodichloromethane	0.386	0.374	0.200	-3.1	30.0
cis-1,3-Dichloropropene	0.500	0.483	0.200	-3.3	30.0
4-Methyl-2-pentanone	0.096	0.089	0.010	-8.1	40.0
Toluene	1.916	1.878	0.400	-2.0	30.0
trans-1,3-Dichloropropene	0.343	0.341	0.100	-0.6	30.0
1,1,2-Trichloroethane	0.156	0.148	0.100	-5.1	30.0
Tetrachloroethene	0.340	0.342	0.100	0.6	30.0
2-Hexanone	0.061	0.057	0.010	-7.0	40.0
Dibromochloromethane	0.182	0.173	0.100	-4.6	30.0
1,2-Dibromoethane	0.137	0.130	0.010	-5.1	30.0
Chlorobenzene	1.014	1.002	0.500	-1.2	30.0
Ethylbenzene	2.128	2.127	0.100	-0.0	30.0
o-Xylene	0.730	0.713	0.300	-2.3	30.0
m,p-Xylene	0.793	0.786	0.300	-0.8	30.0
Styrene	1.070	1.046	0.300	-2.2	30.0
Bromoform	0.191	0.185	0.050	-3.1	30.0
Isopropylbenzene	2.040	2.054	0.010	0.7	40.0
1,1,2,2-Tetrachloroethane	0.147	0.138	0.100	-6.2	30.0
1,3-Dichlorobenzene	1.634	1.554	0.400	-4.9	30.0
1,4-Dichlorobenzene	1.560	1.503	0.400	-3.7	30.0
1,2-Dichlorobenzene	1.209	1.117	0.400	-7.6	30.0
1,2-Dibromo-3-chloropropane	0.050	0.039	0.010	-21.1	40.0
1,2,4-Trichlorobenzene	0.553	0.516	0.200	-6.6	30.0
1,2,3-Trichlorobenzene	0.369	0.351	0.200	-4.9	30.0

7C - FORM VII VOA-3 VOLATILE CONTINUING CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTONContract: 8E-00302Lab Code: STLVCase No.: CNTRALIAMod. Ref No.:SDG No.: 136697Instrument ID: J.iCalibration Date: 04/08/2010 Time: 0852Lab File ID: JAQ005EVInit. Calib. Date(s): 04/05/2010 04/05/2010EPA Sample No.(VSTD#####): VSTD005JMInit. Calib. Time(s): 13181505Heated Purge: (Y/N)NGC Column: DB-624ID: 0.53(mm) Length: 75(m)Purge Volume: 25.0(mL)(mL)(mL)(mL)

COMPOUND	RRF	RRF5.0	MIN RRF	%D	MAX %D
	=========				=======
Vinyl chloride-d3	0.411	0.405	0.010	-1.4	30.0
Chloroethane-d5	0.310	0.311	0.010	0.2	40.0
1,1-Dichloroethene-d2	0.683	0.674	0.010	-1.3	30.0
2-Butanone-d5	0.027	0.023	0.010	-12.7	40.0
Chloroform-d	0.541	0.505	0.010	-6.6	30.0
1,2-Dichloroethane-d4	0.169	0.160	0.010	-5.4	30.0
Benzene-d6	1.760	1.732	0.400	-1.6	30.0
1,2-Dichloropropane-d6	0.499	0.432	0.010	-13.5	40.0
Toluene-d8	1.583	1.576	0.010	-0.5	30.0
trans-1,3-Dichloropropene-d4	0.312	0.306	0.010	-1.8	30.0
2-Hexanone-d5	0.033	0.028	0.010	-14.8	40.0
1,1,2,2-Tetrachloroethane-d2	0.151	0.140	0.010	-7.7	30.0
1,2-Dichlorobenzene-d4	0.764	0.723	0.010	-5.4	30.0

Report 1,4-Dioxane-d8 for Low-Medium VOA analysis only
7A - FORM VII VOA-1 VOLATILE CONTINUING CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302
Lab Code: STLV Case No.: CNTRALIA	Mod. Ref No.: SDG No.: 136697
Instrument ID: J.i	Calibration Date: 04/08/2010 Time: 1757
Lab File ID: JAQ05EC1	Init. Calib. Date(s): 04/05/2010 04/05/2010
EPA Sample No.(VSTD#####): VSTD005MJ	Init. Calib. Time(s): 1318 1505
Heated Purge: (Y/N)N GC Column: DB-6	524 ID: 0.53 (mm) Length: 75 (m)
Purge Volume: 25.0 (r	nL)

			MIN		
COMPOUND	RRF	RRF5.0	RRF	%D	MAX %D
	0.425	0.446	0.010	⊃.⊥ 11 7	50.0
	0.451	0.503	0.010		50.0
Vinyl chloride	0.454	0.492	0.010	8.3	50.0
Bromomethane	0.171	0.173	0.010	1.2	50.0
Chloroethane	0.263	0.283	0.010	7.8	50.0
Trichlorofluoromethane	0.511	0.545	0.010	6.5	50.0
1,1-Dichloroethene	0.306	0.317	0.010	3.5	50.0
1,1,2-Trichloro-1,2,2-trifluoroethane	0.323	0.344	0.010	6.4	50.0
Acetone	0.014	0.011	0.010	-19.4	50.0
Carbon disulfide	0.986	1.012	0.010	2.6	50.0
Methyl acetate	0.053	0.047	0.010	-10.0	50.0
Methylene chloride	0.250	0.254	0.010	1.6	50.0
trans-1,2-Dichloroethene	0.326	0.342	0.010	5.2	50.0
Methyl tert-butyl ether	0.397	0.367	0.010	-7.6	50.0
1,1-Dichloroethane	0.597	0.626	0.010	5.0	50.0
cis-1,2-Dichloroethene	0.316	0.324	0.010	2.7	50.0
2-Butanone	0.028	0.025	0.010	-9.6	50.0
Bromochloromethane	0.090	0.091	0.010	1.4	50.0
Chloroform	0.500	0.524	0.010	4.8	50.0
1,1,1-Trichloroethane	0.625	0.666	0.010	6.7	50.0
Cyclohexane	0.890	0.940	0.010	5.7	50.0
Carbon tetrachloride	0.522	0.553	0.010	6.0	50.0
Benzene	1.820	1.879	0.010	3.2	50.0
1,2-Dichloroethane	0.206	0.210	0.010	2.1	50.0
Trichloroethene	0.427	0.456	0.010	6.8	50.0
Methylcyclohexane	0.679	0.724	0.010	6.5	50.0
	•	-		-	·

Report 1,4-Dioxane for Low-Medium VOA analysis only

7B - FORM VII VOA-2 VOLATILE CONTINUING CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302
Lab Code: STLV Case No.: CNTRALIA	Mod. Ref No.: SDG No.: 136697
Instrument ID: J.i	Calibration Date: 04/08/2010 Time: 1757
Lab File ID: JAQ05EC1	Init. Calib. Date(s): 04/05/2010 04/05/2010
EPA Sample No.(VSTD#####): VSTD005MJ	Init. Calib. Time(s): 1318 1505
Heated Purge: (Y/N)N GC Column: DB-6	624 ID: 0.53 (mm) Length: 75 (m)
Purge Volume: 25.0 (r	nL)

COMPOUND	RRF	RRF5.0	MIN RRF	۶D	MAX %D
=====================================	0.373	0.386	0.010	3.3	50.0
Bromodichloromethane	0.386	0.392	0.010	1.6	50.0
cis-1,3-Dichloropropene	0.500	0.502	0.010	0.5	50.0
4-Methyl-2-pentanone	0.096	0.092	0.010	-4.4	50.0
Toluene	1.916	1.972	0.010	2.9	50.0
trans-1,3-Dichloropropene	0.343	0.345	0.010	0.7	50.0
1,1,2-Trichloroethane	0.156	0.157	0.010	0.2	50.0
Tetrachloroethene	0.340	0.357	0.010	5.2	50.0
2-Hexanone	0.061	0.059	0.010	-3.6	50.0
Dibromochloromethane	0.182	0.183	0.010	0.8	50.0
1,2-Dibromoethane	0.137	0.136	0.010	-0.9	50.0
Chlorobenzene	1.014	1.036	0.010	2.2	50.0
Ethylbenzene	2.128	2.234	0.010	5.0	50.0
o-Xylene	0.730	0.754	0.010	3.3	50.0
m,p-Xylene	0.793	0.826	0.010	4.2	50.0
Styrene	1.070	1.088	0.010	1.8	50.0
Bromoform	0.191	0.191	0.010	0.3	50.0
Isopropylbenzene	2.040	2.155	0.010	5.7	50.0
1,1,2,2-Tetrachloroethane	0.147	0.139	0.010	-4.9	50.0
1,3-Dichlorobenzene	1.634	1.655	0.010	1.3	50.0
1,4-Dichlorobenzene	1.560	1.563	0.010	0.2	50.0
1,2-Dichlorobenzene	1.209	1.214	0.010	0.5	50.0
1,2-Dibromo-3-chloropropane	0.050	0.041	0.010	-17.9	50.0
1,2,4-Trichlorobenzene	0.553	0.540	0.010	-2.4	50.0
1,2,3-Trichlorobenzene	0.369	0.360	0.010	-2.4	50.0

7C - FORM VII VOA-3 VOLATILE CONTINUING CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302
Lab Code: STLV Case No.: CNTRALIA	Mod. Ref No.: SDG No.: 136697
Instrument ID: J.i	Calibration Date: 04/08/2010 Time: 1757
Lab File ID: JAQ05EC1	Init. Calib. Date(s): 04/05/2010 04/05/2010
EPA Sample No.(VSTD#####): VSTD005MJ	Init. Calib. Time(s): 1318 1505
Heated Purge: (Y/N)N GC Column: DB-	624 ID: 0.53 (mm) Length: 75 (m)
Purge Volume: 25.0 (1	mL)

COMPOUND	RRF	RRF5.0	MIN RRF	۶D	MAX %D
=====================================					============
Vinyl chloride-d3	0.411	0.437	0.010	6.3	50.0
Chloroethane-d5	0.310	0.332	0.010	7.0	50.0
1,1-Dichloroethene-d2	0.683	0.726	0.010	6.3	50.0
2-Butanone-d5	0.027	0.025	0.010	-7.4	50.0
Chloroform-d	0.541	0.549	0.010	1.6	50.0
1,2-Dichloroethane-d4	0.169	0.172	0.010	1.8	50.0
Benzene-d6	1.760	1.812	0.010	3.0	50.0
1,2-Dichloropropane-d6	0.499	0.503	0.010	0.9	50.0
Toluene-d8	1.583	1.674	0.010	5.7	50.0
trans-1,3-Dichloropropene-d4	0.312	0.313	0.010	0.6	50.0
2-Hexanone-d5	0.033	0.029	0.010	-13.1	50.0
1,1,2,2-Tetrachloroethane-d2	0.151	0.144	0.010	-4.8	50.0
1,2-Dichlorobenzene-d4	0.764	0.773	0.010	1.2	50.0
	•	•		- 	-

Report 1,4-Dioxane-d8 for Low-Medium VOA analysis only

7A - FORM VII VOA-1 VOLATILE CONTINUING CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302
Lab Code: STLV Case No.: CNTRALIA	Mod. Ref No.: SDG No.: 136697
Instrument ID: J.i	Calibration Date: 04/09/2010 Time: 0806
Lab File ID: JAQ002FV	Init. Calib. Date(s): 04/05/2010 04/05/2010
EPA Sample No.(VSTD#####): VSTD005JN	Init. Calib. Time(s): 1318 1505
Heated Purge: (Y/N)N GC Column: DB-6	524 ID: 0.53 (mm) Length: 75 (m)
Purge Volume: 25.0 (m	nL)

			MIN	_	
COMPOUND	RRF	RRF5.0	RRF	¦ %D	MAX %D
=====================================	0 425		0 010		40 0
Chloromethane	0.451	0.475	0.010	5.5	40.0
Vinvl chloride	0 454	0.480	0.100	5.6	30.0
Bromomethane	0.171	0.182	0.100	6.1	30.0
Chloroethane	0.263	0.275	0.010	4.6	40.0
Trichlorofluoromethane	0.511	0.527	0.010	3.0	40.0
1.1-Dichloroethene	0.306	0.299	0.100	-2.2	30.0
1,1,2-Trichloro-1,2,2-trifluoroethane	0.323	0.326	0.010	0.8	40.0
Acetone	0.014	0.012	0.010	-15.9	40.0
Carbon disulfide	0.986	0.964	0.010	-2.3	40.0
Methyl acetate	0.053	0.048	0.010	-9.2	40.0
Methylene chloride	0.250	0.243	0.010	-2.8	40.0
trans-1,2-Dichloroethene	0.326	0.319	0.010	-2.0	40.0
Methyl tert-butyl ether	0.397	0.356	0.010	-10.2	40.0
1,1-Dichloroethane	0.597	0.597	0.200	0.0	30.0
cis-1,2-Dichloroethene	0.316	0.312	0.010	-1.1	40.0
2-Butanone	0.028	0.025	0.010	-10.8	40.0
Bromochloromethane	0.090	0.087	0.050	-3.0	30.0
Chloroform	0.500	0.499	0.200	-0.2	30.0
1,1,1-Trichloroethane	0.625	0.639	0.100	2.2	30.0
Cyclohexane	0.890	0.922	0.010	3.6	40.0
Carbon tetrachloride	0.522	0.536	0.100	2.7	30.0
Benzene	1.820	1.834	0.400	0.8	30.0
1,2-Dichloroethane	0.206	0.201	0.100	-2.3	30.0
Trichloroethene	0.427	0.432	0.300	1.3	30.0
Methylcyclohexane	0.679	0.706	0.010	3.9	40.0

Report 1,4-Dioxane for Low-Medium VOA analysis only

7B - FORM VII VOA-2 VOLATILE CONTINUING CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302
Lab Code: STLV Case No.: CNTRALIA	Mod. Ref No.: SDG No.: 136697
Instrument ID: J.i	Calibration Date: 04/09/2010 Time: 0806
Lab File ID: JAQ002FV	Init. Calib. Date(s): 04/05/2010 04/05/2010
EPA Sample No.(VSTD#####): VSTD005JN	Init. Calib. Time(s): 1318 1505
Heated Purge: (Y/N)N GC Column: DB-	524 ID: 0.53 (mm) Length: 75 (m)
Purge Volume: 25.0 (1	nL)

			MIN		
COMPOUND	RRF	RRF5.0	RRF	%D	MAX %D
	=============				=======
1,2-Dichloropropane	0.373	0.372	0.010	-0.3	40.0
Bromodichloromethane	0.386	0.380	0.200	-1.6	30.0
cis-1,3-Dichloropropene	0.500	0.495	0.200	-0.9	30.0
4-Methyl-2-pentanone	0.096	0.089	0.010	-7.8	40.0
Toluene	1.916	1.929	0.400	0.7	30.0
trans-1,3-Dichloropropene	0.343	0.338	0.100	-1.4	30.0
1,1,2-Trichloroethane	0.156	0.149	0.100	-4.3	30.0
Tetrachloroethene	0.340	0.345	0.100	1.7	30.0
2-Hexanone	0.061	0.056	0.010	-8.6	40.0
Dibromochloromethane	0.182	0.175	0.100	-3.7	30.0
1,2-Dibromoethane	0.137	0.131	0.010	-4.0	30.0
Chlorobenzene	1.014	0.992	0.500	-2.2	30.0
Ethylbenzene	2.128	2.180	0.100	2.5	30.0
o-Xylene	0.730	0.721	0.300	-1.2	30.0
m,p-Xylene	0.793	0.821	0.300	3.5	30.0
Styrene	1.070	1.071	0.300	0.2	30.0
Bromoform	0.191	0.192	0.050	0.4	30.0
Isopropylbenzene	2.040	2.103	0.010	3.1	40.0
1,1,2,2-Tetrachloroethane	0.147	0.137	0.100	-6.7	30.0
1,3-Dichlorobenzene	1.634	1.607	0.400	-1.6	30.0
1,4-Dichlorobenzene	1.560	1.544	0.400	-1.1	30.0
1,2-Dichlorobenzene	1.209	1.182	0.400	-2.2	30.0
1,2-Dibromo-3-chloropropane	0.050	0.042	0.010	-15.9	40.0
1,2,4-Trichlorobenzene	0.553	0.535	0.200	-3.3	30.0
1,2,3-Trichlorobenzene	0.369	0.357	0.200	-3.3	30.0
		-	-	-	-

7C - FORM VII VOA-3 VOLATILE CONTINUING CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302
Lab Code: STLV Case No.: CNTRALIA	Mod. Ref No.: SDG No.: 136697
Instrument ID: J.i	Calibration Date: 04/09/2010 Time: 0806
Lab File ID: JAQ002FV	Init. Calib. Date(s): 04/05/2010 04/05/2010
EPA Sample No.(VSTD#####): VSTD005JN	Init. Calib. Time(s): 1318 1505
Heated Purge: (Y/N)N GC Column: DB-	-624 ID: 0.53 (mm) Length: 75 (m)
Purge Volume: 25.0	(mL)

COMPOUND	RRF	RRF5.0	MIN RRF	%D	MAX %D
=====================================	======================================	======================================		2 1	========= 30 0
Chloroethane-d5	0.310	0.322	0.010	3.8	40.0
1.1-Dichloroethene-d2	0.683	0.700	0.010	2.5	30.0
2-Butanone-d5	0.027	0.023	0.010	-13.0	40.0
Chloroform-d	0.541	0.530	0.010	-1.9	30.0
1,2-Dichloroethane-d4	0.169	0.166	0.010	-2.0	30.0
Benzene-d6	1.760	1.759	0.400	-0.0	30.0
1,2-Dichloropropane-d6	0.499	0.441	0.010	-11.6	40.0
Toluene-d8	1.583	1.619	0.010	2.2	30.0
trans-1,3-Dichloropropene-d4	0.312	0.302	0.010	-3.1	30.0
2-Hexanone-d5	0.033	0.028	0.010	-15.5	40.0
1,1,2,2-Tetrachloroethane-d2	0.151	0.137	0.010	-9.2	30.0
1,2-Dichlorobenzene-d4	0.764	0.760	0.010	-0.6	30.0

Report 1,4-Dioxane-d8 for Low-Medium VOA analysis only

7A - FORM VII VOA-1 VOLATILE CONTINUING CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302
Lab Code: STLV Case No.: CNTRALIA	Mod. Ref No.: SDG No.: 136697
Instrument ID: J.i	Calibration Date: 04/09/2010 Time: 1740
Lab File ID: JAQ05FC1	Init. Calib. Date(s): 04/05/2010 04/05/2010
EPA Sample No.(VSTD#####): VSTD005NJ	Init. Calib. Time(s): 1318 1505
Heated Purge: (Y/N)N GC Column: DB-	624 ID: 0.53 (mm) Length: 75 (m)
Purge Volume: 25.0	mL)

	<u> </u>		MIN	_	
COMPOUND	RRF	RRF5.0	RRF	%D	MAX %D
=====================================	0 425	0.425	0.010	 0.1	50.0
Chloromethane	0.451	0.482	0.010	7.0	50.0
Vinvl chloride	0.454	0.468	0.010	3.0	50.0
Bromomethane	0.171	0.166	0.010	-3.3	50.0
Chloroethane	0.263	0.268	0.010	1.9	50.0
Trichlorofluoromethane	0.511	0.510	0.010	-0.3	50.0
1.1-Dichloroethene	0.306	0.299	0.010	-2.2	50.0
1,1,2-Trichloro-1,2,2-trifluoroethane	0.323	0.329	0.010	1.7	50.0
Acetone	0.014	0.012	0.010	-15.4	50.0
Carbon disulfide	0.986	0.956	0.010	-3.1	50.0
Methyl acetate	0.053	0.048	0.010	-9.4	50.0
Methylene chloride	0.250	0.248	0.010	-1.1	50.0
trans-1,2-Dichloroethene	0.326	0.322	0.010	-1.0	50.0
Methyl tert-butyl ether	0.397	0.368	0.010	-7.2	50.0
1,1-Dichloroethane	0.597	0.593	0.010	-0.6	50.0
cis-1,2-Dichloroethene	0.316	0.308	0.010	-2.5	50.0
2-Butanone	0.028	0.026	0.010	-6.4	50.0
Bromochloromethane	0.090	0.086	0.010	-4.4	50.0
Chloroform	0.500	0.498	0.010	-0.6	50.0
1,1,1-Trichloroethane	0.625	0.631	0.010	1.0	50.0
Cyclohexane	0.890	0.894	0.010	0.5	50.0
Carbon tetrachloride	0.522	0.528	0.010	1.1	50.0
Benzene	1.820	1.817	0.010	-0.2	50.0
1,2-Dichloroethane	0.206	0.203	0.010	-1.3	50.0
Trichloroethene	0.427	0.430	0.010	0.7	50.0
Methylcyclohexane	0.679	0.700	0.010	3.1	50.0

Report 1,4-Dioxane for Low-Medium VOA analysis only

7B - FORM VII VOA-2 VOLATILE CONTINUING CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302
Lab Code: STLV Case No.: CNTRALIA	Mod. Ref No.: SDG No.: 136697
Instrument ID: J.i	Calibration Date: 04/09/2010 Time: 1740
Lab File ID: JAQ05FC1	Init. Calib. Date(s): 04/05/2010 04/05/2010
EPA Sample No.(VSTD#####): VSTD005NJ	Init. Calib. Time(s): 1318 1505
Heated Purge: (Y/N)N GC Column: DB-6	624 ID: 0.53 (mm) Length: 75 (m)
Purge Volume: 25.0 (r	nL)

			MIN		
COMPOUND	RRF	RRF5.0	RRF	%D	MAX %D
= & = = = = = = = = = = = = = = = = =			==========		
1,2-Dichloropropane	0.373	0.374	0.010	0.2	50.0
Bromodichloromethane	0.386	0.380	0.010	-1.7	50.0
cis-1,3-Dichloropropene	0.500	0.493	0.010	-1.3	50.0
4-Methyl-2-pentanone	0.096	0.092	0.010	-4.3	50.0
Toluene	1.916	1.902	0.010	-0.7	50.0
trans-1,3-Dichloropropene	0.343	0.342	0.010	-0.3	50.0
1,1,2-Trichloroethane	0.156	0.151	0.010	-3.1	50.0
Tetrachloroethene	0.340	0.347	0.010	2.1	50.0
2-Hexanone	0.061	0.059	0.010	-3.1	50.0
Dibromochloromethane	0.182	0.181	0.010	-0.4	50.0
1,2-Dibromoethane	0.137	0.132	0.010	-3.5	50.0
Chlorobenzene	1.014	1.019	0.010	0.6	50.0
Ethylbenzene	2.128	2.131	0.010	0.2	50.0
o-Xylene	0.730	0.724	0.010	-0.8	50.0
m,p-Xylene	0.793	0.800	0.010	0.9	50.0
Styrene	1.070	1.064	0.010	-0.5	50.0
Bromoform	0.191	0.180	0.010	-5.6	50.0
Isopropylbenzene	2.040	2.085	0.010	2.2	50.0
1,1,2,2-Tetrachloroethane	0.147	0.144	0.010	-1.7	50.0
1,3-Dichlorobenzene	1.634	1.571	0.010	-3.8	50.0
1,4-Dichlorobenzene	1.560	1.508	0.010	-3.4	50.0
1,2-Dichlorobenzene	1.209	1.154	0.010	-4.5	50.0
1,2-Dibromo-3-chloropropane	0.050	0.040	0.010	-19.3	50.0
1,2,4-Trichlorobenzene	0.553	0.538	0.010	-2.6	50.0
1,2,3-Trichlorobenzene	0.369	0.383	0.010	3.7	50.0

7C - FORM VII VOA-3 VOLATILE CONTINUING CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302
Lab Code: STLV Case No.: CNTRALIA	Mod. Ref No.: SDG No.: 136697
Instrument ID: J.i	Calibration Date: 04/09/2010 Time: 1740
Lab File ID: JAQ05FC1	Init. Calib. Date(s): 04/05/2010 04/05/2010
EPA Sample No.(VSTD#####): VSTD005NJ	Init. Calib. Time(s): 1318 1505
Heated Purge: (Y/N)N GC Column: DB-	624 ID: 0.53 (mm) Length: 75 (m)
Purge Volume: 25.0 (1	mL)

COMPOUND	RRF	RRF5.0	MIN RRF	%D	MAX %D
=====================================	0.411	0.413	0.010	0.4	50.0
Chloroethane-d5	0.310	0.322	0.010	3.8	50.0
1,1-Dichloroethene-d2	0.683	0.686	0.010	0.5	50.0
2-Butanone-d5	0.027	0.026	0.010	-4.8	50.0
Chloroform-d	0.541	0.533	0.010	-1.3	50.0
1,2-Dichloroethane-d4	0.169	0.167	0.010	-1.4	50.0
Benzene-d6	1.760	1.744	0.010	-0.9	50.0
1,2-Dichloropropane-d6	0.499	0.494	0.010	-1.1	50.0
Toluene-d8	1.583	1.598	0.010	0.9	50.0
trans-1,3-Dichloropropene-d4	0.312	0.308	0.010	-1.3	50.0
2-Hexanone-d5	0.033	0.030	0.010	-11.3	50.0
1,1,2,2-Tetrachloroethane-d2	0.151	0.140	0.010	-7.9	50.0
1,2-Dichlorobenzene-d4	0.764	0.748	0.010	-2.1	50.0

Report 1,4-Dioxane-d8 for Low-Medium VOA analysis only

7A - FORM VII VOA-1 VOLATILE CONTINUING CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302
Lab Code: STLV Case No.: CNTRALIA	Mod. Ref No.: SDG No.: 136697
Instrument ID: J.i	Calibration Date: 04/10/2010 Time: 1015
Lab File ID: JAQ005GV	Init. Calib. Date(s): 04/05/2010 04/05/2010
EPA Sample No.(VSTD#####): VSTD005JO	Init. Calib. Time(s): 1318 1505
Heated Purge: (Y/N)N GC Column: DB-	624 ID: 0.53 (mm) Length: 75 (m)
Purge Volume: 25.0 (1	mL)

			MIN		
COMPOUND	RRF	RRF5.0	RRF	%D	MAX %D
Dichlorodifluoromethane	0.425	0.427	0.010	0.6	40.0
Chloromethane	0.451	0.479	0.010	6.4	40.0
Vinyl chloride	0.454	0.477	0.100	4.9	30.0
Bromomethane	0.171	0.185	0.100	7.8	30.0
Chloroethane	0.263	0.268	0.010	2.0	40.0
Trichlorofluoromethane	0.511	0.523	0.010	2.2	40.0
1,1-Dichloroethene	0.306	0.305	0.100	-0.2	30.0
1,1,2-Trichloro-1,2,2-trifluoroethane	0.323	0.333	0.010	2.9	40.0
Acetone	0.014	0.012	0.010	-15.6	40.0
Carbon disulfide	0.986	0.977	0.010	-1.0	40.0
Methyl acetate	0.053	0.046	0.010	-12.3	40.0
Methylene chloride	0.250	0.240	0.010	-4.2	40.0
trans-1,2-Dichloroethene	0.326	0.333	0.010	2.4	40.0
Methyl tert-butyl ether	0.397	0.356	0.010	-10.2	40.0
1,1-Dichloroethane	0.597	0.611	0.200	2.4	30.0
cis-1,2-Dichloroethene	0.316	0.313	0.010	-0.8	40.0
2-Butanone	0.028	0.024	0.010	-13.6	40.0
Bromochloromethane	0.090	0.087	0.050	-2.4	30.0
Chloroform	0.500	0.509	0.200	1.7	30.0
1,1,1-Trichloroethane	0.625	0.644	0.100	3.1	30.0
Cyclohexane	0.890	0.933	0.010	4.8	40.0
Carbon tetrachloride	0.522	0.543	0.100	4.1	30.0
Benzene	1.820	1.838	0.400	1.0	30.0
1,2-Dichloroethane	0.206	0.203	0.100	-1.3	30.0
Trichloroethene	0.427	0.442	0.300	3.6	30.0
Methylcyclohexane	0.679	0.716	0.010	5.4	40.0

Report 1,4-Dioxane for Low-Medium VOA analysis only

7B - FORM VII VOA-2 VOLATILE CONTINUING CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302
Lab Code: STLV Case No.: CNTRALIA	Mod. Ref No.: SDG No.: 136697
Instrument ID: J.i	Calibration Date: 04/10/2010 Time: 1015
Lab File ID: JAQ005GV	Init. Calib. Date(s): 04/05/2010 04/05/2010
EPA Sample No.(VSTD#####): VSTD005JO	Init. Calib. Time(s): 1318 1505
Heated Purge: (Y/N)N GC Column: DB-	624 ID: 0.53 (mm) Length: 75 (m)
Purge Volume: 25.0 (r	nL)

COMPOUND	RRF	RRF5.0	MIN RRF	%D	MAX %D
1.2-Dichloropropane	========= 0.373	0.370	0.010	-0.8	40.0
Bromodichloromethane	0.386	0.380	0.200	-1.6	30.0
cis-1,3-Dichloropropene	0.500	0.497	0.200	-0.6	30.0
4-Methyl-2-pentanone	0.096	0.089	0.010	-7.2	40.0
Toluene	1.916	1.932	0.400	0.9	30.0
trans-1,3-Dichloropropene	0.343	0.336	0.100	-1.9	30.0
1,1,2-Trichloroethane	0.156	0.152	0.100	-2.7	30.0
Tetrachloroethene	0.340	0.361	0.100	6.3	30.0
2-Hexanone	0.061	0.057	0.010	-6.7	40.0
Dibromochloromethane	0.182	0.180	0.100	-1.0	30.0
1,2-Dibromoethane	0.137	0.132	0.010	-3.7	30.0
Chlorobenzene	1.014	1.013	0.500	-0.0	30.0
Ethylbenzene	2.128	2.168	0.100	1.9	30.0
o-Xylene	0.730	0.731	0.300	0.2	30.0
m,p-Xylene	0.793	0.817	0.300	3.0	30.0
Styrene	1.070	1.077	0.300	0.7	30.0
Bromoform	0.191	0.186	0.050	-2.6	30.0
Isopropylbenzene	2.040	2.122	0.010	4.0	40.0
1,1,2,2-Tetrachloroethane	0.147	0.132	0.100	-9.9	30.0
1,3-Dichlorobenzene	1.634	1.618	0.400	-0.9	30.0
1,4-Dichlorobenzene	1.560	1.531	0.400	-1.9	30.0
1,2-Dichlorobenzene	1.209	1.162	0.400	-3.9	30.0
1,2-Dibromo-3-chloropropane	0.050	0.040	0.010	-19.5	40.0
1,2,4-Trichlorobenzene	0.553	0.525	0.200	-5.0	30.0
1,2,3-Trichlorobenzene	0.369	0.346	0.200	-6.4	30.0

7C - FORM VII VOA-3 VOLATILE CONTINUING CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTONContract: 8E-00302Lab Code: STLVCase No.: CNTRALIAMod. Ref No.:SDG No.: 136697Instrument ID: J.iCalibration Date: 04/10/2010 Time: 1015Lab File ID: JAQ005GVInit. Calib. Date(s): 04/05/2010 04/05/2010EPA Sample No.(VSTD#####): VSTD005JOInit. Calib. Time(s): 13181505Heated Purge: (Y/N)NGC Column: DB-624ID: 0.53(mm) Length: 75(m)Purge Volume: 25.0(mL)(mL)(mL)(mL)

COMPOUND	RRF	RRF5.0	MIN RRF	%D	MAX %D
=====================================	0.411	0.417	0.010	1.4	30.0
Chloroethane-d5	0.310	0.325	0.010	4.9	40.0
1,1-Dichloroethene-d2	0.683	0.704	0.010	3.1	30.0
2-Butanone-d5	0.027	0.023	0.010	-14.0	40.0
Chloroform-d	0.541	0.533	0.010	-1.5	30.0
1,2-Dichloroethane-d4	0.169	0.160	0.010	-5.1	30.0
Benzene-d6	1.760	1.784	0.400	1.4	30.0
1,2-Dichloropropane-d6	0.499	0.440	0.010	-11.8	40.0
Toluene-d8	1.583	1.623	0.010	2.5	30.0
trans-1,3-Dichloropropene-d4	0.312	0.304	0.010	-2.4	30.0
2-Hexanone-d5	0.033	0.028	0.010	-16.9	40.0
1,1,2,2-Tetrachloroethane-d2	0.151	0.137	0.010	-9.5	30.0
1,2-Dichlorobenzene-d4	0.764	0.755	0.010	-1.1	30.0

Report 1,4-Dioxane-d8 for Low-Medium VOA analysis only

7A - FORM VII VOA-1 VOLATILE CONTINUING CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302
Lab Code: STLV Case No.: CNTRALIA	Mod. Ref No.: SDG No.: 136697
Instrument ID: J.i	Calibration Date: 04/10/2010 Time: 1925
Lab File ID: JAQ05GC1	Init. Calib. Date(s): 04/05/2010 04/05/2010
EPA Sample No.(VSTD#####): VSTD0050J	Init. Calib. Time(s): 1318 1505
Heated Purge: (Y/N)N GC Column: DB-	624 ID: 0.53 (mm) Length: 75 (m)
Purge Volume: 25.0 (1	mL)

COMPOLINE	ססד		MIN PPF	<u>%</u> D	MAX &D
					=========
Dichlorodifluoromethane	0.425	0.414	0.010	-2.4	50.0
Chloromethane	0.451	0.491	0.010	9.0	50.0
Vinyl chloride	0.454	0.479	0.010	5.4	50.0
Bromomethane	0.171	0.177	0.010	3.2	50.0
Chloroethane	0.263	0.271	0.010	3.1	50.0
Trichlorofluoromethane	0.511	0.516	0.010	1.0	50.0
1,1-Dichloroethene	0.306	0.312	0.010	2.0	50.0
1,1,2-Trichloro-1,2,2-trifluoroethane	0.323	0.328	0.010	1.5	50.0
Acetone	0.014	0.013	0.010	-11.0	50.0
Carbon disulfide	0.986	0.952	0.010	-3.4	50.0
Methyl acetate	0.053	0.045	0.010	-14.5	50.0
Methylene chloride	0.250	0.247	0.010	-1.2	50.0
trans-1,2-Dichloroethene	0.326	0.327	0.010	0.4	50.0
Methyl tert-butyl ether	0.397	0.353	0.010	-11.0	50.0
1,1-Dichloroethane	0.597	0.612	0.010	2.6	50.0
cis-1,2-Dichloroethene	0.316	0.310	0.010	-1.7	50.0
2-Butanone	0.028	0.025	0.010	-10.1	50.0
Bromochloromethane	0.090	0.086	0.010	-3.4	50.0
Chloroform	0.500	0.509	0.010	1.8	50.0
1,1,1-Trichloroethane	0.625	0.654	0.010	4.7	50.0
Cyclohexane	0.890	0.936	0.010	5.1	50.0
Carbon tetrachloride	0.522	0.549	0.010	5.2	50.0
Benzene	1.820	1.855	0.010	1.9	50.0
1,2-Dichloroethane	0.206	0.201	0.010	-2.1	50.0
Trichloroethene	0.427	0.447	0.010	4.9	50.0
Methylcyclohexane	0.679	0.725	0.010	6.8	50.0

Report 1,4-Dioxane for Low-Medium VOA analysis only

7B - FORM VII VOA-2 VOLATILE CONTINUING CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302
Lab Code: STLV Case No.: CNTRALIA	Mod. Ref No.: SDG No.: 136697
Instrument ID: J.i	Calibration Date: 04/10/2010 Time: 1925
Lab File ID: JAQ05GC1	Init. Calib. Date(s): 04/05/2010 04/05/2010
EPA Sample No.(VSTD#####): VSTD0050J	Init. Calib. Time(s): 1318 1505
Heated Purge: (Y/N)N GC Column: DB-6	524 ID: 0.53 (mm) Length: 75 (m)
Purge Volume: 25.0 (r	nL)

			MIN		
COMPOUND	RRF	RRF5.0	RRF	%D	MAX %D
=======================================					=======
1,2-Dichloropropane	0.373	0.375	0.010	0.4	50.0
Bromodichloromethane	0.386	0.380	0.010	-1.5	50.0
cis-1,3-Dichloropropene	0.500	0.501	0.010	0.3	50.0
4-Methyl-2-pentanone	0.096	0.092	0.010	-4.5	50.0
Toluene	1.916	1.951	0.010	1.9	50.0
trans-1,3-Dichloropropene	0.343	0.336	0.010	-2.0	50.0
1,1,2-Trichloroethane	0.156	0.154	0.010	-1.6	50.0
Tetrachloroethene	0.340	0.352	0.010	3.6	50.0
2-Hexanone	0.061	0.058	0.010	-4.7	50.0
Dibromochloromethane	0.182	0.178	0.010	-2.1	50.0
1,2-Dibromoethane	0.137	0.130	0.010	-4.8	50.0
Chlorobenzene	1.014	1.028	0.010	1.4	50.0
Ethylbenzene	2.128	2.182	0.010	2.6	50.0
o-Xylene	0.730	0.729	0.010	-0.1	50.0
m,p-Xylene	0.793	0.814	0.010	2.7	50.0
Styrene	1.070	1.089	0.010	1.8	50.0
Bromoform	0.191	0.184	0.010	-3.6	50.0
Isopropylbenzene	2.040	2.118	0.010	3.8	50.0
1,1,2,2-Tetrachloroethane	0.147	0.135	0.010	-8.0	50.0
1,3-Dichlorobenzene	1.634	1.612	0.010	-1.3	50.0
1,4-Dichlorobenzene	1.560	1.531	0.010	-1.9	50.0
1,2-Dichlorobenzene	1.209	1.157	0.010	-4.3	50.0
1,2-Dibromo-3-chloropropane	0.050	0.044	0.010	-11.6	50.0
1,2,4-Trichlorobenzene	0.553	0.533	0.010	-3.6	50.0
1,2,3-Trichlorobenzene	0.369	0.359	0.010	-2.6	50.0

7C - FORM VII VOA-3 VOLATILE CONTINUING CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTONContract: 8E-00302Lab Code: STLVCase No.: CNTRALIAMod. Ref No.:SDG No.: 136697Instrument ID: J.iCalibration Date: 04/10/2010 Time: 1925Lab File ID: JAQ05GC1Init. Calib. Date(s): 04/05/2010 04/05/2010EPA Sample No.(VSTD#####): VSTD0050JInit. Calib. Time(s): 13181505Heated Purge: (Y/N)NGC Column: DB-624ID: 0.53(mm) Length: 75(m)Purge Volume: 25.0(mL)(mL)(mL)(mL)

COMPOUND	RRF	RRF5.0	MIN RRF	%D	MAX %D
<pre>Vinyl chloride-d3 Chloroethane-d5 1,1-Dichloroethene-d2 2-Butanone-d5 Chloroform-d 1,2-Dichloroethane-d4 Benzene-d6 1,2-Dichloropropane-d6 Toluene-d8 trans-1,3-Dichloropropene-d4 2-Hexanone-d5 1,1,2,2-Tetrachloroethane-d2 1,2-Dichlorobenzene-d4</pre>	0.411 0.310 0.683 0.027 0.541 0.169 1.760 0.499 1.583 0.312 0.033 0.151 0.764	$\begin{array}{c} 0.424\\ 0.324\\ 0.696\\ 0.025\\ 0.543\\ 0.163\\ 1.790\\ 0.498\\ 1.628\\ 0.300\\ 0.030\\ 0.030\\ 0.144\\ 0.759\end{array}$	$\begin{array}{c} 0.010\\ 0.00\\ 0.0$	3.2 4.4 1.9 -8.5 0.3 -3.7 1.7 -0.1 2.8 -3.8 -10.5 -4.7 -0.6	50.0 50.0

Report 1,4-Dioxane-d8 for Low-Medium VOA analysis only

VOLATILE INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: TESTAMERICA BURLINGTONContract: 8E-00302Lab Code: STLVCase No.: CNTRALIAMod. Ref No.:SDG No.: 136697GC Column: DB-624ID: 0.53 (mm)Init. Calib. Date(s): 04/05/2010 04/05/2010EPA Sample No.(VSTD#####): VSTD005JMDate Analyzed: 04/08/2010Lab File ID (Standard): JAQ005EVTime Analyzed: 0852Instrument ID: J.iHeated Purge: (Y/N) N

		IS1(CBZ)		IS2 (DFB)		IS3 (DCB)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
			======	=========	======	=========	======
	12 HOUR STD	820650	9.06	1111337	5.68	333261	11.89
	UPPER LIMIT	1148910	9.39	1555872	6.01	466565	12.23
	LOWER LIMIT	492390	8.72	666802	5.34	199957	11.56
	=======================================	============		=========		=========	======
	EPA SAMPLE NO.						
	=======================================	=========	======	=========	======	========	======
01	VBLKJM	802133	9.06	1059626	5.67	312955	11.89
02	QCTBW27185	787050	9.06	1076681	5.68	310257	11.89
03	PMP3W27182	819318	9.06	1099778	5.68	323574	11.89
04	PMP2W27181DL	790096	9.06	1038387	5.68	312663	11.89
05	PMP2W27181	803076	9.06	1067750	5.68	319241	11.89
06							
07							
80							
09							
10							
11							
12							
13					<u> </u>		
14					<u> </u>		
15							
16							
17							
18							
19		1					
20							
21				·			
22							
-				1			

IS1 (CBZ) = Chlorobenzene-d5

IS2 (DFB) = 1,4-Difluorobenzene

IS3 (DCB) = 1,4-Dichlorobenzene-d4

AREA UPPER LIMIT = 200% (Low-Medium Volatiles) and 140% (Trace Volatiles) of internal standard area AREA LOWER LIMIT = 50% (Low-Medium Volatiles) and 60% (Trace Volatiles) of internal standard area RT UPPER LIMIT = + 0.50 (Low-Medium Volatiles) and + 0.33 (Trace Volatiles) minutes of internal standard RT RT LOWER LIMIT = - 0.50 (Low-Medium Volatiles) and - 0.33 (Trace Volatiles) minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk Page 1 of 1

VOLATILE INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: TESTAMERICA BURLINGTONContract: 8E-00302Lab Code: STLVCase No.: CNTRALIAMod. Ref No.:SDG No.: 136697GC Column: DB-624ID: 0.53 (mm)Init. Calib. Date(s): 04/05/2010 04/05/2010EPA Sample No.(VSTD#####): VSTD005JNDate Analyzed: 04/09/2010Lab File ID (Standard): JAQ002FVTime Analyzed: 0806Instrument ID: J.iHeated Purge: (Y/N) N

1		TS1(CBZ)		IS2 (DFB)		IS3 (DCB)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
				==========	======	=========	
	12 HOUR STD	787997	9.06	1047879	5.68	313821	11.89
	IIDDER LIMIT	1103196	9 3 9	1467031	6.01	439349	12.23
	LOWER LIMIT	472798	8 72	628727	5.34	188293	11.56
			=======	===========	======	==========	======
	FDA SAMDLE NO						
						==========	
01		771598	9 06	1033450	5.67	303403	11.89
01		690449	9.00	952337	5.68	254964	11.89
02		764334	9.06	1050642	5.67	306598	11.89
03	MWUZWZ/1/5	704334	2.00	1050012		500050	
0							
05				· · · · · · · · · · · · · · · · · · ·		<u></u>	
00							
07						La. du	
00							
10							
11							
エエ 1つ							
12							
1/							
15							
16							
17				·····			
10							
10					·		1
20	•••••						
20							
21							
22							
					I	I	1

IS1 (CBZ) = Chlorobenzene-d5

IS2 (DFB) = 1,4-Difluorobenzene

IS3 (DCB) = 1,4-Dichlorobenzene-d4

Column used to flag values outside QC limits with an asterisk Page 1 of 1

VOLATILE INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: TESTAMERICA BURLINGTONContract: 8E-00302Lab Code: STLVCase No.: CNTRALIAMod. Ref No.:SDG No.: 136697GC Column: DB-624ID: 0.53 (mm)Init. Calib. Date(s): 04/05/2010 04/05/2010EPA Sample No. (VSTD#####): VSTD005JODate Analyzed: 04/10/2010Lab File ID (Standard): JAQ005GVTime Analyzed: 1015Instrument ID: J.iHeated Purge: (Y/N) N

		IS1(CBZ)		IS2 (DFB)		IS3 (DCB)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
		=========	=======	========	======	=========	=======
	12 HOUR STD	760486	9.06	1009953	5.67	305122	11.89
	UPPER LIMIT	1064680	9.39	1413934	6.01	427171	12.23
	LOWER LIMIT	456292	8.72	605972	5.34	183073	11.56
	=======================================	==========	======	==========	=======	=========	======
	EPA SAMPLE NO.						
	==============================	========	======	========	======	200100	11 00
01	VBLKJO	758797	9.06	998354	5.68	298160	11.89
02	VHBLK01	667924	9.05	948847	5.68	221322	11.05
03							
04							
05			`				
00							
08							
09				· ·····			
10							
11	· · · · · · · · · · · · · · · · · · ·	Later and Later					
12							
13							
14							
15							
16							
17							
18							
19		·					
20							
21							
22							
	1	I	I	I	I	I	·

IS1 (CBZ) = Chlorobenzene-d5

IS2 (DFB) = 1,4-Difluorobenzene

IS3 (DCB) = 1,4-Dichlorobenzene-d4

AREA UPPER LIMIT = 200% (Low-Medium Volatiles) and 140% (Trace Volatiles) of internal standard area AREA LOWER LIMIT = 50% (Low-Medium Volatiles) and 60% (Trace Volatiles) of internal standard area RT UPPER LIMIT = + 0.50 (Low-Medium Volatiles) and + 0.33 (Trace Volatiles) minutes of internal standard RT RT LOWER LIMIT = - 0.50 (Low-Medium Volatiles) and - 0.33 (Trace Volatiles) minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk Page 1 of 1

TestAmerica Laboratories, Inc.

CASE NARRATIVE

Client: Argonne National Laboratory

Project: CENTRALIA (200-1629)

Report Number: 200-1629-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

Receipt

The samples were received on 9/21/2010. Documentation of the condition of the samples at the time of their receipt and any exception to the laboratory's Sample Acceptance Policy is documented in the Sample Handling section of this submittal. The samples, as received, were not acid preserved. On that basis, the laboratory did provide for the analytical work to be performed within seven days of sample collection.

SOM01.2 Volatile Organics (Trace Level Water)

A storage blank was prepared for volatile organics analysis, and stored in association with the storage of the samples. That storage blank, identified as VHBLK01, was carried through the holding period with the samples, and analyzed.

Each sample was analyzed without a dilution. Each of the analyses associated with the sample set exhibited an acceptable internal standard performance. There was an acceptable recovery of each deuterated monitoring compound (DMC) in the analysis of the method blanks associated with the analytical work, and in the analysis of the storage blank associated with the sample set. The analysis of the samples in this sample set did meet the technical acceptance criteria specific to DMC recoveries, although not all DMC recoveries were within the control range in each analysis. The technical acceptance criteria does provide for the recovery of up to three DMCs to fall outside of the control range in the analysis of field samples. Matrix spike and matrix spike duplicate analyses were not performed on samples in this sample set. Trace concentrations of acetone and 1,2,3-trichlorobenzene were identified in the analysis of each method blank associated with the analytical work. The concentration of each compound in each analysis was below the established reporting limit, and each analysis did meet the technical acceptance of acceptance criteria for a compliant method blank analysis. A trace concentration of

30 Community Drive, Suite 11 South Burlington, VT 05403 tel 802.660.1990 fax 802.660.1919 www.testamericainc.com

THE LEADER IN ENVIRONMENTAL TESTING

acetone was identified in the analysis of the storage blank associated with the sample set. The concentration of acetone in that analysis was below the established reporting limit, and the analysis did meet the technical acceptance criteria for a compliant storage blank analysis. Present in the method blank and storage blank analyses was a non-target constituent that represents a compound that is related to the DMC formulation. The fact that the presence of this compound is not within the laboratory's control is at issue. The derived results for that compound have been qualified with an "X" qualifier to reflect the source of the contamination.

The responses for each of the target analytes met the relative standard deviation criterion in the initial calibration. The response for each target analyte met the percent difference criterion in each continuing calibration check acquisition. The response for each target analyte met the 50.0 percent difference criterion in each closing calibration check acquisition.

The primary quantitation mass for methylcyclohexane that is specified in the Statement of Work is mass 83. The laboratory did identify a contribution to mass 83 from 1,2-dichloropropane- d_6 , one of the deuterated monitoring compounds (DMCs). The laboratory did change the primary quantitation mass assignment to mass 55 for the quantification of methylcyclohexane.

Manual integration was employed in deriving certain of the analytical results. The values that have been derived from manual integration are qualified on the quantitation reports. Extracted ion current profiles for each manual integration are included in the data package, and further documented in the Sample Preparation section of this submittal.

The analytical results associated with the samples presented in this test report were generated under a quality system that adheres to requirements specified in the NELAC standard. Release of the data in this test report and any associated electronic deliverables is authorized by the Laboratory Director's designee as verified by the following signature.

Kirk F. Young Project Manager

MATE	nix: L	later			ARG	ION	NE N	OITA	NAL I	ABC	RAT	ORY		Shipping Con	tainer No.		
RECE	IVING	LAB: Jes	+ Americ	24	C	HAI	N OF	CUS	TODY	' RE(CORI	D*		Shipping Info:			
PROJ	ECT/S	ITE: Cen	tralia	KS				•	ANAL	YSIS				ANL Field Co Dave Sm	ntact (Nam	ne & Temp 630	orary Phone): 409 7114
SAMF	PLER(S) (Signature) - -			Number	V									5		
DATE	OFCC	DLLECTION	SAMPLE II	D NUMBER(S	S) tainers	iners				REMARKS							
Sept Sept	- 19 - 19	,2010 0	CNMWO8 NSB 09-	- w - 27 - w - 27	193 2 201 2	とと								2×40	mL	for U	10C
Sept	20	, 2010 (NMW06.	W-27	191 2	<u> </u> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~											/
Sept 20, 2010 CNACTB-W-27216					16 2	え								2 × 40	mL.	for l	ioc
				/			\triangleleft					\square		\geq			
age	$\overline{}$				$ \rightarrow $			\rightarrow	+	\downarrow	4				\geq		
ω O	\nearrow		\rightarrow	\langle													
E 53					= 1/			\mathbf{Z}			\geq	\Box					
\frown		\longrightarrow			\langle / \rangle		\prec	4	\vdash	_		$\left \right\rangle$	\triangleleft	/			
Relinquished by (Signature) Date Time Received by (S						natu	re)	R	elinqui	shed	by (Si	gnatu	re)	Date	Time	Receiv	ed by (Signature)
Relinquished by (Signature) Date Time Receiv					Received for hab	ved for Laboratory by			ate]_i	110	Tir 1 C	me)) ()		Remarks			
Y	Ν		FORLA	BUSE ONLY	1 1	*,	A sam	ple is	under	i custo	dy if:						
		Custody seal v	was intact when	shipment rece	ived.	1. It is in your possession; or,											
		Sample contail	ners were intac	when receive	d.	2. It is in your view, after having been in your possession; or,											
		Shipment was	at required tem	perature when	received.	3. It was in your possession and you locked it up; or,											
	Sample labels, Tags and COC agree.						4. It is in a designated secure area.										
	Arg	onne National L	aboratory, Appli	ed Geoscience	es & Environment	al M	gt. Gr	oup, E	nviron	menta	al Res	earch	l Div	ision, 9700 S. Ca	ass Avenue,	Argonne,	L 60439

ER-160 (12-94)

Burlington Facility

memai	Chain of	Custouy Log (ICC	<i>i</i> ()					· .	1	
Project Info	ormation:	<u>.</u>		. 1945." 	· · · · ·		tivt vi		· • • • • • • • • • • • • • • • • • • •	-
LOG-IN N	UMBER: 7	00-1629	Method: 50	MO1.	2 - Vo	1-Tro	ace			
CLIENT:	traonr	e	LAB IDs: 2	00-162	9-1 +1	nru 2	00-162	9-5		
	-5									
Samples :	associated	with this Log-in were	placed into st	orage on	09/21	110	1600	by: Art	Cometa Constantion Circ	
		_			(Da	<i>te)</i>	(Time*)		Sample Custodian Sigr	lature
Storage L	ocation:	VOA Refrige	rator B	, Shelf	8 Specify	storage local	tion (refrigerate	or, freezer ID or lab location) for original sample co	ntainers
Storage C	ondition:	Refrigeration J	Frozen		Ambier	<u>it</u>				*****
Internal Tra	insfer Inform	nation	· · · ·	19 A.Y.				r 1 frid - Anna - I	· · ·	• •
Samp	le Type	Lab ID(s)	Transfer	Transfer	Pu	pose of Tra	nsfer	Relinquished	Received	Storage Location
Original	Prepared		Date	1 ime"	Prep	Analysis	Storage	By:	By:	Prepared Sample'
		1-5	9-21-10	1635	~			Thomas Jockson	Thomas Juckson	VOA Prep
~		1-5	9-21-10	1653			~	Thomas hepsis	Thomas lection	VOA Fridre
ッレ		el	7/23/10	(615				The	Jais	Analysis
age		л	9/22/10	1630				J	Jus	Cto-ore
4										···· · · · · · · · · · · · · · · · · ·
O.H										
			-							
						-				4
										
ļ			_							
	×									
										;
										•
				· ·	 					
										·····
L	L			L	J	.I	1			l

¹ Extract, digestate, or any other prepared sample that is no longer in original sample container

² Military Time

Burlington Facility

1

=		- 3								
Internal	Chain of	Custody Log (ICC	C)					,		
Project Inf	ormation:		· · · ·		" "ALT"		x A	·····		· · · · ·
LOG-IN N	UMBER: 2	200-1629	Method: H	B-SOR	M 01.	2- VO	1-Tr	ace.		
CLIENT:	Argor	ine	LAB IDs: 2	00-16	29-6					
								······································		· · · · · · · · · · · · · · · · · · ·
Samples	associated	with this Log-in were	e placed into st	orage on	09/21	li D ite)	(<i>Lime</i> ²)	by: ht	sample Custodian Sig	nature
Storage L	.ocation:	VOA REFRIG	rator B	, Shilf	S Specify	storage loca	tion (refrigeral	ا tor, freezer ID or lab location) for original sample co	ntainers
Storage C	Condition:	Refrigeration	J Frozen	,	Ambier	nt				
Internal Tr	anster Inforn	nation			in the angle			ule :	· · · · · · · · · · · · · · · · · · ·	· · · · ·
Samp	ole Type	Lab ID(s)	Transfer	Transfer	Pu	rpose of Tra	nsfer	Relinquished	Received	Storage Location
Original	Prepared	,	Date	Time*	Prep	Analysis	Storage	By:	By:	Prepared Sample ¹
<i>v</i>		6	9-21-10	1635	~			Romas Gelon	Donusticks	~ VOA Prep_
<u>ب</u>		6	9-21-10	1653			~	Themes Jackson	Thomas lacks	VOA Fridge
		2(9/2/10	0710		-	r	The	TIS	Analysis
age /		И	9/21/10	0715				345	715	Storepa
ர										
0 Hi										-
и СЛ										
						-				· · · · · · · · · · · · · · · · · · ·
		·								
							· ·			
		<u> </u>								
	- <u></u>									
		1					1		1	

¹ Extract, digestate, or any other prepared sample that is no longer in original sample container

² Military Time

2A - FORM II VOA-1 WATER VOLATILE DEUTERATED MONITORING COMPOUND RECOVERY

	Lab Name: TESTA	MERICA BUR	LINGTON		Contract	: <u>8E-00302</u>						
	Lab Code: STLV	Case N	o.: <u>CENTRA</u>	Mod. Ref	No.:	SDG N	o.: 200-16	29				
	Level: (TRACE or LOW) TRACE											
	EPA	VDMC1	VDMC2	VDMC3	VDMC4	VDMC5	VDMC6	VDMC7				
	SAMPLE NO.	(VCL) #	(CLA) #	(DCE) #	(BUT) #	(CLF) #	(DCA) #	(BEN) #				
01	VBLKJF	101	101	77	103	102	108	105				
02	CNMW08-S-27193	102	103	80	132	105	107	108				
03	CNSB09-W-27201	98	100	78	123	103	110	104				
04	CNMW06-W-27191	100	101	77	121	102	109	106				
05	CNMW07-W-27192	102	102	79	152	105	108	109				
06	CNQCTB-W-27216	98	100	78	212 *	100	106	106				
07	VBLKJG	97	98	76	98	100	103	104				
80	VHBLK01	104	105	81	104	103	107	109				

		QC LIMITS
VDMC1	(VCL) = Vinyl Chloride-d3	(65-131)
VDMC2	(CLA) = Chloroethane-d5	(71 - 131)
VDMC3	(DCE) = 1,1-Dichloroethene-d2	(55-104)
VDMC4	(BUT) = 2-Butanone-d5	(49-155)
VDMC5	(CLF) = Chloroform-d	(78-121)
VDMC6	(DCA) = 1, 2-Dichloroethane-d4	(78-129)
VDMC7	(BEN) = Benzene-d6	(77-124)

Column to be used to flag recovery values
* Values outside of contract required QC limits

Page 1 of 1

SOM01.2 (4/2007)

2B - FORM II VOA-2 WATER VOLATILE DEUTERATED MONITORING COMPOUND RECOVERY

	Lab Name: TESTA	MERICA BU	RLINGTON	Cont	eract: 8E-00302						
	Lab Code: STLV	Case 1	No.: <u>CENT</u>	RA Mod. R	ef No.: _	SDG No.: 200-1629					
	Level: (TRACE or LOW) TRACE										
	EPA SAMPLE NO.	VDMC8 (DPA) #	VDMC9 (TOL) #	VDMC10 (TDP) #	VDMCl1 (HEX) #	VDMC12 (TCA) #	VDMC13 (DCZ) #	OTHER	TOT OUT		
01	VBLKJF	93	102	105	102	104	108		0.		
02	CNMW08-S-27193	96	106	103	115	110	112		0		
03	CNSB09-W-27201	93	102	101	111	107	107		0		
04	CNMW06-W-27191	93	103	100	107	105	109		0		
05	CNMW07-W-27192	97	106	106	127	111	113		0		
06	CNQCTB-W-27216	94	102	99	207 *	101	107		2		
07	VBLKJG	91	100	99	95	101	103		0		
80	VHBLK01	95	106	105	101	108	112		0		

				QC LIMITS
VDMC8	(DPA)	==	1,2-Dichloropropane-d6	(79-124)
VDMC9	(TOL)	-	Toluene-d8	(77-121)
VDMC10	(TDP)	=	trans-1,3-Dichloropropene-d4	(73-121)
VDMC11	(HEX)	=	2-Hexanone-d5	(28-135)
VDMC12	(TCA)	=	1,1,2,2-Tetrachloroethane-d2	(73-125)
VDMC13	(DCZ)	=	1,2-Dichlorobenzene-d4	(80-131)

Column to be used to flag recovery values
* Values outside of contract required QC limits

Report 1,4-Dioxane-d8 for Low-Medium VOA analysis only

Page <u>1</u> of <u>1</u>

SOM01.2 (4/2007)

.

4A - FORM IV VOA VOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO. VBLKJF

JBMD24.D

0150

Lab Name: TESTAMERICA BURLINGTON Contract: 8E-00302 Lab Code: STLV Case No.: CENTRA Mod. Ref No.: _____ SDG No.: 200-1629 Lab File ID: JBMD04.D Lab Sample ID: MB 200-7052/4 Instrument ID: J.i Matrix: (SOIL/SED/WATER) Water Date Analyzed: 09/23/2010 Level: (TRACE or LOW/MED) TRACE Time Analyzed: 1622 GC Column: DB-624 ID: 0.20 (mm) Heated Purge: (Y/N) N LAB EPA LAB TIME SAMPLE NO. SAMPLE ID FILE ID ANALYZED JBMD20.D 01 CNMW08-S-271 200-1629-1 2358 93 02 CNSB09-W-272 200-1629-2 JBMD21.D 0026 01 03 CNMW06-W-271 200-1629-3 JBMD22.D 0054 91 200-1629-4 CNMW07-W-271 04 JBMD23.D 0122

COMMENTS:

Page 1 of 1

92

16

CNQCTB-W-272 200-1629-5

05

SOM01.2 (4/2007)

4A - FORM IV VOA VOLATILE METHOD BLANK SUMMARY

•

EPA SAMPLE NO.

VBLKJG

Làb Name:	TESTAMER	ICA BURLI	NGTON			Contract: <u>8E-00302</u>				
Lab Code:	STLV	Case No.	: CENTRA	Mod.	Ref	No.:		S	DG No.: 200-1629	
Lab File 1	D: JBME04	4.D				Lab	Sample	ID:	MB 200-7048/4	
Instrument	: ID: <u>J.i</u>									
Matrix: (S	SOIL/SED/W	WATER) <u>Wa</u>	ter			Date	e Analy	zed:	09/24/2010	
Level: (TH	RACE or LO	OW/MED) T	RACE			Time	e Analy	zed:	0737	
GC Column:	DB-624	ID	: 0.20	(m	m)	Hea	ted Pur	ge:	(Y/N) <u>N</u>	
Γ	EPA		Τ.Δ	B			T.AB		TIME	

	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	VHBLK01	200-1629-6	JBME06.D	0842

COMMENTS:

Page 1 of 1

SOM01.2 (4/2007)

EPA SAMPLE NO.

5A - FORM V VOA VOLATILE ORGANICS INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

BFBJB

Lab Name:	TESTAMERI	JRLIN	GTON		Contract: 8E-00302					
Lab Code:	STLV	Case	No.:	CENTRA	Mod.	Ref	No.:		SDG No	o.: <u>200</u> –1629
Lab File]	[d: JBM01.	D			` 		BFB	Injection	Date:	09/21/2010
Instrument	: Id: <u>J.</u> i						BFB	Injection	Time:	1417
GC Column:	DB-624		ID:	0.20	(:	mm)				

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50	15.0 - 40.0% of mass 95	16.2
75	30.0 - 80.0% of mass 95	51.0
95	Base peak, 100% relative abundance	100
96	5.0 - 9.0% of mass 95	6.6
173	Less than 2.0% of mass 174	0.6 (0.7)1
174	50.0 - 120% of mass 95	88.5
175	5.0 - 9.0% of mass 174	6.3 (7.1)1
176	95.0 - 101% of mass 174	88.5 (100)1
177	5.0 - 9.0% of mass 176	5.8 (6.6)2

1 - Value is %mass 174 2 - Value is %mass 176

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
01	VSTD0.5JB	IC 200-6837/2	JBM02.D	09/21/2010	1435
02	VSTD001JB	IC 200-6837/3	JBM03.D	09/21/2010	1503
03	VSTD005JB	ICIS 200-6837/4	JBM04.D	09/21/2010	1531
04	VSTD010JB	IC 200-6837/5	JBM05.D	09/21/2010	1559
05	VSTD020JB	IC 200-6837/8	JBM08.D	09/21/2010	1724

EPA SAMPLE NO.

5A - FORM V VOA VOLATILE ORGANICS INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

BFBJF

Lab Name:	TESTAMERICA BURLINGTON						Contract: <u>8E-00302</u>				
Lab Code:	STLV	Case	No.:	CENTRA	Mod.	Ref	No.:		SDG No).: <u>2</u>	00-1629
Lab File	Id: JBMD01	L.D					BFB	Injection	Date:	09/2	3/2010
Instrumen	t Id: <u>J.i</u>						BFB	Injection	Time:	1514	
GC Column	: DB-624		ID:	0.20	(:	mm)					

		% RELATIVE
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE
50	15.0 - 40.0% of mass 95	17.0
75	30.0 - 80.0% of mass 95	49.8
95	Base peak, 100% relative abundance	100
96	5.0 - 9.0% of mass 95	6.6
173	Less than 2.0% of mass 174	0.4 (0.5)1
174	50.0 - 120% of mass 95	89.8
175	5.0 - 9.0% of mass 174	6.2 (6.9)1
176	95.0 - 101% of mass 174	89.4 (99.5)1
177	5.0 - 9.0% of mass 176	5.8 (6.5)2

1 - Value is %mass 174 2 - Value is %mass 176

Г

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
01	VSTD005JF	CCVIS 200-7052/2	JBMD02.D	09/23/2010	1526
02	VBLKJF	MB 200-7052/4	JBMD04.D	09/23/2010	1622
03	CNMW08-S-2 7193	200-1629-1	JBMD20.D	09/23/2010	2358
04	CNSB09-W-2 7201	200-1629-2	JBMD21.D	09/24/2010	0026
05	CNMW06-W-2 7191	200-1629-3	JBMD22.D	09/24/2010	0054
06	CNMW07-W-2 7192	200-1629-4	JBMD23.D	09/24/2010	0122
07	CNQCTB-W-2 7216	200-1629-5	JBMD24.D	09/24/2010	0150
80	VSTD005FJ	CCVC 200-7052/25	JBMD25.D	09/24/2010	0218

EPA SAMPLE NO.

5A - FORM V VOA VOLATILE ORGANICS INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

BFBJG

Lab	Name:	TESTAMERICA BURLINGTON						Cont			
Lab	Code:	STLV	Case	No.:	CENTRA	Mod.	Ref	No.:	<u></u>	SDG No	.: 200-1629
Lab	File 1	d: JBME01	L.D					BFB	Injection	Date:	09/24/2010
Inst	rument	: Id: <u>J.i</u>		-		<u> </u>		BFB	Injection	Time:	0622
GC (Column:	DB-624		ID:	0.20	()	mm)				

m/e	ION ABUNDANCE CRITERIA	& RELATIVE ABUNDANCE
50	15.0 - 40.0% of mass 95	18.1
75	30.0 - 80.0% of mass 95	51.7
95	Base peak, 100% relative abundance	100
96	5.0 - 9.0% of mass 95	6.3
173	Less than 2.0% of mass 174	0.5 (0.6)1
174	50.0 - 120% of mass 95	85.4
175	5.0 - 9.0% of mass 174	6.6 (7.8)1
176	95.0 - 101% of mass 174	84.3 (98.8)1
177	5.0 - 9.0% of mass 176	5.6 (6.7)2

1 - Value is %mass 174 2 - Value is %mass 176

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
01	VSTD005JG	CCVIS 200-7048/2	JBME02.D	09/24/2010	0641
02	VBLKJG	MB 200-7048/4	JBME04.D	09/24/2010	0737
03	VHBLK01	200-1629-6	JBME06.D	09/24/2010	0842
04	VSTD005GJ	CCVC 200-7048/17	JBME17.D	09/24/2010	1354

VOLATILE INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302
Lab Code: <u>STLV</u> Case No.: <u>CENTRA</u>	Mod. Ref No.: SDG No.: 200-1629
GC Column: DB-624 ID: 0.20	(mm) Init. Calib. Date(s): 09/21/2010 09/21/2010
EPA Sample No.(VSTD#####): VSTD005JF	Date Analyzed: 09/23/2010
Lab File ID (Standard): JBMD02.D	Time Analyzed: 1526
Instrument ID: J.i	Heated Purge: (Y/N) N

		IS1 (CBZ)		IS2 (DFB)		IS3 (DCB)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	12 HOUR STD	581876	8.97	763681	5.59	261228	11.81
	UPPER LIMIT	814626	9.30	1069153	5.92	365719	12.14
	LOWER LIMIT	349126	8.64	458209	5.26	156737	11.48
	EPA SAMPLE NO.						
01	VBLKJF	573613	8.97	757287	5.59	247010	11.80
02	CNMW08-S-27193	565256	8.97	744353	5.60	238299	11.81
03	CNSB09-W-27201	551114	8.97	715546	5.59	234562	11.81
04	CNMW06-W-27191	558958	8.97	731368	5.60	236032	11.81
05	CNMW07-W-27192	567640	8.97	747474	5.60	242014	11.81
06	CNQCTB-W-27216	575409	8.97	761356	5.59	244530	11.81

IS1 (CBZ) = Chlorobenzene-d5
IS2 (DFB) = 1,4-Difluorobenzene
IS3 (DCB) = 1,4-Dichlorobenzene-d4

AREA UPPER LIMIT = 140% (Trace Volatiles) of internal standard area AREA LOWER LIMIT = 60% (Trace Volatiles) of internal standard area RT UPPER LIMIT = + 0.33 (Trace Volatiles) minutes of internal standard RT RT LOWER LIMIT = - 0.33 (Trace Volatiles) minutes of internal standard RT

Column used to flag values outside contract required QC limits with an asterisk.

Page 1 of 1

VOLATILE INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name:	TESTAMER	ICA BURLI	NGTON		Co	ntract	8E-00	0302			
Lab Code:	STLV	Case No.	: CENTRA M	od. Re	f No.:		SI	OG No.	: 200-162	29	
GC Column:	DB-624		ID: 0.20	(mm)	Init.	Calib.	Date(s	s): <u>09</u> ,	/21/2010	09/21/20	10
EPA Sample	e No.(VSTI)#####):	VSTD005JG		Da	te Anal	Lyzed:	09/24,	/2010		
Lab File I	ID (Standa	ard): JBM	E02.D		Ti	me Anal	Lyzed:	0641			
Instrument	: ID: <u>J.</u> i				He	ated Pu	irge:	(Y/N) 1	N		

		IS1 (CBZ)		IS2 (DFB)		IS3 (DCB)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	12 HOUR STD	. 588298	8.97	772826	5.59	266878	11.80
	UPPER LIMIT	823617	9.30	1081956	5.92	373629	12.13
	LOWER LIMIT	352979	8.64	463696	5.26	160127	11.47
	EPA SAMPLE NO.						
01	VBLKJG	578406	8.97	761685	5.59	248197	11.81
02	VHBLK01	543933	8.97	724734	5.59	226345	11.80

IS1 (CBZ) = Chlorobenzene-d5
IS2 (DFB) = 1,4-Difluorobenzene
IS3 (DCB) = 1,4-Dichlorobenzene-d4

AREA UPPER LIMIT = 140% (Trace Volatiles) of internal standard area AREA LOWER LIMIT = 60% (Trace Volatiles) of internal standard area RT UPPER LIMIT = + 0.33 (Trace Volatiles) minutes of internal standard RT RT LOWER LIMIT = - 0.33 (Trace Volatiles) minutes of internal standard RT

Column used to flag values outside contract required QC limits with an asterisk.

Page 1 of 1

SOM01.2 (4/2007)

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

CNMW06-W-27191

Lab Name:	TESTAMERICA BUF	RLINGTON		Contract: 8
Lab Code:	STLV Case N	No.: <u>CENTRA</u> M	od. Ref 1	No.:
Matrix: (SOIL/SED/WATER)	Water		Lab Sample
Sample wt,	/vol: 25.0	(g/mL) mL	_	Lab File ID
Level: (Th	RACE/LOW/MED) TH	RACE		Date Receiv
% Moisture	e: not dec.			Date Analyz
GC Column	DB-624	ID: 0.20	(mm)	Dilution Fa
Soil Extra	act Volume:	· ····	(uL)	Soil Aliquo
Purge Volu	ume: 25.0		(mL)	

Contract: <u>8E-00302</u>	
No.: SDG No.: 200-162	29
Lab Sample ID: 200-1629-3	
Lab File ID: JBMD22.D	
Date Received: 09/21/2010	
Date Analyzed: 09/24/2010	
Dilution Factor: 1.0	
Soil Aliquot Volume:	(uL)

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) <u>ug/L</u>	Q
75-71-8	Dichlorodifluoromethane	0.50	U
74-87-3	Chloromethane	0.50	U
75-01-4	Vinyl chloride	0.50	U
74-83-9	Bromomethane	0.50	U
75-00-3	Chloroethane	0.50	U
75-69-4	Trichlorofluoromethane	0.50	U
75-35-4	1,1-Dichloroethene	0.50	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	U
67-64-1	Acetone	1.9	JВ
75-15-0	Carbon disulfide	0.50	U
79-20-9	Methyl acetate	0.50	U
75-09-2	Methylene Chloride	0.50	U
156-60-5	trans-1,2-Dichloroethene	0.50	U
1634-04-4	Methyl tert-butyl ether	0.50	U
75-34-3	1,1-Dichloroethane	0.50	U
156-59-2	cis-1,2-Dichloroethene	0.50	U
78-93-3	2-Butanone	5.0	U
74-97-5	Bromochloromethane	0.50	U
67-66-3	Chloroform	0.50	U
71-55-6	1,1,1-Trichloroethane	0.50	U
110-82-7	Cyclohexane	0.50	U
56-23-5	Carbon tetrachloride	0.15	J
71-43-2	Benzene	0.50	U
107-06-2	1,2-Dichloroethane	0.50	U

Report 1,4-Dioxane for Low-Medium VOA analysis only

1B - FORM I VOA-2

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

CNMW06-W-27191

Lab Name: TESTAMERI	CA BURLINGTON	_	Contract
Lab Code: <u>STLV</u>	Case No.: CENTRA Mo	od. Ref	No.:
Matrix: (SOIL/SED/W	MATER) Water		Lab Samp
Sample wt/vol: 25.0	(g/mL) mL	_	Lab File
Level: (TRACE/LOW/M	IED) TRACE	-	Date Rec
% Moisture: not dec		_	Date Ana
GC Column: DB-624	ID: 0.20	(mm)	Dilutior
Soil Extract Volume	:	(uL)	Soil Ali
Purge Volume: 25.0		(mL)	

Contract: 8E-00302	
No.: SDG No.: 200-16	29
Lab Sample ID: 200-1629-3	
Lab File ID: JBMD22.D	
Date Received: 09/21/2010	
Date Analyzed: 09/24/2010	
Dilution Factor: 1.0	
Soil Aliquot Volume:	(uL)

	COMPOUND	CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/kg) <u>ug/L</u>	μ Q
79-01-6	Trichloroethene	0.50	U
108-87-2	Methylcyclohexane	0.50	U
78-87-5	1,2-Dichloropropane	0.50	Ŭ
75-27-4	Bromodichloromethane	0.50	U
10061-01-5	cis-1,3-Dichloropropene	0.50	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	0.035	J
10061-02-6	trans-1,3-Dichloropropene	0.50	U
79-00-5	1,1,2-Trichloroethane	0.50	U
127-18-4	Tetrachloroethene	0.50	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	0.50	U
106-93-4	1,2-Dibromoethane	0.50	U
108-90-7	Chlorobenzene	0.50	U
100-41-4	Ethylbenzene	0.50	U
95-47-6	o-Xylene	0.50	U
179601-23-1	m,p-Xylene	0.50	U
100-42-5	Styrene	0.50	U
75-25-2	Bromoform	0.50	Ū.
98-82-8	Isopropylbenzene	0.50	U
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U
541-73-1	1,3-Dichlorobenzene	0.50	U
106-46-7	1,4-Dichlorobenzene	0.50	U
95-50-1	1,2-Dichlorobenzene	0.50	U
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	Ū
120-82-1	1,2,4-Trichlorobenzene	0.50	U
87-61-6	1,2,3-Trichlorobenzene	0.50	Ū

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

CNMW06-W-27191

Lab Name: TESTAMERICA BURLINGTON	_	Contract: 8E-0	00302	
Lab Code: STLV Case No.: CENTRA Mo	d. Ref 1	No.:	SDG No.: 200-1629	
Matrix: (SOIL/SED/WATER) Water	_	Lab Sample ID	200-1629-3	
Sample wt/vol: 25.0 (g/mL) mL	-	Lab File ID:	JBMD22.D	
Level: (TRACE or LOW/MED) TRACE	_	Date Received	09/21/2010	
% Moisture: not dec.	-	Date Analyzed	09/24/2010	
GC Column: DB-624 ID: 0.20	(mm)	Dilution Facto	or: 1.0	
Soil Extract Volume:	(uL)	Soil Aliquot V	Volume:	(uL)
CONCENTRATION UNITS: (ug/L or ug/kg) ug	I/L	Purge Volume:	25.0	(mL)

	CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
01		Unknown	6.93	2.7	ВХЈ
02	541-05-9	Cyclotrisiloxane, hexamethyl-	7.89	0.55	BJN
03	E9667961	Total Alkanes	N/A		

1EPA-designated Registry Number.

SOM01.2 (4/2007)

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

CNMW07-W-27192

Lab Name: TESTAMERICA BURLINGTON		Contract: <u>8E-00302</u>		
Lab Code: <u>STLV</u> Case No.: <u>CENTRA</u>	A Mod. Ref	No.: S	DG No.: 200-1629	
Matrix: (SOIL/SED/WATER) Water		Lab Sample ID:	200-1629-4	
Sample wt/vol: 25.0 (g/mL) mL		Lab File ID: J	BMD23.D	
Level: (TRACE/LOW/MED) TRACE		Date Received:	09/21/2010	
% Moisture: not dec.		Date Analyzed:	09/24/2010	
GC Column: DB-624 ID: 0.20) (mm)	Dilution Facto	r: 1.0	
Soil Extract Volume:	(uL)	Soil Aliquot Volume: (uL)		
Purge Volume: 25.0	(mL)			

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg)ug/L	Q
75-71-8	Dichlorodifluoromethane	0.50	U
74-87-3	Chloromethane	0.50	U
75-01-4	Vinyl chloride	0.50	U
74-83-9	Bromomethane	0.50	U
75-00-3	Chloroethane	0.50	U
75-69-4	Trichlorofluoromethane	0.50	U
75-35-4	1,1-Dichloroethene	0.50	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	U
67-64-1	Acetone	2.3	JВ
75-15-0	Carbon disulfide	0.50	U
79-20-9	Methyl acetate	0.50	U
75-09-2	Methylene Chloride	0.50	U
156-60-5	trans-1,2-Dichloroethene	0.50	U
1634-04-4	Methyl tert-butyl ether	0.50	U
75-34-3	1,1-Dichloroethane	0.50	U
156-59-2	cis-1,2-Dichloroethene	0.50	U
78-93-3	2-Butanone	5.0	U
74-97-5	Bromochloromethane	0.50	U
67-66-3	Chloroform	0.50	U
71-55-6	1,1,1-Trichloroethane	0.50	U
110-82-7	Cyclohexane	0.50	U
56-23-5	Carbon tetrachloride	5.2	
71-43-2	Benzene	0.50	U
107-06-2	1,2-Dichloroethane	0.50	υ

Report 1,4-Dioxane for Low-Medium VOA analysis only
1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

CNMW07-W-27192

Lab Name: TESTAMERICA BURLINGTON	Contract: <u>8E-00302</u>
Lab Code: <u>STLV</u> Case No.: <u>CENTRA</u> Mo	d. Ref No.: SDG No.: 200-1629
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: 200-1629-4
Sample wt/vol: 25.0 (g/mL) mL	Lab File ID: JBMD23.D
Level: (TRACE/LOW/MED) TRACE	Date Received: 09/21/2010
% Moisture: not dec.	Date Analyzed: 09/24/2010
GC Column: DB-624 ID: 0.20	(mm) Dilution Factor: 1.0
Soil Extract Volume:	(uL) Soil Aliquot Volume:(uL)
Purge Volume: 25.0	(mL)

CAS NO.	COMPOUND	CONCENTRATION UNITS:	0
		(ug/L or ug/kg) <u>ug/L</u>	Ŷ
79-01-6	Trichloroethene	0.50	Ŭ
108-87-2	Methylcyclohexane	0.50	U
78-87-5	1,2-Dichloropropane	0.50	U
75-27-4	Bromodichloromethane	0.50	U
10061-01-5	cis-1,3-Dichloropropene	0.50	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	0.50	U
10061-02-6	trans-1,3-Dichloropropene	0.50	U
79-00-5	1,1,2-Trichloroethane	0.50	U
127-18-4	Tetrachloroethene	0.50	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	0.50	U
106-93-4	1,2-Dibromoethane	0.50	U
108-90-7	Chlorobenzene	0.50	U
100-41-4	Ethylbenzene	0.50	U
95-47-6	o-Xylene	0.50	U
179601-23-1	m,p-Xylene	0.50	U
100-42-5	Styrene	0.50	U
75-25-2	Bromoform	0.50	U
98-82-8	Isopropylbenzene	0.50	U
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U
541-73-1	1,3-Dichlorobenzene	0.50	U
106-46-7	1,4-Dichlorobenzene	0.50	U
95-50-1	1,2-Dichlorobenzene	0.50	U
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U
120-82-1	1,2,4-Trichlorobenzene	0.50	U
87-61-6	1,2,3-Trichlorobenzene	0.50	U

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

CNMW07-W-27192

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302
Lab Code: <u>STLV</u> Case No.: <u>CENTRA</u> Mod	. Ref No.: SDG No.: 200-1629
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: 200-1629-4
Sample wt/vol: 25.0 (g/mL) mL	Lab File ID: JBMD23.D
Level: (TRACE or LOW/MED) TRACE	Date Received: 09/21/2010
% Moisture: not dec.	Date Analyzed: 09/24/2010
GC Column: DB-624 ID: 0.20 (:	mm) Dilution Factor: 1.0
Soil Extract Volume:(uL) Soil Aliquot Volume:(uL)
CONCENTRATION UNITS: (ug/L or ug/kg) ug/	L Purge Volume: 25.0 (mL)

	CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
01		Unknown	6.93	2.7	ВХЈ
02	E9667961	Total Alkanes	N/A		

1EPA-designated Registry Number.

1A - FORM I VOA-1

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

CNMW08-S-27193

Lab Name: TESTAMERICA BURLINGTON	Contract: <u>8E-00302</u>
Lab Code: <u>STLV</u> Case No.: <u>CENTRA</u> Mc	d. Ref No.: SDG No.: 200-1629
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: 200-1629-1
Sample wt/vol: 25.0 (g/mL) mL	Lab File ID: JBMD20.D
Level: (TRACE/LOW/MED) TRACE	Date Received: 09/21/2010
% Moisture: not dec.	Date Analyzed: 09/23/2010
GC Column: DB-624 ID: 0.20	(mm) Dilution Factor: 1.0
Soil Extract Volume:	(uL) Soil Aliquot Volume: (uL)
Purge Volume: 25.0	(mL)

CAS NO	COMPOUND	CONCENTRATION UNITS:	
end No.	COMPOUND	(ug/L or ug/kg)ug/L	Ŷ
75-71-8	Dichlorodifluoromethane	0.50	U
74-87-3	Chloromethane	0.50	U
75-01-4	Vinyl chloride	0.50	U
74-83-9	Bromomethane	0.50	U
75-00-3	Chloroethane	0.50	U
75-69-4	Trichlorofluoromethane	0.50	U
75-35-4	1,1-Dichloroethene	0.50	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	U
67-64-1	Acetone	2.8	JВ
75-15-0	Carbon disulfide	0.50	U
79-20-9	Methyl acetate	0.50	U
75-09-2	Methylene Chloride	0.50	U
156-60-5	trans-1,2-Dichloroethene	0.50	U
1634-04-4	Methyl tert-butyl ether	0.50	U
75-34-3	1,1-Dichloroethane	0.50	U
156-59-2	cis-1,2-Dichloroethene	0.50	U
78-93-3	2-Butanone	5.0	U
74-97-5	Bromochloromethane	0.50	U
67-66-3	Chloroform	0.50	U
71-55-6	1,1,1-Trichloroethane	0.50	U
110-82-7	Cyclohexane	0.50	Ŭ
56-23-5	Carbon tetrachloride	0.50	U
71-43-2	Benzene	0.50	U
107-06-2	1,2-Dichloroethane	0.50	U

Report 1,4-Dioxane for Low-Medium VOA analysis only

1B - FORM I VOA-2

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

CNMW08-S-27193

Lab Name: TESTAMERICA BURI	LINGTON	-	Contract: 8E-	00302
Lab Code: <u>STLV</u> Case No	D.: <u>CENTRA</u> Mo	d. Ref N	0.:	SDG No.: 200-1629
Matrix: (SOIL/SED/WATER)	Vater	-	Lab Sample ID	: 200-1629-1
Sample wt/vol: 25.0	(g/mL) mL	-	Lab File ID:	JBMD20.D
Level: (TRACE/LOW/MED) TRA	ACE	-	Date Received	: 09/21/2010
% Moisture: not dec.		-	Date Analyzed	: 09/23/2010
GC Column: DB-624	ID: 0.20	(mm)	Dilution Fact	or: 1.0
Soil Extract Volume:		(uL)	Soil Aliquot	Volume: (uL)
Purge Volume: 25.0		(mL)		

CAS NO	COMPOUND	CONCENTRATION UNITS:	ó
CAS NO.		(ug/L or ug/kg) <u>ug/L</u>	Ŷ
79-01-6	Trichloroethene	0.50	U
108-87-2	Methylcyclohexane	0.50	U
78-87-5	1,2-Dichloropropane	0.50	U
75-27-4	Bromodichloromethane	0.50	U
10061-01-5	cis-1,3-Dichloropropene	0.50	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	0.50	U
10061-02-6	trans-1,3-Dichloropropene	0.50	U
79-00-5	1,1,2-Trichloroethane	0.50	U
127-18-4	Tetrachloroethene	0.50	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	0.50	U
106-93-4	1,2-Dibromoethane	0.50	U
108-90-7	Chlorobenzene	0.50	U
100-41-4	Ethylbenzene	0.50	U
95-47-6	o-Xylene	0.50	U
179601-23-1	m,p-Xylene	0.50	U
100-42-5	Styrene	0.50	U
75-25-2	Bromoform	0.50	U
98-82-8	Isopropylbenzene	0.50	U
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U
541-73-1	1,3-Dichlorobenzene	0.50	U
106-46-7	1,4-Dichlorobenzene	0.50	U
95-50-1	1,2-Dichlorobenzene	0.50	U
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U
120-82-1	1,2,4-Trichlorobenzene	0.50	υ
87-61-6	1,2,3-Trichlorobenzene	0.50	U

EPA' SAMPLE NO.

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

CNMW08-S-27193

Lab Name: TESTAMERICA BURLINGTON	Contract: <u>8E-00302</u>
Lab Code: STLV Case No.: CENTRA M	od. Ref No.: SDG No.: 200-1629
Matrix: (SOIL/SED/WATER) <u>Water</u>	Lab Sample ID: 200-1629-1
Sample wt/vol: <u>25.0</u> (g/mL) <u>mL</u>	Lab File ID: JBMD20.D
Level: (TRACE or LOW/MED) TRACE	Date Received: 09/21/2010
% Moisture: not dec.	Date Analyzed: 09/23/2010
GC Column: DB-624 ID: 0.20	(mm) Dilution Factor: 1.0
Soil Extract Volume:	(uL) Soil Aliquot Volume:(uL)
CONCENTRATION UNITS: (ug/L or ug/kg)	/L Purge Volume: 25.0 (mL)

	CAS NUMBER	COMPOUND NAME	RT.	EST. CONC.	Q
01		Unknown	6.93	2.7	BXJ
02	E9667961	Total Alkanes	N/A	1	

1EPA-designated Registry Number.

¢

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

CNQCTB-W-27216

Lab Name: TESTAMERICA BURLINGTON	Contract: <u>8E-00302</u>
Lab Code: <u>STLV</u> Case No.: <u>CENTRA</u> Mo	od. Ref No.: SDG No.: 200-1629
Matrix: (SOIL/SED/WATER) <u>Water</u>	Lab Sample ID: 200-1629-5
Sample wt/vol: 25.0 (g/mL) mL	Lab File ID: JBMD24.D
Level: (TRACE/LOW/MED) TRACE	Date Received: 09/21/2010
% Moisture: not dec.	Date Analyzed: 09/24/2010
GC Column: DB-624 ID: 0.20	(mm) Dilution Factor: 1.0
Soil Extract Volume:	(uL) Soil Aliquot Volume:(uL)
Purge Volume: 25.0	(mL)

CAC NO	COMPOUND	CONCENTRATION UNITS:	0
CAS NO.	COMPOUND	(ug/L or ug/kg)ug/L	¥ .
75-71-8	Dichlorodifluoromethane	0.50	U
74-87-3	Chloromethane	0.50	U
75-01-4	Vinyl chloride	0.50	U
74-83-9	Bromomethane	0.50	U
75-00-3	Chloroethane	0.50	U
75-69-4	Trichlorofluoromethane	0.50	U
75-35-4	1,1-Dichloroethene	0.50	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	U
67-64-1	Acetone	6.4	В
75-15-0	Carbon disulfide	0.50	U
79-20-9	Methyl acetate	0.50	U
75-09-2	Methylene Chloride	0.50	υ
156-60-5	trans-1,2-Dichloroethene	0.50	υ
1634-04-4	Methyl tert-butyl ether	0.50	υ
75-34-3	1,1-Dichloroethane	0.50	υ
156-59-2	cis-1,2-Dichloroethene	0.50	υ
78-93-3	2-Butanone	5.0	U
74-97-5	Bromochloromethane	0.50	U
67-66-3	Chloroform	0.20	J
71-55-6	1,1,1-Trichloroethane	0.50	U
110-82-7	Cyclohexane	0.50	Ū
56-23-5	Carbon tetrachloride	0.50	U
71-43-2	Benzene	0.50	U
107-06-2	1,2-Dichloroethane	0.50	U

Report 1,4-Dioxane for Low-Medium VOA analysis only

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

CNQCTB-W-27216

Lab Name: TESTAMERICA BURLINGTON		Contract: 8E-00302
Lab Code: STLV Case No.: CENTRA	Mod. Ref	No.: SDG No.: 200-1629
Matrix: (SOIL/SED/WATER) Water		Lab Sample ID: 200-1629-5
Sample wt/vol: 25.0 (g/mL) mL		Lab File ID: JBMD24.D
Level: (TRACE/LOW/MED) TRACE		Date Received: 09/21/2010
% Moisture: not dec.		Date Analyzed: 09/24/2010
GC Column: DB-624 ID: 0.20	(mm)	Dilution Factor: 1.0
Soil Extract Volume:	(uL)	Soil Aliquot Volume: (uL
Purge Volume: 25.0	(mT.)	

CAS NO.	COMPOUND	CONCENTRATION UNITS:	
		(ug/L or ug/kg) <u>ug/L</u>	Q
79-01-6	Trichloroethene	0.50	U
108-87-2	Methylcyclohexane	0.50	U
78-87-5	1,2-Dichloropropane	0.50	Ū
75-27-4	Bromodichloromethane	0.15	J
10061-01-5	cis-1,3-Dichloropropene	0.50	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	0.099	J
10061-02-6	trans-1,3-Dichloropropene	0.50	U
79-00-5	1,1,2-Trichloroethane	0.50	U
127-18-4	Tetrachloroethene	0.50	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	0.081	J
106-93-4	1,2-Dibromoethane	0.50	U
108-90-7	Chlorobenzene	0.50	U
100-41-4	Ethylbenzene	0.50	U
95-47-6	o-Xylene	0.044	J
179601-23-1	m,p-Xylene	0.50	U
100-42-5	Styrene	0.50	U
75-25-2	Bromoform	0.50	U
98-82-8	Isopropylbenzene	0.50	U
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U
541-73-1	1,3-Dichlorobenzene	0.50	U
106-46-7	1,4-Dichlorobenzene	0.039	J
95-50-1	1,2-Dichlorobenzene	0.50	U
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U
120-82-1	1,2,4-Trichlorobenzene	0.50	U
87-61-6	1,2,3-Trichlorobenzene	0.50	U

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

CNQCTB-W-27216

Lab Name: TESTAMERICA BURLINGTON		Contract: 8E-00302
Lab Code: <u>STLV</u> Case No.: <u>CENTRA</u> M	od. Ref	No.: SDG No.: 200-1629
Matrix: (SOIL/SED/WATER) <u>Water</u>		Lab Sample ID: 200-1629-5
Sample wt/vol: 25.0 (g/mL) mL	_	Lab File ID: JBMD24.D
Level: (TRACE or LOW/MED) TRACE		Date Received: 09/21/2010
% Moisture: not dec.		Date Analyzed: 09/24/2010
GC Column: DB-624 ID: 0.20	(mm)	Dilution Factor: 1.0
Soil Extract Volume:	(uL)	Soil Aliquot Volume:(uL)
CONCENTRATION UNITS: (ug/L or ug/kg)	g/L	Purge Volume: 25.0 (mL)

	CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
01		Unknown	6.93	2.6	ВХЈ
02	E9667961	Total Alkanes	N/A		

1EPA-designated Registry Number.

1A - FORM I VOA-1

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

CNSB09-W-27201

Lab Name:	TESTAMERICA E	URLING	GTON		Contract:	8E-0	0302
Lab Code:	STLV Case	No.:	CENTRA	Mod. Ref	No.:	S	DG No.: 200-1629
Matrix: (S	SOIL/SED/WATER) Wate	er		Lab Sample	e ID:	200-1629-2
Sample wt/	/vol: <u>25.0</u>	(g/m	nL) mL		Lab File I	ID: J	BMD21.D
Level: (TF	RACE/LOW/MED)	TRACE			Date Rece	ived:	09/21/2010
% Moisture	e: not dec				Date Anal	yzed:	09/24/2010
GC Column:	DB-624	II): <u>0.20</u>	(mm)	Dilution :	Facto	r: 1.0
Soil Extra	act Volume:			(uL)	Soil Aliq	uot V	olume:(uL)
Purge Volu	ume: 25.0			(mL)			

CAS NO	COMPOUND	CONCENTRATION UNITS:	
Chib No.	COMPOUND	(ug/L or ug/kg) <u>ug/L</u>	Ŷ
75-71-8	Dichlorodifluoromethane	0.50	U
74-87-3	Chloromethane	0.50	U
75-01-4	Vinyl chloride	0.50	U
74-83-9	Bromomethane	0.50	U
75-00-3	Chloroethane	0.50	U
75-69-4	Trichlorofluoromethane	0.50	U
75-35-4	1,1-Dichloroethene	0.50	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	U
67-64-1	Acetone	2.1	JВ
75-15-0	Carbon disulfide	0.50	U
79-20-9	Methyl acetate	0.50	U
75-09-2	Methylene Chloride	0.50	U
156-60-5	trans-1,2-Dichloroethene	0.50	U
1634-04-4	Methyl tert-butyl ether	0.50	U
75-34-3	1,1-Dichloroethane	0.50	U
156-59-2	cis-1,2-Dichloroethene	0.50	U
78-93-3	2-Butanone	5.0	U
74-97-5	Bromochloromethane	0.50	U
67-66-3	Chloroform	0.50	U
71-55-6	1,1,1-Trichloroethane	0.50	U
110-82-7	Cyclohexane	0.50	U
56-23-5	Carbon tetrachloride	0.50	U.
71-43-2	Benzene	0.50	U
107-06-2	1,2-Dichloroethane	0.50	U

Report 1,4-Dioxane for Low-Medium VOA analysis only

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

CNSB09-W-27201

Lab Name: TESTAMERICA BURLINGTON		Contract: 8E-00302
Lab Code: STLV Case No.: CENTRA M	lod. Ref	No.: SDG No.: 200-1629
Matrix: (SOIL/SED/WATER) Water		Lab Sample ID: 200-1629-2
Sample wt/vol: 25.0 (g/mL) mL		Lab File ID: JBMD21.D
Level: (TRACE/LOW/MED) TRACE		Date Received: 09/21/2010
% Moisture: not dec.		Date Analyzed: 09/24/2010
GC Column: DB-624 ID: 0.20	(mm)	Dilution Factor: 1.0
Soil Extract Volume:	(uL)	Soil Aliquot Volume:(uL)
Purge Volume: 25.0	(mL)	

CAS NO	COMPOSIND	CONCENTRATION UNITS:	
CAD NO.	COMPOUND	(ug/L or ug/kg) <u>ug/L</u>	V V
79-01-6	Trichloroethene	0.50	U
108-87-2	Methylcyclohexane	0.50	U
78-87-5	1,2-Dichloropropane	0.50	U
75-27-4	Bromodichloromethane	0.50	U
10061-01-5	cis-1,3-Dichloropropene	0.50	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	0.50	U
10061-02-6	trans-1,3-Dichloropropene	0.50	U
79-00-5	1,1,2-Trichloroethane	0.50	U
127-18-4	Tetrachloroethene	0.50	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	0.50、	U
106-93-4	1,2-Dibromoethane	0.50	U
108-90-7	Chlorobenzene	0.50	U
100-41-4	Ethylbenzene	0.50	U
95-47-6	o-Xylene	0.50	U
179601-23-1	m,p-Xylene	0.50	U
100-42-5	Styrene	0.50	U
75-25-2	Bromoform	0.50	U
98-82-8	Isopropylbenzene	0.50	U
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U
541-73-1	1,3-Dichlorobenzene	0.50	U
106-46-7	1,4-Dichlorobenzene	0.50	U
95-50-1	1,2-Dichlorobenzene	0.50	U
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U
120-82-1	1,2,4-Trichlorobenzene	0.50	U
87-61-6	1,2,3-Trichlorobenzene	0.50	U

EPA SAMPLE NO.

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

CNSB09-W-27201

Lab Name: TESTAMERICA BURLINGTON		Contract: 8E-	00302	
Lab Code: <u>STLV</u> Case No.: <u>CENTRA</u>	Mod. Ref	No.:	SDG No.: 200-1	529
Matrix: (SOIL/SED/WATER) <u>Water</u>		Lab Sample ID	: 200-1629-2	
Sample wt/vol: 25.0 (g/mL) mL		Lab File ID:	JBMD21.D	
Level: (TRACE or LOW/MED) TRACE		Date Received	: 09/21/2010	
% Moisture: not dec.		Date Analyzed	: 09/24/2010	
GC Column: DB-624 ID: 0.20	(mm)	Dilution Fact	or: <u>1.0</u>	
Soil Extract Volume:	(uL)	Soil Aliquot	Volume:	(uL)
CONCENTRATION UNITS: (ug/L or ug/kg)	uq/L	Purge Volume:	25.0	(mL)

	CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
01		Unknown	6.93	2.7	ВХЈ
02	541-05-9	Cyclotrisiloxane, hexamethyl-	7.89	0.60	BJN
03	E9667961	Total Alkanes	N/A		

1EPA-designated Registry Number.

6A - FORM VI VOA-1 VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGT	Contract: 8E-00302						
Lab Code: STLV Case No.: C	d. Ref N	o.:	SI	G No.: 2	00-1629		
Instrument ID: J.i		Calibra	tion Dat	e(s): 09	/21/2010	09/21/	2010
Heated Purge: (Y/N) N		Calibra	tion Tim	e(s): 14	35	1724	
Purge Volume: 25.0		(mL)					
		· (Tonothe	25	()		
	0.20	(111111)	Lengen:		(111)		
LAB FILE ID: RR	F0.5 = J	BM02.D		RRF1.	0 = JBM0	3.D	
RRF5.0 = JBM04.D RR	$F_{10} = J$	BM05.D		RRF20	= <u>JBM0</u>	8.D	
COMPOUND	RRF0.5	RRF <u>1.0</u>	RRF5.0	RRF10	RRF20	RRF	%RSD
Dichlorodifluoromethane	0.475	0.484	0.451	0.459	0.442	0.462	3.7
Chloromethane	0.426	0.401	0.361	0.348	0.328	0.373	10.8
Vinyl chloride	0.389	0.404	0.370	0.371	0.352	0.377	5.3
Bromomethane	0.228	0.221	0.198	0.200	0.203	0.210	6.5
Chloroethane	0.166	0.150	0.225	0.233	0.213	0.198	18.7
Trichlorofluoromethane	0.581	0.610	0.583	0.592	0.563	0.586	2.9
1,1-Dichloroethene	0.289	0.290	0.279	0.287	0.280	0.285	1.8
1,1,2-Trichloro-	0.327	0.337	0.315	0.325	0.326	0.326	2.3
1,2,2-trifluoroethane	0.010	0.010	0 011	0 011	0.011	0 010	01 7
Acetone	0.016	0.016	0.011	0.011	0.011	0.013	21.7
Mather active	0.861	0.829	0.753	0.113	0.750	0.793	0.2
Methyl acetate	0.033	0.044	0.035	0.035	0.035	0.037	12.0
trang 1 2 Dichleresthere	0.211	0.211	0.215	0.217	0.209	0.213	1.0
Mothul tort-butul other	0.303		0.297	0.303	0.297	0.303	2.0
1 1-Dichloroethane	0.311	0.530	0.321	0.555	0.323	0.325	3.1
cis-1 2-Dichloroethene	0.400	0.320	0.407	0.302	0.401	0.490	4.0
2-Butanone	0.200	0.295	0.200	0.291	0.203	0.200	1.1
Bromochloromethane	0.010	0.020	0.019	0.019	0.013	0.019	3 1
Chloroform	0.004	0.001	0.000	0.003	0.004	0.000	3.4
1 1 1-Trichloroethane	0.662	0.500	0.407	0.401	0.400	0.475	3.4
Cyclohexane	0.654	0.674	0.663	0.679	0.636	0 661	2.6
Carbon tetrachloride	0.589	0.622	0.610	0.629	0.599	0.610	2.0
Benzene	1,492	1,607	1,562	1.599	1,514	1,555	3.3
1.2-Dichloroethane	0.192	0.196	0.190	0.201	0,192	0.194	2.2
Trichloroethene	0.423	0.428	0.417	0.428	0.399	0.419	2.9
Methylcyclohexane	0.517	0.551	0.536	0.539	0.515	0.532	2.9

Report 1,4-Dioxane for Low-Medium VOA analysis only

.

6B - FORM VI VOA-2 VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON Cont				t: 8E-00	0302		
Lab Code: STLV Case No.:	CENTRA Mo	d. Ref N	lo.:	SI	DG No.: 2	00-1629	
Instrument ID: J.i		Calibra	tion Dat	e(s): 09	- 9/21/2010	09/21/	2010
Heated Purge: (Y/N) N		Calibra	tion Tim	e(s): 14	135	1724	
Purge Volume: 25.0		(mL)					
GC Column: DB-624	D: 0.20	(mm)	Length:	25	(m) ⁻		
LAB FILE ID:	RF0.5 = J	BM02.D		RRF1	0 = JBM0	3.D	
RRF5.0 = JBM04.D	RF10 = J	BM05.D		RRF2) = JBM0	8.D	
COMPOUND	RRF0.5	RRF1.0	RRF5.0	RRF10	RRF20	RRF	%RSD
1,2-Dichloropropane	0.262	0.296	0.287	0.301	0.282	0.286	5.2
Bromodichloromethane	0.314	0.351	0.353	0.353	0.344	0.343	4.8
cis-1,3-Dichloropropene	0.394	0.406	0.418	0.433	0.420	0.414	3.5
4-Methyl-2-pentanone	0.056	0.064	0.063	0.066	0.062	0.062	6.4
Toluene	1.605	1.697	1.663	1.702	1.646	1.663	2.4
trans-1,3-Dichloropropene	0.256	0.287	0.295	0.306	0.297	0.288	6.7
1,1,2-Trichloroethane	0.117	0.148	0.145	0.145	0.133	0.138	9.3
Tetrachloroethene	0.368	0.381	0.378	0.384	0.365	0.375	2.2
2-Hexanone	0.051	0.048	0.043	0.044	0.041	0.045	9.7
Dibromochloromethane	0.153	0.178	0.183	0.183	0.186	0.177	7.7
1,2-Dibromoethane	0.120	0.128	0.132	0.135	0.124	0.128	4.6
Chlorobenzene	0.963	1.022	0.976	1.005	0.964	0.986	2.7
Ethylbenzene	1.835	1.939	1.953	2.017	1.966	1.942	3.4
o-Xylene	0.623	0.659	0.679	0.700	0.676	0.667	4.4
m,p-Xylene	0.704	0.742	0.750	0.782	0.752	0.746	3.8
Styrene	0.843	0.908	0.965	1.030	1.002	0.950	7.9
Bromoform	0.174	0.161	0.181	0.165	0.181	0.172	5.3
Isopropylbenzene	1.847	1.942	1.997	2.070	2.014	1.974	4.3
1,1,2,2-Tetrachloroethane	0.114	0.124	0.126	0.126	0.120	0.122	4.3
1,3-Dichlorobenzene	1.498	1.516	1.496	1.507	1.482	1.500	0.9
1,4-Dichlorobenzene	1.507	1.528	1.457	1.468	1.422	1.476	2.8
1,2-Dichlorobenzene	1.040	1.100	1.099	1.114	1.078	1.086	2.7
1,2-Dibromo-3-Chloropropane	0.035	0.036	0.036	0.036	0.034	0.035	3.0
1,2,4-Trichlorobenzene	0.674	0.720	0.684	0.712	0.684	0.695	2.8
1,2,3-Trichlorobenzene	0.429	0.455	0.432	0.456	0.426	0.440	3.4

6C - FORM VI VOA-3 VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGT	TON Contract: 8E-00302						
Lab Code: <u>STLV</u> Case No.: C	ENTRA Mo	d. Ref N	o.:	5	SDG No.: 200-1629		
Instrument ID: J.i		Calibration Date(s):			9/21/2010	09/21/2010	
Heated Purge: (Y/N) N		Calibra	tion Tim	e(s): 1	1435 1724		
Purge Volume: 25.0		(mL)					
GC Column: DB-624 ID: 0.20 (mm) Length: 25 (m)							
LAB FILE ID: RRF0.5 = JBM02.D RRF1.0 = JBM03.D							
RRF5.0 = JBM04.D RR	RRF10 = JBM05.D $RRF20 = JBM08.D$						
COMPOUND	RRF0.5	RRF1.0	RRF5.0	RRF10	RRF20	RRF	%RSD
Vinyl Chloride-d3	0.329	0.374	0.324	0.332	2 0.313	0.335	6.9
Chloroethane-d5 ,	0.269	0.297	0.274	0.273	3 0.259	0.274	5.2
1,1-Dichloroethene-d2	0.534	0.546	0.524	0.533	0.512	0.530	2.3
2-Butanone-d5	0.017	0.022	0.020	0.020	0.020	0.020	7.8
Chloroform-d	0.474	0.497	0.471	0.485	0.471	0.480	2.4
1,2-Dichloroethane-d4	0.158	0.155	0.152	0.153	3 0.148	0.153	2.5
Benzene-d6	1.364	1.461	1.408	1.443	3 1.373	1.410	3.0
1,2-Dichloropropane-d6	0.373	0.397	0.385	0.337	0.366	0.372	6.1
Toluene-d8	1.321	1.416	1.382	1.436	5 1.374	1.386	3.2
trans-1,3-Dichloropropene-d4	0.241	0.251	0.259	0.273	3 0.260	0.257	4.7
2-Hexanone-d5	0.022	0.025	0.024	0.026	5 0.024	0.024	7.1
1,1,2,2-Tetrachloroethane-d2	0.100	0.119	0.121	0.123	3 0.117	0.116	8.0
1,2-Dichlorobenzene-d4	0.706	0.698	0.678	0.691	0.676	0.690	1.8

Report 1,4-Dioxane-d8 for Low-Medium VOA analysis only

7A - FORM VII VOA-1 VOLATILE CONTINUING CALIBRATION DATA

Lab Name: <u>T</u>	ESTAMERICA BURI	LINGTON	Contract: <u>8E-00302</u>				
Lab Code: S	TLV Case No	.: <u>CENTRA</u> M	od. Ref N	No.:	•	SDG No.:	200-1629
Instrument	ID: <u>J.i</u>		Cali	ibratic	on Date:	09/23/201	.0 Time: 1526
Lab File Id	: JBMD02.D		_ Init. (Calib.	Date(s)	:09/21/201	.0 09/21/2010
EPA Sample	No.(VSTD####):	VSTD005JF	_ Init	t. Cali	b. Time	(s): <u>1435</u>	1724
Heated Purg	e: (Y/N) <u>N</u>	GC Column:	DB-624	ID:	0.20 (mm)) Length:	25 (m)
Purge Volum	ie: 25.0		(mL)				

COMPOUND	RRF	RRF <u>5.0</u>	MIN RRF	۶D	MAX %D
Dichlorodifluoromethane	0.462	0.479	0.010	3.7	40.0
Chloromethane	0.373	0.374	0.010	0.3	40.0
Vinyl chloride	0.377	0.390	0.010	3.5	30.0
Bromomethane	0.210	0.224	0.100	6.8	. 30.0
Chloroethane	0.198	0.218	0.010	10.3	40.0
Trichlorofluoromethane	0.586	0.603	0.010	3.0	40.0
1,1-Dichloroethene	0.285	0.290	0.100	1.8	30.0
1,1,2-Trichloro-1,2,2-trifluoroethane	0.326	0.329	0.010	1.0	40.0
Acetone	0.013	0.012	0.010	-8.1	40.0
Carbon disulfide	0.793	0.791	0.010	-0.3	40.0
Methyl acetate	0.037	0.037	0.010	1.0	40.0
Methylene Chloride	0.213	0.220	0.010	3.3	40.0
trans-1,2-Dichloroethene	0.303	0.301	0.010	-0.5	40.0
Methyl tert-butyl ether	0.325	0.317	0.010	-2.3	40.0
1,1-Dichloroethane	0.496	0.512	0.200	3.2	30.0
cis-1,2-Dichloroethene	0.288	0.296	0.010	2.5	40.0
2-Butanone	0.019	0.019	0.010	-1.0	40.0
Bromochloromethane	0.086	0.086	0.050	0.1	30.0
Chloroform	0.479	0.481	0.200	0.4	30.0
1,1,1-Trichloroethane	0.671	0.686	0.100	2.3	30.0
Cyclohexane	0.661	0.679	0.010	2.7	40.0
Carbon tetrachloride	0.610	0.621	0.100	1.9	30.0
Benzene	1.555	1.585	0.400	2.0	30.0
1,2-Dichloroethane	0.194	0.195	0.100	0.4	30.0
Trichloroethene	0.419	0.427	0.300	2.0	30.0
Methylcyclohexane	0.532	0.545	0.010	2.6	40.0

Report 1,4-Dioxane for Low/Medium VOA analysis only

7B - FORM VII VOA-2 VOLATILE CONTINUING CALIBRATION DATA

Lab Name:	TESTAMERI	CA BUI	RLING	GTON		Contract: 8			8E-C	Ξ-00302			
Lab Code:	STLV	Case 1	No.:	CENTRA	Mod.	Ref	No.: _		5	SDG No	o.: <u>2</u>	00-162	9
Instrument	= ID: <u>J.i</u>					Cal	ibrati	on Dat	.e: _	9/23,	/2010	Time:	1526
Lab File I	Id: JBMD02	2.D			I1	nit.	Calib.	Date(s): <u>(</u>	9/21,	/2010	09/21	/2010
EPA Sample	e No.(VSTI	D####)	: <u>vs</u>	D005JF		Ini	t. Cal	ib. Ti	.me(s	s): <u>1</u>	435	172	4
Heated Pu	rge: (Y/N)	N	GC	Columr	n: DB-	-624	ID:	0.20(mm)	Leng	th: 2	5_(m)	
Purge Volu	ume: 25.0				(m]	-)							

COMPOUND	RRF	RRF5.0	MIN RRF	%D	MAX %D
1,2-Dichloropropane	0.286	0.301	0.010	5.3	40.0
Bromodichloromethane	0.343	0.353	0.200	2.9	30.0
cis-1,3-Dichloropropene	0.414	0.414	0.200	-0.1	30.0
4-Methyl-2-pentanone	0.062	0.062	0.010	-1.1	40.0
Toluene	1.663	1.693	0.400	1.8	30.0
trans-1,3-Dichloropropene	0.288	0.293	0.100	1.4	30.0
1,1,2-Trichloroethane	0.138	0.140	0.100	1.5	30.0
Tetrachloroethene	0.375	0.379	0.100	1.0	30.0
2-Hexanone	0.045	0.040	0.010	-11.2	40.0
Dibromochloromethane	0.177	0.185	0.100	4.6	30.0
1,2-Dibromoethane	0.128	0.127	0.010	-0.4	40.0
Chlorobenzene	0.986	1.001	0.500	1.6	30.0
Ethylbenzene	1.942	1.974	0.100	1.7	30.0
o-Xylene	0.667	0.686	0.300	2.8	30.0
m,p-Xylene	0.746	0.767	0.300	2.8	30.0
Styrene	0.950	1.000	0.300	5.3	30.0
Bromoform	0.172	0.174	0.050	1.3	30.0
Isopropylbenzene	1.974	2.020	0.010	2.3	40.0
1,1,2,2-Tetrachloroethane	0.122	0.121	0.100	-1.3	30.0
1,3-Dichlorobenzene	1.500	1.547	0.400	3.1	30.0
1,4-Dichlorobenzene	1.476	1.475	0.400	-0.1	30.0
1,2-Dichlorobenzene	1.086	1.141	0.400	5.0	30.0
1,2-Dibromo-3-Chloropropane	0.035	0.035	0.010	-2.0	40.0
1,2,4-Trichlorobenzene	0.695	0.701	0.200	1.0	30.0
1,2,3-Trichlorobenzene	0.440	0.452	0.200	2.8	30.0

7C - FORM VII VOA-3 VOLATILE CONTINUING CALIBRATION DATA

Lab Name:	TESTAMERI	CA BURLI	NGTON	Contract: 8			BE-00302		
Lab Code:	STLV	Case No.	: CENTRA MO	od. Ref	No.:	-	SDG No.: 2	00-1629	
Instrument	: ID: <u>J.i</u>			Cal	Librati	on Date:	09/23/2010	Time: 1526	
Lab File 1	d: JBMD02	2.D		Init.	Calib.	Date(s)	09/21/2010	09/21/2010	
EPA Sample	e No.(VSTI)####): <u>v</u>	STD005JF	_ Ini	t. Cal	ib. Time	(s): <u>1435</u>	1724	
Heated Pur	rge: (Y/N)	N	GC Column:	DB-624	ID:	0.20 (mm)) Length: 2	5 (m)	
Purge Volu	ume: 25.0			(mL)					

COMPOUND	RRF	RRF <u>5.0</u>	MIN RRF	۶D	MAX %D
Vinyl Chloride-d3	0.335	0.345	0.010	3.1	30.0
Chloroethane-d5	0.274	0.283	0.010	3.3	40.0
1,1-Dichloroethene-d2	0.530	0.524	0.010	-1.1	30.0
2-Butanone-d5	0.020	0.019	0.010	-2.4	40.0
Chloroform-d	0.480	0.494	0.010	3.0	30.0
1,2-Dichloroethane-d4	0.153	0.154	0.010	0.5	30.0
Benzene-d6	1.410	1.446	0.010	2.6	30.0
1,2-Dichloropropane-d6	0.372	0.390	0.010	4.9	40.0
Toluene-d8	1.386	1.401	0.010	1.1	30.0
trans-1,3-Dichloropropene-d4	0.257	0.255	0.010	-0.6	30.0
2-Hexanone-d5	0.024	0.024	0.010	-1.3	40.0
1,1,2,2-Tetrachloroethane-d2	0.116	0.121	0.010	4.4	30.0
1,2-Dichlorobenzene-d4	0.690	0.703	0.010	1.9	30.0

Report 1,4-Dioxane-d8 for Low/Medium VOA analysis only

7A - FORM VII VOA-1 VOLATILE CONTINUING CALIBRATION DATA

۰.

Lab Name:	TESTAMERICA BURI	LINGTON	Contract: 8E-00302			ù
Lab Code:	STLV Case No	D.: CENTRA MO	od. Ref No.	:	SDG No.: 2	00-1629
Instrument	ID: J.i		_ Calibr	ation Date	: 09/24/2010	Time: 0218
Lab File I	d: JBMD25.D		_ Init. Cal	ib. Date(s): <u>09/21/2010</u>	09/21/2010
EPA Sample	No.(VSTD####):	VSTD005FJ	_ Init.	Calib. Tim	e(s): 1435	1724
Heated Pur	ge: (Y/N) <u>N</u>	GC Column:	DB-624	ID: <u>0.20</u> (m	m) Length: 2	5 (m)
Purge Volu	me: 25.0		(mL)			

COMPOUND	RRF	RRF5.0	MIN RRF	%D	MAX %D
Dichlorodifluoromethane	0.462	0.455	0.010	-1.6	50.0
Chloromethane	0.373	0.370	0.010	-0.7	50.0
Vinyl chloride	0.377	0.379	0.010	0.5	50.0
Bromomethane	0.210	0.206	0.010	-1.8	50.0
Chloroethane	0.198	0.217	0.010	10.1	50.0
Trichlorofluoromethane	0.586	0.601	0.010	2.5	50.0
1,1-Dichloroethene	0.285	0.293	0.010	2.9	50.0
1,1,2-Trichloro-1,2,2-trifluoroethane	0.326	0.317	0.010	-2.7	50.0
Acetone	0.013	0.012	0.010	-7.0	50.0
Carbon disulfide	0.793	0.783	0.010	-1.3	50.0
Methyl acetate	0.037	0.031	0.010	-15.5	50.0
Methylene Chloride	0.213	0.217	0.010	2.1	50.0
trans-1,2-Dichloroethene	0.303	0.310	0.010	2.4	50.0
Methyl tert-butyl ether	0.325	0.336	0.010	3.3	50.0
1,1-Dichloroethane	0.496	0.517	0.010	4.3	50.0
cis-1,2-Dichloroethene	0.288	0.293	0.010	1.6	50.0
2-Butanone	0.019	0.020	0.010	4.8	50.0
Bromochloromethane	0.086	0.087	0.010	1.2	50.0
Chloroform	0.479	0.489	0.010	2.0	50.0
1,1,1-Trichloroethane	0.671	0.671	0.010	0.0	50.0
Cyclohexane	0.661	0.671	0.010	1.5	50.0
Carbon tetrachloride	0.610	0.618	0.010	1.3	50.0
Benzene	1.555	1.600	0.010	2.9	50.0
1,2-Dichloroethane	0.194	0.199	0.010	2.5	50.0
Trichloroethene	0.419	0.425	0.010	1.4	50.0
Methylcyclohexane	0.532	0.529	0.010	-0.5	50.0

Report 1,4-Dioxane for Low/Medium VOA analysis only

7B - FORM VII VOA-2 VOLATILE CONTINUING CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302			
Lab Code: STLV Case No.: CENTRA M	od. Ref No.: SDG No.: 200-1629			
Instrument ID: J.i	Calibration Date: 09/24/2010 Time: 0218			
Lab File Id: JBMD25.D	Init. Calib. Date(s): 09/21/2010 09/21/2010			
EPA Sample No.(VSTD####): <u>VSTD005FJ</u>	Init. Calib. Time(s): <u>1435</u> <u>1724</u>			
Heated Purge: (Y/N) \underline{N} GC Column:	DB-624 ID: 0.20(mm) Length: 25 (m)			
Purge Volume: 25.0	(mL)			

COMPOUND	RRF	RRF5.0	MIN RRF	%D	MAX %D
1,2-Dichloropropane	0.286	0.300	0.010	4.9	50.0
Bromodichloromethane	0.343	0.362	0.010	5.6	50.0
cis-1,3-Dichloropropene	0.414	0.417	0.010	0.6	50.0
4-Methyl-2-pentanone	0.062	0.065	0.010	3.9	50.0
Toluene	1.663	1.683	0.010	1.2	50.0
trans-1,3-Dichloropropene	0.288	0.300	0.010	4.1	50.0
1,1,2-Trichloroethane	0.138	0.143	0.010	3.9	50.0
Tetrachloroethene	0.375	0.374	0.010	-0.4	50.0
2-Hexanone	0.045	0.041	0.010	-9.1	50.0
Dibromochloromethane	0.177	0.196	0.010	11.2	50.0
1,2-Dibromoethane	0.128	0.131	0.010	2.6	50.0
Chlorobenzene	0.986	0.987	0.010	0.1	50.0
Ethylbenzene	1.942	1.959	0.010	0.9	50.0
o-Xylene	0.667	0.677	0.010	1.5	50.0
m,p-Xylene	0.746	0.766	0.010	2.7	50.0
Styrene	0.950	0.978	0.010	3.0	50.0
Bromoform	0.172	0.191	0.010	10.8	50.0
Isopropylbenzene	1.974	1.960	0.010	-0.7	50.0
1,1,2,2-Tetrachloroethane	0.122	0.129	0.010	ʻ5 . 3	50.0
1,3-Dichlorobenzene	1.500	1.510	0.010	0.7	50.0
1,4-Dichlorobenzene	1.476	1.464	0.010	-0.8	50.0
1,2-Dichlorobenzene	1.086	1.127	0.010	3.7	50.0
1,2-Dibromo-3-Chloropropane	0.035	0.037	0.010	3.9	50.0
1,2,4-Trichlorobenzene	0.695	0.646	0.010	-7.0	50.0
1,2,3-Trichlorobenzene	0.440	0.408	0.010	-7.1	50.0

7C - FORM VII VOA-3 VOLATILE CONTINUING CALIBRATION DATA

Lab Name:	TESTAMER	CA BURLIN	GTON		Contract: 8E-00302			
Lab Code:	STLV	Case No.:	CENTRA M	od. Ref	No.:		SDG No.: 2	00-1629
Instrument	: ID: <u>J.i</u>			_ Cal	ibratio	on Date:	09/24/2010	Time: 0218
Lab File 1	d: JBMD25	5.D		_ Init.	Calib.	Date(s):	09/21/2010	09/21/2010
EPA Sample	e No.(VSTI)####): <u>Vs</u>	TD005FJ	_ Ini	t. Cal:	ib. Time(s): <u>1435</u>	1724
Heated Pur	rge: (Y/N)	N G	C Column:	DB-624	ID:	0.20(mm)	Length: 2	5_(m)
Purge Volu	ume: 25.0			(mL)				

COMPOUND	RRF	RRF <u>5.0</u>	MIN RRF	۶D	MAX %D
Vinyl Chloride-d3	0.335	0.340	0.010	1.7	50.0
Chloroethane-d5	0.274	0.276	0.010	0.7	50.0
1,1-Dichloroethene-d2	0.530	0.532	0.010	0.4	50.0
2-Butanone-d5	0.020	0.021	0.010	8.2	50.0
Chloroform-d	0.480	0.508	0.010	5.9	50.0
1,2-Dichloroethane-d4	0.153	0.158	0.010	3.3	50.0
Benzene-d6	1.410	1.453	0.010	3.1	50.0
1,2-Dichloropropane-d6	0.372	0.395	0.010	6.1	50.0
Toluene-d8	1.386	1.406	0.010	1.4	50.0
trans-1,3-Dichloropropene-d4	0.257	0.260	0.010	1.2	50.0
2-Hexanone-d5	0.024	0.025	0.010	4.5	50.0
1,1,2,2-Tetrachloroethane-d2	0.116	0.124	0.010	7.2	50.0
1,2-Dichlorobenzene-d4	0.690	0.716	0.010	3.8	50.0

Report 1,4-Dioxane-d8 for Low/Medium VOA analysis only •

7A - FORM VII VOA-1 VOLATILE CONTINUING CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302
Lab Code: <u>STLV</u> Case No.: <u>CENTRA</u> M	od. Ref No.: SDG No.: 200-1629
Instrument ID: J.i	Calibration Date: 09/24/2010 Time: 0641
Lab File Id: JBME02.D	Init. Calib. Date(s): 09/21/2010 09/21/2010
EPA Sample No.(VSTD####): VSTD005JG	Init. Calib. Time(s): <u>1435</u> <u>1724</u>
Heated Purge: (Y/N) \underline{N} GC Column:	DB-624 ID: 0.20(mm) Length: 25 (m)
Purge Volume: 25.0	(mL)

COMPOUND	RRF	RRF5.0	MIN RRF	۶D	MAX %D
Dichlorodifluoromethane	0.462	0.513	0.010	11.0	40.0
Chloromethane	0.373	0.382	0.010	2.4	4.0.0
Vinyl chloride	0.377	0.420	0.010	11.4	30.0
Bromomethane	0.210	0.245	0.100	16.9	30.0
Chloroethane	0.198	0.240	0.010	21.5	40.0
Trichlorofluoromethane	0.586	0.636	0.010	8.5	40.0
1,1-Dichloroethene	0.285	0.304	0.100	6.8	30.0
1,1,2-Trichloro-1,2,2-trifluoroethane	0.326	0.351	0.010	7.7	40.0
Acetone	0.013	0.012	0.010	-6.8	40.0
Carbon disulfide	0.793	0.859	0.010	8.2	40.0
Methyl acetate	0.037	0.037	0.010	1.1	40.0
Methylene Chloride	0.213	0.232	0.010	8.9	40.0
trans-1,2-Dichloroethene	0.303	0.329	0.010	8.7	40.0
Methyl tert-butyl ether	0.325	0.316	0.010	-2.9	40.0
1,1-Dichloroethane	0.496	0.535	0.200	8.0	30.0
cis-1,2-Dichloroethene	0.288	0.311	0.010	7.8	40.0
2-Butanone	0.019	0.019	0.010	-2.6	40.0
Bromochloromethane	0.086	0.092	0.050	6.4	30.0
Chloroform	0.479	0.504	0.200	5.3	30.0
1,1,1-Trichloroethane	0.671	0.711	0.100	6.1	30.0
Cyclohexane	0.661	0.716	0.010	8.3	40.0
Carbon tetrachloride	0.610	0.655	0.100	7.3	30.0
Benzene	1.555	1.658	0.400	6.6	30.0
1,2-Dichloroethane	0.194	0.201	0.100	3.3	30.0
Trichloroethene	0.419	0.437	0.300	4.4	30.0
Methylcyclohexane	0.532	0.577	0.010	8.5	40.0

Report 1,4-Dioxane for Low/Medium VOA analysis only

7B - FORM VII VOA-2 VOLATILE CONTINUING CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302
Lab Code: <u>STLV</u> Case No.: <u>CENTRA</u>	Mod. Ref No.: SDG No.: 200-1629
Instrument ID: J.i	Calibration Date: <u>09/24/2010</u> Time: <u>0641</u>
Lab File Id: JBME02.D	Init. Calib. Date(s):09/21/2010 09/21/2010
EPA Sample No.(VSTD####): VSTD005JG	Init. Calib. Time(s): <u>1435</u> <u>1724</u>
Heated Purge: (Y/N) N GC Column	: <u>DB-624</u> ID: <u>0.20(mm)</u> Length: <u>25</u> (m)
Purge Volume: 25.0	(mL)

COMPOUND	RRF	RRF <u>5.0</u>	MIN RRF	۶D	MAX %D
1,2-Dichloropropane	0.286	0.315	0.010	10.2	40.0
Bromodichloromethane	0.343	0.374	0.200	9.0	30.0
cis-1,3-Dichloropropene	0.414	0.438	0.200	5.8	30.0
4-Methyl-2-pentanone	0.062	0.061	0.010	-1.5	40.0
Toluene	1.663	1.785	0.400	7.3	30.0
trans-1,3-Dichloropropene	0.288	0.304	0.100	5.4	30.0
1,1,2-Trichloroethane	0.138	0.142	0.100	3.1	30.0
Tetrachloroethene	0.375	0.403	0.100	7.5	30.0
2-Hexanone	0.045	0.039	0.010	-13.6	40.0
Dibromochloromethane	0.177	0.189	0.100	6.9	30.0
1,2-Dibromoethane	0.128	0.127	0.010	-0.4	40.0
Chlorobenzene	0.986	1.026	0.500	4.1	30.0
Ethylbenzene	1.942	2.100	0.100	8.1	30.0
o-Xylene	0.667	0.718	0.300	7.6	30.0
m,p-Xylene	0.746	0.805	0.300	8.0	30.0
Styrene	0.950	1.020	0.300	7.4	30.0
Bromoform	0.172	0.186	0.050	8.1	30.0
Isopropylbenzene	1.974	2.129	0.010	7.8	40.0
1,1,2,2-Tetrachloroethane	0.122	0.123	0.100	0.5	30.0
1,3-Dichlorobenzene	1.500	1.592	0.400	6.1	30.0
1,4-Dichlorobenzene	1.476	1.533	0.400	3.9	30.0
1,2-Dichlorobenzene	1.086	1.170	0.400	7.7	30.0
1,2-Dibromo-3-Chloropropane	0.035	0.034	0.010	-2.8	40.0
1,2,4-Trichlorobenzene	0.695	0.711	0.200	2.3	30.0
1,2,3-Trichlorobenzene	0.440	0.454	0.200	3.3	30.0

7C - FORM VII VOA-3 VOLATILE CONTINUING CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302
Lab Code: STLV Case No.: CENTRA Mo	od. Ref No.: SDG No.: 200-1629
Instrument ID: J.i	Calibration Date: 09/24/2010 Time: 0641
Lab File Id: JBME02.D	Init. Calib. Date(s):09/21/2010 09/21/2010
EPA Sample No.(VSTD####): VSTD005JG	Init. Calib. Time(s): 1435 1724
Heated Purge: (Y/N) \underline{N} GC Column:	DB-624 ID: 0.20(mm) Length: 25 (m)
Purge Volume: 25.0	(mL)

COMPOUND	RRF	RRF5.0	MIN RRF	%D	MAX %D
Vinyl Chloride-d3	0.335	0.372	0.010	11.1	30.0
Chloroethane-d5	0.274	0.296	0.010	8.1	40.0
1,1-Dichloroethene-d2	0.530	0.564	0.010	6.5	30.0
2-Butanone-d5	0.020	0.019	0.010	-1.8	40.0
Chloroform-d	0.480	0.524	0.010	9.1	30.0
1,2-Dichloroethane-d4	0.153	0.161	0.010	4.7	30.0
Benzene-d6	1.410	1.512	0.010	7.2	30.0
1,2-Dichloropropane-d6	0.372	0.353	0.010	-5.0	40.0
Toluene-d8	1.386	1.473	0.010	6.3	30.0
trans-1,3-Dichloropropene-d4	0.257	0.271	0.010	5.5	30.0
2-Hexanone-d5	0.024	0.023	0.010	-4.1	40.0
1,1,2,2-Tetrachloroethane-d2	0.116	0.119	0.010	2.5	30.0
1,2-Dichlorobenzene-d4	0.690	0.728	0.010	5.5	30.0

Report 1,4-Dioxane-d8 for Low/Medium VOA analysis only

,

7A - FORM VII VOA-1 VOLATILE CONTINUING CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302
Lab Code: <u>STLV</u> Case No.: <u>CENTRA</u> M	od. Ref No.: SDG No.: 200-1629
Instrument ID: J.i	Calibration Date: 09/24/2010 Time: 1354
Lab File Id: JBME17.D	Init. Calib. Date(s): 09/21/2010 09/21/2010
EPA Sample No.(VSTD####): VSTD005GJ	Init. Calib. Time(s): <u>1435</u> <u>1724</u>
Heated Purge: (Y/N) \underline{N} GC Column:	DB-624 ID: 0.20(mm) Length: 25 (m)
Purge Volume: 25.0	(mL)

COMPOUND	RRF	RRF <u>5.0</u>	MIN RRF	%D	MAX %D
Dichlorodifluoromethane	0.462	0.456	0.010	-1.3	50.0
Chloromethane	0.373	0.376	0.010	0.9	50.0
Vinyl chloride	0.377	0.374	0.010	-0.9	50.0
Bromomethane	0.210	0.209	0.010	-0.6	50.0
Chloroethane	0.198	0.215	0.010	9.0	50.0
Trichlorofluoromethane	0.586	0.607	0.010	3.7	50.0
1,1-Dichloroethene	0.285	0.286	0.010	0.4	50.0
1,1,2-Trichloro-1,2,2-trifluoroethane	0.326	0.328	0.010	0.6	50.0
Acetone	0.013	0.012	0.010	-6.6	50.0
Carbon disulfide	0.793	0.777	0.010	-2.1	50.0
Methyl acetate	0.037	0.036	0.010	-2.2	50.0
Methylene Chloride	0.213	0.220	0.010	3.5	50.0
trans-1,2-Dichloroethene	0.303	0.314	0.010	3.8	50.0
Methyl tert-butyl ether	0.325	0.339	0.010	4.2	50.0
1,1-Dichloroethane	0.496	0.520	0.010	4.8	50.0
cis-1,2-Dichloroethene	0.288	0.300	0.010	4.0	50.0
2-Butanone	0.019	0.019	0.010	0.1	50.0
Bromochloromethane	0.086	0.090	0.010	4.5	50.0
Chloroform	0.479	0.498	0.010	3.8	50.0
1,1,1-Trichloroethane	0.671	0.668	0.010	-0.4	50.0
Cyclohexane	0.661	0.664	0.010	0.5	50.0
Carbon tetrachloride	0.610	0.611	0.010	0.1	50.0
Benzene	1.555	1.575	0.010	1.3	50.0
1,2-Dichloroethane	0.194	0.197	0.010	1.4	50.0
Trichloroethene	0.419	0.427	0.010	1.8	50.0
Methylcyclohexane	0.532	0.533	0.010	0.3	50.0

Report 1,4-Dioxane for Low/Medium VOA analysis only

7b - FORM VII VOA-2 VOLATILE CONTINUING CALIBRATION DATA

Lab Name: 1	TESTAMERICA BURLINGTON	Contract: 8E-00302
Lab Code: 5	STLV Case No.: CENTRA N	Mod. Ref No.: SDG No.: 200-1629
Instrument	ID: J.i	Calibration Date: 09/24/2010 Time: 1354
Lab File Id	i: JBME17.D	Init. Calib. Date(s):09/21/2010 09/21/2010
EPA Sample	No.(VSTD####): VSTD005GJ	Init. Calib. Time(s): <u>1435</u> <u>1724</u>
Heated Purg	ge: (Y/N) N GC Column	: <u>DB-624</u> ID: <u>0.20(mm)</u> Length: <u>25</u> (m)
Purge Volum	ne: 25.0	(mL)

COMPOUND	RRF	RRF <u>5.0</u>	MIN RRF	%D	MAX %D
1,2-Dichloropropane	0.286	0.301	0.010	5.2	50.0
Bromodichloromethane	0.343	0.357	0.010	4.0	50.0
cis-1,3-Dichloropropene	0.414	0.432	0.010	4.2	50.0
4-Methyl-2-pentanone	0.062	0.064	0.010	2.9	50.0
Toluene	1.663	1.670	0.010	0.4	50.0
trans-1,3-Dichloropropene	0.288	.0.306	0.010	6.2	50.0
1,1,2-Trichloroethane	0.138	138 0.140 0.010 2.		2.1	50.0
Tetrachloroethene	0.375	0.368	0.010	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
2-Hexanone	0.045	0.042	0.010	-8.2	50.0
Dibromochloromethane	0.177	0.185	0.010	4.8	50.0
1,2-Dibromoethane	0.128	0.132	0.010	3.4	50.0
Chlorobenzene	0.986	0.993	0.010	0.7	50.0
Ethylbenzene	1.942	1.951	0.010	0.5	50.0
o-Xylene	0.667	0.685	0.010	2.7	50.0
m,p-Xylene	0.746	0.755	0.010	1.2	50.0
Styrene	0.950	0.967	0.010	1.8	50.0
Bromoform	0.172	0.187	0.010	8.6	50.0
Isopropylbenzene	1.974	1.966	0.010	-0.4	50.0
1,1,2,2-Tetrachloroethane	0.122	0.127	0.010	4.1	50.0
1,3-Dichlorobenzene	1.500	1.515	0.010	1.0	50.0
1,4-Dichlorobenzene	1.476	1.491	0.010	1.0	50.0
1,2-Dichlorobenzene	1.086	1.137	0.010	4.6	50.0
1,2-Dibromo-3-Chloropropane	0.035	0.034	0.010	-3.6	50.0
1,2,4-Trichlorobenzene	0.695	0.687	0.010	-1.1	50.0
1,2,3-Trichlorobenzene	0.440	0.448	0.010	1.9	50.0

7C - FORM VII VOA-3 VOLATILE CONTINUING CALIBRATION DATA

Lab Name: <u>T</u>	ESTAMERICA	BURLINGTON	Contract: 8E-00302				
Lab Code: S	TLV Cas	se No.: <u>CENTRA</u> M	od. Ref N	lo.:		SDG No.: 2	200-1629
Instrument	ID: <u>J.i</u>		Cali	bratio	n Date:	09/24/2010) Time: <u>1354</u>
Lab File Id	l: JBME17.D		_ Init. C	Calib.	Date(s):	09/21/2010	09/21/2010
EPA Sample	No.(VSTD###	##): VSTD005GJ	_ Init	. Cali	b. Time	(s): <u>1435</u>	1724
Heated Purg	se: (Y/N) N	GC Column:	DB-624	_ ID:	0.20 (mm)	Length: 2	25 (m)
Purge Volum	ne: 25.0	·	(mL)				

COMPOUND	RRF	RRF <u>5.0</u>	MIN RRF	%D	MAX %D
Vinyl Chloride-d3	0.335	0.339	0.010	1.4	50.0
Chloroethane-d5	0.274	0.280	0.010	2.1	50.0
1,1-Dichloroethene-d2	0.530	0.534	0.010	0.8	50.0
2-Butanone-d5	0.020	0.021	0.010	7.4	50.0
Chloroform-d	0.480	0.504	0.010	5.0	50.0
1,2-Dichloroethane-d4	0.153	0.160	0.010	4.3	50.0
Benzene-d6	1.410	1.437	0.010	1.9	50.0
1,2-Dichloropropane-d6	0.372	0.389	0.010	4.6	50.0
Toluene-d8	1.386	1.384	0.010	-0.1	50.0
trans-1,3-Dichloropropene-d4	0.257	0.261	0.010	1.5	50.0
2-Hexanone-d5	0.024	0.025	0.010	4.5	50.0
1,1,2,2-Tetrachloroethane-d2	0.116	0.123	0.010	6.2	50.0
1,2-Dichlorobenzene-d4	0.690	0.715	0.010	3.7	50.0

Report 1,4-Dioxane-d8 for Low/Medium VOA analysis only

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

VBLKJF

Lab Name: TESTAMERICA BURLINGTON	Cont	ract: <u>8E-00302</u>
Lab Code: <u>STLV</u> Case No.: <u>CENT</u>	RA Mod. Ref No.:	SDG No.: 200-1629
Matrix: (SOIL/SED/WATER) Water	Lab	Sample ID: MB 200-7052/4
Sample wt/vol: <u>25.0</u> (g/mL) <u>m</u>	Lab	File ID: JBMD04.D
Level: (TRACE/LOW/MED) TRACE	Date	Received:
% Moisture: not dec.	Date	Analyzed: 09/23/2010
GC Column: <u>DB-624</u> ID: 0.	20 (mm) Dilu	tion Factor: <u>1.0</u>
Soil Extract Volume:	(uL) Soil	Aliquot Volume:(uL)
Purge Volume: 25.0	(mL)	,

CAS NO	COMPOLIND	CONCENTRATION UNITS:	0
CAS NO.	COMPOUND	(ug/L or ug/kg) <u>ug/L</u>	Ŷ
75-71-8	Dichlorodifluoromethane	0.50	U
74-87-3	Chloromethane	0.50	U
75-01-4	Vinyl chloride	0.50	U
74-83-9	Bromomethane	0.50	U
75-00-3	Chloroethane	0.50	U
75-69-4	Trichlorofluoromethane	0.50	U
75-35-4	1,1-Dichloroethene	0.50	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	U
67-64-1	Acetone	3.0	J
75-15-0	Carbon disulfide	0.50	U
79-20-9	Methyl acetate	0.50	U
75-09-2	Methylene Chloride	0.50	Ŭ
156-60-5	trans-1,2-Dichloroethene	0.50	U
1634-04-4	Methyl tert-butyl ether	0.50	U
75-34-3	1,1-Dichloroethane	0.50	U
156-59-2	cis-1,2-Dichloroethene	0.50	U
78-93-3	2-Butanone	5.0	U
74-97-5	Bromochloromethane	0.50	U
67-66-3	Chloroform	0.50	U
71-55-6	1,1,1-Trichloroethane	0.50	U
110-82-7	Cyclohexane	0.50	U
56-23-5	Carbon tetrachloride	0.50	U
71-43-2	Benzene	0.50	Ŭ
107-06-2	1,2-Dichloroethane	0.50	U

Report 1,4-Dioxane for Low-Medium VOA analysis only

1B - FORM I VOA-2

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

VBLKJF

Lab Name: TESTAMERICA BURLINGTON	Contract: <u>8E-00302</u>
Lab Code: <u>STLV</u> Case No.: <u>CENTRA</u> Mo	d. Ref No.: SDG No.: 200-1629
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: <u>MB 200-7052/4</u>
Sample wt/vol: 25.0 (g/mL) mL	Lab File ID: JBMD04.D
Level: (TRACE/LOW/MED) TRACE	Date Received:
% Moisture: not dec.	Date Analyzed: 09/23/2010
GC Column: DB-624 ID: 0.20	(mm) Dilution Factor: 1.0
Soil Extract Volume:	(uL) Soil Aliquot Volume:(uL)
Purge Volume: 25.0	(mL)

	COMPOUND	CONCENTRATION UNITS:	_
CAS NO.	COMPOUND	(ug/L or ug/kg) <u>ug/L</u>	Ŷ
79-01-6	Trichloroethene	0.50	U
108-87-2	Methylcyclohexane	0.50	U
78-87-5	1,2-Dichloropropane	0.50	U
75-27-4	Bromodichloromethane	0.50	U
10061-01-5	cis-1,3-Dichloropropene	0.50	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	0.50	U
10061-02-6	trans-1,3-Dichloropropene	0.50	U
79-00-5	1,1,2-Trichloroethane	0.50	U
127-18-4	Tetrachloroethene	0.50	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	0.50	U
106-93-4	1,2-Dibromoethane	0.50	U
108-90-7	Chlorobenzene	0.50	U
100-41-4	Ethylbenzene	0.50	U
95-47-6	o-Xylene	0.50	U
179601-23-1	m,p-Xylene	0.50	U
100-42-5	Styrene	0.50	U
75-25-2	Bromoform	0.50	υ
98-82-8	Isopropylbenzene	0.50	U
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U
541-73-1	1,3-Dichlorobenzene	0.50	U
106-46-7	1,4-Dichlorobenzene	0.50	U
95-50-1	1,2-Dichlorobenzene	0.50	U
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U
120-82-1	1,2,4-Trichlorobenzene	0.50	U
87-61-6	1,2,3-Trichlorobenzene	0.066	J

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

VBLKJF

Lab Name: TESTAMERICA BURLINGTON	_	Contract:	8E-00302	_
Lab Code: STLV Case No.: CENTRA Mo	d. Ref 1	No.:	SDG No.: 200-1629	
Matrix: (SOIL/SED/WATER) Water	_	Lab Sample	e ID: MB 200-7052/4	
Sample wt/vol: 25.0 (g/mL) mL	_	Lab File I	D: JBMD04.D	
Level: (TRACE or LOW/MED) TRACE	_	Date Recei	ved:	
% Moisture: not dec.	_	Date Analy	vzed: 09/23/2010	
GC Column: DB-624 ID: 0.20	(mm)	Dilution H	Factor: 1.0	
Soil Extract Volume:	(uL)	Soil Aliqu	uot Volume:(uL)
CONCENTRATION UNITS: (ug/L or ug/kg) ug	l\T	Purge Volu	ume: 25.0 (mL)

	CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
01		Unknown	1.68	0.66	J
02		Unknown	6.93	2.8	ХJ
03	541-05-9	Cyclotrisiloxane, hexamethyl-	7.88	1.9	JN
04		Unknown siloxane derivative	10.72	2.3	J
05	E9667961	Total Alkanes	N/A		

1EPA-designated Registry Number.

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

VBLKJG

Lab Name:	TESTAMERICA BU	RLINGTON	 	Contract:	8E-00302	
Lab Code:	STLV Case	No.: CENTRA M	od. Ref	No.:	SDG No.: 200-1629	
Matrix: (Se	OIL/SED/WATER)	Water		Lab Sample	ID: MB 200-7048/4	
Sample wt/	vol: 25.0	(g/mL) mL		Lab File I	D: JBME04.D	
Level: (TR	ACE/LOW/MED) T	RACE	_	Date Recei	ved:	
% Moisture	: not dec.		_	Date Analy	zed: 09/24/2010	
GC Column:	DB-624	ID: 0.20	(mm)	Dilution F	actor: 1.0	
Soil Extra	ct Volume:		(uL)	Soil Aliqu	ot Volume:(uL)
Purge Volu	me: 25.0		(mL)			

CAS NO	COMPOUND	CONCENTRATION UNITS:	0
CAS NO.		(ug/L or ug/kg) <u>ug/L</u>	Ŷ
75-71-8	Dichlorodifluoromethane	0.50	U
74-87-3	Chloromethane	0.50	U
75-01-4	Vinyl chloride	0.50	U
74-83-9	Bromomethane	0.50	U
75-00-3	Chloroethane	0.50	U
75-69-4	Trichlorofluoromethane	0.50	U
75-35-4	1,1-Dichloroethene	0.50	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	U
67-64-1	Acetone	3.7	J
75-15-0	Carbon disulfide	0.50	U
79-20-9	Methyl acetate	0.50	U
75-09-2	Methylene Chloride	0.50	U
156-60-5	trans-1,2-Dichloroethene	0.50	U
1634-04-4	Methyl tert-butyl ether	0.50	U
75-34-3	1,1-Dichloroethane	0.50	U
156-59-2	cis-1,2-Dichloroethene	0.50	U
78-93-3	2-Butanone	5.0	U
74-97-5	Bromochloromethane	0.50	U
67-66-3	Chloroform	0.50	U
71-55-6	1,1,1-Trichloroethane	0.50	U
110-82-7	Cyclohexane	0.50	U
56-23-5	Carbon tetrachloride	0.50	U
71-43-2	Benzene	0.50	υ.
107-06-2	1,2-Dichloroethane	0.50	U

Report 1,4-Dioxane for Low-Medium VOA analysis only

,

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

VBLKJG

Lab Name: TESTAMERICA H	BURLINGTON		Contract: 8E	-00302	
Lab Code: <u>STLV</u> Case	e No.: <u>CENTRA</u> M	iod. Ref	No.:	SDG No.: 200-1629	
Matrix: (SOIL/SED/WATER	R) Water		Lab Sample I	D: MB 200-7048/4	
Sample wt/vol: 25.0	(g/mL) mL		Lab File ID:	JBME04.D	
Level: (TRACE/LOW/MED)	TRACE		Date Receive	ed:	
% Moisture: not dec			Date Analyze	ed: 09/24/2010	
GC Column: DB-624	ID: 0.20	(mm)	Dilution Fac	tor: 1.0	
Soil Extract Volume:		(uL)	Soil Aliquot	Volume:(u	ıL)
Purge Volume: 25.0		(mL)			

CAC NO	COMPOUND	CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/kg) <u>ug/L</u>	Ŷ
79-01-6	Trichloroethene	0.50	U
108-87-2	Methylcyclohexane	0.50	U
78-87-5	1,2-Dichloropropane	0.50	U
75-27-4	Bromodichloromethane	0.50	U
10061-01-5	cis-1,3-Dichloropropene	0.50	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	0.50	U
10061-02-6	trans-1,3-Dichloropropene	0.50	U
79-00-5	1,1,2-Trichloroethane	0.50	U
127-18-4	Tetrachloroethene	0.50	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	0.50	U
106-93-4	1,2-Dibromoethane	0.50	U
108-90-7	Chlorobenzene	0.50	U
100-41-4	Ethylbenzene	0.50	U
95-47-6	o-Xylene	0.50	U
179601-23-1	m,p-Xylene	0.50	U
100-42-5	Styrene	0.50	U
75-25-2	Bromoform	0.50	U
98-82-8	Isopropylbenzene	0.50	U
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U
541-73-1	1,3-Dichlorobenzene	0.50	U
106-46-7	1,4-Dichlorobenzene	0.50	U
95-50-1	1,2-Dichlorobenzene	0.50	U
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U
120-82-1	1,2,4-Trichlorobenzene	0.50	U
87-61-6	1,2,3-Trichlorobenzene	0.084	J

1.

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

VBLKJG

Lab Name: TESTAMERICA BURLINGTON	. (Contract: <u>8E-00302</u>
Lab Code: STLV Case No.: CENTRA Mod	d. Ref No.	SDG No.: 200-1629
Matrix: (SOIL/SED/WATER) Water	1	Lab Sample ID: MB 200-7048/4
Sample wt/vol: 25.0 (g/mL) mL]	Lab File ID: JBME04.D
Level: (TRACE or LOW/MED) TRACE	I	Date Received:
% Moisture: not dec.	, I	Date Analyzed: 09/24/2010
GC Column: DB-624 ID: 0.20	(mm) I	Dilution Factor: 1.0
Soil Extract Volume:	(uL) S	Soil Aliquot Volume:(uL)
CONCENTRATION UNITS: (ug/L or ug/kg) ug,	/L I	Purge Volume: 25.0 (mL)

	CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
01		Unknown	6.93	2.6	ХJ
02	541-05-9	Cyclotrisiloxane, hexamethyl-	7.88	1.1	JN
03		Unknown siloxane derivative	10.72	1.2	J
04	E9667961	Total Alkanes	N/A		

1EPA-designated Registry Number.

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

VHBLK01

Lab Name: TESTAMERICA BURLINGTON		Contract: <u>8E-00302</u>
Lab Code: <u>STLV</u> Case No.: <u>CENTRA</u> M	od. Ref	No.: SDG No.: 200-1629
Matrix: (SOIL/SED/WATER) <u>Water</u>		Lab Sample ID: 200-1629-6
Sample wt/vol: 25.0 (g/mL) mL	_	Lab File ID: JBME06.D
Level: (TRACE/LOW/MED) TRACE		Date Received:
% Moisture: not dec.		Date Analyzed: 09/24/2010
GC Column: DB-624 ID: 0.20	(mm)	Dilution Factor: 1.0
Soil Extract Volume:	(uL)	Soil Aliquot Volume:(uL)
Purge Volume: 25.0	(mL)	

CAS NO	COMPOUND	CONCENTRATION UNITS:	0
CH15 NO.		(ug/L or ug/kg) <u>ug/L</u>	×
75-71-8	Dichlorodifluoromethane	0.50	υ
74-87-3	Chloromethane	0.50	U
75-01-4	Vinyl chloride	0.50	U
74-83-9	Bromomethane	0.50	U
75-00-3	Chloroethane	0.50	U
75-69-4	Trichlorofluoromethane	0.50	U
75-35-4	1,1-Dichloroethene	0.50	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	U
67-64-1	Acetone	1.8	JВ
75-15-0	Carbon disulfide	0.50	U
79-20-9	Methyl acetate	0.50	U
75-09-2	Methylene Chloride	0.50	U
156-60-5	trans-1,2-Dichloroethene	0.50	U
1634-04-4	Methyl tert-butyl ether	0.50	U
75-34-3	1,1-Dichloroethane	0.50	υ
156-59-2	cis-1,2-Dichloroethene	0.50	U
78-93-3	2-Butanone	5.0	U
74-97-5	Bromochloromethane	0.50	U
67-66-3	Chloroform	0.50	U
71-55-6	1,1,1-Trichloroethane	0.50	U
110-82-7	Cyclohexane	0.50	U
56-23-5	Carbon tetrachloride	0.50	U
71-43-2	Benzene	0.50	U
107-06-2	1,2-Dichloroethane	0.50	U

Report 1,4-Dioxane for Low-Medium VOA analysis only

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

VHBLK01

Lab Name: TESTAMERICA BURLINGTON	Contract: <u>8E-00302</u>
Lab Code: STLV Case No.: CENTRA Mo	d. Ref No.: SDG No.: 200-1629
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: 200-1629-6
Sample wt/vol: 25.0 (g/mL) mL	Lab File ID: JBME06.D
Level: (TRACE/LOW/MED) TRACE	Date Received:
% Moisture: not dec.	Date Analyzed: 09/24/2010
GC Column: DB-624 ID: 0.20	(mm) Dilution Factor: 1.0
Soil Extract Volume:	(uL) Soil Aliquot Volume:(uL)
Purge Volume: 25.0	(mL)

CAS NO	COMPOUND	CONCENTRATION UNITS:	
CIID NO.		(ug/L or ug/kg)ug/L	×
79-01-6	Trichloroethene	0.50	U
108-87-2	Methylcyclohexane	0.50	U
78-87-5	1,2-Dichloropropane	0.50	U
75-27-4	Bromodichloromethane	0.50	U
10061-01-5	cis-1,3-Dichloropropene	0.50	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	0.50	U
10061-02-6	trans-1,3-Dichloropropene	0.50	U
79-00-5	1,1,2-Trichloroethane	0.50	U
127-18-4	Tetrachloroethene	0.50	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	0.50	U
106-93-4	1,2-Dibromoethane	0.50	U
108-90-7	Chlorobenzene	0.50	U
100-41-4	Ethylbenzene	0.50	U
95-47-6	o-Xylene	0.50	U
179601-23-1	m,p-Xylene	0.50	U
100-42-5	Styrene	0.50	U
75-25-2	Bromoform	0.50	U
98-82-8	Isopropylbenzene	0.50	U
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U
541-73-1	1,3-Dichlorobenzene	0.50	U
106-46-7	1,4-Dichlorobenzene	0.50	U
95-50-1	1,2-Dichlorobenzene	0.50	U
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U
120-82-1	1,2,4-Trichlorobenzene	0.50	U
87-61-6	1,2,3-Trichlorobenzene	0.50	U

.

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

VHBLK01

Lab Name: TESTAMERICA BURLINGTON		Contract: <u>8E-00302</u>		
Lab Code: STLV Case No.: CENTRA Mo	od. Ref N	No.: SDG No.: 200-1629		
Matrix: (SOIL/SED/WATER) <u>Water</u>	_	Lab Sample ID: <u>200-1629-6</u>		
Sample wt/vol: 25.0 (g/mL) mL	_	Lab File ID: JBME06.D		
Level: (TRACE or LOW/MED) TRACE	_	Date Received:		
% Moisture: not dec.		Date Analyzed: 09/24/2010		
GC Column: DB-624 ID: 0.20	(mm)	Dilution Factor: 1.0		
Soil Extract Volume:	(uL)	Soil Aliquot Volume: (uL)		
CONCENTRATION UNITS: (ug/L or ug/kg) ud	J/L	Purge Volume: 25.0 (mL)		

	CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
01		Unknown	6.93	2.7	BXJ
02	541-05-9	Cyclotrisiloxane, hexamethyl-	7.88	1.4	BJN
03		Unknown siloxane derivative	10.72	1.2	ВJ
04	E9667961	Total Alkanes	N/A		

1EPA-designated Registry Number.

Environmental Science Division

Argonne National Laboratory 9700 South Cass Avenue, Bldg. 203 Argonne, IL 60439-4843 www.anl.gov

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC