WCH-326 Rev. 0

River Corridor

100-K Target Analyte List Development for Soil

April 2010

For Public Release

Washington Closure Hanford

Prepared for the U.S. Department of Energy, Richland Operations Office Office of Assistant Manager for River Corridor

TRADEMARK DISCLAIMER

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.

This report has been reproduced from the best available copy.

Printed in the United States of America

DOCUMENT CONTROL

WCH-326 Rev. 0

STANDARD APPROVAL PAGE

Title: 100-K Target Analyte List Development for Soil

Author Name: R. W. Ovink, Integration Project Task Lead

Approval: J. A. Lerch, Mission Completion

Jui 21 Signature

<u>9/14/12</u> Date

The approval signature on this page indicates that this document has been authorized for information release to the public through appropriate channels. No other forms or signatures are required to document this information release.

WCH-326 Rev. 0

River Corridor Closure Contract

100-K Target Analyte List Development for Soil

April 2010

Author: **R. W. Ovink**

For Public Release

Washington Closure Hanford

Prepared for the U.S. Department of Energy, Richland Operations Office Office of Assistant Manager for River Corridor

TABLE OF CONTENTS

1.0	PURPOSE	1
2.0	APPROACH	1
3.0	ASSUMPTIONS	3
4.0	SOFTWARE CONSIDERATIONS	4
5.0	SOIL TARGET ANALYTE LIST DEVELOPMENT	4
6.0	CONCLUSIONS	13
7.0	REFERENCES	14

TABLES

1.	Documents Used to Develop the 100-K Decision Unit Analyte List.	4
2.	Summary of 100-K Initial Target Analytes and References.	6
3.	100-K Soil Analytes Excluded from Further Consideration.	8
4.	Master 100-K Target Analyte List	9
5.	100-K Location-Specific Target Analyte List.	

APPENDIX

Α.	100-K TARGET ANALYTE MEASLES CHART	A-i

1.0 PURPOSE

This report documents the process used to identify source area target analytes in support of the 100-K Area remedial investigation/feasibility study (RI/FS) addendum to the *Integrated 100 Area Remedial Investigation/Feasibility Study Work Plan* (DOE/RL-2008-46, Rev. 0). A "target analyte" is defined as a constituent suspected of being site-related that is carried into an investigation plan for characterization through sampling and analysis by approved laboratory methods. Target analytes identified for the 100 and 300 Areas must support RI/FS nature and extent characterization plus final remedial action decisions for source areas. This report also establishes the analyte exclusion criteria applicable for the 100 and 300 Area use and the analytical methods needed to analyze the refined target analytes.

2.0 APPROACH

The approach for the development of vadose zone soil target analytes is a multi-step process. In Steps 1 and 2, initial and master analytes lists were developed. The third step developed location-specific target analyte lists for waste sites where additional characterization is planned. Finally, the analyte list will receive regulatory review and input. This will result in final location-specific target analytes.

Step 1 – Prepare Initial Master Target Analyte

Characterization data for vadose zone soils are not available for addressing uncertainties associated with the nature and extent of contamination in the vadose zone. Therefore, remediation and characterization information (historic and current) is identified and reviewed to develop an initial list of target analytes to represent potential contamination in the vadose zone. The following types of reference documents and information sources are evaluated:

- Focused feasibility studies (FFS), limited field investigation (LFI) reports
- Interim action records of decision (IARODs)
- Cleanup verification documents (cleanup verification packages [CVPs], remaining sites verification packages [RSVPs])
- Technical baseline reports
- Databases containing analytical data resulting from these activities (i.e., characterization, remediation, waste management information)
- Other pertinent documents

Step 2 – Prepare Master Target Analyte List

After the initial target analyte list is compiled, the information undergoes additional review steps to remove analytes using generally-accepted exclusion criteria; a comparison of the soil target analyte list to the groundwater contaminants of potential concern (COPC) list is conducted, and the appropriate analytical methods and detection limits for the master target analyte list is identified.

At the conclusion of this step, the master target analyte list is established. The master target analyte list is comprehensive and includes all the analytes that have the potential to be present in the vadose zone and are important for waste site remediation within the area. The following steps are taken to prepare the master target analyte list.

- Apply the following generally accepted exclusion criteria to the initial set of target analytes.
 - Radionuclides with half-lives less than 3 years (and no significant "daughters")
 - Naturally occurring radionuclides associated with background radiation (e.g., K-40, Th-230, Th-232, and Ra-226)
 - Essential nutrients (minerals)
 - Analytes that have no toxicity values (based on the hierarchy of toxicity values recommended by the U.S. Environmental Protection Agency (EPA) in *Human Health Toxicity Values for Superfund Risk Assessments* [OSWER Directive 9285.7-53]).
- Compare the master target analyte list for vadose zone soil with the groundwater COPC list developed for the area. Groundwater COPCs not found on the master target analyte list are further evaluated to determine if there is a valid basis for their inclusion.
- Identify appropriate analytical methods for each analyte on the master target analyte list. Determine if the detection limits for each target analyte can achieve the remedial action goals for direct exposure, groundwater protection, and Columbia River protection.

Step 3 – Develop Location-Specific Target Analyte List

The master target analyte list represents all potential target analytes that could be present in the vadose zone for the waste site area. Location-specific target analytes will be identified from the master list using the following approach.

- Identify the contaminants of concern (COCs) for the specific waste sites where characterization is proposed from the applicable IAROD (which reflects information from LFI and technical baseline reports). If the characterization location is not at a waste site, evaluate information from waste sites in the vicinity (where available), and include these analytes on the location-specific target analyte list.
- Identify the COCs for the specific waste site locations from the verification documentation (CVPs or RSVPs). If the characterization location is not at a waste site, evaluate information

from waste sites in the vicinity (where available), and include these analytes on the locationspecific target analyte list.

- Evaluate local groundwater monitoring well data (wells located within waste site "zones of influence"). Determine if groundwater COPCs have been analyzed for in these local wells.
 - If the groundwater COPCs have been analyzed for but not detected, then these analytes will not be included on the location-specific target analyte list.
 - If the groundwater COPCs have been analyzed for and have been detected, then these analytes will be included on the location-specific target analyte list.
 - If the groundwater COPCs have not been analyzed for, then an additional evaluation will be performed to determine if there is a data need. If there is a data need, these COPCs will be included on the waste-site specific target analyte list.

Step 4 – Agency Review of Locations and Location-Specific Target Analyte Lists

Following development of the location-specific target analyte list pursuant to Steps 1 through 3 above, the agencies will review the locations and the location-specific target analyte lists to determine whether adjustments/modifications are required to address information needs for the area. This review is intended to provide an opportunity to address any information requirements not identified in Steps 1 through 3. When additional information needs are identified, the agencies will modify the locations for additional characterization or the location-specific target analyte lists to reflect the additions/modifications needed for the area.

3.0 ASSUMPTIONS

- Historical resources (e.g., LFI, qualitative risk assessment, and CVP/RSVP documents) contain contaminant lists that are comprehensive with respect to characterizing environmental impacts from the 100 and 300 Area Hanford Site operations.
- Older analytical data (e.g., pre-Comprehensive Environmental Response, Compensation, and Liability Act of 1980 [CERCLA]) reflect laboratory state-of-the-art procedures. Analytical methods have improved, resulting in lower detection limits for many analytes and better data quality assurance/quality control.
- Characterization activities implemented since initiating remediation under the IARODs may provide additional contaminant information that should be considered during pending RI/FS work processes.
- Post-remediation characterization and cleanup verification data reflect focused lists of analytes that are unique to each waste site and have been evaluated against IAROD cleanup requirements.
- Examining existing data and waste site process information will be useful in developing laboratory analytical needs for RI/FS characterization tasks.

- Universally accepted exclusion criteria may be applied to the initial target analyte list to develop a "refined" list.
- Additional exclusion criteria (e.g., statistical Hanford Site background comparisons, infrequently detected analytes, and analytes not detected at concentrations/activities exceeding required cleanup levels) may be applied during the RI/FS process as more data become available.

4.0 SOFTWARE CONSIDERATIONS

No statistical or algebraic calculations are performed for this activity. The evaluations conducted included analyte comparisons/sorting using Microsoft[®] Excel[®].

5.0 SOIL TARGET ANALYTE LIST DEVELOPMENT

Master Target Analyte Identification

1. The documents listed in Table 1 were used to develop the 100-K target analyte list.

	Reference	Document Number	Document Type
1.	Cleanup Status Report for the 116-KE-1 and 116-KW-1 Cribs	BHI-01737	BHI report
2.	Cleanup Verification Package for the 100-K-55:1 and 100-K-56:1 Pipelines and the 116-KW-4 and 116-KE-5 Heat Recovery Stations	CVP-2005-00006	CVP
3.	Cleanup Verification Package for the 116-KE-4 Retention Basin	CVP-2005-00002	CVP
4.	Cleanup Verification Package for the 116-KW-3 Retention Basin	CVP-2004-00001	CVP
5.	Cleanup Verification Package for the 116-K-1 Crib	CVP-2003-00024	CVP
6.	Cleanup Verification Package for the 116-K-2 Effluent Trench	CVP-2006-00001	CVP

Table 1.	Documents Used to Develop the 100-K Decision Unit
	Analyte List. (3 Pages)

[®] Microsoft and Excel are registered trademarks of Microsoft Corporation in the United States and/or other countries.

Table 1.	Documents Used to Develop the 100-K Decision Unit
	Analyte List. (3 Pages)

	Reference	Document Number	Document Type
7.	Remaining Sites Verification Package for 128-K-1, 100-K Burning Pit, Attachment to Waste Site Reclassification Form 2004-042	WSRF 2004-042	RSVP
8.	Remaining Sites Verification Package for 100-K-29, 183-KE Sandblasting Site, Attachment to Waste Site Reclassification Form 2004-040	WSRF 2004-040	RSVP
9.	Remaining Sites Verification Package for 100-K-30, 183-KE Sulfuric Acid Tank (West Tank), Attachment to Waste Site Reclassification Form 2003-036	WSRF 2003-036	RSVP
10.	Remaining Sites Verification Package for 100-K-31, 183-KE Sulfuric Acid Tank (East Tank), Attachment to Waste Site Reclassification Form 2004-038	WSRF 2004-038	RSVP
11.	Remaining Sites Verification Package for 100-K-32, 183-KW Sulfuric Acid Tank Bases (East Tank), Attachment to Waste Site Reclassification Form 2004-039	WSRF 2004-039	RSVP
12.	Remaining Sites Verification Package for 100-K-33, 183-KW Sulfuric Acid Tank Bases (West Tank), Attachment to Waste Site Reclassification Form 2004-041	WSRF 2004-041	RSVP
13.	100 Area Source Operable Unit Focused Feasibility Study Report	DOE/RL-94-61	FFS
14.	Sampling and Analysis Plan for Investigating Chromium Groundwater Contamination Near the 105-KW Reactor	DOE/RL-2008-33	SAP
15.	Limited Field Investigation Report for the 100-KR-1 Operable Unit	DOE/RL-93-78	LFI
16.	Radiological Characterization of the Retired 100 Areas	UNI-946 Dorian, J. J. and V. R. Richards	UNI report
17.	Record of Decision for the 100-KR-2 Operable Unit, Hanford Site	EPA/ROD/R10-99/059	ROD
18.	Interim Action Record of Decision for the 100-BC-1, 100-BC-2, 100-DR-1, 100-DR-2, 100-FR-1, 100-FR-2, 100-HR-1, 100-HR-2, 100-KR-1, 100-KR-2, 100-IU-2, 100-IU-6, and 200-CW-3 Operable Units, Hanford Site (Remaining Sites ROD)	EPA/ROD/R10-99/039	IAROD
19.	Record of Decision for the 100-BC-1, 100-BC-2, 100-DR-1, 100-DR-2, 100-FR-2, 100-HR-2, and 100-KR-2 Operable Units, Hanford Site (Burial Grounds ROD)	EPA/ROD/R10-00/121	ROD

Table 1. Documents Used to Develop the 100-K Decision UnitAnalyte List. (3 Pages)

Reference	Document Number	Document Type
20. Dangerous Waste Portion of the Resource Conservation and Recovery Act Permit for the Treatment, Storage, and Disposal of Dangerous Waste, Permit No. WA7 89000 8967, Closure Unit 16, 1706-KE Waste Treatment System	WA7 89000 8967	Dangerous waste permit application
BHI = Bechtel Hanford, Inc. CVP = cleanup verification package DOE/RL = U.S. Department of Energy, Richland Operations Office EPA = U. S. Environmental Protection Agency FFS = focused feasibility study IAROD = interim action record of decision	LFI = limited field invest ROD = record of decision RSVP = remaining sites ve SAP = sampling and ana UNI = United Nuclear In WSRF = waste site reclass	igation prification package lysis plan dustries ification form

2. The initial list of target analytes presented in Table 2 was created from the review and evaluation of the Table 1 documents.

Table 2. Summary of 100-K Initial Target Analytes and References. (2 Pages)

Analyte	Reference	Analyte	Reference
	Radior	nuclides	
1. Americium-241	DOE/RL-94-61	13. Potassium-40	WSRF 2004-042
2. Carbon-14	DOE/RL-94-61	14. Radium-226	WSRF 2004-042
3. Cesium-134	DOE/RL-94-61	15. Sodium-22	DOE/RL-94-61
4. Cesium-137	CVP-2003-00024	16. Strontium-90	CVP-2003-00024
5. Cobalt-60	CVP-2003-00024	17. Technetium-99	DOE/RL-2008-33
6. Gross beta	DOE/RL-93-78	18. Thorium-228	WSRF 2004-042
7. Europium-152	CVP-2005-0006	19. Thorium-232	DOE/RL-94-61
8. Europium-154	CVP-2005-0006	20. Tritium	DOE/RL-2008-33
9. Europium-155	DOE/RL-94-61	21. Uranium-233/234	CVP-2004-00001
10. Nickel-63	CVP-2006-00001	22. Uranium-235	CVP-2004-00001
11. Plutonium-238	DOE/RL-94-61	22 Uronium 228	
12. Plutonium-239/240	CVP-2004-00001	23. Utatilutti-236	DUE/RL-2006-33
	Nonradio	onuclides	
1. 1, 1-Dichloroethene	HEIS/Groundwater	33. Dibenz[a,h]anthracene	WSRF 2004-042
2. Acenaphthene	DOE/RL-93-78	34. Di-n-butylphthalate	DOE/RL-93-78
3. Aluminum	DOE/RL-93-78	35. Ethylene glycol	CVP-2005-00006
4. Anthracene	WSRF 2004-042	36. Fluoranthene	WSRF 2004-042
5. Antimony	DOE/RL-94-61	37. Fluoride	DOE/RL-93-78
6. Aroclor-1016	WSRF 2004-04	38. Indeno(1,2,3- cd)pyrene	WSRF 2004-042
7. Aroclor-1221	WSRF 2004-04	39. Iron	DOE/RL-93-78
8. Aroclor-1232	WSRF 2004-04	40. Lead	CVP-2005-00006
9. Aroclor-1242	WSRF 2004-04	41. Magnesium	DOE/RL-93-78
10. Aroclor-1248	WSRF 2004-04	42. Manganese	DOE/RL-94-61
11. Aroclor-1254	WSRF 2004-04	43. Mercury	CVP-2005-00006
12. Aroclor-1260	WSRF 2004-04	44. Methylene chloride	DOE/RL-93-78
13. Arsenic	CVP-2005-0006	45. Nickel	DOE/RL-93-78
14. Barium	CVP-2005-0006	46. Nitrate-nitrite	DOE/RL-93-78

Analyte	Reference	Analyte	Reference
15. Benzene (GW COPC)	HEIS/Groundwater	47. Pentachlorophenol	DOE/RL-94-61
16. Benzo(a)anthracene	WSRF 2004-042	48. Phenanthrene	WSRF 2004-042
17. Benzo(a)pyrene	WSRF 2004-042	49. Phosphate	DOE/RL-93-78
18. Benzo(b)fluoranthene	WSRF 2004-042	50. Potassium	DOE/RL-93-78
19. Benzo(ghi)perylene	WSRF 2004-042	51. Pyrene	WSRF 2004-042
20. Benzo(k)fluoranthene	WSRF 2004-042	52. Selenium	WSRF 2004-042
21. Beryllium	DOE/RL-93-78	53. Silver	WSRF 2004-042
22. Bis(2-ethylhexyl) phthalate	WSRF 2004-042	54. Sodium	DOE/RL-93-78
23. Cadmium	CVP-2005-00006	55. Sulfate	WSRF 2003-036
24. Calcium	DOE/RL-93-78	56. Tetrachloroethene	DOE/RL-93-78
25. Carbazole	WSRF 2004-042	57. Thallium	DOE/RL-93-78
26. Carbon tetrachloride (GW COPC)	HEIS/Groundwater	58. Toluene	DOE/RL-93-78
27. Chloroform (GW COPC)	HEIS/Groundwater	59. Total petroleum hydrocarbons	WSRF 2004-042
28. Chromium (hexavalent)	CVP-2003-00024	60. Trichloroethene	DOE/RL-2008-33
29. Chromium (total)	CVP-2003-00024	61. Vanadium	DOE/RL-93-78
30. Chrysene	WSRF 2004-042		
31. Cobalt	DOE/RL-93-78	62. Zinc	DOE/RL-94-61
32. Copper	DOE/RL-93-78		

Table 2. Summary of 100-K Initial Target Analytes and References. (2 Pages)

NOTE: The primary references are listed for each analyte; most analytes were referenced in multiple documents.

CVP = cleanup verification package

DOE/RL = U.S. Department of Energy, Richland Operations Office

GW COPC = groundwater contaminant of potential concern

HEIS = Hanford Environmental Information System

WSRF = waste site reclassification form

- 3. The generally accepted exclusion criteria that follow were applied to the initial soil target analyte list to identify the excluded analytes listed in Table 3 and to develop the refined target analyte list presented in Table 4.
 - Radionuclides with half-lives less than 3 years (and no significant "daughters")
 - Naturally occurring radionuclides associated with background radiation
 - Essential nutrients (minerals)
 - Analytes that have no toxicity values (per the most-current *Cleanup Levels and Risk Calculations Database* [CLARC] Table).

Analyte	Exclusion Rationale	Daughters	Half-Life		
	Radionuclides				
Cerium-144	Half-life less than 3 years (284.6d)	Pr-144m (1.2m), Pr-144 (17.28m), and Nd-144 (stable)	NA		
Cesium-134	Half-life less than 3 years (2.065y)	Ba-134 (stable)	NA		
Cobalt-58	Half-life less than 3 years (70.88d)	Ni-58 (stable)	NA		
Iron-59	Half-life less than 3 years (44.51d)	Co-59 (stable)	NA		
Manganese-54	Half-life less than 3 years (612.2d)	Fe-54 (stable)	NA		
Ruthenium-103	Half-life less than 3 years (39.27d)	Rh-103m (56.12m) and Rh-103 (stable)	NA		
Ruthenium-106	Half-life less than 3 years (1.020y)	Rh-106 (29.9s) and Pd-106 (stable)	NA		
Sodium-22	Half-life less than 3 years (2.605y)	Ne-22 (stable)	NA		
Tin-113	Half-life less than 3 years (115.1d)	In-113m (1.658h) and In-113 (stable)	NA		
Actinium-228	Decay daughter (Th-232/Ra-228); in equilibrium with parent	NA	6.15 hours		
Lead-212	Decay daughter (Th-232/Ra-228); in equilibrium with parent	NA	10.6 hours		
Lead-214	Decay daughter (Ra-226); in equilibrium with parent	NA	26.8 minutes		
Potassium-40	Naturally occurring background radiation	NA	1.28 E9 years		
Radium-224	Radium-224 Decay daughter (Th-232/Ra-228); in NA		3.66 days		
Radium-226 Only potential source from naturally- occurring background radiation (insufficient in-growth time for Hanford introduced U as decay daughter of U-234/Th-230)		NA	1.6 E3 years		
Radium-228	Decay daughter (Th-232); in equilibrium with parent	NA 5.76 years			
Thorium-228	Decay daughter (Th-232/Ra-228); in equilibrium with parent	NA	1.91 years		
Thorium-230 Only potential source from naturally- occurring background radiation (insufficient in-growth time for Hanford introduced U as decay daughter of U-234)		NA	7.7 E4 years		
Thorium-232	Naturally occurring background radiation	NA	1.4 E10 years		
Thorium-234 Decay daughter of U-238; in equilibrium with parent		NA	2.41 days		
Nonradionuclides					
Calcium	Essential nutrient	NA	NA		
Iron	Essential nutrient	NA	NA		
Magnesium	Essential nutrient	NA	NA		
Phosphate	Essential nutrient	NA	NA		
Potassium	Essential nutrient	NA	NA		
Sodium	Essential nutrient	NA	NA		
Sulfate	No soil toxicity information available	NA	NA		

Table 3.	100-K Soil Analyte	s Excluded from Furt	her Consideration.
----------	--------------------	----------------------	--------------------

NA = not applicable

- 4. This step reconciles the refined soil target analytes with the groundwater COPCs developed for the area. Groundwater COPCs *not* found on the refined soils list are further evaluated. The default action is to include all groundwater COPCs on the refined soil target analyte list, unless there is a valid basis for their exclusion. The analytes added to Table 4 that are groundwater COPCs are presented in *italics*.
- 5. The appropriate analytical methods for the refined target analytes, taking into account action levels and detection limits, are presented in Table 4.

	Bractical	Drolim			
Target Analyte	Ouantitation	Direct	Groundwater	Analytical Mothode	
Target Analyte	Limite ^a	Exposure	Protection	Protection	Analytical wethous
	Linits	Radionu	clides	THOLECTION	
1 Cesium-137	0.1	6.2	NV ^c	NV/ ^c	
2 Cobalt-60	0.05	1 4	NV ^c	NV ^c	-
3 Europium-152	0.00	33	NV ^c	NV ^c	1 Gamma energy
4 Europium-154	0.1	3.0	NV ^c	NV ^c	analysis
5 Europium-155	0.1	125	NV ^c	NV ^c	analysis
6 Americium-241	1	31.1	NV ^c	NV ^c	4
7 Plutonium-238	1	37.4	NV ^c	NV ^c	2 Isotopic-
8 Plutonium-239/240	1	33.9	NV ^c	NV ^c	plutonium
	•	00.0	140	140	3 Gas flow
9 Strontium-90	1	45	NV ^c	NV ^c	proportional
		4.0	140		counting
10. Uranium-233/234	1	1.1 ^d	1.1 ^d	1.1 ^d	
11. Uranium-235	1	0.61	0.185 ^e	0.185 ^e	4. Isotopic -
12. Uranium-238	1	1.1 ^d	1.1 ^d	1.1 ^d	uranium
13. Carbon-14	2	5.16	NV °	NV ^c	
14. Nickel-63	30	4,026	NV ^c	NV ^c	5. Liquid
15. Tritium	10	510	15.8	15.8	scintillation
16. Technetium-99	0.25	5.7	0.46	0.46	counter
		Nonradion	uclides		
17. Antimony	6	32	5.4 ^e	25.3	
18. Aluminum	5	80,000	480,000	960,000	
19. Arsenic	10	20 [†]	20 [†]	20 [†]	
20. Barium	2	16,000	1,650	3,300	
21. Beryllium	0.5	160	63.2	126	6. EPA 6010 (ICP
22. Cadmium	0.5	80	0.69	0.25 ^e	metal)
23. Chromium (total)	1	120,000	2,000	2,600]
24. Cobalt	2	24	15.7 ^d	NV ^c]
25. Copper	1	3,200	284	1,150]
26. Lead	5	250	3,000	840	
27. Manganese	5	3,760	512 ^d	512 ^d]
28. Nickel	4	1,600	130	357]
29. Selenium	10	400	5.2 ^e	1.04 ^e	7. EPA 6010 (ICP
30. Silver	1	400	13.6	0.884 ^e	metal)
31. Thallium	5	5.60	1.59 ^e	4.46 ^e	
32. Vanadium	2.5	560	2,240	NV ^c	
33. Zinc	1	24,000	5,970	226	

Table 4. Master 100-K Target Analyte List. (3 Pages)

	Practical Preliminary Cleanup Goals ^{a, b}							
Target Analyte	Quantitation	Direct	Groundwater	River	Analytical Methods			
	Limits ^a	Exposure	Protection	Protection				
34. Chromium (hexavalent)	0.5	240	18.4	7.7	8. Cr VI 7196			
35. Mercury	0.2	24	2.09	0.33 ^d	9. EPA 7471 (Hg cold vapor)			
36. Aroclor-1016 (PCB)	0.017	0.5	0.0942	0.000447 ^e				
37. Aroclor-1221 (PCB)	0.017	0.5	0.00920 ^e	0.0000437 ^e				
38. Aroclor-1232 (PCB)	0.017	0.5	0.00920 ^e	0.0000437 ^e				
39. Aroclor-1242 (PCB)	0.017	0.5	0.0394	0.000187 ^e	10. EFA 0002 (FCD			
40. Aroclor-1248 (PCB)	0.017	0.5	0.0386	0.000183 ^e	by GC)			
41. Aroclor-1254 (PCB)	0.017	0.5	0.0664	0.000315 ^e				
42. Aroclor-1260 (PCB)	0.017	0.5	0.721	0.00342 ^e				
43. Fluoride	5	4,800	2,880	5,770	11 Aniona hy			
44. Nitrate	2.5	128,000	40	80				
45. Nitrite	2.5	8,000	4	8	10-300.0			
46. Acenaphthene	0.1	4,800	97.9	131				
47. Anthracene	0.05	24,000	2,270	9,100				
48. Benzo(a)anthracene	0.015	1.37	0.856	0.04				
49. Benzo(a)pyrene	0.015	0.137	2.33	0.109				
50. Benzo(b) fluoranthene	0.015	1.37	2.95	0.138				
51. Benzo(ghi) perylene	0.03	2,400	25,700	7,070	12. EFA-0310 (FAII)			
52. Benzo(k) fluoranthene	0.015	1.37	21.5	0.138				
53. Chrysene	0.1	13.7	9.56	0.0446 ^e				
54. Dibenz(a,h)anthracene	0.03	1.37	4.29	0.2				
55. Fluoranthene	0.05	3,200	631	178				
56. Indeno (1,2,3-cd)	0.03	1.37	8.33	0.389				
57 Phenanthrene	0.05	24 000	1 140	9 100	13. EPA-8310 (PAH)			
58 Pyrene	0.05	2 400	655	2 620				
	0.00	2,400	000	2,020	14. EPA-8015 (Non-			
59. Ethylene glycol	5	160,000	64.3	NV°	halogenated VOA)			
60. 1,1-Dichloroethene	0.01	1.67	0.0005	0.0008				
61. Bis (2-ethylhexyl) phthalate	0.33	71.4	13.9	8.01	15. EPA-8270			
62. Carbazole	0.33	50	0.314 ^e	NV ^c	(Semi-volatiles)			
63. Di-n-butylphthalate	0.33	8,000	56.5	191				
64. Pentachlorophenol	0.33	8.33	0.0158 ^e	0.00887 ^e				
65. Benzene ^g	0.005	18.2	0.00448	0.014				
66. Carbon tetrachloride	0.005	7.69	0.031	0.0046 ^e				
67. Chloroform	0.005	164	0.038	0.0607	16. EPA-8260			
68. 1,4-Dichlorobenzene	0.005	41.7	0.03	0.160	(Volatile			
69. Methylene chloride	0.005	133	0.0218	0.0409	organics)			
70. Tetrachloroethene	0.005	1.85	0.00859	0.00832				
71. Toluene	0.005	6,400	4.65	99]			
72. Trichloroethylene	0.005	11.2	0.00323 ^e	0.0355				

Table 4.	Master 100-K	Target Analyte	List. (3 Pages)
----------	--------------	----------------	-----------------

	Practical	Prelim	ninary Cleanup (Goals ^{a, b}	
Target Analyte	Quantitation Limits ^a	Direct Exposure	Groundwater Protection	River Protection	Analytical Methods
 Total petroleum hydrocarbons 	5	2,000	2,000	NV ^c	17. NWTPH-Dx, extended range
^a Units are mg/kg (nonradionucl ^b The initial cleanup goals prese	ides) and pCi/g (ra	adionuclides) (unless otherwise no rent CLARC table	oted. (updated April 22	2009) calculated per

Table 4. Master 100-K Target Analyte List. (3 Pages)

Model Toxics Control Act Statute and Regulation, Publication No. 94-06, Washington State Department of Ecology, Olympia, Washington (WAC 173-340) (Ecology 2007) using input parameters stated in the CLARC table.

^c The generic RESRAD modeling reported in the Remedial Design Report/Remedial Action Work Plan for the 100 Area (100 Area RDR/RAWP) (DOE/RL-96-17) predicts the contaminant will not reach groundwater within 1,000 years.

^d Where cleanup levels are less than background, cleanup levels default to background as discussed in Section 2.1.2.1 of the 100 Area RDR/RAWP (DOE-RL-96-17).

^e Where cleanup levels are less than PQLs, cleanup levels default to PQLs as discussed in Sec. 2.1.2.1 of the 100 Area RDR/RAWP (DOE/RL-96-17). The PQLs will be used for working levels, and will be periodically reviewed to establish if lower detection limit capabilities have become available.

^f The arsenic cleanup level of 20 mg/kg has been agreed to by the Tri-Party Agreement project managers as discussed in Sec. 2.1.2.1 of the 100 Area RDR/RAWP (DOE/RL-96-17).

CLARC= Cleanup Levels and Risk CalculationPACOPC= contaminant of potential concernPOEPA= U.S. Environmental Protection AgencyPOGC= gas chromatographRIIC= ion chromatographyRIICP= inductively coupled plasmaVONV= no valueWNWTPH-Dx= Northwest total petroleumhydrocarbons-diesel range	AH= polycyclic aromatic hydrocarbonsCB= polychlorinated biphenylQL= practical quantitation limitDR/RAWP= Remedial Design Report/Remedial Action Work PlanESRAD= RESidual RADioactivityOA= volatile organic analysis'AC= Washington Administrative Code
--	--

Location-Specific Target Analyte Identification

Location-specific target analytes are identified from the master list using the following approach:

- 1. Identify the COCs for the specific waste sites where characterization is proposed from the applicable IAROD (which reflects information from LFI and technical baseline reports). If the characterization location is not at a waste site, evaluate information from waste sites in the vicinity (where available). Include these analytes on the location-specific target analyte list (Table 5).
- 2. Identify the COCs for the specific waste site locations from the verification documentation (CVPs or RSVPs). If the characterization location is not at a waste site, evaluate information from waste sites in the vicinity (where available). Include these analytes on the locationspecific target analyte list (Table 5).
- 3. Evaluate local groundwater monitoring well data (wells located within waste site "zones of influence"). Determine if groundwater COPCs have been analyzed for in these wells. The groundwater data for 100-K is summarized in Appendix A.
 - a. If the groundwater COPCs have been analyzed for but not detected, then these analytes will not be included on the location-specific target analyte list.

- b. If the groundwater COPCs have been analyzed for and have been detected, then these analytes are included on the location-specific target analyte list.
- c. If the groundwater COPCs have not been analyzed for, then an additional evaluation will be performed to determine if there is a data need. If there is a data need, these COPCs are included on the location-specific target analyte list.
- 4. The analytes from the 100-K location-specific list were considered by the lead agency and no additional analytes were requested.

	Practical Preliminary Cleanup Goals ^{a, b}								
Target Analyte	Quantitation	Direct	Groundwater	River	Methods				
	Limits ^a	Exposure	Protection	Protection	Methous				
1. Cesium-137 (CVP)	0.1	6.2	NV ^c	NV ^c	1 Camma				
2. Co-60 (CVP/IAROD)	0.05	1.4	NV ^c	NV ^c	1. Gamma				
3. Eu-152 (CVP/IAROD)	0.1	3.3	NV ^c	NV ^c	analysis				
4. Eu-154 (CVP/IAROD)	0.1	3.0	NV ^c	NV ^c	anarysis				
5. Pu-239/240 (CVP/IAROD)	1	33.9	NV ^c	NV °	2. Isotopic-Pu				
6. Sr-90 (CVP/IAROD)	1	4.5	NV ^c	NV°	3. Gas flow proportional counting				
7. Carbon-14 (CVP)	2	5.16	NV ^c	NV ^c	1 Liquid				
8. Nickel-63 (CVP)	30	4,026	NV ^c	NV ^c	4. Liquid				
9. Tritium (GW)	10	510	15.8	15.8	scinulation				
10. Tc-99 (GW)	0.25	5.7	0.46	0.46	counter				
Nonradionuclides									
11. Antimony (GW)	6	32	5.4 ^d	25.3					
12. Arsenic (GW)	10	20 ^e	20 ^e	20 ^e					
13. Barium (GW)	2	16,000	1,650	3,300					
14. Beryllium (GW)	0.5	160	63.2	126					
15. Cadmium (GW)	0.5	80	0.69	0.25 ^d					
16. Chromium (total) (GW)	1	1 120,000 2,000 2,600		2,600					
17. Cobalt (GW)	2	24	15.7 [†]	NV ^c					
18. Copper (GW)	1	3,200	284	1,150	5. EPA 6010				
19. Lead (GW)	5	250	3,000	840	(ICP metal)				
20. Manganese (GW)	5	3,760	512 [†]	512 [†]					
21. Nickel (GW)	4	1,600	130	357					
22. Selenium (GW)	10	400	5.2 ^d	1.04 ^d					
23. Silver (GW)	1	400	13.6	0.884 ^d					
24. Thallium (GW)	5	5.60	1.59 ^d	4.46 ^d					
25. Vanadium (GW)	2.5	560	2,240	NV ^c					
26. Zinc (GW)	1	24,000	5,970	226					
27. Chromium (hexavalent) (CVP/IAROD)	0.5	240	18.4	7.7	6. Cr-VI 7196				

Table 5. 100-K Location-Specific Target Analyte List. (2 Pages)

	Practical	Applytical					
Target Analyte	Quantitation Limits ^a	Direct Exposure	Groundwater Protection	River Protection	Methods		
28. Mercury (GW/IAROD)	0.2	24	2.09	0.33 ^f	7. EPA 7471 (Hg cold vapor)		
29. Fluoride (GW)	5	4,800	2,880	5,770	9 Aniona hy		
30. Nitrate (GW)	2.5	128,000	40	80			
31. Nitrite (GW)	2.5	8,000	4	8	10-300.0		
32. Benzene (GW)	0.005	18.2	0.00448 ^d	0.014	9. EPA-8260		
33. Chloroform (GW)	0.005	164	0.0381	0.0607	(Volatile organics)		

|--|

^a Units are mg/kg (nonradionuclides) and pCi/g (radionuclides) unless otherwise noted.

The initial cleanup goals presented here are from the most current CLARC table (updated April 22, 2009), calculated per Model Toxics Control Act Statute and Regulation, Publication No. 94-06, Washington State Department of Ecology, Olympia, Washington (WAC 173-340) (Ecology 2007) using input parameters stated in the CLARC table.

The generic RESRAD modeling reported in the Remedial Design Report/Remedial Action Work Plan for the 100 Area

(100 Area RDR/RAWP) (DOE/RL-96-17) predicts the contaminant will not reach groundwater within 1,000 years. ^d Where cleanup levels are less than PQLs, cleanup levels default to PQLs as discussed in Sec. 2.1.2.1 of the 100 Area RDR/RAWP (DOE/RL-96-17). The PQLs will be used for working levels, and will be periodically reviewed to establish if lower detection limit capabilities have become available.

^e The arsenic cleanup level of 20 mg/kg has been agreed to by the Tri-Party Agreement project managers as discussed in Sec. 2.1.2.1 of the 100 Area RDR/RAWP (DOE/RL-96-17).

Where cleanup levels are less than background, cleanup levels default to background as discussed in Sec. 2.1.2.1 of the 100 Area RDR/RAWP (DOE/RL-96-17).

CLARC	= Cleanup Levels and Risk Calculation	ICP	= inductively coupled plasma
CVP	= cleanup verification package	NV	= no value
EPA	= U. S. Environmental Protection Agency	PQL	= practical quantitation limit
GW	= groundwater	RDR/RAWP	= Remedial Design Report/Remedial Action Work Plan
IAROD	= interim action record of decision	RESRAD	= RESidual RADioactivity
IC	= ion exchange chromatography	WAC	= Washington Administrative Code

6.0 CONCLUSIONS

This approach should be followed to identify target analytes for the other 100 and 300 Area RI/FS work plans under development.

The analytical methods in Tables 4 and 5, particularly those identified for radionuclides, should be verified and documented in the quality assurance project plan section of the sampling and analysis plan for the 100-K Area. As additional soil data become available, other suitable exclusion criteria should be considered and evaluated for use in the target analyte list development process.

7.0 REFERENCES

- 2003-036, 2004, Waste Site Reclassification Form 2003-036, and Attachment *Remaining Sites Verification Package for 100-K-30, 183-KE Sulfuric Acid Tank (West Tank)*, Rev. 0, Washington Closure Hanford, Richland, Washington.
- 2004-038, 2004, Waste Site Reclassification Form 2004-038, and Attachment *Remaining Sites Verification Package for 100-K-31, 183-KE Sulfuric Acid Tank (East Tank)*, Rev. 0, Washington Closure Hanford, Richland, Washington.
- 2004-039, 2004, Waste Site Reclassification Form 2004-039, and Attachment *Remaining Sites Verification Package for 100-K-32, 183-KW Sulfuric Acid Tank Bases (East Tank)*, Rev. 0, Washington Closure Hanford, Richland, Washington.
- 2004-040, 2004, Waste Site Reclassification Form 2004-040, and Attachment *Remaining Sites Verification Package for 100-K-29, 183-KE Sandblasting Site*, Rev. 0, Washington Closure Hanford, Richland, Washington.
- 2004-041, 2004, Waste Site Reclassification Form 2004-041, and Attachment *Remaining Sites Verification Package for 100-K-33, 183-KW Sulfuric Acid Tank Bases (West Tank)*, Rev. 0, Washington Closure Hanford, Richland, Washington.
- 2004-042, 2004, Waste Site Reclassification Form 2004-042, and Attachment *Remaining Sites Verification Package for 128-K-1, 100-K Burning Pit*, Rev. 0, Washington Closure Hanford, Richland, Washington.
- BHI-01737, 2004, *Cleanup Status Report for the 116-KE-1 and 116-KW-1 Cribs*, Rev. 0, Bechtel Hanford, Inc., Richland, Washington.
- CVP-2003-00024, 2003, *Cleanup Verification Package for the 116-K-1 Crib*, Rev. 0, Washington Closure Hanford, Richland, Washington.
- CVP-2004-00001, 2004, *Cleanup Verification Package for the 116-KW-3 Retention Basin*, Rev. 0, Washington Closure Hanford, Richland, Washington.
- CVP-2005-00002, 2005, Cleanup Verification Package for the 116-KE-4 Retention Basin, Rev. 0, Washington Closure Hanford, Richland, Washington.
- CVP-2005-00006, 2005, Cleanup Verification Package for the 100-K-55:1 and 100-K-56:1 Pipelines and the 116-KW-4 and 116-KE-5 Heat Recovery Stations, Rev. 0, Washington Closure Hanford, Richland, Washington.
- CVP-2006-00001, 2006, *Cleanup Verification Package for the 116-K-2 Effluent Trench*, Rev. 0, Washington Closure Hanford, Richland, Washington.
- DOE/RL-93-78, 1994, *Limited Field Investigation Report for the 100-KR-1 Operable Unit*, Rev. 0, U.S. Department of Energy, Richland Operations Office, Richland, Washington.
- DOE/RL-94-61,1995, *100 Area Source Operable Unit Focused Feasibility Study Report,* Rev. 0, U.S. Department of Energy, Richland Operations Office, Richland, Washington.
- DOE/RL-96-17, 2009, *Remedial Design Report/Remedial Action Work Plan for the 100 Area,* Rev. 6, U.S. Department of Energy, Richland Operations Office, Richland, Washington.

- DOE/RL-2008-33, 2008, Sampling and Analysis Plan for Investigating Chromium Groundwater Contamination Near the 105-KW Reactor, Rev. 0, U.S. Department of Energy, Richland Operations Office, Richland, Washington.
- DOE/RL-2008-46, 2010, Integrated 100 Area Remedial Investigation/Feasibility Study Work Plan, Rev. 0, U.S. Department of Energy, Richland Operations Office, Richland, Washington.
- Dorian, J. J. and V. R. Richards, 1978, *Radiological Characterization of the Retired 100 Areas*, UNI-946, United Nuclear Industries, Inc., Richland, Washington.
- Ecology, 1996, "Model Toxics Control Act Cleanup," *Washington Administrative Code* (WAC) 173-340, Washington State Department of Ecology, Olympia, Washington.
- Ecology, 2007, *Model Toxics Control Act Statute and Regulation*, Publication No. 94-06, Washington State Department of Ecology, Olympia, Washington.
- Ecology, 2009, Cleanup Levels and Risk Calculations (CLARC) Database, Washington State Department of Ecology, Olympia, Washington, https://fortress.wa.gov/ecy/clarc.CLARCHome.aspx.
- Ecology, 2009, Dangerous Waste Portion of the Resource Conservation and Recovery Act Permit for the Treatment, Storage, and Disposal of Dangerous Waste, Permit No. WA7 89000 8967, Closure Unit 16, 1706-KE Waste Treatment System, Washington State Department of Ecology, Olympia, Washington.
- EPA/ROD/R10-00/121, 2000, Record of Decision for the 100-BC-1, 100-BC-2, 100-DR-1, 100-DR-2, 100-FR-2, 100-HR-2, and 100-KR-2 Operable Units, Hanford Site, Benton County, Washington, U.S. Environmental Protection Agency, Washington, D.C.
- EPA/ROD/R10-99/039, 1999, Interim Action Record of Decision for the 100-BC-1, 100-BC-2, 100-DR-1, 100-DR-2, 100-FR-1, 100-FR-2, 100-HR-1, 100-HR-2, 100-KR-1, 100-KR-2, 100-IU-2, 100-IU-6, and 200-CW-3 Operable Units, Hanford Site, Benton County, Washington, U.S. Environmental Protection Agency, Washington, D.C.
- EPA/ROD/R10-99/059, 1999, Record of Decision for the 100-KR-2 Operable Unit, Hanford Site, Benton County, Washington, U.S. Environmental Protection Agency, Washington, D.C.
- OSWER Directive 9285.7-53, 2003, *Human Health Toxicity Values in Superfund Risk Assessments*, to Superfund National Policy Managers, Regions 1-10, from M.B. Cook (Director, Office of Superfund Remediation and Technology Innovation), U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Washington, D.C., December 5.
- WA7 89000 8967, 2009, Dangerous Waste Portion of the Resource Conservation and Recovery Act Permit for the Treatment, Storage, and Disposal of Dangerous Waste, Permit No. WA7 89000 8967, Closure Unit 16, 1706-KE Waste Treatment System, Washington State Department of Ecology, Olympia, Washington.

APPENDIX A

100-K TARGET ANALYTE MEASLES CHART

	Constituent	Soil	Waste Site						Gr	oundwater V	Vells					
Constituent Name	Class	Analytical Method	116-K-2 Process Effluent Trench	199-K-117A	199-K-18	199-K-19	199-K-20	199-K-21	199-K-22	199-K-37	199-K-154	199-K-156	199-K-157	199-K-163	199-K-169	199-K-170
Antimony	Metal		G		Detect			Detect	Detect	Detect						
Arsenic	Metal		G	Detect	Detect		Detect	Detect	Detect	Detect						
Barium	Metal		G	Detect	Detect	Detect	Detect	Detect	Detect	Detect						
Beryllium	Metal		G		Detect	Detect	Detect	Detect	Detect	Detect						
Cadmium	Metal		G		Detect		Detect	Detect	Detect	Detect						
Chromium (total)	Metal		GX	Detect		Detect	Detect	Detect	Detect	Detect						
Cobalt	Metal		G		Detect	Detect	Detect	Detect		Detect						
Copper	Metal		G	Detect	Detect	Detect	Detect	Detect	Detect	Detect						
Lead	Metal	OUTU EFA	G		Detect	Detect	Detect	Detect	Detect	Detect						
Manganese	Metal		G	Detect	Detect	Detect	Detect	Detect	Detect	Detect						
Nickel	Metal		G		Detect	Detect	Detect	Detect	Detect	Detect						
Selenium	Metal		G			Detect	Detect									
Silver	Metal			Detect	Detect	Detect	Detect	Detect	Detect							
Thallium	Metal		G		Detect											
Vanadium	Metal		G	Detect	Detect	Detect	Detect	Detect	Detect	Detect						
Zinc	Metal		G	Detect	Detect	Detect	Detect	Detect	Detect	Detect						
Chromium (hexavalent)	Metal	7196 EPA	CG	Detect	Detect	Detect	Detect	Detect	Detect	Detect	Detect	Detect	Detect	Detect	Detect	Detect
Mercury	Metal	7471 EPA	Х		Detect				Detect							
Cesium-137	Radionuclide		CX			Detect	Detect									
Cobalt-60	Radionuclide	Gamma	CX			Detect										
Europium-152	Radionuclide	energy	CX													
Europium-154	Radionuclide	analysis	CX		Detect											
Europium-155	Radionuclide															
Strontium-90	Radionuclide	Gas flow proportional counting	CGX	Detect			Detect	Detect	Detect	Detect						
Plutonium-238	Radionuclide															
Plutonium-239/240	Radionuclide	isotopic-ru	CX													
Carbon-14	Radionuclide		CG		Detect	Detect	Detect	Detect	Detect	Detect		Detect	Detect		Detect	Detect
Nickel-63	Radionuclide	Liquid	С													
Technetium-99	Radionuclide	counting			Detect	Detect		Detect	Detect				Detect			
Tritium	Radionuclide		G	Detect	Detect	Detect		Detect	Detect	Detect	Detect	Detect	Detect	Detect	Detect	Detect

 Table A-1.
 100-K Target Analyte Measles Chart.
 (2 Pages)

	Constituent	Soil	Waste Site	Groundwater Wells												
Constituent Name	Class	Analytical Method	116-K-2 Process Effluent Trench	199-K-117A	199-K-18	199-K-19	199-K-20	199-K-21	199-K-22	199-K-37	199-K-154	199-K-156	199-K-157	199-K-163	199-K-169	199-K-170
1,1-Dichloroethene	VOC		G													
1,1,2-Trichloroethane	VOC		G													
Benzene	VOC		G		Detect			Detect	Detect							
Chloroform	VOC		G		Detect	Detect	Detect	Detect	Detect	Detect						
Carbon tetrachloride	VOC	8260 EPA	G													
Tetrachloroethene	VOC		G													
Toluene	VOC															
Trichloroethene	VOC		G													
Vinyl chloride	VOC		G													
Chloride	Wet chem		G	Detect	Detect	Detect	Detect									
Fluoride	Wet chem		G	Detect	Detect	Detect	Detect									
Nitrate (NO ₃)	Wet chem	9056 EPA	G	Detect	Detect	Detect	Detect	Detect	Detect	Detect						
Nitrite (NO ₂)	Wet chem		G	Detect	Detect	Detect										
Sulfate	Wet chem		G	Detect	Detect	Detect	Detect	Detect	Detect	Detect						

Table A-1. 100-K Target Analyte Measles Chart. (2 Pages)

-- = analyte was either not analyzed in groundwater or not detected in groundwater
 C = identified in cleanup verification package
 EPA = U.S. Environmental Protection Agency
 G = identified as a groundwater contaminant of potential concern
 VOC = volatile organic compound
 X = identified as an interim record of decision contaminant of concern

DISTRIBUTION

U.S. Department of Energy Richland Operations Office	
J. P. Hanson	A5-11
Washington Closure Hanford	
J. A. Lerch K. M. Singleton	H4-22 H4-22
Document Control DOE-RL Public Reading Room Hanford Technical Library	H4-11 H2-53 P8-55