
Analyzing and visualizing next generation climate data
Tech-X Corporation

Final Phase II report

Analyzing and visualizing next generation climate data

Tech-X Corporation
5621 Arapahoe Ave.
Boulder, CO 80303

Alexander Pletzer, PI

SBIR II DE-FG02-08ER85153
Grant supported by DOE office of

Advanced Scientific Computing Research
Topic: 40b

Final report covering the period of August 2009 to August 2012

Contents

Table of Contents ii

1 Introduction 1
1.1 Highlights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Development of a standard for representing Mosaic gridded data . . . 1
1.1.2 Development of an open-source library (LibCF) to read, write, and

analyze Mosaic data . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.3 Participation in the UV-CDAT team effort . . . . . . . . . . . . . . . 1
1.1.4 Parallelism and distributed arrays . . . . . . . . . . . . . . . . . . . . 2

1.2 Implement a connectivity algorithm for multi-resolution mosaics (Task 1) . . 3
1.3 Implement hierarchical mosaics (Task 2) . . . . . . . . . . . . . . . . . . . . 9
1.4 Implement building blocks for scalable post-processing (Task 3) . . . . . . . 12
1.5 Implement interpolation capability (Task 4) . . . . . . . . . . . . . . . . . . 14
1.6 Implement methods for common statistical and filter operations (Task 5) . . 22
1.7 Implement easy-to-use visualization capability (Task 6) . . . . . . . . . . . . 22
1.8 Integration into the CDAT application (Task 7) . . . . . . . . . . . . . . . . 23

2 Products and publications 25
2.1 Technologies/techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Bibliography & References Cited 27

ii



Analyzing and visualizing next generation climate data
Tech-X Corporation

Final Phase II report

1 Introduction

This report summarizes work carried out since the start of Phase II of this project in August
2009 to its completion in August 2012. It includes discussion of highlights, overall progress
and period goals, collaborations, and outreach.

1.1 Highlights

1.1.1 Development of a standard for representing Mosaic gridded data

Our starting point for this project was the Gridspec proposal by Balaji and Zhiang (GFDL)
[1]. Prior to implementing their data layout, Gridspec had to become an accepted standard
of the Climate and Forecast (CF) metadata conventions [2], which governs how climate data
should be described. Tech-X Corp. played a leading role in articulating critical details of
the Gridspec standard by bringing together scientists from multiple research laboratories
across the country and overseas. The Gridspec proposal [3] is the result of a close collabora-
tion between Tech-X Corp., Lawrence Livermore National Laboratory (LLNL), Pacific Ma-
rine Environmental Laboratory (PMEL), Geophysical Fluid Dynamics Laboratory (GFDL),
University of Reading/UK Met Office, and University Corporation for Atmospheric Research
(UCAR). The proposal was submitted to the CF conventions body in early 2011 and ap-
proved in May 2011. The Gridspec extensions enhance the present CF conventions in two
major ways: (1) data can be scattered over multiple logically rectangular grids (M-SPEC)
and (2) different time slices can be stored in different files (F-SPEC). Together, M-SPEC
and F-SPEC allow data produced for the Coupled Model Intercomparison Project, Phase 5
(CMIP-5), to be generated on all currently known mosaic grids with time dependent and
static data residing in separate files from coordinate data. Data consumers can access all the
files by opening a “host” file, which acts as a single entry point to the aggregation. Examples
of supported file aggregations are shown in Fig. 2.

1.1.2 Development of an open-source library (LibCF) to read, write, and ana-
lyze Mosaic data

As a natural extension to the above Gridspec standard, we wrote a library, LibCF, which
implements the Gridspec standard. LibCF existed prior to this project but the size of the
library has more than doubled as a result of the Gridspec implementation. The LibCF
library is not restricted to Gridspec data, it supports general curvilinear data. The library is
designed to allow users to access functionality at different levels; for instance it can be used
for linear interpolation in arbitrary number of dimensions.

1.1.3 Participation in the UV-CDAT team effort

We have extensively worked with LLNL and collaborators to bring in state-of-the art LibCF
[4] and ESMF [5] interpolation to the UV-CDAT [6] software stack, which until then sup-
ported interpolation on rectilinear meshes but not on the curvilinear meshes that are preva-
lent in Gridspec and other grids. This required extending the CMake [7] build system to
compile the LibCF and ESMF libraries. Interoperability between ESMF and Python was
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Figure 1: Using UV-CDAT to analyze and visualize climate data. Visualization is as simple
as clicking on fields and dragging these into the scene.

achieved through a thin layer provided by collaborator Ryan O’Kuinghttons at NOAA. ESMF
offers more interpolation choices than LibCF and also handles the problem of grid singularity
by interpolating in Cartesian space. Of particular interest to researchers is the ability to ap-
ply conservative interpolation methods with ESMF. The close collaboration between NOAA
and Tech-X has been extremely fruitful, yielding a more complete and robust interface to
ESMF. ESMF has been completely integrated into UV-CDAT and is part of the upcoming
UV-CDAT 1.2 release.

1.1.4 Parallelism and distributed arrays

Our last focus was to add MPI [8] parallelism to ESMF in UV-CDAT, which required further
alteration to the build system. Interpolation, and in particular conservative interpolation,
can be computationally expensive. ESMF interpolation was written from the ground up
using domain decomposition and MPI as the communication engine. ESMF interpolation
in UV-CDAT will automatically decompose the data across the domain in optimal fashion.
The UV-CDAT interface to ESMF will perform the final MPI “gather” data call to bring
the the data back to the root process. The MPI_Init and MPI_Finalize calls are invoked
automatically for the user, under the hood. As only externally visible concession to the MPI
library, users should launch their script using mpiexec command when running on multiple
processors.

All elements are now in place in UV-CDAT to effectively leverage parallelism, with the
possible exception of a method to write data in parallel. Postprocessing applications involving
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zonal or time averages, which used to take hours, can now be concluded at a fraction of the
time. The speedup naturally depends on the number of time steps, load balancing between
processes, and whether some postprocessing require sequential execution. For perfectly well
balanced postprocessing tasks with no sequential part, speedups will only be limited by time
and/or spatial resolution.

For postprocessing that requires communication between processes, we developed a highly
flexible, multi-dimensional distributed array class in Python, which relies on remote memory
access calls provided by MPI-2 library. Each local array can expose an arbitrary number of
“windows”to other processes. A collective“get”method allows any process to access any data
window stored on any other process. The methods to access remote data are also accessible
through UV-CDAT cdms2 variables.

1.2 Implement a connectivity algorithm for multi-resolution mo-
saics (Task 1)

The mosaic LibCF library is compatible with multi-resolution mosaic grids. The library
makes no assumption regarding the resolution of the different tiles comprising the mosaic.
In some applications, it may be desirable to increase the resolution on a specific tile. For
instance, the Weather Research and Forecasting model (WRF) [9] applies Structured Adap-
tive Mesh Refinement (SAMR) to improve local grid resolution. There is a need to extend
SAMR to mosaics, including the case where the local mesh refinement borders a mesh tile.

Recall that inter-tile contacts are described using strings such as

"99:99 0:99 | 99:0 0:0"

which explicitly refer to the range of indices jbeg:jend ibeg:iend on either side of the
contact (” | ”). Here, j, i are the two indices in two dimensions with j pointing in the logical
north direction and i pointing in the logical east direction. C/Python index ordering is
assumed with the data being contiguous in memory along the i direction. The ranges are
inclusive, i.e. jbeg:jend represents the list jbeg, jbeg+1, ... jend-1, jend. In this
particular case, the leading index j for the first tile can be seen to be 99 with the second
index (i) running from 0 to 99 along the contact. For a tile of resolution 100 × 100, this
would be the north side of the contact. For the second tile, j runs from 99 to 0 along i = 0
and this corresponds to the west side. The corresponding connectivity is shown in Fig. 7.

The contact syntax extends naturally to tiles with different resolution. If the second tile
has half the resolution of the first tile, we would express this as

"99:99 0:99 | 49:0 0:0".

The ratio of resolution on one side and the other need not be an integer. Clearly, any
mismatch in resolution will cause some nodes to be dangling, i.e. have no corresponding
node on the other side of the interface. Applications in need to cross contact boundaries
will likely require some form of interpolation to determine field values across interfaces. We
anticipate that the interpolation method used will be application dependent. The adaptive
mesh refinement library Chombo [10] is known to apply quadratic interpolation at fine-coarse
interfaces for elliptic operators [11].
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Figure 2: Examples of file aggregation scenarios supported by Gridspec for two time de-
pendent fields (A and B) and one static field (S): (a) fields and grid coordinates (g) are
stored in a single file; (b) data and grid are stored in separate files; (c) files are organized
by time slices t0 · · · tn; (d) files are organized by time slices and variable names; and (e) files
are organized by time slice, variable name, and mosaic grid partition. A host file (H) must
be supplied whenever data are scattered across multiple files. A mosaic (M) file must be
supplied whenever the data and coordinates are not stored in the same file.
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Figure 3: Gridspec/LibCF object layering. Objects such as axes, coordinates, grids,
data, regrid objects, etc., only depend on objects listed above.
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Figure 4: Examples of mosaics conforming to the M-SPEC described in [3]. Left: cubed-
sphere mesh. Center: tripolar mesh with a cut along the red line. Right: the logically
rectangular grid proposed by Calhoun, Helzel, and LeVeque.

Figure 5: Examples of mosaic tile connectivities conforming to the M-SPEC described in
[3]. This covers cases where contacts are a surface in three dimensions (surfacial contacts)
and volumes in three dimensions (volumetric contacts). As can be noted, the resolution can
differ from one tile to its adjacent.
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Figure 6: A multi-resolution grid can be obtained by refining any cells of a rectangular grid.
Shown here is a cubed-sphere tile built of polytopes and containing two levels of refinements.

Figure 7: Folding of two tiles of the cubed-sphere in index space.

7



Analyzing and visualizing next generation climate data
Tech-X Corporation

Final Phase II report

Of interest is the mapping between one set of indices to the indices on a neighboring tile
that shares a contact. Let the tuple n = (n0, n1, · · ·nD−1) denote the corner, edge, or face of
a tile, with the elements of n taking one of three values: nd ∈ {−1,0, 1}, d = 0, · · ·D− 1 (D
is the number of dimensions). A value nd 6= 0 indicates that the tile has a boundary face with
a normal vector nd along the dimension d. There are two directions along such a dimension,
the values −1 and +1 serve to distinguish between the north/east and south/west faces of
a tile. A value of nd =0 indicates that the tile has no boundary contact along dimension d.
Specifically, (1, 0) refers to the east side, (0, 1) to the north side, (−1, 0) to the west side,
etc. Corner contacts can be specified using two non-zero elements; e.g. (1,−1) to denote
south-east. In three dimensions, more possibilities for combining 1, 0, and −1 exist and can
be used to tag faces, edges, and corners. Figure 8 shows the association between contacts
and the n tuple.

Once contacts can be uniquely identified using the n-tuple, we need to describe how
indices on one tile map to indices on a neighboring tile. Figure 9 shows an example of three
tiles that have a complex folding pattern. Each tile has a regular indexing scheme, which
can start at any of the four corners of the tile and this is represented as a set of i and j
axes. The dimensions of tiles 0, 1, and 2 are n× k, n×m, and k×m, respectively, with the
number of cells n, m, and k not necessarily equal.

Starting at index position S on tile 1, an observer moving along the i axis would encounter
tile 2 when i = n. As our observer crosses the (1, 0) contact and enters tile 2, its indices get
rotated and translated according to(

i2
j2

)
=

(
1 0
0 −1

) (
i1
j1

)
+

(
−n
m

)
where i1, j1 (i2, j2) refer to indices on tile 1 (tile 2). Similarly, when moving along the −j
direction on tile 2 and through point A, our observer crosses the south contact of tile 2,
denoted by tuple (0,−1), to enter tile 0, at which point the transformation(

i0
j0

)
=

(
0 −1
−1 0

) (
i2
j2

)
+

(
0
k

)
applies. We see that the set of indices on one tile can be expressed in terms of indices
on a neighboring tile as a rotation matrix and a translation vector. The rotation matrix
involves multiples of 90 degree rotations and therefore contains only 0, 1, and −1 elements.
This matrix is invertible; given the transformation from tile 1 to tile 2, for instance, the
transformation from 2 to 1 can always be computed. Also note that the absolute resolution
(number of cells) does not enter in the rotation matrix. Moreover, the rotation matrix can
take an additional factor r or 1/r in cases where the contact involves tiles with different
refinement ratios. The factor r represents the ratio of the two tile resolutions along the
contact and this factor does not change if the resolution is, for instance, doubled (for all
tiles).

Thus, we have shown that navigating a mosaic involves applying a sequence of rotation
and translation operations, and that these operations apply to multi-resolution tiles with
the slight complication that rotation matrices must be multiplied by the refinement ratio
between two tiles. The translation vector can be determined from the distance in index
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Figure 8: Example of contact labeling according to the n tuple. Values of ±1 in n indicate
a contact; several ±1 values indicate that the contact is either an edge or a corner in 3D, or
a corner in 2D. The n tuples are with respect to an index coordinate system, i and j in this
case.

space between the two reference index coordinate systems connecting two tiles. Only for
translations does the tile resolution matter.

1.3 Implement hierarchical mosaics (Task 2)

The incidence relation [12] defines the connectivity of a polytope in the hierarchy with respect
to other (sub-)polytopes. Thus, an edge polytope is made of two vertices, a face is bounded
by edges, and a cell is built from several faces. In this process, the incidence relation binds
an n-polytope to (n − 1)-polytopes. Similarly, a mosaic can be thought of as a polytope
with an incidence relation pointing to its tiles. For instance, the cubed-sphere mosaic can
be regarded as a 3-polytope containing 2-polytope structured grids. Hence, the incidence
relation can be employed to connect grid tiles within a mosaic.

All n-polytopes, n > 0, are bounded by lower dimensional polytopes. For example, an
edge is bounded by two vertices; a face is bounded by edges; a cell is bounded by faces. This
process can be pursued to higher dimensions. The relation between a polytope and one of
the lower-dimensional bounding polytope is known as the incidence relation [12]. Structured,
unstructured, locally refined, block structured, or mosaics can be thought of as assemblies of
polytopes. Moreover, these assemblies can be constructed recursively starting with vertices
or nodes, and ending with cells, tiles, and/or mosaics. By using data structures that are
aware of the underlying hierarchy between polytopes, it becomes then possible to navigate
the hierarchy, query for the neighbors of a polytope, or determine its parent (e.g. the index
of the cell owning an edge).

To illustrate how polytopes are constructed, consider the example shown in Fig. 10,
which consists of three vertices indexed 0, 1, and 2. Nodes 0 and 1 are connected to form
edge 3, nodes 1 and 2 to form edge 4, and nodes 0 and 2 to form edge 5. The three edges are
then connected to produce a face. The corresponding polytope hierarchy is shown in Fig. 11
as a directed graph with the arrows representing an incidence relationship.
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Figure 9: Example of folding in a three tile mosaic. The reference index coordinates for each
tile are shown in black. The thin arrows show the path in index space mentioned in the text.

Figure 10: A two-dimensional polytope built from lower dimensional vertex, and edge poly-
topes. Each polytope has a single integer identifier.
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Figure 11: The polytope hierarchy corresponding of a triangular cell. An arrow indicates an
incidence relation; for instance, edge 3 is bounded by vertices 0 and 1.

Figure 12: The cubed-sphere as a polytope hierarchy of nodes, edges, and cells. Notice
that the number of cells need not be identical for each tile and can vary along each logical
direction, as in this case.

11



Analyzing and visualizing next generation climate data
Tech-X Corporation

Final Phase II report

Figure 13: Hierarchy of polytopes composing the cubed-sphere grid (an example of mosaic
grid). Each sub-grid is made of vertices, edges, and possibly faces. Notice that the numbers
n and m of cells along each of the two logical directions are allowed to differ.

1.4 Implement building blocks for scalable post-processing (Task
3)

As the development of the project matures, the need for distributed arrays to represent data
in a mosaic assembly arises. This is supported with distributed arrays, which exposes a
sub-set of their data to be accessed by other processing elements. Domain decomposition for
optimal load balancing in irregular polytope hierarchies will be challenging and we anticipate
that we will need to use METIS [13] or some other software for that purpose. Here, we are
addressing the smaller challenge of building a distributed array functionality, which in the
spirit of this project, works in any number of dimensions.

We have redesigned our initial distributed array Python module by improving integration
with numpy [14]. Previously, our prototype implementation defined boxes, i.e. slices of data
arrays, which had starting and ending index sets that were not required to be positive.
Negative indices have the special meaning of indicating distance in index space from the last
element + 1 in Python, which is the language used in our target application CDAT [15].
For instance, if a is a Python array the a[-1] refers to the last element of a and a[-2]

to the previous before last. This shortcoming was reported to us by Charles Doutriaux
from Lawrence Livermore National Laboratory. Another major shortcoming was that other
processing units had to access all the data held by a given processor as a contiguous block
in memory. In many applications only a thin slab of data needs to be accessed. Clearly, our
Phase I implementation of distributed arrays triggered too much communication.

The above shortcomings have been overcome in the present incarnation of DistArray
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while keeping all the advantages of multi-dimensionality we had built in our original imple-
mentation. DistArray still depends on mpi4py [16] for remote memory access, which has
proven to be both solid and complete by supporting MPI-2 windows [8].

The mvDistArray class inherits from numpy.ndarray. The constructor,

def __init__(self, shape, dtype):

"""

Constructor

@param shape tuple of dimensions

@param dtype numpy type

"""

takes a shape and an array type (e.g. numpy.float64). Each distributed array object is
then free to expose any subpart of its data to other processes using

def expose(self, slce, winID):

"""

Collective operation to expose a sub-set of data

@param slce a slice object

@param winID the data window ID

"""

where slce is a tuple of python slice objects, e.g. (slice(2, 3, 1), slice(4, 5, 1),

...), and winID a unique identifier of the window. There is no restriction as to the number of
exposed windows. In many applications, we expect the size of each window to be significantly
smaller than the amount of data held by each processor. This condition is not enforced,
however. It is perfectly valid to expose the entire data or to expose overlapping slices of the
data. Note that the user does not specify the destination rank of the data. By relying on the
expose method, sizes and type of the data can be stored; the size of the messages are known
ahead of any communication and this can provide a slight performance advantage over the
more commonly use send/receive paradigm.

Messaging is initiated with a get method invoked by the processor in need to access data
held by another process:

def get(self, pe, winID):

"""

Access remote data (collective operation)

@param pe remote processing element

@param winID remote window

@return array

"""

which returns the block of data identified by winID on process pe. This is a collective
operation which requires synchronization on the data provider side (to allow the data to be
copied to a buffer) and and on the data consumer side (the receive communication must
complete). Thus, we have a pull paradigm where workers own the data and periodically
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trigger requests to access data on other processes. At no point does the worker push the
data. (This feature could however easily be added upon user request if desired.)

A typical use case for distributed arrays is when a given process needs only access a
subset of the data held by neighboring processes. Such a case arises when one needs to
apply finite differencing for instance. We have written a class GhostedDistArray which will
automatically create the ghost regions for a regular domain decomposition in N dimensions
given a halo width. For a two-dimensional array, the exposed windows are in the north,
east, south, and west sides of the local data array. Figure 14 shows the result of applying
the Laplacian operator on a distributed Gaussian field in x and y. Communication to access
data in the regions delimitated by dashed lines is required. The fact that the contour lines
are smooth is indicative that there are no race conditions or locking taking place. Figure 15
show the weak scaling for this problem on a laptop and a cluster. We note that good scaling
can be obtained on commodity hardware. Today, most laptops come with four or more cores.
When combined with hyper-threading, speedups approaching eight can be observed using
this very simple application programming interface (API).

Several improvements can be made at the expense of a more complicated API. Parallel
scaling can be further improved by overlapping computation and communication. We are
still relying on the data to be copied to buffers and this step could be performed as soon as
the data are ready, as opposed to when the data are ready. Similarly, the get operation could
be performed well before there is a need for accessing neighboring data. If the windows are
contiguous in memory then data copy can be avoided. The windows are presently managed
with dictionaries which have log(n) access time (n being the number of windows in our case).

The latest UV-CDAT version incorporates support for distributed arrays.

1.5 Implement interpolation capability (Task 4)

CDAT lacked interpolation capability from arbitrary curvilinear source grids. We have alle-
viated this shortcoming by developing a regrid type in LibCF and exposing this functionality
to Python. In contrast to other interpolation efforts (SCRIP, ESMF, ...), LibCF operates
in arbitrary dimensional space. Only linear interpolation is supported in LibCF, however.
(Conservative interpolation will be discussed at the end of this section.)

A Python interface to LibCF regrid has been written (gsRegrid). This interface is both
simple to use and flexible. An example of gsRegrid invocation looks like:

from cdms2 import gsRegrid

#...

# .... src_y, src_x are the source curvilinear coordinate values

# or axes, ditto for dst_y, dst_x, ....

# takes numpy or cdat cdms2 type variables

src_grd = [..., src_y, src_x]

dst_grd = [..., dst_y, dst_x]

# constructor

rg = gsRegrid.Regrid(src_grd, dst_grid,

mkCyclic = False,

handleCut = False,
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Figure 14: Two-dimensional Laplace operator applied to a distributed Gaussian field in x
and y, which is centered around x and y = 1. A 3 × 4 domain decomposition was used with
the vertical and horizontal dashed lines representing the delimitation between sub-domains.
Twenty cells in x and y were used for each sub-domain. Each sub-domain must access ghost
cell data held by other processing elements when applying the Laplacian 5 star stencil.

Figure 15: Weak scaling for the 2D Laplacian test problem. The number of cells (1000)
along x and y was kept constant as the number of processes was increased.
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src_bounds = None)

# compute interpolation weights

rg.computeWeights(nitermax=20, tolpos=0.01)

# interpolate src_field, result is dst_field

rg(src_var, dst_var)

In essence, the user provides a source [..., src_y, src_x] and a destination [..., dst_y,

dst_x] grid to the constructor Regrid in the form of sets of coordinates. The ... indi-
cate that the number of coordinates is arbitrary. However, the number of coordinates and
the number axes for each coordinates must match the number of space dimensions. (The
ESMF/ESMP interpolation discussed does not suffer from this restriction, the number of
topological and space dimensions can be different.) When the source grid is cell centered,
it may be necessary to supply mkCyclic = True to fully cover the earth. An additional
row must sometimes be added to the source grid in order to handle tripolar grids see Fig.
17 for such an example. The interpolation weights are computed by computeWeights, by
far the most computationally intensive method. This method takes the maximum number
of Newton iterations nitermax and the tolerance in (x, y) space as input. Figure 16 shows
that the number of of iterations required to find a target position in index space depends
in subtle ways on the initial guess — there are cases where two neighboring initial guesses
require vastly different number of iterations due to the fractal nature of the nonlinear map
from index to x, y coordinates. When the map is linear, i.e. the source is a cross product of
axes and the cell spacing is uniform, a single iteration is required. Note that the computation
of the interpolation weights can be amortized over the number of variables that share the
same source and destination, the gsRegrid object will hold weights until it is destroyed.

The final call, rg(src_var, dst_var), fills in the interpolated data dst_var. Note that
the source and destination grids are not required to overlap. Only the values of dst_var
that fall within the source grid will be filled. (More precisely, only the grid point values for
which the Newton scheme converged to given accuracy will be filled). This makes it easy to
iterate over the tiles of the cubed sphere when interpolating to a longitude-latitude grid, for
instance.

In addition, it may be necessary to provide a mask before computing the weights. Care is
taken that interpolation weights are computed only if the target point falls within a triangle
of valid data (see Figs. 18 and 19).

LibCF regrid now has improved handling of the periodicity of longitude coordinates.
Previously, the user was required to supply a “forbidden” box, a set of indices delimiting
a region where the Newton search should not attempt to search target cells. This is no
longer required, instead we now extend our search by allowing the target position to be
known modulo the periodicity of the coordinate. We have successfully tested gsRegrid on
23 models of ocean data (salinity) provided by Paul Durack (LLNL). A selected sample of
data sets is shown in Figs. 20 and 21.

By interpolating back onto the original source grid, we can determine where the interpo-
lation error is largest. Figure 22 indicates that the cumulated error of the two interpolations
can amount to 10 % and is mainly localized to the vicinity of coastlines, but is significantly
smaller in the bulk part of the domain.

Linear interpolation allows for embarrassingly parallelization. Figure 23 shows the re-
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Figure 16: The fractal nature of the pseudo-Newton iteration scheme used to locate a target
Cartesian position (white star) in curvilinear polar coordinates.

Figure 17: The grid of the tripolar often needs to be extended to prevent the cut to appear
as a gap.
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Figure 18: Interpolation of data with missing values (open circle) can be successfully applied
if the target point falls within a triangle whose vertices have all valid data (solid star).
Interpolation cannot be applied for the open star location. In three dimensions, one must
be able to construct a tetrahedron from the valid points.

Figure 19: Left: interpolation of data with missing values outside a spherical radius (blue
region) in three dimensions. Right: the last valid contour surface. Visualization with VisIt.
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Figure 20: A small selection of ocean data sets (salinity) from different climate models which
have been interpolated onto a longitude-latitude grid using gsRegrid.

Figure 21: Example of three-dimensional interpolation of salinity.
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Figure 22: Cumulative linear interpolation error (back to the original grid) relative to the
maximum field value.

duction of wall clock time on a workstation with 8 cores. Parallel scaling is limited by load
balancing. The time required to compute the interpolation weights is highly dependent on
the initial guess and the target location.

We have compared LibCF against ESMF linear interpolation. Figure 24 shows the dif-
ference for the same regridding operation using linear interpolation. Note the primary dif-
ferences occur near the pole. These differences can be explained by the fact that ESMP uses
both spatial and topological dimensions and can resolve the polar singularity better than
LibCF.

A typical use case is of regridding operation in CDAT is:

taOnUGrid = ta.regrid(u.getGrid())

where the variable ta is regridded onto the mesh provided by u. This operation is performed
under the hood by the regrid2 module, specifically by the regrid2.Regridder class. We
have extended Regridder, which takes a source and destination grid, to also take a regrid
method and a regrid tool. The default regrid method for UV-CDAT is bilinear and the
default tool is gsRegrid (LibCF).

The pseudo-code shows an example of the regridder method.

import regrid2

f = cdms2.open(’test_data.nc’)

g = cdms2.open(’more_data.nc’)

# read the data

v = f(’some_data’)

w = g(’more_data’)

regridMethod = ’Conservative’ # Or Bilinear
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Figure 23: Strong parallel scaling of linear interpolation for a three-dimensional test problem.

Figure 24: Comparison of LibCF versus ESMP linear interpolation for a three-dimensional
test problem.
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regridTool = ’gsRegrid’ # ’libcf’, ’ESMP’, ’SCRIP’, ’regrid’

regridObj = regrid2.Regridder(v.getGrid(), w.getGrid(),

regridMethod = regridMethod,

regridTool = regridTool)

newV = regridObj(v)

where the regridTool can be one of "gsRegrid", "ESMP", "SCRIP" or the original cdms
regridding tool "horizontal". The default is gsRegrid. The regridMethod at the moment
can be "Bilinear" or "Conservative" (not all tools support conservative interpolation).
Though SCRIP supports more options, these have not been activated.

Alternatively, one can access any of the methods directly by import the appropriate
module. e.g.

from regrid2 import horizontal

from cdms2 import gsRegrid

import ESMP

import SCRIP

(the API will naturally change according to the tool).
Extending the cdms2 method regrid to support three dimensional grids with elevation

is on the to do list.

1.6 Implement methods for common statistical and filter opera-
tions (Task 5)

With interpolation, all the ingredients are in place to perform a wide range of statistical
operations, including zonal averages of two- and three-dimensional fields.

1.7 Implement easy-to-use visualization capability (Task 6)

In the process of integrating LibCF into CDAT (see Sect. 1.8), we have written Python classes
allowing cdms2 structured grid objects to save data in file formats for which VisIt plugins
exist. Two files formats have been selected: VTK structured grid [17] and VizSchema [18].
The former has the advantage of being supported by many visualization tools in addition
to VisIt (e.g. VTK, Paraview, AVS/Express) while the latter relies on the HDF5 format
[19] format to store data in binary and portable form. The VizSchema format requires the
installation of the PyTables [20] package in Python.

Writing structured data to VTK format is as simple as:

import cdms2

f = cdms2.open(’test_data.nc’)

# read the data

v = f(’some_data’)

fname = v.id

v.toVisit(fname, format=’VTK’)
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Figure 25: Left: Location of node and cell centered field values for cubed sphere data. Right:
Seam grids required to bridge cell centered data across tile interfaces.

This will also project the longitude and latitude coordinates onto a sphere. To write data
using the VizSchema format, set format=’Vs’.

The above toVisit method allows any structured, scalar field to be saved for visualization
by VisIt. A mosaic cell-centered field, such as one defined at the nodes of the dashed grid in
Fig. 25 (left), cannot be simply visualized as a collection of structured fields as this would
expose gaps between tiles. In other words, a correct cell centered visualization requires the
connectivity information between mosaic tiles in order to generate the seam data at grids
shown in red in Fig. 25 (right). Figure 26 shows how gaps can arise in visualizations when
the connectivity between tiles is not properly accounted for (left). In the middle, the same
data with seam data added; careful examination shows that the corner cell at the junction
of three tiles is missing a datum. On the right, the final visualization with seam and corner
data added.

Both two- and three-dimensional data are supported. Data can be static or time depen-
dent (each time slice will be stored in a separate file). Figure 27 shows the cell centered air
temperature produced by the coupled model CM2.1 run at the Geophysical Fluids Dynamic
Laboratory.

1.8 Integration into the CDAT application (Task 7)

Starting with an initial implementation by Jeff Painter and Charles Doutriaux (LLNL),
we exposed the full functionality of LibCF to CDAT. All API calls in the LibCF shared
library are accessible via the built-in ctypes Python module without the need for Python-C
wrapping code.

Upon opening a netcdf file [21] with the cdms2.open CDAT method, the file object will be
identified as being a“host”object if the file contains the global attribute gridspec_file_type
and that attribute is set to ’host_file’. Then, the entire data set will be opened as a log-
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Figure 26: Filling in cell centered data gaps between three cubed sphere tiles.

Figure 27: Example of mosaic visualization: air temperature from the CM2.1 GFDL model
after removing one tile. The vertical axis direction was reversed in order to show the surface
temperature on the outer surface.
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ically single entity with the host acting as the entry point to the file collection (see Fig. 2).
The host behaves as if all data were contained within a single file as per the newly extended
CF file convention [3]. The host can be queried for the attributes, dimensions, grids, fields
and the mosaic object, as illustrated in Table 1.

Query Type host object method
global host.listglobal(s)

attributes host.listattributes

dimensions host.listdimensions

variables host.listvariable(s)

coordinates host.getCoordinates

mosaic host.getMosaic

Table 1: Query methods for a host object. Parentheses around the ’s’ in the method indicates
the singular or the plural method is valid.

An aggregated variable can be requested simply by using the call host(’varname’), a
syntax that resembles a single file variable read operation in CDAT. This will currently load
the data associated with each file in the aggregation and store the result in a list (one element
for each tile). Each element in the list currently behaves as a standard CDAT transient (in-
memory) variable of type cdms2.transientVariable. This means that the grid, attributes,
dimensions, shape etc. for the data on each grid are available. The variables can be time
varying or static and all of the CDAT time slice functions and methods as well as the spatial
slicing methods are available for that individual element.

Time varying and static variables can be stored in separate files. The number of time steps
within a time varying file need not be one, so building a time dependent variable requires an
extra loop for the number of time files available. The files for time files should be listed in
monotonically increasing order within the host file (the LibCF method nccf_add_host_file

will take care of inserting the element in the correct position).
There are some issues left to address. First, the cdms2.transientVariable is very mem-

ory intensive. In addition to transient variables, CDAT also supports file (cdms2.fileVariable)
variables, which only store the metadata in memory while leaving the actual data stored on
disk. We have yet to implement a corresponding behavior when accessing a variable through
host file, based on the square bracket syntax host[’varname’]. Second, only read access of
Gridspec variables is presently supported; the need to generate a Gridspec aggregation con-
veniently within CDAT has to be addressed. (It is still possible to access all LibCF methods
from Python, including those allowing the construction of a Gridspec aggregation; however,
these methods are not presently accessible through a CDAT interface.)

2 Products and publications

The proposed Gridspec extension to the NetCDF Climate and Forecast Metadata Conven-
tions [3], a collaboration between Tech-X, LLNL, PMEL, UCAR, and GFDL, has been
officially accepted.
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Figure 28: The five tile topology of the cube (top left) can be used as a starting point for
the generation of many novel grids.

An article entitled “The Ultra-scale Visualization Climate Data Analysis Tools (UV-
CDAT) Data Analysis and Visualization for Geoscience Data” with Dean Williams (LLNL)
as lead author was submitted to the Computer magazine. This article features LibCF/ESMF
interpolation and the use of distributed arrays to accelerate data analysis.

Spin-off technologies that are currently explored in other projects include the use of
mosaics in solving partial differential equations. Starting a with simple box topology, families
of grids can be generated by applying a sequence of coordinate transformations (see Fig. 28).
The cubed-sphere grid is obtained by projecting the cube into a sphere. The “cubed-disk”
grid can be obtained by projecting the cubed-sphere grid onto a plane. Novel grids can be
generated by applying other types of transformations.

2.1 Technologies/techniques

The techniques developed during this project find applications outside climate data anal-
ysis — mosaic grids can be applied to any area where there is a need to avoid pole-like
singularities.
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