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Background 

Human induced climate change as the result of the utilization and release of fossil 
fuel carbon is real.  The domestic and international political landscape has changed such 
that it is recognized that there will very likely be the need for the establishment of an 
independent assessment of the release of fossil fuel CO2 to the atmosphere at the regional 
to international level (Pacala et al., 2010). If only CO2 concentrations are measured, it is 
usually very difficult to ascertain the specific source of CO2, in part because the 
biosphere is a large and variable component.  Fossil fuel 14C provides a unique and 
exploitable tracer.  In the most simple of mixing models between background (clean) air 
and a fossil fuel contribution, knowing atmospheric 14CO2 to ≤ 2‰ equates to knowing 
the fossil fuel contribution to ≤ 2ppm (1-sigma) out of the present 380ppm.  It is 
estimated that several thousand high-precision 14CO2 analyses per year will be required to 
provide an independent seasonal estimate of North American (NA) fossil fuel emissions 
and reduce the uncertainty in the large-scale NA estimates.  As individual regions and 
metropolitan areas independently enact cap and trade policies, the number of analyses 
and modeling rigor will increase. 

The discrimination of fossil-fuel CO2 emissions from natural exchanges of CO2 
(terrestrial and oceanic) is significantly aided by isotopic measurements of atmospheric 
CO2 and measurements of other combustion tracers (e.g., CO, acetylene, benzene, n-
pentanes, propane).  Fossil-fuel carbon is devoid of 14C (and also has a smaller 13C/12C 
ratio than atmospheric CO2), which makes the 14C/12C ratio of atmospheric CO2 
susceptible to the emission of CO2,ff (fossil-fuel CO2) because it increases 12C without 
increasing 14C.  Between the beginning of the industrial revolution and atmospheric 
nuclear-weapons testing (which produced 14C via n-p reactions), the Δ14C, i.e., the ratio 
of 14C to 12C, includes a correction for mass-dependent fractionation (Stuiver and Polach 
1977) of atmospheric CO2 decreased to the point where the atmosphere “looked” 200 
years old (Figure 1) (c.f., Suess 1955, Tans et al. 1979, Keeling 1979, Stuiver and Quay 
1982).  The decrease in the 14C/12C and 13C/12C ratio of atmospheric CO2, referred to as 
the Suess Effect, can help discriminate sources of CO2 (e.g., Graven et al. 2009, Levin et 
al. 2003, Turnbull et al. 2006, 2008, 2010; Vogel et al. 2010).  Before the nuclear-testing 
moratorium, atmospheric weapons testing nearly doubled the amount of 14C in the 
atmosphere.  Air-sea CO2 exchange and the uptake and respiration of terrestrial carbon 
has drawn down the 14C/12C ratio in the atmosphere from a bomb peak of ~ 1000 ‰ to 
~ 45 ‰ today (e.g., Levin et al. 2010, Graven et al. 2010, Turnbull et al. 2010). The time-
history of bomb-14C makes it a useful multi-decadal carbon cycle tracer: carbon that was 
photosynthetically fixed in the 1960s and 1970s and incorporated into multidecadal soil 
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carbon pools is now being heterotrophically respired (c.f., Gaudinski et al. 2000, Harden 
et al. 2002, Trumbore 2000, Swanston et al. 2005, among many).  

 

 
Figure 1.  (Left) The influence of fossil-fuel CO2 on atmospheric CO2 and carbon isotopes.  Post 1958 CO2 
data from Mauna Loa (Keeling and Whorf 2004, Keeling et al. 2010, Conway et al. 2010) and pre 1958 
from firn air samples from Siple and Law Domes Antarctica (Etheridge et al. 1996, Francey et al. 1999, 
Friedli et al. 1986). Note that the Suess effect has a larger and faster impact on Δ14C than δ13C.  (Right) 
The “post-bomb” 14C history in the atmosphere and surface ocean (data of Stuiver and Quay 1982; Levin 
et al. 2010; Manning and Meluish 1994; Graven et al. 2010; Guilderson et al. 2000; and Guilderson, 
unpublished).  Atmospheric Δ14C is an integration of unidirectional carbon (isotopic) fluxes between the 
atmosphere, ocean, and terrestrial biosphere, natural production in the stratosphere, and dilution due to 
the release of fossil fuel CO2. 
 

While other tracers, such as O2/N2 and 13C/12C (δ13C), are useful for distinguishing land 
versus oceanic components of the CO2 variations, these tracers provide less useful 
information for distinguishing between land biospheric and fossil-fuel components. To 
quantify land biospheric exchange using inverse techniques based on O2/N2 or 13C/12C 
data, it is necessary to correct for the effects from fossil-fuel CO2, which are assumed 
true and based on inventory products (e.g., Battle et al. 2000, Francey et al. 1995, Gurney 
et al. 2003, Patra et al. 2008, Rayner et al. 2002).  Note the strong corollary: the better 
one can uniquely and independently quantify the fossil-fuel component in a parcel of air 
the better one can determine the land biosphere flux using the aforementioned tracers. 

Δ14C at clean air (background) sites is decreasing at an observed rate of ~ 5.5 ‰/yr 
(Levin et al. 2010, Graven et al. 2010, Turnbull et al. 2009).  Box and global transport 
model-based trend analysis implies that the release of fossil fuel CO2, if unbuffered by 
other processes, would decrease Δ14C by ~15‰-yr-1 (Figure 2).  Although carbon fluxes 
between the ocean and terrestrial biosphere are larger than those of fossil-fuel CO2 
emissions, the 14C-isotopic signature yields gradients in excess of 15‰ downwind of 
sources (Figure 3).  These gradients have been qualitatively reconstructed in the carbon 
fixed by annual plants (e.g., Hsueh et al. 2007, Riley et al. 2008) and also via atmospheric 
transects (e.g., Turnbull et al. 2008). 
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Figure 2. Box model based trend analysis on the influence of natural 14C production, isotopic exchange and 
CO2 fluxes between the atmosphere, ocean, and terrestrial biosphere, and the influence of the combustion 
of fossil fuel CO2 (modified from Graven et al. 2010, courtesy of H. Graven). 

 

 

Figure 3.  Simulated distribution of Δ14C (‰) relative to the global mean in an ad-hoc, offline coupled 
carbon climate model including 2000 fossil fuel emissions (Randerson et al. 2002) image courtesy of JTR. 

 

Due to the variability and complexity of atmospheric transport, an atmospheric modeling 
and retrieval system is required to determine the fossil fuel emission magnitude and 
distribution that give rise to the observed carbon dioxide concentrations and carbon 
isotope gradients (see Figure 3).  The number of 14C observations that might be possible 
in a fully-fledged carbon monitoring system for California (or the nation) is limited in 
part by cost and required infrastructure.  Accordingly, a central challenge in this project 
was to develop an effective retrieval scheme using minimal observations, and develop 
methods to design observation network configurations. This work focused exclusively on 
designing a system for California as a test-bed. Fossil fuel CO2 emissions account for 
~96% of the total California anthropogenic CO2 emissions (CEC GHG Inventory, 2006).  
The topographic complexity and challenging atmospheric transport variability over 
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California could be considered a near ‘worse case scenario’ for network optimization and 
retrieval design and provides a fundamental litmus test to the application of top down 
inversions and retrievals. 
 
Model Descriptions  
 
This work utilized the state-of-the-art, high-resolution Weather Research and Forecast 
model (WRF): WRF-ARM v3.1 (Skamarock et al., 2005; Skamarock and Klemp, 2008).  
We customized WRF to simulate the emissions and transport of multiple tagged tracers 
for use in our fossil fuel inversions.  For our numerical experiments the WRF domain 
encompassed a rectangular region covering California and surrounding areas using grid-
cells with a 12-15 km horizontal resolution, depending on the simulation.  The vertical 
domain used a pressure-based coordinate system with multiple model levels in the 
boundary layer.  The outer domain of the model was forced using meteorological data 
(including winds and temperatures) from the NCEP Eta North American Mesoscale 
(NAM) analysis with a 40 km resolution1. Simulations were conducted for winter and 
summer flow conditions in for January 2006 and July 2006 (Figure 4).  No additional 
nudging or nesting was done.   
 

 
Figure 4.  Average U and V zonal and meridional wind 
fields January and July 2006 used in the numerical 
experiments. 
 
For transport of emissions into California from the 
rest of the world, we used the LLNL-IMPACT 
model (Rotman et al., 2004), with the Transcom-3 
emission dataset (c.f., Gurney et al., 2003; Law et 
al., 2006). 
 
For the surface fossil fuel CO2 emissions within 
California, we followed the spatial distribution of 
the California Air Resources Board (CARB) CO 
emissions, which are assessed within each geo-
political air-basin (Figure 5) [www.carb.ca.gov].  
We did this because at the time this project started, 
there was no standard fossil fuel CO2 emission 
dataset of sufficient granularity.  CO is monitored 
by CARB because it is a 'criteria pollutant' and has 
therefore been monitored in a regulatory and 

public health fashion, unlike CO2.  Since CO emissions are correlated with fossil fuel 
combustion, we scaled the CO emissions to generate CO2 emissions, using simple linear 
scaling between the CO emissions and the CARB estimate of California’s fossil fuel CO2 
emissions.  We then aggregated the 16 CARB air-basins into 11-15 regions, depending 
on the simulation, to reduce the computational cost, and to avoid retrieval complications 

                                                        
1 http://dss.ucar.edu/datasets/ds609.2/ 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that would arise when using regions of disparate size. 
 

Figure 5: Our independent California emission 
regions, based on the air-basins defined by the 
California air resources board. 

 

 

 

 

 

 

To illustrate the complex atmospheric transport, in Figure 6 we show the fossil fuel 
plumes from Los Angeles and San Francisco for two different weather patterns.  A 
measurement made at any given location is clearly going to depend on the weather 
leading up to the measurement.  Thus, in order to determine the GHG emissions from 
each region using in situ atmospheric measurements of those GHGs, it is necessary to use 
an atmospheric model to simulate the actual weather and transport.  We used the LLNL-
IMPACT model and the WRF-CHEM community model (both described above), with 
observed (aka assimilated) meteorology in order to recreate the actual transport that 
occurred.  

 
Figure 6: 3D images of fossil fuel plumes from Los Angeles (red) and San Francisco (blue) for two 
different weather patterns in January 2006, as generated by the WRF-CHEM model.  The intensity of color 
is proportional to concentration.  Note the strong offshore flow in the left-most panel due to strong Santa 
Ana winds. 
 

The measured concentration of each tracer at a particular spatio-temporal location is a 
linear combination of the plumes from each region at that location (for non-reactive 
species such as CO2).  The inverse challenge is to calculate the emission strengths for 
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each region that best fit the observed concentrations.  In general this is difficult because 
there are errors in the measurements and in the modeling of the plumes.  We solve this 
inversion problem using the strategy illustrated in Figure 7. 

 
Figure 7. Symbolic representation of our inversion algorithm for retrieving regional emissions.   
 

Inversions & Retrievals: The Bayesian Inference step combines the a priori estimates of 
the emissions, and their uncertainty, for each region with the results of the observations, 
and their uncertainty, and an ensemble of model predicted plumes for each region, and 
their uncertainty.  The result is the mathematical best estimate of the emissions and their 
errors.  In the case of non-linearities, or if we are using a statistical sampling technique 
such as a Markov Chain Monte Carlo technique, then the process is iterated until it 
converges (i.e., reaches stationarity).  For the Bayesian inference we can use both a direct 
inversion capability, which is fast but requires assumptions of linearity and Gaussianity 
of errors, or one of several statistical sampling techniques, which are computationally 
slower but do not require either linearity or Gaussianity (Chow, et al., 2008; Delle 
Monache, et al., 2008). 

Up until our work, almost all emission inversions had been carried out under the 
assumption that all model errors are Gaussian and unbiased.  We tested this assumption 
by running multiple configurations of WRF for 4 days (plus spin-up), then selecting one 
configuration to be the 'synthetic truth' and generating synthetic observations by sampling 
the synthetic truth at multiple locations and adding random unbiased noise to represent 
measurement uncertainty.  We then used the other configurations to retrieve the 
emissions.   
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Intercomparison of the retrieved results in Figure 8 shows the errors induced in the 
retrieved emissions for Los Angeles by the model errors (the results for the other air-
basins are similar).  The posterior PDFs do not overlap, ie the retrieved estimates do not 
agree within their error uncertainties.  This means that previous inversion studies are 
neglecting a major source of error.  We can also see that the mean and uncertainty of the 
ensemble does match the synthetic truth within its uncertainty.  Thus, the use of an 
ensemble of models should provide a better estimate of emission amplitude and 
uncertainty for any real observation network.  

Figure 8. Each colored line shows the retrieved (a 
posteriori) probability density function (PDF) for 
fossil fuel CO2 emissions from Los Angeles using 
synthetic data generated by a different model 
configuration.  The solid blue area shows the 
combined a posteriori PDF from all the ensemble 
members.  The gray and dashed lines show the 
median and one standard deviation of the a 
posteriori distribution, respectively.  The red line 
shows the true synthetic value, which lies within the 
predicted range.  These results were based on 4 
days of simulated observations. 

 

The main source of the variation between the different model configurations in Figure 8 
arises from the uncertainty in the atmospheric boundary layer parameterization in the 
WRF model (Appendix Table 1).  The alternative surface parameterizations were of 
secondary importance, and the alternative initial and boundary conditions were of least 
importance in this test. 

 

Network design: The main goal of the network design analysis was to begin to 
determine the observing needs for constraining fossil fuel emissions in CA. A bare 
minimum of 15 observational data points are required to constrain the emissions from the 
15 CARB basins (i.e. it is a linear system of 15 equations with 15 unknowns). In practice, 
however, many more observations are needed, because emissions inversion problems are 
ill-posed and ill-conditioned. Network design principles can be used to determine how 
these additional observations are collected (Gloor et al. 2000). One aspect of network 
design is to optimize the locations and frequency at which measurements are made. A 
hypothetical fossil fuel observing network clustered around the Los Angeles, for 
example, will have a difficult time constraining emissions from Northern California.  
 

Optimal locations are found by calculating and ranking metrics of interest (e.g., the root-
mean-square residual difference for CA-level emissions) among a set of candidate sites. 
An example set of ‘near-optimal’ locations for a CA fossil fuel observing network is 
shown in Figure 9. It is important to stress that this set of locations is not universal; it 
depends on the flow conditions simulated (e.g., January 2006), the transport model and 
physical parameterizations used (i.e., WRF), and other factors. Further research would be 
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needed to determine a more robust set of fossil fuel observing sites in CA.  
 
Figure 9. The colored surface 
shows the number of California 
air-basins constrained if the first 
observation site is in that location 
and it makes four measurements. 
The optimal location is noted by 
the number 1. Once that 
measurement site is located, 
subsequent optimal locations 
were calculated and noted by 
numbers 2 through 10. These 10 
sites collectively constrain 
approximately 9 of the 11 air 
basin regions (assuming no 
model errors). 
 
In addition to optimizing measurement locations, through this project we have also 
developed the capability to jointly optimize other factors important to designing fossil 
fuel observing networks. For example, we can consider measurement frequency, 
measurement costs, and other tracers besides CO2ff. Simultaneously optimizing all of 
these factors, with or without constraints, is a difficult class of problems known as multi-
objective optimization. We use genetic algorithms to search the vast design space for 
observing networks that optimize trade-offs among these factors. An example of a CA 
fossil fuel network design study we performed to demonstrate how to minimize inversion 
errors and measurement costs is shown in Figure 10. This shows that, unsurprisingly, 
under the assumptions of the problem, low inversion error solutions are associated with 
high costs, and vice versa.  Our study also showed that networks with roughly similar 

costs and inversion errors may have 
vastly different spatial configurations.  
 

Figure 10. This figure illustrates the tradeoffs 
between two conflicting objectives (retrieval error 
and observing cost) in the design of an ff-CO2 
monitoring network. Each circle represents a 
configuration (sampling frequency and site 
locations) selected by an evolutionary algorithm, 
and the resulting retrieval error and observing 
cost for that configuration. Small circles are non-
optimal solutions evaluated during the search 
phase. The large circles represent final optimal 
solutions. (Lucas et al., in prep). 
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Summary and Key findings: 
 

1. An independent top-down retrieval of California fossil fuel CO2 emissions appears to 
be a tractable problem:  15-20  sites are sufficient to overcome unbiased observational and 
modeling errors and constrain California emissions. 

 
2. Performed similar inversion estimates using a network of opportunity based on FAA 

hazards (all above 200 m height).  The results were almost as good as an optimally designed 
network. 
 

3.  Model biases in the transport and mixing, particularly that caused bythe behavior of 
the boundary layer (both diel and regionally due to topography) contribute large, poorly 
quantified uncertainties  in retrieved emission estimates.   

 
4. Assimilation of observations to constrain the uncertain processes in the atmospheric 

model (eg, boundary layer height) should significantly improve the retrieval. 
 
5. Inclusion of a perturbed-physics ensemble of models can improve emission estimates, 

and better quantify the true uncertainty in those estimates. 
 

 6. An independent partitioning of fossil fuel CO2 in air over California should provide a 
more accurate assessment of the net influence (ecosystem photosynthesis and respiration) of the 
terrestrial biosphere. 
 
 7.  Additional tracers that are directly related to the production of CO2ff (eg, carbon 
monoxide) could be calibrated against 14C observations and included in the retrieval algorithm to 
increase the observational density. 
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Appendix Table 1: Parameterization schemes utilized in experiments and full retrievals 

 
Ensemble used with Markov Chain Monte Carlo simulations: 
 

 
The colors refer to the colors in figure 8. 
 
Ensemble generated by our automatic ensemble simulation system: 

Run sf_surface_physics bl_pbl_physics cu_physics sf_sfclay_physics 

1 1 1 1 1 

2 1 1 2 1 

3 1 1 3 1 

4 1 2 1 2 

5 1 2 2 2 

6 1 2 3 2 

7 1 6 1 5 

8 1 6 2 5 

9 1 6 3 5 

10 2 1 1 1 

11 2 1 2 1 

12 2 1 3 1 

13 2 2 1 2 

14 2 2 2 2 

15 2 2 3 2 

16 2 6 1 5 

17 2 6 2 5 

18 2 6 3 5 

19 3 1 1 1 

20 3 1 2 1 

21 3 1 3 1 

22 3 2 1 2 

23 3 2 2 2 

24 3 2 3 2 

25 3 6 1 5 

26 3 6 2 5 

27 3 6 3 5 
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sf_surface_physics (land-surface option)  
  = 1, thermal diffusion scheme 
  = 2, unified Noah land-surface model 
  = 3, RUC land-surface model 
 
bl_pbl_physics (boundary-layer option)   
  = 1, YSU scheme (use sf_sfclay_physics=1) 
  = 2, Mellor-Yamada-Janjic (Eta) TKE scheme (use sf_sfclay_physics=2) 
  = 6, MYNN 3rd level TKE (sf_sfclay_physics=5) 
 
cu_physics (cumulus option)   
  = 1, Kain-Fritsch (new Eta) scheme 
  = 2, Betts-Miller-Janjic scheme 
  = 3, Grell-Devenyi ensemble scheme 

sf_sfclay_physics (surface-layer option)   
  = 1, Monin-Obukhov scheme 
  = 2, Monin-Obukhov (Janjic Eta) scheme 
  = 5, MYNN 
 


