Annual Report of Monitoring at Barnes, Kansas, in 2011

Environmental Science Division

About Argonne National Laboratory

Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory's main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne and its pioneering science and technology programs, see www.anl.gov.

Availability of This Report

This report is available, at no cost, at http://www.osti.gov/bridge. It is also available on paper to the U.S. Department of Energy and its contractors, for a processing fee, from:
U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62

Oak Ridge, TN 37831-0062
phone (865) 576-8401
fax (865) 576-5728
reports@adonis.osti.gov

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, Argonne National Laboratory, or UChicago Argonne, LLC.

Annual Report of Monitoring at Barnes, Kansas, in 2011

by
Applied Geosciences and Environmental Management Section
Environmental Science Division, Argonne National Laboratory
February 2012

Contents

Notation v
1 Introduction and Background 1-1
2 Conceptual Site Model 2-1
3 Sampling and Analysis in 2011 3-1
3.1 Measurement of Groundwater Levels 3-1
3.2 Well Sampling and Analyses 3-1
3.3 Handling and Disposal of Investigation-Derived Waste 3-2
3.4 Quality Control for Sample Collection, Handling, and Analysis 3-2
4 Results and Discussion 4-1
4.1 Groundwater Level Data 4-1
4.2 Analytical Results for Volatile Organic Compounds in Groundwater Samples and Lateral Distribution of the Contaminants. 4-2
5 Conclusions, Observations, and Recommendations 5-1
5.1 Conclusions 5-1
5.2 Observations in 2011 5-2
5.3 Recommendations 5-3
6 References 6-1
Appendix A: Sampling Activities and Field Measurements in 2011 A-1
Appendix B: Results from the AGEM Laboratory for Dual Analyses of Samples Collected in 2011 and for Quality Control Samples B-1
Supplement 1: Waste Characterization Data on CD
Supplement 2: Sample Documentation from TestAmerica Laboratories, Inc. on CD

Figures

1.1 Location of Washington County and Barnes, Kansas 1-7
1.2 Groundwater sampling locations in 2010 1-8
3.1 Wells equipped with data loggers for automatic water level monitoring in November 2011 3-5
3.2 Groundwater sampling locations in September 2011 3-6
4.1 Potentiometric surface map depicting the groundwater flow direction in the deep aquifer zone under static (non-pumping) conditions on November 18, 2011 4-14
4.2a Potentiometric surface map depicting the groundwater flow direction in the deep aquifer zone under static (non-pumping) conditions on February 2, 2010 4-15
4.2b Potentiometric surface map depicting the groundwater flow direction in the deep aquifer zone under pumping conditions on February 2, 2010 4-16
4.3a Hydrographs summarizing results of long-term water level monitoring in the deep-zone wells, January-June 2011 4-17
4.3b Hydrographs summarizing results of long-term water level monitoring in the deep-zone wells, July-November 2011 4-18
4.4 Hydrographs summarizing results of water level monitoring in the deep-zone wells, June 2011 4-19
4.5 Analytical results for carbon tetrachloride in groundwater samples collected in 2009-2011 4-20
4.6 Analytical results for chloroform in groundwater samples collected in 2009-2011 4-21
Tables
1.1 Summary of environmental investigation reports for Barnes 1-6
4.1 Hand-measured water levels in 2011 4-4
4.2 Elevation ranges measured for the three aquifer zones, 2007-2011 4-5

Tables (Cont.)

4.3 Analytical results from the AGEM Laboratory for volatile organic compounds in groundwater samples, 2006-2011 4-6
A. 1 Sequence of groundwater sampling activities in 2011 A-2
A. 2 Field measurements for groundwater samples, 2006-2011 A-4
B. 1 Analytical results from the AGEM Laboratory for quality control samples collected to monitor sample collection and handling activities in 2011 B-2
B. 2 Results for verification organic analyses during groundwater monitoring in 2011 B-3

Notation

AGEM Applied Geosciences and Environmental Management
AMSL above mean sea level
BGL below ground level
BTOC below top of casing
${ }^{\circ} \mathrm{C} \quad$ degree(s) Celsius

CCC Commodity Credit Corporation
CD compact disc
COC chain of custody
EPA U.S. Environmental Protection Agency
ft foot (feet)
gal gallon(s)
$\mathrm{hr} \quad$ hour(s)
in. inch(es)
KDHE Kansas Department of Health and Environment
L liter(s)
$\mu \mathrm{g} / \mathrm{kg} \quad$ microgram(s) per kilogram
$\mu \mathrm{g} / \mathrm{L} \quad$ microgram(s) per liter
$\mu \mathrm{S} / \mathrm{cm} \quad$ microsiemen(s) per centimeter
$\mathrm{mg} / \mathrm{L} \quad$ milligram(s) per liter
min minute
$\mathrm{mV} \quad$ millivolt(s)
ND not detected
PWS public water supply
RBSL risk-based screening level
USDA U.S. Department of Agriculture
VOC volatile organic compound

Annual Report of Monitoring at Barnes, Kansas, in 2011

1 Introduction and Background

Barnes, Kansas, is a small rural community (population approximately 150) located in Washington County, in north-central Kansas (Figure 1.1). Barnes is located in Section 9, Township 4 South, Range 5 East, at approximate latitude $39^{\circ} 43^{\prime \prime} 0^{\prime \prime}$ north and longitude $96^{\circ} 52^{\prime} 25^{\prime \prime}$ west (USGS 1968). The city lies in a transition zone between the Flint Hills and the glaciated region. The area's topography consists of gently sloping hills of Pleistocene loess ($<20 \mathrm{ft}$) overlying a shale unit and interbedded shale, limestone, and siltstone of the Permian Chase Group. Groundwater for the public water supply is obtained from wells PWS2 and PWS3 at reported depths of 155 ft and 160 ft , respectively, located in the northwestern portion of the city. The water is produced from the bedrock aquifer of the Chase Group. Section 2 summarizes of the hydrogeologic conceptual site model.

In 1986, low levels of carbon tetrachloride were detected in public supply wells PWS2 $(2.1 \mu \mathrm{~g} / \mathrm{L})$ and PWS3 $(0.5 \mu \mathrm{~g} / \mathrm{L})$, below the maximum contaminant level of $5.0 \mu \mathrm{~g} / \mathrm{L}$ for carbon tetrachloride in drinking water. Multiple samplings of the wells in 1986-1996 found repeated sporadic detections of carbon tetrachloride at low concentrations.

In 1996-1999, the Kansas Department of Health and Environment (KDHE) conducted two investigations to identify potential sources for the carbon tetrachloride in groundwater and to determine the extent of the contamination, as follows:

1. In 1996, a Phase I comprehensive investigation was conducted to identify potential sources for the contamination in wells PWS2 and PWS3. The KDHE activities focused on the two following potential source areas closest to the public wells:

- The site of the former high school, including an agricultural vocational building where chemicals including carbon tetrachloride and chloroform had been mixed and stored as part of the high school curriculum and then dumped outside (PRC 1996). Subsequently, the chemicals were inventoried and disposed of as hazardous waste through the KDHE (USD 233 1989). This site is less than 250 ft from the public wells.
- The site of the grain storage facility formerly operated by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA), approximately 800 ft downgradient from the public wells. The CCC/USDA facility was in operation in 1949-1974. During this time, carbon tetrachloride-based fumigants were used for preservation of the stored grain.

As part of the 1996 comprehensive investigation, soil gas and soil samples were collected at the sites of the former high school and the former CCC/USDA grain storage facility. Groundwater samples from the public wells and local private wells were also collected. Low levels of carbon tetrachloride and chloroform were detected in the soil gas samples at both the former high school and the former CCC/USDA grain storage facility. Carbon tetrachloride was not detected in the soil samples or the water samples.
2. In 1998-1999, the KDHE conducted a Phase II comprehensive investigation to determine the extent of the groundwater contamination and the local groundwater gradient. Five monitoring wells (MW1S, MW1D, MW2D, MW3D, and MW4D) were installed to delineate the contamination previously detected in wells PWS2 and PWS3. Carbon tetrachloride was detected in well MW4D, on the former CCC/USDA grain storage property.

In 2006, the CCC/USDA assumed responsibility for the site investigation of the carbon tetrachloride contamination, which could in part potentially be linked to historical use of carbon tetrachloride-based fumigants at its former facility. Initially, the CCC/USDA developed and implemented a work plan for targeted groundwater sampling and monitoring well installation (Argonne 2006). The investigation and subsequent monitoring (Argonne 2008a-d, 2009a-b, 2010, 2011) were performed by the Environmental Science Division of Argonne National Laboratory. The reports of environmental investigations at Barnes are summarized in Table 1.1. The results have been reported in detail in the cited references.

The CCC/USDA activities at Barnes have been as follows:

1. In 2006-2007, the CCC/USDA conducted a comprehensive targeted investigation at and near its former property. A network of 28 monitoring
wells was established at 19 locations (including the 5 wells previously installed by the KDHE; Argonne 2008a). The investigation results indicated that carbon tetrachloride contamination is present in groundwater at low to moderate levels in the vicinity of the former CCC/USDA grain storage facility and extends westward at diminishing concentrations toward the public wells.
2. In November 2007, the CCC/USDA began periodic sampling to monitor the identified carbon tetrachloride contamination in groundwater. The sampling was initially conducted quarterly to verify that the contaminant migration pattern does not pose an imminent risk to the public wells. The sampling is now conducted annually.
3. In 2009, a contingency interim measure (Argonne 2009c) was approved by the KDHE (2009).
4. Through 2010, sampling was conducted in a network of 28 individual monitoring wells (at 19 distinct locations), 2 public water supply wells, and 1 private well (Figure 1.2). On the basis of an evaluation of the data collected in 2006-2009 (Argonne 2010), including a trend analysis of the site contamination and its migration, the KDHE (2010b) concurred that future monitoring will occur annually, with twice-yearly sampling of the two public water supply wells in service. The KDHE (2010a) also agreed to decrease the number of wells to be sampled.

The key results and findings of prior investigations at Barnes indicate the following:

- No soil contamination at concentrations above the method quantitation limit of $10 \mu \mathrm{~g} / \mathrm{kg}$ has been detected on the former CCC/USDA property. Trace concentrations of carbon tetrachloride ($<10 \mu \mathrm{~g} / \mathrm{kg}$) were detected at three locations on the former CCC/USDA property. These trace concentrations will not result in higher concentrations in groundwater, and therefore the soil on the former CCC/USDA property is not an ongoing significant source for carbon tetrachloride contamination.
- The levels of carbon tetrachloride contamination detected in groundwater are relatively low and limited in extent, and the boundaries of the carbon tetrachloride plume have been defined. The results of the 2006-2007 targeted investigation and the subsequent monitoring events (Argonne 2008a-d, 2009a,b, 2010, 2011) demonstrated the presence of carbon tetrachloride contamination in groundwater at levels exceeding the RBSL of $5.0 \mu \mathrm{~g} / \mathrm{L}$ for this compound. The contaminant plume extends from the former CCC/USDA property northwestward, toward the Barnes public water supply wells. Longterm monitoring of the groundwater levels and the contaminant distribution has confirmed that pumping of the public wells affects the direction of groundwater flow. When these wells are not pumping, the direction of groundwater flow is to the northeast. However, when the wells are pumping, groundwater flow is directed to the northwest, toward the public wells.
- The distribution of carbon tetrachloride and chloroform in both soil and groundwater suggests that natural degradation has occurred. The highest level of carbon tetrachloride in soil was found at location MW5, which lies between the former CCC/USDA facility and a surface drainage ditch extending toward the northeast (in the direction of natural groundwater flow when the public wells are not pumping). Carbon tetrachloride was distributed throughout the MW5 soil profile at 28-71 ft BGL (below ground level), from a maximum concentration of $40 \mu \mathrm{~g} / \mathrm{kg}$ at 39 ft BGL to an estimated concentration (below the method quantitation limit) of $2.3 \mu \mathrm{~g} / \mathrm{kg}$ at 71.5 ft BGL. Concentrations of chloroform (the primary degradation product of carbon tetrachloride) showed an increasing trend with depth. Only low-level residual concentrations of carbon tetrachloride remained in soils on the former CCC/USDA property. The highest levels of carbon tetrachloride in groundwater are found on the former CCC/USDA property, but the highest chloroform concentrations are found at well locations to the northeast (in the direction of groundwater flow when the public wells are not pumping). At these locations, relatively lower dissolved oxygen and oxidation-reduction potential values (conducive to reductive dechlorination) have consistently been measured.
- Barnes residents have access to an uncontaminated public water supply. Residents obtain their water from two public water supply wells northwest of the former CCC/USDA property. The carbon tetrachloride plume is well defined downgradient, between the former CCC/USDA property and the public wells. Although trace levels of carbon tetrachloride have been detected in well PWS2, no increasing trend of contaminant migration toward the public wells has been indicated. Sentinel wells MW1D and MW17 provide data sufficient to monitor contaminant migration. A contingency interim measure work plan (Argonne 2009c) approved by the KDHE (2009) involving a granular activated carbon system could be implemented if necessary.

This present report documents the results of monitoring conducted in 2011. Sampling of the approved monitoring well network and the two public water supply wells was conducted on September 28-29 2011. The two public wells were sampled again on December 12, 2011.

TABLE 1.1 Summary of environmental investigation reports for Barnes.

	Reference
KDHE reports	
Comprehensive investigation of the public water supply	BE\&K 1999
Results of quarterly monitoring of the public water supply in March 2000	BE\&K 2000
CCC/USDA reports	Argonne 2006
	Argonne 2008a
Work plan for targeted groundwater sampling	Argonne 2008b
Results of the 2006-2007 investigation	Argonne 2008c
Results of groundwater monitoring in November 2007	Argonne 2008d
Results of groundwater monitoring in March 2008	Argonne 2009a
Results of groundwater monitoring in July 2008	Argonne 2009b
Results of groundwater monitoring in October 2008	Argonne 2009c
Results of groundwater monitoring in March-June 2009	Argonne 2010
Contingency interim measure for the public water supply	Argonne 2011
Results of groundwater monitoring in July-December 2009	
Results of groundwater monitoring in 2010	

FIGURE 1.1 Location of Washington County and Barnes, Kansas.

FIGURE 1.2 Groundwater sampling locations in 2010. Source of photograph: NAPP (2002).

2 Conceptual Site Model

Barnes lies in a transition zone between the Flint Hills and the glaciated region. The area's topography consists of gently sloping hills of Pleistocene loess (with variations in elevation $<50 \mathrm{ft}$) overlying a shale unit and interbedded shale, limestone, and siltstone of the Permian Chase Group. Groundwater for the public water supply is produced from the bedrock aquifer of the Chase Group.

The site lithology and subsurface contaminant conditions were determined in the 20062007 investigation through the collection of continuous-core samples at 13 locations (MW5MW17) extending from east of the former CCC/USDA grain storage facility and westward, across the area of concern, toward the public water supply wells (Argonne 2008a). The predominant lithology consists of a thin layer of silty clay to clayey silt with fine sand in the upper 2-20 ft. This layer is underlain by highly weathered shale interbedded with thin layers of fractured limestone at depths of approximately $18-132 \mathrm{ft}$ BGL. No soil contamination at concentrations above the current RBSL of $73.4 \mu \mathrm{~g} / \mathrm{kg}$ for the soil-to-groundwater protection pathway was detected at any of the 13 locations. Trace concentrations ($<10 \mu \mathrm{~g} / \mathrm{kg}$) of carbon tetrachloride were detected in soil at 3 locations on the former CCC/USDA property. These low concentrations would not result in higher concentrations in groundwater, and therefore the soil on the former CCC/USDA property is not considered to be a source for the carbon tetrachloride contamination in groundwater.

Groundwater is present predominantly in fractured limestone layers. Monitoring wells were installed and screened at various depths, with several locations completed as nested wells to determine contaminant concentrations at depths where water-bearing zones were indicated. Throughout the monitoring program, a detailed evaluation of the hand-measured water levels and carbon tetrachloride data has been conducted to investigate the stratigraphy of the saturated zone. The accumulated water level data confirm that three vertically distinct aquifer zones are present: shallow, intermediate, and deep. The vertical distribution of the carbon tetrachloride in groundwater indicates that the highest concentrations (approximately $50-80 \mu \mathrm{~g} / \mathrm{L}$ over the course of the monitoring program to date) occur in the intermediate aquifer zone. Lower concentrations have been detected in the deep aquifer zone, and no carbon tetrachloride has been detected in the shallow zone. Trace levels of carbon tetrachloride have been detected periodically in the two public water supply wells; these wells are believed to be screened over all three aquifer zones.

Extensive documentation of the potentiometric surface at Barnes during the targeted investigation and subsequent monitoring events (Argonne 2008a-d, 2009a,b, 2010, 2011) indicates that operation of the public water supply wells strongly influences the groundwater flow direction. The data accumulated through 2010 documented a predominant direction of groundwater flow to the northeast under non-pumping conditions. In contrast, flow was toward the northwest, in the approximate direction of the public wells, when the wells were pumping. The data demonstrated that the daily operation of the public water supply wells corresponded with drawdowns of as much as 2.25 ft during pumping. Pumping and subsequent water level recovery periods typically ranged from 3 hr to 7 hr in duration, resulting in groundwater levels (and apparent flow directions) that shifted relatively continuously throughout much of each day. For this reason, water level data collected by the automatic recorders, which are coincident in time at all monitored locations, provided the primary basis for determining the topology of the potentiometric surface at any point in the cycles of groundwater pumping and recovery.

The automatic recorder data have also provided critical information needed to evaluate the hydrologic regime. The data accumulated for recorders installed in deep-zone wells indicate the presence of both vertical and lateral influences on the local hydraulic gradients. Intermediatezone wells equipped with automatic water level recorders have obtained detailed data on the potential temporal variability of the hydraulic heads in this aquifer zone.

3 Sampling and Analysis in 2011

3.1 Measurement of Groundwater Levels

Since 2006, data recorders have been gathering long-term data on the groundwater elevation and gradient at selected monitoring wells across the investigation area. The data loggers record water levels continuously at $60-\mathrm{min}$ intervals. Water level data collected by the automatic recorders, which are coincident in time at all monitored locations, have provided the primary basis for determination of the topology of the potentiometric surface at any point in the cycles of groundwater pumping and recovery. In addition, manual water level measurements are made in conjunction with sampling and recorder downloads.

In 2011, a total of 12 wells were monitored for water levels, at the locations shown in Figure 3.1. The hand-measured and automatically recorded groundwater level data are presented and discussed in Section 4.1. After multiple recorder failures in 2010, the CCC/USDA recommended restoring a network of 12 recorders (Argonne 2011). This was completed in November 2011. The network will be maintained at this level.

3.2 Well Sampling and Analyses

The groundwater sampling event on September 28-29, 2011, involved 12 monitoring wells (MW1D, MW2D, MW4D, MW5, MW8, MW10S, MW10D, MW12M, MW13S, MW13D, MW14S, MW17) and the two operating public wells (PWS2 and PWS3). Sampling of the two public water supply wells was also conducted on December 12, 2011. The well locations are shown in Figure 3.2. A chronological summary of the field activities in 2011 is in Appendix A, Table A.1.

Before implementation of the low-flow sampling, a hand-held water level indicator was used to measure the depth to groundwater and the total depth of each well, to within 0.01 ft , from the top of the well casing. After measurement of water levels, the low-flow groundwater sampling technique, according to U.S. Environmental Protection Agency (EPA) guidelines (Puls and Barcelona 1996; Yeskis and Zavala 2002), was used to purge and sample the monitoring wells. The public water supply wells were sampled at their respective faucets after purging for 5 min (Table A. 1 in Appendix A). The field measurements are in Appendix A, Table A.2. For
public wells PWS2 and PWS3, samples of untreated ("raw") produced water were collected at the wellheads prior to mixing and introduction into the public distribution system.

Groundwater samples designated for analyses for volatile organic compounds (VOCs) were collected in appropriate laboratory containers, labeled, packaged, and chilled to $4^{\circ} \mathrm{C}$ by placement in ice-filled coolers. The samples were shipped via an overnight delivery service to the Applied Geosciences and Environmental Management (AGEM) Laboratory at Argonne for VOCs analyses with EPA Method 524.2 (EPA 1995). Aliquots of selected samples (chosen in the field) were also shipped to TestAmerica Laboratories, Inc., South Burlington, Vermont, for verification VOCs analyses according to EPA Contract Laboratory Program protocols.

The analytical results are presented and discussed in Section 4.2.

3.3 Handling and Disposal of Investigation-Derived Waste

Purge water generated as potentially contaminated investigation-derived waste was containerized on-site. The accumulated purge water was sampled on October 31, 2011 (along with wastewater from several other CCC/USDA sites in Kansas), and analyzed by Pace Analytical Services, Inc., Lenexa, Kansas, on November 4, 2011. Methods used were EPA Method 5030/8260 for VOCs, EPA Method 504.1 for ethylene dibromide, and EPA Method 353.2 for nitrate/nitrite nitrogen. Carbon tetrachloride was detected at $1.1 \mu \mathrm{~g}$.L. No other VOCs were detected. Nitrate/nitrite nitrogen was present at $6.1 \mathrm{mg} / \mathrm{L}$. The laboratory results are in Supplement 1, on the compact disc (CD) inside the back cover of this report. The water was delivered on December 19, 2011 (together with purge water from several other CCC/USDA investigation sites in Kansas), for disposal at the Sabetha publicly owned wastewater treatment plant.

3.4 Quality Control for Sample Collection, Handling, and Analysis

Quality assurance/quality control procedures followed during the 2011 monitoring events are described in detail in the Master Work Plan (Argonne 2002). The results are summarized as follows:

- Sample collection and handling activities were monitored by the documentation of samples as they were collected and the use of chain-ofcustody forms and custody seals to ensure sample integrity during handling and shipment.
- Samples designated for VOCs analyses were received with custody seals intact and at the appropriate preservation temperature. All samples sent to the AGEM Laboratory were analyzed within the required holding times.
- Quality control samples collected to monitor sample-handling activities (a field blank, equipment rinsates, and trip blanks) and method blanks analyzed with the samples to monitor analytical methodologies were all free of carbon tetrachloride and chloroform contamination. Analytical results for quality control samples collected to monitor sample-handling activities are in Appendix B, Table B.1.
- Groundwater samples were analyzed for VOCs at the AGEM Laboratory by the purge-and-trap method on a gas chromatograph-mass spectrometer system. Calibration checks analyzed with each sample delivery group were required to be within $\pm 20 \%$ of the standard. Surrogate standard determinations performed on samples and blanks were within the specified range of 80-120\% for all samples, in either the initial analysis or a successful reanalysis.
- Results from the AGEM Laboratory for dual analyses of the groundwater samples are in Appendix B, Table B.1. The results of the dual analyses compare well, with average relative percent difference values for carbon tetrachloride and chloroform of approximately 2% and 1%, respectively, indicating consistency in the sampling and analytical methodologies.
- In accordance with the procedures defined in the Master Work Plan (Argonne 2002), groundwater samples were submitted to a second laboratory (TestAmerica) for verification analysis according to the protocols of the EPA's Contract Laboratory Program. Documentation is in Supplement 2 (on CD). The results from the two laboratories compare favorably (Appendix B,

Table B.2), with average relative percent difference values for carbon tetrachloride and chloroform of 10% and 1%, respectively.

FIGURE 3.1 Wells equipped with data loggers for automatic water level monitoring in November 2011. Source of photograph: NAPP (2002).

FIGURE 3.2 Groundwater sampling locations in September 2011. Source of photograph: NAPP (2002).

4 Results and Discussion

4.1 Groundwater Level Data

The manual water level measurements taken during 2011 are in Table 4.1. Included are measurements made during sampling of the monitoring well network on September 28-29, 2011, and hand measurements taken on March 16 and November 18, 2011, for all wells in the automatic water level monitoring network. Evaluation of manual water levels measurements (together with the contaminant distribution data discussed in Section 4.2) continues to suggest that three vertically distinguishable aquifer zones are present at Barnes: shallow, intermediate, and deep. The designations "S", " M ", and "D" in monitoring well names (Table 4.1) were assigned at the time of well installation to indicate shallow-, medium-, and deep-screened wells within individual well clusters, and they do not necessarily correspond with the designations of the aquifer zones identified later.

Table 4.2 shows the approximate water level elevations for wells screened in the three aquifer zones, as indicated by the long-term monitoring data accumulated since 2007. As in prior monitoring events, three vertically distinguished aquifer zones are evident in the 2011 data.

Water level data collected by the automatic recorders, which are coincident in time at all monitored locations, provide the primary basis for determination of the topology of the potentiometric surface at any point in the cycles of groundwater pumping and recovery. The water levels measured by hand over a finite time period in the areally distributed network of monitoring wells do not capture the documented short-term, transient water level variations that are related to pumping of the public water supply wells. Figure 4.1 presents a potentiometric surface map (under non-pumping conditions) on November 18, 2011, for the network of wells in the deeper aquifer zone currently being monitored. For comparison, the maps in Figure 4.2a and Figure 4.2b were derived from measurements taken on February 2, 2010, under non-pumping and pumping conditions, respectively.

The hydrographs in Figure 4.3a and Figure 4.3b summarize data for the recording transducers in the deep-zone wells (January-November 2011). The hydrographs show that the groundwater levels in the deep zone declined steadily from January 1 to about mid-May, then rebounded very slightly or stabilized from May until late August, and finally declined again to the end of the data period. Over the entire period of automated monitoring, the water levels in the
deep interval reached their transient (all-time) maximum in mid 2010. The decline observed through much of 2011 has returned the levels to elevations similar to those observed through 2008-2009, but the levels are still approximately 13 ft higher than the all-time lowest levels observed in 2006. Although the data from the intermediate zone are comparatively limited, the available results follow the trends noted in the deep zone.

Throughout the monitoring at Barnes - until June 20, 2011 - the hydrographs consistently showed relatively large and frequent (typically once or twice per day) drawdown spikes associated with pumping of the public wells (Figure 4.4). After this date, the clear cycling pattern is no longer present. Although the hydrographs continue to exhibit the pumping effect of the public wells, more frequent pumping, primarily during daytime, is apparent. This change in the pumping pattern of the public supply wells reflects a recent upgrade of the public water system (Oentrich 2011). In the past, the public wells were pumped manually when the level in the distribution water tower became low. Starting in June 2011, pumping of the wells is activated by a sensor in response to demand, to keep the water level in the tower more constant. As part of the system upgrade, the distribution lines were replaced to reduce leakage. This improvement is likely to result in reduced pumping of the public wells.

4.2 Analytical Results for Volatile Organic Compounds in Groundwater Samples and Lateral Distribution of the Contaminants

The analytical data for VOCs in the groundwater samples collected in 2011 are in Table 4.3, together with data for the previous sampling events at Barnes. The highest concentration of carbon tetrachloride in sitewide monitoring continues to be found at intermediate-zone well MW10S (located in the eastern portion of the former CCC/USDA facility and screened at 93-103 ft BGL). In this well, carbon tetrachloride was detected at $37 \mu \mathrm{~g} / \mathrm{L}$ in September 2011, down from $78 \mu \mathrm{~g} / \mathrm{L}$ in September 2010.

The lateral distribution of carbon tetrachloride in groundwater in sampling events in September 2009, September 2010, and September 2011 is illustrated in Figure 4.5. The distribution in 2011 is similar to the previous distribution. Contaminant concentrations at and near the public water supply wells remained low to undetectable. Because of the pulsing influence on groundwater flow patterns when the public wells are pumping, no clear migration trend toward these wells has been evident in sitewide monitoring to date. Carbon tetrachloride was not detected in either public well during sampling in December 2011.

The lateral distribution of chloroform in groundwater in 2011 (Figure 4.6) is also similar to the distribution during previous sampling events. The highest concentration of chloroform in sitewide sampling since 2007 has been found at well MW12M, located northwest of the former CCC/USDA facility and screened at $90-100 \mathrm{ft}$ BGL (in the intermediate aquifer zone), with concentrations of $1.0-5.9 \mu \mathrm{~g} / \mathrm{L}$. Relatively lower dissolved oxygen and oxidation-reduction potential values have been measured consistently at this location (Table A. 2 in Appendix A).

The vertical distribution of carbon tetrachloride in groundwater indicates that the highest concentrations are present in the intermediate zone, at wells MW10S ($37 \mu \mathrm{~g} / \mathrm{L}$), MW12M ($16 \mu \mathrm{~g} / \mathrm{L}$), and MW13S ($8.1 \mu \mathrm{~g} / \mathrm{L}$), as measured in September 2011 (Table 4.3). The deep-zone wells at these locations showed little to no change in carbon tetrachloride concentrations between the 2010 and 2011 sampling events (Figure 4.5).

TABLE 4.1 Hand-measured water levels in 2011.

Well	Reference Elevation (ft AMSL)	March 16, 2011		$\begin{gathered} \text { September 28-29, } \\ 2011 \\ \hline \end{gathered}$		November 18, 2011	
		ft TOC	ft AMSL	ft TOC	ft AMSL	ft TOC	ft AMSL
Shallow aquifer zone							
MW1S	1351.58	-	-	-	-	-	-
MW11S	1336.58	-	-	-	-	-	-
MW12S	1327.46	-	-	-	-	-	-
Intermediate aquifer zone							
MW10S	1331.33	72.18	1259.15	74.10	1257.23	75.11	1256.22
MW11M	1336.51	77.13	1259.38	-	-	79.76	1256.75
MW12M	1327.46	68.45	1259.01	71.25	1256.21	71.44	1256.02
MW13S	1342.36	-	-	87.55	1254.81	88.15	1254.21
MW17	1351.77	94.11	1257.66	96.23	1255.54	97.38	1254.39
Deep aquifer zone							
MW1D	1351.33	113.67	1237.66	119.12	1232.21	120.28	1231.05
MW2D	1348.85	-	-	116.22	1232.63	118.03	1230.82
MW3D	1345.99	108.20	1237.79	-	-	114.66	1231.33
MW4D	1326.32	89.84	1236.48	95.31	1231.01	-	-
MW5	1327.20	-	-	96.40	1230.80	-	-
MW6S	1323.13	-	-	-	-	-	-
MW6D	1323.15	-	-	-	-	-	-
MW7	1329.91	94.08	1235.83	-	-	99.74	1230.17
MW8	1330.06	-	-	98.42	1231.64	-	-
MW9	1321.86	85.45	1236.41	-	-	91.41	1230.45
MW10D	1331.33	-	-	99.65	1231.68	-	-
MW11D	1336.53	-	-	-	-	-	-
MW12D	1327.52	-	-	-	-	-	-
MW13D	1342.37	-	-	110.20	1232.17	-	-
MW14S	1332.69	-	-	101.40	1231.29	-	-
MW14D	1332.74	95.89	1236.85	-	-	103.91	1228.83
MW15S	1309.34	-	-	-	-	-	-
MW15D	1309.29	66.55	1242.74	-	-	-	-
MW16S	1299.47	-	-	-	-	-	-
MW16D	1299.52	65.18	1234.34	-	-	70.36	1229.16
Oentrich	1336.93	-	-	-	-	-	-

TABLE 4.2 Elevation ranges measured for the three aquifer zones, 2007-2011.

	Elevation of Aquifer Zone (ft AMSL)		
Date	Shallow	Intermediate	Deep
November 2011	-	$1,254-1,257$	$1,229-1,231$
September 2011	-	$1,255-1,257$	$1,231-1,233$
March 2011	-	$1,258-1,259$	$1,234-1,243$
September 2010	1,312	$1,263-1,265$	$1,242-1,256$
July 2010	-	$1,267-1,269$	$1,244-1,254$
March-April 2010	1,315	$1,257-1,259$	$1,233-1,243$
February 2010	1,311	$1,255-1,257$	$1,230-1,238$
October 2009	$1,275-1,307$	$1,254-1,256$	$1,229-1,237$
June 2009	$1,274-1,310$	$1,255-1,258$	$1,232-1,241$
March 2009	1,308	$1,251-1,256$	$1,229-1,236$
November 2008	-	$1,257-1,259$	$1,233-1,242$
October 2008	1,314	$1,256-1,259$	$1,235-1,242$
July 2008	1,312	$1,255-1,258$	$1,229-1,239$
March 2008	1,309	$1,250-1,254$	$1,223-1,229$
November 2007	1,307	$1,249-1,254$	$1,220-1,239$
June 2007	$1,276-1,314$	$1,247-1,254$	$1,221-1,228$

TABLE 4.3 Analytical results from the AGEM Laboratory for volatile organic compounds in groundwater samples, 2006-2011.

Location	Screen Interval Depth (ft BGL)	Sample	Sample Date	Depth to Water (ft BTOC) ${ }^{a}$	Concentration ($\mu \mathrm{g} / \mathrm{L}$)		
					Carbon Tetrachloride	Chloroform	Methylene Chloride
Previously existing monitoring wells							
MW1S	13.3-23.3	Not sampled (well dry)	7/19/06	-	-	-	-
		Not sampled (well dry)	4/4/07	-	-	-	-
		Not sampled (well dry)	11/18/07	-	-	-	-
		Not sampled (well dry)	3/4/08	-	-	-	-
		Not sampled (well dry)	7/9/08	-	-	-	-
		Not sampled (well dry)	10/22/08	-	-	-	-
		Not sampled (well dry)	3/4/09	-	-	-	-
		Not sampled (well dry)	6/17/09	-	-	-	-
		Not sampled (well dry)	9/30/09	-	-	-	-
		Not sampled (well dry)	3/31/10	-	-	-	-
		Not sampled (well dry)	9/17/10	-	-	-	-
MW1D	139.85-159.4	BAMW1D-W-21688	7/19/06	135.20	1.0	$N D^{\text {a }}$	ND
		BAMW1D-W-22565	4/4/07	132.50	1.2	ND	ND
		BAMW1D-W-22593	11/18/07	124.89	ND	ND	ND
		BAMW1D-W-22627	3/4/08	127.66	0.2 Jb	ND	ND
		BAMW1D-W-22668	7/9/08	119.40	0.2 J	ND	ND
		BAMW1D-W-27720	10/22/08	113.77	ND	ND	ND
		BAMW1D-W-22703	3/4/09	119.90	ND	ND	ND
		BAMW1D-W-28639	6/17/09	115.60	ND	ND	ND
		BAMW1D-W-28678	9/30/09	120.40	0.3 J	ND	ND
		BAMW1D-W-28718	3/31/10	114.55	ND	ND	ND
		BAMW1D-W-28761	9/17/10	105.28	ND	ND	ND
		BAMW1D-W-28806	9/28/11	119.12	ND	ND	ND
		BAMW1DDUP-W-28820	9/28/11	-	ND	ND	ND
MW2D	133.26-152.93	BAMW2D-W-21687	7/19/06	132.00	ND	ND	ND
		BAMW2D-W-22564	4/4/07	130.17	ND	ND	ND
		BAMW2D-W-22594	11/18/07	122.56	ND	ND	ND
		BAMW2D-W-22628	3/7/08	125.55	ND	ND	ND
		BAMW2D-W-22669	7/10/08	117.15	ND	ND	ND
		BAMW2D-W-27721	10/22/08	113.55	ND	ND	ND
		BAMW2D-W-22704	3/4/09	117.10	ND	ND	ND
		BAMW2D-W-28640	6/18/09	115.70	ND	ND	ND
		BAMW2D-W-28679	9/30/09	117.60	ND	ND	ND
		BAMW2D-W-28719	3/31/10	112.40	ND	ND	ND
		BAMW2D-W-28762	9/17/10	103.38	ND	ND	ND
		BAMW2D-W-28807	9/28/11	116.22	ND	ND	ND
MW3D	133.02-152.73	BAMW3D-W-21686	7/19/06	128.96	ND	ND	ND
		BAMW3D-W-22567	4/4/07	126.64	ND	ND	ND
		BAMW3D-W-22595	11/19/07	126.25	ND	ND	ND
		BAMW3D-W-22629	3/7/08	121.90	ND	ND	ND
		BAMW3D-W-22670	7/10/08	113.30	ND	ND	ND
		BAMW3D-W-27722	10/22/08	108.50	ND	ND	ND
		BAMW3D-W-22705	3/4/09	116.10	ND	ND	ND
		BAMW3D-W-28641	6/17/09	110.15	ND	ND	ND
		BAMW3D-W-28680	9/30/09	116.30	ND	ND	ND
		BAMW3D-W-28720	4/1/10	108.86	ND	ND	ND
		BAMW3D-W-28763	9/17/10	99.92	ND	ND	ND
MW4D	98.38-118.22	BAMW4D-W-21690	7/20/06	108.80	2.1	ND	ND
		BAMW4D-W-22583	4/6/07	108.00	3.5	0.1 J	ND
		BAMW4D-W-22596	11/19/07	101.39	1.7	0.4 J	ND
		BAMW4D-W-22642	3/9/08	101.74	18	0.4 J	ND
		BAMW4D-W-22671	7/12/08	93.60	9.4	0.5 J	ND

TABLE 4.3 (Cont.)

					Concentration ($\mu \mathrm{g} / \mathrm{L}$)		
Location	Screen Interval Depth (ft BGL)	Sample	Sample Date	Depth to Water (ft BTOC) ${ }^{\text {a }}$	Carbon Tetrachloride	Chloroform	Methylene Chloride

Previously existing monitoring wells (cont.)

MW4D	$98.38-118.22$	BAMW4D-W-27723	$10 / 23 / 08$	89.90	7.6	ND
		BAMW4D-W-22706	$3 / 5 / 09$	94.75	7.2	0.3 J
		BAMW4D-W-28642	$6 / 18 / 09$	92.25	9.1	ND
	BAMW4D-W-28681	$9 / 30 / 09$	95.70	13	ND	
	BAMW4D-W-28721	$3 / 31 / 10$	91.45	13	0.3 J	ND
	BAMW4D-W-28764	$9 / 17 / 10$	81.25	12	ND	ND
		BAMW4D-W-28808	$9 / 28 / 11$	95.31	10	ND
					ND	

CCC/USDA wells installed during the 2006-2007 investigation

MW5	110-120	BAMW5-W-22589	4/6/07	108.40	0.6 J	ND	ND
		BAMW5-W-22597	11/19/07	102.78	0.6 J	ND	ND
		BAMW5-W-22637	3/8/08	102.00	0.7 J	ND	ND
		BAMW5-W-22672	7/11/08	93.80	ND	ND	ND
		BAMW5-W-27724	10/23/08	91.40	3.0	ND	ND
		BAMW5-W-22707	3/5/09	96.90	3.2	ND	ND
		BAMW5-W-28643	6/19/09	93.80	4.8	ND	ND
		BAMW5-W-28682	9/30/09	96.60	7.2	ND	ND
		BAMW5-W-28722	3/30/10	92.06	7.7	0.3 J	ND
		BAMW5-W-28765	9/17/10	83.10	11	ND	ND
		BAMW5-W-28809	9/28/11	96.40	10	ND	ND
MW6S	90.5-100.5	Not sampled (well dry)	4/4/07	-	-	-	-
		BAMW6S-W-22598	11/19/07	96.10	0.3 J	ND	ND
		BAMW6S-W-22635	3/8/08	94.50	0.4 J	ND	ND
		BAMW6S-W-22673	7/11/08	88.10	ND	ND	ND
		BAMW6S-W-27725	10/23/08	84.60	ND	ND	ND
		BAMW6S-W-22708	3/5/09	87.00	ND	ND	ND
		BAMW6S-W-28644	6/18/09	86.05	ND	ND	ND
		BAMW6S-W-28683	10/1/09	88.85	ND	ND	ND
		BAMW6S-W-28723	3/31/10	86.15	0.4 J	ND	ND
		BAMW6S-W-28766	9/18/10	76.46	ND	ND	ND
MW6D	105-115	BAMW6D-W-22573	4/5/07	105.00	ND	ND	ND
		BAMW6D-W-22599	11/19/07	98.50	0.5 J	ND	ND
		BAMW6D-W-22636	3/8/08	98.50	0.8 J	ND	ND
		BAMW6D-W-22674	7/11/08	89.50	0.9 J	ND	ND
		BAMW6D-W-27726	10/23/08	87.15	1.1	ND	ND
		BAMW6D-W-22709	3/5/09	93.00	1.4	ND	ND
		BAMW6D-W-28645	6/18/09	88.70	1.5	ND	ND
		BAMW6D-W-28684	10/1/09	91.92	1.5	ND	ND
		BAMW6D-W-28724	3/31/10	87.84	1.2	ND	ND
		BAMW6D-W-28767	9/18/10	79.35	2.0	ND	ND
MW7	116-126	BAMW7-W-22588	4/6/07	111.11	1.0	ND	ND
		BAMW7-W-22600	11/19/07	105.50	2.6	ND	ND
		BAMW7-W-22643	3/9/08	105.62	2.8	ND	ND
		BAMW7-W-22675	7/12/08	97.50	1.7	ND	ND
		BAMW7-W-27727	10/23/08	94.90	2.1	ND	ND
		BAMW7-W-22710	3/5/09	99.80	1.4	ND	ND
		BAMW7-W-28646	6/19/09	95.75	1.4	ND	ND
		BAMW7-W-28685	9/30/09	99.55	1.6	ND	ND
		BAMW7-W-28725	3/30/10	94.56	1.6	ND	ND
		BAMW7-W-28768	9/17/10	85.67	2.6	ND	ND

TABLE 4.3 (Cont.)

					Concentration ($\mu \mathrm{g} / \mathrm{L}$)		
Location	Screen Interval Depth (ft BGL)	Sample	Sample Date	Depth to Water (ft BTOC) ${ }^{a}$	Carbon Tetrachloride	Chloroform	Methylene Chloride

CCC/USDA wells installed during the 2006-2007 investigation (cont.)

MW8	110-120	BAMW8-W-22584	4/6/07	111.71	14	0.7 J	ND
		BAMW8-W-22601	11/19/07	105.17	23	0.6 J	ND
		BAMW8-W-22652	3/10/08	104.38	19	0.6 J	ND
		BAMW8-W-22676	7/11/08	95.75	21	0.6 J	ND
		BAMW8-W-27728	10/23/08	93.40	24	1.0	ND
		BAMW8-W-22711	3/5/09	98.60	20	1.3	ND
		BAMW8-W-28647	6/19/09	95.00	26	1.7	ND
		BAMW8-W-28686	9/30/09	99.20	29	2.2	ND
		BAMW8-W-28726	3/31/10	94.06	30	2.0	ND
		BAMW8-W-28769	9/17/10	84.95	31	2.1	ND
		BAMW8-W-28810	9/29/11	98.42	19	1.6	ND
MW9	100-110	BAMW9-W-22582	4/5/07	102.90	1.0	ND	ND
		BAMW9-W-22602	11/19/07	97.20	7.7	0.6 J	ND
		BAMW9-W-22647	3/9/08	96.40	3.0	0.3 J	ND
		BAMW9-W-22678	7/11/08	87.65	1.3	0.3 J	ND
		BAMW9-W-27729	10/24/08	86.60	2.2	0.2 J	ND
		BAMW9-W-22712	3/5/09	90.40	2.3	ND	ND
		BAMW9-W-28648	6/17/09	83.16	1.1	ND	ND
		BAMW9-W-28687	9/29/09	87.10	4.6	ND	ND
		BAMW9-W-28727	3/31/10	82.45	2.9	ND	ND
		BAMW9-W-28770	9/18/10	75.46	1.4	ND	ND
MW10S	93-103	BAMW10S-W-22586	4/6/07	82.55	20	1.4	ND
		BAMW10S-W-22603	11/19/07	77.81	11	0.7 J	ND
		BAMW10S-W-22649	3/10/08	77.47	56	2.0	ND
		BAMW10S-W-22679	7/11/08	73.40	49	1.8	ND
		BAMW10S-W-27730	10/23/08	72.00	68	2.3	ND
		BAMW10S-W-22713	3/5/09	76.00	49	2.1	ND
		BAMW10S-W-28649	6/19/09	73.40	76	2.5	ND
		BAMW10S-W-28688	9/30/09	75.65	53	2.4	ND
		BAMW10S-W-28728	3/30/10	71.96	73	3.0	ND
		BAMW10S-W-28771	9/17/10	65.95	78	2.9	ND
		BAMW10S-W-28811	9/28/11	74.10	37	2.1	ND
MW10D	115-125	BAMW10D-W-22585	4/6/07	113.14	2.4	0.2 J	ND
		BAMW10D-W-22604	11/19/07	106.22	6.3	0.5 J	ND
		BAMW10D-W-22646	3/9/08	106.36	5.7	0.5 J	ND
		BAMW10D-W-22680	7/11/08	97.30	3.9	0.7 J	ND
		BAMW10D-W-27731	10/23/08	95.00	4.4	0.6 J	ND
		BAMW10D-W-22714	3/5/09	101.30	5.3	0.4 J	ND
		BAMW10D-W-28650	6/19/09	96.75	4.8	0.6 J	ND
		BAMW10D-W-28689	9/30/09	100.45	4.3	0.4 J	ND
		BAMW10D-W-28729	3/30/10	96.86	4.4	0.4 J	ND
		BAMW10D-W-28772	9/17/10	86.92	4.8	ND	ND
		BAMW10D-W-28812	9/28/11	99.65	3.3	0.3 J	ND
MW11S	40-50	BAMW11S-W-22570	4/4/07	25.90	ND	1.1	ND
		BAMW11S-W-22605	11/19/07	29.20	ND	0.6 J	ND
		BAMW11S-W-22630	3/5/08	27.70	ND	0.6 J	ND
		BAMW11S-W-22681	7/10/08	24.80	ND	0.4 J	ND
		BAMW11S-W-27732	10/23/08	22.50	ND	0.3 J	ND
		BAMW11S-W-22715	3/4/09	28.00	ND	ND	ND
		BAMW11S-W-28651	6/19/09	26.64	ND	ND	ND
		BAMW11S-W-28690	10/1/09	29.50	ND	ND	ND
		BAMW11S-W-28730	$3 / 31 / 10$	21.50	ND	ND	ND
		BAMW11S-W-28773	9/18/10	24.71	ND	ND	ND

TABLE 4.3 (Cont.)

					Concentration ($\mu \mathrm{g} / \mathrm{L}$)		
Location	Screen Interval Depth (ft BGL)	Sample	Sample Date	Depth to Water (ft BTOC) ${ }^{\text {a }}$	Carbon Tetrachloride	Chloroform	Methylene Chloride

CCC/USDA wells installed during the 2006-2007 investigation (cont.)

MW11M	90-100	BAMW11M-W-22572	4/5/07	89.30	ND	ND	ND
		BAMW11M-W-22606	11/19/07	82.33	3.7	ND	ND
		BAMW11M-W-22644	3/6/08	82.65	2.4	0.5 J	ND
		BAMW11M-W-22682	7/10/08	78.85	2.4	0.7 J	ND
		BAMW11M-W-27733	10/23/08	77.80	1.7	2.1	ND
		BAMW11M-W-22716	3/4/09	80.30	0.6 J	1.2	ND
		BAMW11M-W-28652	6/19/09	78.90	ND	1.1	ND
		BAMW11M-W-28691	10/1/09	80.45	ND	0.5 J	ND
		BAMW11M-W-28731	3/31/10	77.90	0.5 J	0.8 J	ND
		BAMW11M-W-28774	9/18/10	71.22	ND	ND	ND
MW11D	125-135	BAMW11D-W-22571	4/4/07	117.15	1.1	ND	ND
		BAMW11D-W-22607	11/19/07	112.46	0.8 J	ND	ND
		BAMW11D-W-22639	3/5/08	110.50	0.4 J	ND	ND
		BAMW11D-W-22683	7/10/08	102.10	0.9 J	ND	ND
		BAMW11D-W-27734	10/23/08	101.03	0.9 J	0.2 J	ND
		BAMW11D-W-22717	3/4/09	105.03	0.8 J	ND	ND
		BAMW11D-W-28653	6/19/09	100.90	ND	ND	ND
		BAMW11D-W-28692	10/1/09	105.95	1.0	ND	ND
		BAMW11D-W-28732	4/1/10	100.10	0.5 J	ND	ND
		BAMW11D-W-28775	9/18/10	90.97	ND	ND	ND
MW12S	43-50	Not sampled (well dry)	4/5/07	-	-	-	-
		Not sampled (well dry)	11/19/07	-	-	-	-
		Not sampled (well dry)	3/10/08	-	-	-	-
		Not sampled (well dry)	7/10/08	-	-	-	-
		Not sampled (well dry)	10/22/08	-	-	-	-
		Not sampled (well dry)	3/4/09	-	-	-	-
		BAMW12S-W-28654	6/19/09	-	ND	ND	ND
		Not sampled (well dry)	10/1/09	-	-	-	-
		Not sampled (well dry)	3/31/10	-	-	-	-
		Not sampled (well dry)	9/18/10	-	-	-	-
MW12M	90-100	BAMW12M-W-22580	4/5/07	81.05	20	4.2	ND
		BAMW12M-W-22609	11/19/07	74.50	18	5.1	ND
		BAMW12M-W-22651	3/10/08	74.77	18	2.6	ND
		BAMW12M-W-22685	7/10/08	70.10	27	4.2	ND
		BAMW12M-W-27736	10/22/08	69.72	18	4.5	ND
		BAMW12M-W-22719	3/4/09	76.50	25	4.4	ND
		BAMW12M-W-28655	6/19/09	70.05	28	4.9	ND
		BAMW12M-W-28694	10/1/09	72.90	26	5.1	ND
		BAMW12M-W-28734	3/31/10	70.45	2.2	1.0	ND
		BAMW12M-W-28777	9/18/10	63.90	6.6	5.9	ND
		BAMW12M-W-28813	9/28/11	71.25	16	5.1	ND
		BAMW12MDUP-W-28821	9/28/11	-	17	5.2	ND
MW12D	115-125	BAMW12D-W-22576	4/5/07	110.20	0.6 J	ND	ND
		BAMW12D-W-22610	11/18/07	102.00	1.6	ND	ND
		BAMW12D-W-22641	3/9/08	103.30	1.0	ND	ND
		BAMW12D-W-22686	7/11/08	93.70	0.7 J	ND	ND
		BAMW12D-W-27737	10/22/08	91.12	0.9 J	ND	ND
		BAMW12D-W-22757	3/4/09	96.80	0.7 J	ND	ND
		BAMW12D-W-28656	6/19/09	93.65	ND	ND	ND
		BAMW12D-W-28695	10/1/09	96.90	1.5	ND	ND
		BAMW12D-W-28735	3/31/10	93.55	1.0	0.2 J	ND
		BAMW12D-W-28778	9/18/10	83.10	0.6 J	ND	ND

TABLE 4.3 (Cont.)

					Concentration ($\mu \mathrm{g} / \mathrm{L}$)		
Location	Screen Interval Depth (ft BGL)	Sample	Sample Date	Depth to Water (ft BTOC) ${ }^{a}$	Carbon Tetrachloride	Chloroform	Methylene Chloride

CCC/USDA wells installed during the 2006-2007 investigation (cont.)

MW13S	112-122	BAMW13S-W-22575	4/5/07	101.00	21	1.6	ND
		BAMW13S-W-22611	11/19/07	92.23	17	1.8	ND
		BAMW13S-W-22650	3/10/08	92.10	17	1.5	ND
		BAMW13S-W-22687	7/9/08	87.00	17	1.9	ND
		BAMW13S-W-27738	10/22/08	86.00	20	1.6	ND
		BAMW13S-W-22758	3/4/09	88.75	14	1.1	ND
		BAMW13S-W-28657	6/18/09	86.85	16	1.1	ND
		BAMW13S-W-28696	9/30/09	88.45	12	0.9 J	ND
		BAMW13S-W-28736	4/1/10	85.65	13	0.8 J	ND
		BAMW13S-W-28779	9/18/10	78.01	6.2	1.2	ND
		BAMW13S-W-28814	9/28/11	87.55	8.1	0.7 J	ND
MW13D	127-137	BAMW13D-W-22574	4/5/07	124.67	3.5	0.4 J	ND
		BAMW13D-W-22612	11/19/07	117.83	5.9	0.2 J	ND
		BAMW13D-W-22645	3/9/08	118.19	11	1.1	ND
		BAMW13D-W-22688	7/9/08	107.90	5.9	0.9 J	ND
		BAMW13D-W-27739	10/22/08	105.30	6.6	0.6 J	ND
		BAMW13D-W-22759	3/4/09	110.58	5.9	0.6 J	ND
		BAMW13D-W-28658	6/18/09	106.80	6.2	ND	ND
		BAMW13D-W-28697	9/30/09	112.85	7.2	1.0	ND
		BAMW13D-W-28737	4/1/10	105.75	5.5	0.5 J	ND
		BAMW13D-W-28780	9/18/10	96.88	5.8	0.6 J	ND
		BAMW13D-W-28815	9/28/11	110.20	2.4	ND	ND
MW14S	108-118	BAMW14S-W-22569	4/4/07	114.60	0.9 J	ND	ND
		BAMW14S-W-22613	11/18/07	106.75	1.2	ND	ND
		BAMW14S-W-22640	3/8/08	106.95	4.3	0.3 J	ND
		BAMW14S-W-22689	7/10/08	99.40	5.6	0.3 J	ND
		BAMW14S-W-27740	10/22/08	96.20	5.6	0.3 J	ND
		BAMW14S-W-28620	3/4/09	101.30	5.6	0.4 J	ND
		BAMW14S-W-28659	6/18/09	99.80	3.7	0.6 J	ND
		BAMW14S-W-28698	10/1/09	101.43	5.2	0.3 J	ND
		BAMW14S-W-28738	4/1/10	96.70	4.3	0.3 J	ND
		BAMW14S-W-28781	9/18/10	87.82	4.9	0.4 J	ND
		BAMW14S-W-28816	9/28/11	101.40	3.4	ND	ND
MW14D	123-133	BAMW14D-W-22568	4/4/07	114.00	1.2	ND	ND
		BAMW14D-W-22614	11/18/07	107.10	0.6 J	ND	ND
		BAMW14D-W-22638	3/8/08	106.95	0.7 J	ND	ND
		BAMW14D-W-22690	7/10/08	101.00	0.5 J	ND	ND
		BAMW14D-W-27741	10/22/08	96.10	ND	ND	ND
		BAMW14D-W-28621	3/5/09	103.20	0.6 J	ND	ND
		BAMW14D-W-28660	6/18/09	97.75	ND	ND	ND
		BAMW14D-W-28699	10/1/09	101.48	0.5 J	ND	ND
		BAMW14D-W-28739	4/1/10	96.50	0.4 J	ND	ND
		BAMW14D-W-28782	9/17/10	87.66	ND	ND	ND
MW15S	88-98	BAMW15S-W-22560	4/4/07	91.50	1.5	ND	ND
		BAMW15S-W-22615	11/18/07	84.33	8.7	0.4 J	ND
		BAMW15S-W-22648	3/10/08	84.66	1.8	0.2 J	ND
		BAMW15S-W-22691	7/12/08	80.30	2.2	0.3 J	ND
		BAMW15S-W-27742	10/23/08	73.20	1.9	ND	ND
		BAMW15S-W-28622	3/5/09	73.80	2.5	ND	ND
		BAMW15S-W-28661	6/17/09	75.92	3.2	0.5 J	ND
		BAMW15S-W-28700	9/29/09	79.45	2.6	ND	ND
		BAMW15S-W-28740	3/30/10	75.65	4.0	0.4 J	ND
		BAMW15S-W-28783	9/18/10	66.07	1.9	ND	ND

TABLE 4.3 (Cont.)

					Concentration ($\mu \mathrm{g} / \mathrm{L}$)		
Location	Screen Interval Depth (ft BGL)	Sample	Sample Date	Depth to Water (ft BTOC) ${ }^{\text {a }}$	Carbon Tetrachloride	Chloroform	Methylene Chloride

CCC/USDA wells installed during the 2006-2007 investigation (cont.)

MW15D	105-115	BAMW15D-W-22561	4/4/07	88.30	ND	ND	ND
		BAMW15D-W-22616	11/18/07	70.20	ND	ND	ND
		BAMW15D-W-22631	3/8/08	80.80	0.2 J	ND	ND
		BAMW15D-W-22692	7/12/08	70.30	ND	ND	ND
		BAMW15D-W-27743	10/24/08	67.60	ND	ND	ND
		BAMW15D-W-28623	3/5/09	73.60	ND	ND	ND
		BAMW15D-W-28662	6/17/09	67.74	ND	ND	ND
		BAMW15D-W-28701	9/29/09	72.10	ND	ND	ND
		BAMW15D-W-28741	3/30/10	66.50	ND	ND	ND
		BAMW15D-W-28784	9/18/10	58.11	ND	ND	ND
MW16S	76-86	BAMW16S-W-22563	4/4/07	81.00	ND	ND	ND
		BAMW16S-W-22617	11/19/07	75.30	ND	ND	ND
		BAMW16S-W-22632	3/7/08	75.50	0.4 J	ND	ND
		BAMW16S-W-22693	7/11/08	67.35	ND	ND	ND
		BAMW16S-W-27744	10/23/08	64.80	0.9 J	ND	ND
		BAMW16S-W-28624	3/5/09	69.60	1.4	ND	ND
		BAMW16S-W-28663	6/18/09	66.93	1.6	ND	ND
		BAMW16S-W-28702	9/29/09	70.35	1.7	ND	ND
		BAMW16S-W-28742	3/30/10	66.10	1.6	ND	ND
		BAMW16S-W-28785	9/18/10	57.24	1.7	ND	ND
MW16D	90-100	BAMW16D-W-22562	4/4/07	79.71	ND	ND	ND
		BAMW16D-W-22618	11/19/07	74.50	ND	ND	ND
		BAMW16D-W-22633	3/7/08	75.00	ND	ND	ND
		BAMW16D-W-22694	7/11/08	66.30	ND	ND	ND
		BAMW16D-W-27745	10/23/08	63.90	ND	ND	ND
		BAMW16D-W-28625	3/5/09	69.00	ND	ND	ND
		BAMW16D-W-28664	6/18/09	66.49	ND	ND	ND
		BAMW16D-W-28703	9/29/09	70.00	ND	ND	ND
		BAMW16D-W-28743	3/30/10	65.95	ND	ND	ND
		BAMW16D-W-28786	9/18/10	57.65	ND	ND	ND
MW17	120-130	BAMW17D-W-22566	4/4/07	110.68	ND	ND	ND
		BAMW17D-W-22619	11/19/07	102.68	ND	ND	ND
		BAMW17-W-22634	3/5/08	101.75	0.3 J	ND	ND
		BAMW17-W-22695	7/9/08	96.60	0.4 J	ND	ND
		BAMW17-W-27746	10/22/08	95.15	0.7 J	ND	ND
		BAMW17-W-28626	3/4/09	98.10	1.0	ND	ND
		BAMW17-W-28665	6/17/09	95.75	1.0	ND	ND
		BAMW17-W-28704	9/30/09	98.00	ND	ND	ND
		BAMW17-W-28744	3/31/10	94.90	0.5 J	ND	ND
		BAMW17-W-28787	9/17/10	88.03	ND	ND	ND
		BAMW17-W-28817	9/28/11	96.23	0.4 J	ND	ND

Private wells

BAOENT-W-21693	$7 / 20 / 06$	-	0.3 J	ND	ND
BAOENT-W-21713	$8 / 2 / 06$	-	0.6 J	ND	ND
BAOENTRICH-W-22579	$4 / 5 / 07$	-	0.6 J	ND	ND
BAOENTRICH-W-22622	$11 / 9 / 07$	-	0.8 J	ND	ND
BAOENTRICH-W-22654	$3 / 6 / 08$	-	1.3	ND	ND
BAOENTRICH-W-22695	$7 / 11 / 08$	-	0.3 J	ND	ND
BAOENTRICH-W-27747	$10 / 23 / 08$	-	0.9 J	ND	ND
BAOENTRIIC-W-28627	$3 / 5 / 09$	-	1.1	ND	ND
BAOENTRICH-W-28666	$6 / 8 / 09$	-	0.9 J	ND	ND
BAOENTRICH-W-28705	$9 / 30 / 09$	-	1.6	ND	ND
BAOENTRICH-W-28745	$4 / 1 / 10$	-	1.2	ND	ND
BAOENTRICH-W-28788	$9 / 18 / 10$	-	3.3	0.8 J	ND

TABLE 4.3 (Cont.)

Location	Screen Interval Depth (ft BGL)	Sample	Sample Date	Depth to Water (ft BTOC) ${ }^{a}$	Concentration ($\mu \mathrm{g} / \mathrm{L}$)		
					Carbon Tetrachloride	Chloroform	Methylene Chloride
Private wells (cont.)							
Sedivy	138	$\begin{aligned} & \text { BACW-W-21849 } \\ & \text { BASED2-W-21913 } \end{aligned}$	$\begin{aligned} & \text { 8/22/06 } \\ & 9 / 13 / 06 \end{aligned}$	-	$\begin{aligned} & \text { ND } \\ & \text { ND } \end{aligned}$	$\begin{aligned} & \text { ND } \\ & \text { ND } \end{aligned}$	ND ND
Sedivy1	90	Not sampled (well dry)	9/13/06	-	-	-	-
Public water supply wells ${ }^{\text {d }}$							
PWS2	155	BAPWS2-W-22510	3/9/07	-	ND	ND	ND
		BAPW2-W-22578	4/5/07	-	ND	ND	ND
		BAPW2-W-22620	11/20/07	-	ND	ND	ND
		BAPWS2-W-22655	3/6/08	-	ND	ND	ND
		BAPWS2-W-22696	7/11/08	-	0.8 J	ND	ND
		BAPW2-W-27748	10/23/08	-	1.7	ND	ND
		BAPWS2-W-28628	3/5/09	-	0.9 J	ND	ND
		BAPWS2-W-28667	6/18/09	-	1.0	ND	ND
		BAPWS2-W-28706	9/30/09	-	ND	ND	ND
		BAPWS2-W-28715	12/14/09	-	ND	ND	ND
		BAPWS2-W-28746	3/31/10	-	0.9 J	ND	ND
		BAPWS2-W-28758	6/17/10	-	0.8 J	ND	ND
		BAPWS2-W-28789	9/18/10	-	1.1	ND	ND
		BAPWS2-W-28803	12/15/10	-	0.7 J	ND	ND
		BAPWS2-W-28818	9/28/11	-	0.6 J	ND	ND
		BAPWS2-W-28827	12/12/11	-	ND	ND	ND
PWS3	160	BAPWS3-W-22511	3/9/07	-	0.2 J	ND	ND
		BAPW3-W-22577	4/5/07	-	ND	ND	ND
		BAPW3-W-22621	11/20/07	-	ND	ND	ND
		BAPWS3-W-22656	3/6/08	-	ND	ND	ND
		BAPWS3-W-22697	7/11/08	-	0.2 J	ND	ND
		BAPW3-W-27749	10/23/08	-	ND	ND	ND
		BAPWS3-W-28629	3/5/09	-	ND	ND	ND
		BAPWS3-W-28668	6/18/09	-	ND	ND	ND
		BAPWS3-W-28707	9/30/09	-	ND	ND	ND
		BAPWS3-W-28716	12/14/09	-	ND	ND	ND
		BAPWS3-W-28747	3/31/10	-	ND	ND	ND
		BAPWS3-W-28759	6/17/10	-	ND	ND	ND
		BAPWS3-W-28790	9/18/10	-	ND	ND	ND
		BAPWS3-W-28804	12/15/10	-	ND	ND	ND
		BAPWS3-W-28819	9/28/11	-	ND	2.2	ND
		BAPWS3-W-28828	12/12/11	-	ND	ND	ND

Footnotes on next page

TABLE 4.3 (Cont.)

					Concentration ($\mu \mathrm{g} / \mathrm{L}$)		
Location	Screen Interval Depth (ft BGL)	Sample	Sample Date	Depth to Water (ft BTOC) ${ }^{a}$	Carbon Tetrachloride	Chloroform	Methylene Chloride

a BTOC, below top of casing.
b ND, contaminant not detected at an instrument detection limit of $0.1 \mu \mathrm{~g} / \mathrm{L}$.
c Qualifier J indicates an estimated concentration below the purge-and-trap method quantitation limit of $1.0 \mu \mathrm{~g} / \mathrm{L}$.
d Pumping status of public wells:

Sampling Date	PWS2	PWS3
3/9/07	Well has been pumping today.	Well has been pumping today.
4/5/07	Sampled after letting run for 5-10 min.	Well has been pumping all day.
11/20/07	Well on at time of sampling.	Well on at time of sampling.
3/6/08	Let water run from tap for 2-3 min, then sampled.	Sample collected from tap in well house. Let water run from tap for 2-3 min, then sampled.
7/11/08	Running for 30 min .	Running for 30 min .
10/23/08	Well was pumping for 5 min .	Well was pumping for 30 min .
3/5/09	Well operating to fill water tower prior to sampling.	Ran for 5 min .
6/18/09	Well pumping since 6 a.m. on June 18. Let run from tap for 5 min , then sampled.	Well was used on June 17. Let pump run for 10 min, then sampled.
9/30/09	Well used on September 29. Let well run for 10 min, then sampled.	Well in use. Let tap run for 5 min , then sampled.
12/14/09	Well has been pumping today.	Well has been pumping today.
3/31/10	Well used on March 30 . Let well run for 10 min , then sampled.	Well in use oversnight. Let tap run for 5 min , then sampled.
6/17/10	Recent use of well not recorded in log.	Recent use of well not recorded in log.
9/18/10	Well in use for past 2 days. Sampled from tap after purging for $5-10 \mathrm{~min}$ (approximately 500 gal).	Well in use for past 2 days. Sampled from tap after purging for $5-10 \mathrm{~min}$ (approximately 500 gal).
12/15/10	Recent use of well not recorded in log.	Recent use of well not recorded in log.
9/28/11	Sampled from tap after purging for 5 min .	Sampled from tap after purging for 5 min .
12/12/11	Sampled from tap after purging for 5 min .	Sampled from tap after purging for 5 min .

FIGURE 4.1 Potentiometric surface map depicting the groundwater flow direction in the deep aquifer zone under static (non-pumping) conditions on November 18, 2011. Source of photograph: NAPP (2002).

FIGURE 4.2a Potentiometric surface map depicting the groundwater flow direction in the deep aquifer zone under static (non-pumping) conditions on February 2, 2010. Source of photograph: NAPP (2002).

FIGURE 4.2b Potentiometric surface map depicting the groundwater flow direction in the deep aquifer zone under pumping conditions on February 2, 2010. Source of photograph: NAPP (2002)

FIGURE 4.3a Hydrographs summarizing results of long-term water level monitoring in the deep-zone wells, January-June 2011.

FIGURE 4.3b Hydrographs summarizing results of long-term water level monitoring in the deep-zone wells, July-November 2011.

FIGURE 4.4 Hydrographs summarizing results of water level monitoring in the deep-zone wells, June 2011.

FIGURE 4.5 Analytical results for carbon tetrachloride in groundwater samples collected in 2009-2011. Source of photograph: NAPP (2002).

FIGURE 4.6 Analytical results for chloroform in groundwater samples collected in 2009-2011. Source of photograph: NAPP (2002).

5 Conclusions, Observations, and Recommendations

5.1 Conclusions

The findings of the monitoring events at Barnes in 2011 continued to support the following previous conclusions:

- Measurements of groundwater levels obtained manually and through the use of automatic recorders have consistently indicated that the flow direction is strongly influenced by pumping of the public water supply wells. The results have demonstrated
- An apparent groundwater flow direction to the northeast when the public wells are not pumping and
- A northwesterly groundwater flow trend when the public wells are pumping.
- Evaluation of manual water level measurements and carbon tetrachloride concentrations continues to suggest that three vertically distinguishable aquifer zones are present at Barnes: shallow, intermediate, and deep (Table 4.1). The highest concentration of carbon tetrachloride occurs in the intermediate zone, in wells near the former CCC/USDA grain storage facility. Lower concentrations have been detected in the deep aquifer zone (where the public water supply wells are screened), and no carbon tetrachloride has been detected in the shallow zone.
- The conceptual model of the groundwater flow system at Barnes, as postulated on the basis of the accumulated results, suggests that the observed vertical hydraulic gradients and higher carbon tetrachloride concentrations in the intermediate zone might reflect generally lower permeability and hence less effective groundwater and contaminant migration in the intermediate zone than in the deep aquifer zone.
- As it has since March 2008, intermediate-zone well MW10S, in the eastern portion of the former CCC/USDA facility, contained the highest concentrations of carbon tetrachloride.
- Overall, the lateral distribution of carbon tetrachloride in groundwater in 2011 is similar to the distribution during previous sampling events. The accumulated data, including a trend analysis conducted in 2009, indicate stable contaminant concentrations, with no imminent impact to the public wells.

5.2 Observations in 2011

The frequency and magnitude of the cyclic drawdown events historically observed in the hydrographs for the Barnes site changed in June 2011. Information from the city (Oentrich 2011) indicates that the changes are due to an upgrade of the municipal water delivery system during the summer. Whereas the municipal wells were previously switched on and off manually, sensors now control the pumping and maintain a more consistent water level in the city's water tower. The wells now operate more frequently than before, but for a much shorter duration during each pumping episode. Leaks in the former system were also repaired, thus reducing water usage.

These changes should minimize or eliminate the very appreciable drawdowns (up to 2.5 ft during pumping) that previously caused transient reversal of the local groundwater flow pattern, from northeasterly under ambient conditions to northwesterly (toward the public wells) during pumping. The modified operating scheme might also moderate or prevent further movement of the contaminant plume across the site toward the northwest, ultimately reducing the risk of contamination to public water supply wells PWS2 and PWS3.

Continued groundwater sampling under the existing monitoring program will be required to determine the potential impacts of the operational changes on the distribution and concentrations of carbon tetrachloride at the site and the time frame over which such impacts might occur. In December 2011, no carbon tetrachloride was detected in the public wells.

5.3 Recommendations

- Continue automatic water level measurements across the site investigation area (Figure 3.1).
- Continue annual sampling of the monitoring wells and semi-annual sampling of the public water supply wells (Figure 3.2).
- Through continued sampling and analysis, evaluate the potential impacts of operational changes in the public water distribution system.

6 References

Argonne, 2002, Final Master Work Plan: Environmental Investigations at Former CCC/USDA Facilities in Kansas, 2002 Revision, ANL/ER/TR-02/004, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, December.

Argonne, 2006, Final Work Plan: Targeted Groundwater Sampling and Monitoring Well Installation for Potential Site Reclassification at Barnes, Kansas, ANL/EVS/AGEM/TR-06-04, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, by Argonne National Laboratory, Argonne, Illinois, May.

Argonne, 2008a, Final Report: Results of the 2006-2007 Investigation of Potential Contamination at the Former CCC/USDA Facility in Barnes, Kansas, ANL/EVS/AGEM/TR-0712, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, August.

Argonne, 2008b, November 2007 Monitoring Results for Barnes, Kansas, ANL/EVS/AGEM/TR-08-04, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, February.

Argonne, 2008c, March 2008 Monitoring Results for Barnes, Kansas, ANL/EVS/AGEM/TR-0811, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, August.

Argonne, 2008d, July 2008 Monitoring Results for Barnes, Kansas, ANL/EVS/AGEM/TR-0817, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, September.

Argonne, 2009a, October 2008 Monitoring Results for Barnes, Kansas, ANL/EVS/AGEM/TR-09-04, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, February.

Argonne, 2009b, March-June 2009 Monitoring Results for Barnes, Kansas, ANL/EVS/AGEM/TR-09-09, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, February.

Argonne, 2009c, Contingency Interim Measure for the Public Water Supply at Barnes, Kansas, ANL/EVS/AGEM/TR-08-19, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, June.

Argonne, 2010, Semi-Annual Monitoring Report for Barnes, Kansas, for 2010, ANL/EVS/AGEM/TR-10-02, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, April.

Argonne, 2011, Annual Report of Monitoring at Barnes, Kansas, in 2010, ANL/EVS/AGEM/TR-11-04, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, May.

BE\&K, 1999, Public Water Supply Site Comprehensive Investigation Barnes, Kansas, prepared for the Kansas Department of Health and Environment, Topeka, Kansas, by BE\&K/Terranext, March.

BE\&K, 2000, March 2000 Quarterly Monitoring Report: Barnes Public Water Supply Site Barnes, Kansas, prepared for the Kansas Department of Health and Environment, Topeka, Kansas, by BE\&K/Terranext, May.

EPA, 1995, Method 524.2: Measurement of Purgeable Organic Compounds in Water by Capillary Column Gas Chromatography/Mass Spectrometry, Revision 4.1, edited by J.W. Munch, National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio.

KDHE, 2009, letter from E. Finzer (Bureau of Environmental Remediation, Kansas Department of Health and Environment, Topeka, Kansas) to C. Roe (Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C.), regarding Contingency Interim Measure for the Public Water Supply at Barnes, Kansas, August 24.

KDHE, 2010a, letter from M. Townsend (Bureau of Environmental Remediation, Kansas Department of Health and Environment, Topeka, Kansas) to C. Roe (Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C.), regarding selection of monitoring wells, August 23.

KDHE, 2010b, letter from M. Townsend (Bureau of Environmental Remediation, Kansas Department of Health and Environment, Topeka, Kansas) to C. Roe (Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C.), regarding request for annual monitoring, December 27.

NAPP, 2002, aerial image NAPP 12897 222, National Aerial Photography Program, U.S. Geological Survey (available from Kansas Geospatial Community Commons [http://www.kansasgis.org/]), April 9.

Oentrich, D., 2011, personal communication from Oentrich (City of Barnes, Kansas) to T. Kamler (TCW Construction, Lincoln, Nebraska), December 12.

PRC, 1996, Barnes Public Water Supply Site, Barnes, Washington County, Final Phase I Comprehensive Investigation Report, prepared for the Kansas Department of Health and Environment, Topeka, Kansas, by PRC Environmental Management, Inc., August.

Puls, R.W., and M.J. Barcelona, 1996, "Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures," EPA/540/S-95/504, in Ground Water Issue, Superfund Technology Support Center for Ground Water, National Risk Management Research Laboratory, U.S. Environmental Protection Agency, Ada, Oklahoma, April (www.epa.gov/tio/tsp/download/ lwflw2a.pdf).

USD 223, 1989, Inventory of Chemical Waste Accumulated, transmitted from D.L. Johnson (district superintendent) to J. Goetz (Hazardous Waste Section, Kansas Department of Health and Environment, Topeka, Kansas).

USGS, 1968, Barnes Quadrangle, Kansas, 7.5 Minute Series Topographical Map, photorevised 1983.

Yeskis, D., and B. Zavala, 2002, Ground-Water Sampling Guidelines for Superfund and RCRA Project Managers: Ground Water Forum Issue Paper, EPA 542-S-02-001, Technology Innovative Office, Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, D.C., May (http://www.epa.gov/tio/tsp/download/ gw_sampling_guide.pdf).

Appendix A:

Sampling Activities and Field Measurements in 2011

TABLE A. 1 Sequence of groundwater sampling activities in 2011.

Sample Date and Time	Sample	Type ${ }^{\text {a }}$	Location	Depth (ft BGL)	Chain of Custody	Shipping Date	Sample Description
9/28/11 10:52	BAMW13S-W-28814	MW	MW13S	112-122	6631	9/28/11	Depth to water $=87.55 \mathrm{ft}$. Depth of 2-in. well $=122 \mathrm{ft}$. Sample collected by using low-flow bladder pump after purging of 5 L . Pump intake positioned at 117 ft .
9/28/11 12:10	BAMW2D-W-28807	MW	MW2D	133.26-152.93	6631	9/28/11	Depth to water $=116.22 \mathrm{ft}$. Depth of 2-in. well $=$ 152.93 ft . Sample collected by using low-flow bladder pump after purging of 8.5 L . Pump intake positioned at 143.10 ft .
9/28/11 12:52	BAMW13D-W-28815	MW	MW13D	127-137	6631	9/28/11	Depth to water $=110.20 \mathrm{ft}$. Depth of 2-in. well $=137 \mathrm{ft}$. Sample collected by using low-flow bladder pump after purging of 5 L . Pump intake positioned at 132 ft .
9/28/11 15:10	BAMW17-W-28817	MW	MW17	120-130	6631	9/28/11	Depth to water $=96.23 \mathrm{ft}$. Depth of 2-in. well $=130 \mathrm{ft}$. Sample collected by using low-flow bladder pump after purging of 4.5 L . Pump intake positioned at 125 ft .
9/28/11 15:36	BAMW1D-W-28806	MW	MW1D	139.85-159.4	6631	9/28/11	Depth to water $=119.12 \mathrm{ft}$. Depth of 2-in. well $=$ 159.4 ft . Sample collected by using low-flow bladder pump after purging of 7 L . Pump intake positioned at 149.63 ft .
9/28/11 15:37	BAMW1DDUP-W-28820 ${ }^{\text {b }}$	MW	MW1D	139.85-159.4	6631	9/28/11	Replicate of sample BAMW1D-W-28806.
9/28/11 16:40	BAMW14S-W-28816	MW	MW14S	108-118	6631	9/28/11	Depth to water $=101.40 \mathrm{ft}$. Depth of 2-in. well $=118 \mathrm{ft}$. Sample collected by using low-flow bladder pump after purging of 5 L . Pump intake positioned at 113 ft .
9/28/11 17:19	BAMW12M-W-28813	MW	MW12M	90-100	6631	9/28/11	Depth to water $=71.25 \mathrm{ft}$. Depth of $2-\mathrm{in}$. well $=100 \mathrm{ft}$. Sample collected by using low-flow bladder pump after purging of 11 L . Pump intake positioned at 95 ft .
9/28/11 17:20	BAMW12MDUP-W-28821 ${ }^{\text {b }}$	MW	MW12M	90-100	6631	9/28/11	Replicate of sample BAMW12M-W-28813.
9/28/11 17:45	BAQCIR-W-28822 ${ }^{\text {b }}$	RI	QC	-	6633	9/29/11	Rinsate of decontaminated sampling line after collection of sample BAMW12M-W-28813 and replicate BAMW12MDUP-W-28821.
9/28/11 17:54	BAMW10D-W-28812	MW	MW10D	115-125	6631	9/28/11	Depth to water $=99.65 \mathrm{ft}$. Depth of 2-in. well $=125 \mathrm{ft}$. Sample collected by using low-flow bladder pump after purging of 7 L . Pump intake positioned at 120 ft .
9/28/11 18:03	BAQCIR-W-28823 ${ }^{\text {b }}$	RI	QC	-	6633	9/29/11	Rinsate of decontaminated sampling line after collection of sample BAMW10D-W-28812.
9/28/11 18:34	BADIH2O-W-28824 ${ }^{\text {b }}$	FB	QC	-	6633	9/29/11	Field blank of water used for equipment decontamination during September 2011 sampling event.

TABLE A. 1 (Cont.)

Sample Date and Time	Sample	Type ${ }^{\text {a }}$	Location	Depth (ft BGL)	Chain of Custody	Shipping Date	Sample Description
9/28/11 18:40	BAQCTB-W-28825 ${ }^{\text {b }}$	TB	QC	-	6633	9/29/11	Trip blank sent to the AGEM Laboratory for VOCs analyses with water samples listed on chain of custody forms (COCs) 6631 and 6633.
9/28/11 18:56	BAMW10S-W-28811	MW	MW10S	93-103	6631	9/28/11	Depth to water $=74.10 \mathrm{ft}$. Depth of 2-in. well $=103 \mathrm{ft}$. Sample collected by using low-flow bladder pump after purging of 6 L . Pump intake positioned at 98 ft .
9/28/11 18:59	BAMW4D-W-28808	MW	MW4D	98.38-118.22	6631	9/28/11	Depth to water $=95.31 \mathrm{ft}$. Depth of 2-in. well = 118.22 ft . Sample collected by using low-flow bladder pump after purging of 5 L . Pump intake positioned at 108.30 ft .
9/28/11 19:19	BAPWS3-W-28819	PW	PWS3	160	6631	9/28/11	Well converted to run on demand. Sampled from tap after purging for 5 min .
9/28/11 19:30	BAPWS2-W-28818	PW	PWS2	155	6631	9/28/11	Well runs when the water tower needs replenishing. Sampled from tap after purging for 5 min .
9/28/11 20:00	BAMW5-W-28809	MW	MW5	110-120	6631	9/28/11	Depth to water $=96.40 \mathrm{ft}$. Depth of 2-in. well $=120 \mathrm{ft}$. Sample collected by using low-flow bladder pump after purging of 6.5 L . Pump intake positioned at 115 ft .
9/29/11 9:50	BAMW8-W-28810	MW	MW8	110-120	6633	9/29/11	Depth to water $=98.42 \mathrm{ft}$. Depth of 2-in. well $=120 \mathrm{ft}$. Sample collected by using low-flow bladder pump after purging of 4.5 L . Pump intake positioned at 115 ft .
12/12/11 15:24	BAPWS2-W-28827	PW	PWS2	155	6646	12/12/11	Well runs on demand via sensor in water tower. Sampled from tap after purging for 5 min .
12/12/11 15:28	BAPWS3-W-28828	PW	PWS3	160	6646	12/12/11	Well runs on demand via sensor in water tower. Sampled from tap after purging for 5 min .
12/12/11 17:30	BAQCTB-W-28829 ${ }^{\text {b }}$	TB	QC	-	6646	12/12/11	Trip blank sent to the AGEM Laboratory for VOC analyses with water samples listed on COC 6646.

[^0]TABLE A. 2 Field measurements for groundwater samples, 2006-2011.

Well	Screen Interval $(\mathrm{ft} \mathrm{BGL})$	Sample Date	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	pH	Conductivity $(\mu \mathrm{S} / \mathrm{cm})$	Dissolved Oxygen $(\mathrm{mg} / \mathrm{L})$	Oxygen Reduction Potential (mV)

Previously existing KDHE monitoring wells

MW1S	13.3-23.3	7/19/06 ${ }^{\text {a }}$	-	-	-	-	-
		4/4/07a	-	-	-	-	-
		11/18/07 ${ }^{\text {a }}$	-	-	-	-	-
		$3 / 4 / 08^{\text {a }}$	-	-	-	-	-
		7/9/08 ${ }^{\text {a }}$	-	-	-	-	-
		10/22/08 ${ }^{\text {a }}$	-	-	-	-	-
		3/4/09a	-	-	-	-	-
		6/17/09a	-	-	-	-	-
		9/30/09a	-	-	-	-	-
		$3 / 31 / 10^{\text {a }}$	-	-	-	-	-
		9/17/10 ${ }^{\text {a }}$	-	-	-	-	-
MW1D	139.85-159.4	7/19/06	22.8	7.15	945	-	-
		4/4/07	15.7	6.30	855	-	-
		11/18/07	12.7	7.62	712	-	-
		3/4/08	5.5	7.22	1167	11.6	244
		7/9/08	18.1	7.05	992	16.2	98
		10/22/08	12.6	7.07	937	9.0	108
		3/4/09	13.8	7.07	962	8.9	253
		6/17/09	23.3	7.07	1021	5.4	106
		9/30/09	16.3	6.87	1007	6.7	268
		3/31/10	16.6	7.08	760	6.6	-25
		9/17/10	17.5	7.14	851	8.2	160
		9/28/11	18.1	7.47	799	5.8	102
MW2D	133.26-152.93	7/19/06	24.7	7.72	946	-	-
		4/4/07	15.1	6.32	887	-	-
		11/18/07	12.1	6.96	1448	-	-
		3/7/08	6.5	7.22	1198	4.6	197
		7/10/08	18.4	6.91	1163	5.0	155
		10/22/08	11.6	7.07	931	6.2	132
		3/4/09	14.5	7.06	1126	5.6	243
		6/18/09	18.7	6.97	1235	3.6	116
		9/30/09	17.0	6.15	1196	3.4	25
		3/31/10	16.2	7.09	827	5.2	-37
		9/17/10	20.1	7.13	945	5.0	150
		9/28/11	18.6	7.72	988	12.4	297
MW3D	133.02-152.73		23.0		976	-	-
		4/4/07	15.6	6.37	989	_	_
		11/19/07	10.5	7.16	1093	-	-
		3/7/08	8.2	7.09	1195	5.3	255
		7/10/08	19.8	6.99	1177	13.8	110
		10/22/08	13.5	7.01	1238	4.5	84
		3/4/09	12.8	7.08	1062	7.0	210
		6/17/09	18.5	6.65	1038	5.9	110
		9/30/09	15.2	6.87	1057	6.0	209
		4/1/10	18.2	7.11	789	5.6	-60
		9/17/10	20.0	7.00	953	4.9	77

TABLE A. 2 (Cont.)

Well \begin{tabular}{ccccccc}
\hline Screen Interval

$(\mathrm{ft} \mathrm{BGL})$

\quad

Sample

Date

Temperature

$\left({ }^{\circ} \mathrm{C}\right)$

$\quad \mathrm{pH} \quad$

Conductivity

$(\mu \mathrm{S} / \mathrm{cm})$

Dissolved

Oxygen

$(\mathrm{mg} / \mathrm{L})$

Oxygen
Reduction
Potential
(mV)

\hline
\end{tabular}

Previously existing KDHE monitoring wells (cont.)

MW4D	$98.38-118.22$	$7 / 20 / 06$	23.5	6.26	968	-
	$4 / 6 / 07$	11.3	6.21	1018	-	-
	$11 / 19 / 07$	15.7	6.98	1022	-	-
	$3 / 9 / 08$	11.5	7.14	859	6.6	201
	$7 / 12 / 08$	14.4	6.94	1001	6.8	149
	$10 / 23 / 08$	13.0	7.02	973	5.6	94
	$3 / 5 / 09$	15.9	7.61	1402	4.0	17
	$6 / 18 / 09$	18.5	7.03	975	5.7	127
	$9 / 30 / 09$	17.3	6.85	925	7.9	150
	$3 / 31 / 10$	15.1	7.09	785	7.2	22
	$9 / 17 / 10$	16.5	7.01	900	7.2	259
	$9 / 28 / 11$	11.6	8.09	665	7.2	186

CCC/USDA wells installed during 2006-2007 investigation

MW5	110-120	4/6/07	13.9	6.17	1705	-	-
		11/19/07	15.2	6.74	3070	-	-
		3/8/08	9.9	6.76	2770	0.7	123
		7/11/08	18.8	6.66	2930	1.3	37
		10/23/08	12.8	6.78	2384	0.7	20
		3/5/09	15.9	6.86	2146	2.4	56
		6/19/09	16.4	6.71	2292	1.0	45
		9/30/09	16.1	6.66	1780	3.1	72
		3/30/10	15.2	6.58	907	4.7	17
		9/17/10	17.2	6.96	1093	4.0	-20
		9/28/11	14.0	7.46	1049	4.1	53
MW6S	90.5-100.5	4/4/07 ${ }^{\text {a }}$	-	-	-	-	-
		11/19/07	12.0	7.60	723	-	-
		3/8/08	4.7	7.77	673	6.7	272
		7/11/08	28.2	7.61	753	9.9	92
		10/23/08	11.9	11.17	582	5.1	91
		3/5/09	13.9	7.88	603	5.2	18
		6/18/09	19.5	7.70	698	4.5	27
		10/1/09	14.6	6.30	618	5.8	88
		3/31/10	16.4	7.52	584	5.8	-25
		9/18/10	15.8	11.16	568	2.3	35
MW6D	105-115	4/5/07	6.2	6.11	936	-	-
		11/19/07	13.6	7.00	1103	-	-
		3/8/08	9.1	7.15	908	5.6	241
		7/11/08	19.8	7.05	999	12.8	100
		10/23/08	12.0	7.18	957	6.3	128
		3/5/09	13.4	7.22	903	3.1	21
		6/18/09	19.0	6.86	992	4.4	114
		10/1/09	16.0	6.41	910	4.2	98
		3/31/10	17.6	7.10	821	5.0	-2
		9/18/10	15.9	7.06	981	4.9	147

TABLE A. 2 (Cont.)

Well \begin{tabular}{ccccccc}
\hline Screen Interval

$(\mathrm{ft} \mathrm{BGL})$

\quad

Sample

Date

Temperature

$\left({ }^{\circ} \mathrm{C}\right)$

$\quad \mathrm{pH} \quad$

Conductivity

$(\mu \mathrm{S} / \mathrm{cm})$

Dissolved

Oxygen

$(\mathrm{mg} / \mathrm{L})$

Oxygen
Reduction
Potential
(mV)

\hline
\end{tabular}

CCC/USDA wells installed during 2006-2007 investigation (cont.)

MW7	116-126	4/6/07	14.1	6.30	1051	-	-
		11/19/07	14.6	7.16	890	-	-
		3/9/08	13.1	7.10	1068	4.2	186
		7/12/08	14.4	6.95	1238	4.4	98
		10/23/08	12.7	7.16	1191	8.6	122
		3/5/09	15.3	7.11	1141	9.9	126
		6/19/09	16.3	7.05	1174	4.3	48
		9/30/09	16.2	6.86	1132	8.2	216
		3/30/10	16.4	7.04	923	7.3	-48
		9/17/10	17.2	6.88	1149	4.2	104
MW8	110-120	4/6/07	12.1	6.23	974	-	-
		11/19/07	14.6	7.03	909	-	-
		3/10/08	13.1	7.09	961	6.7	182
		7/11/08	18.6	6.38	1049	6.2	152
		10/23/08	12.9	7.06	948	8.7	97
		3/5/09	16.2	7.12	985	9.4	165
		6/19/09	18.0	7.07	972	6.7	102
		9/30/09	16.7	6.15	889	6.2	33
		3/31/10	14.0	7.07	815	7.5	23
		9/17/10	17.4	7.05	940	6.9	231
		9/29/11	15.8	7.69	801	7.3	253
MW9	100-110	4/5/07	12.9	6.20	976	-	-
		11/19/07	16.5	7.21	1066	-	-
		3/9/08	11.2	7.07	928	5.8	239
		7/11/08	17.7	6.58	1010	5.6	189
		10/24/08	13.0	7.06	888	5.4	79
		3/5/09	16.2	7.10	939	8.4	173
		6/17/09	15.9	6.87	907	5.6	146
		9/29/09	13.9	6.79	871	7.8	135
		3/31/10	15.4	6.88	754	7.3	123
		9/18/10	14.7	7.14	879	7.2	188
MW10S	93-103	4/6/07	13.2	6.36	1004	-	-
		11/19/07	14.5	7.22	942	-	-
		3/10/08	12.7	7.08	912	5.2	176
		7/11/08	17.3	6.91	975	12.8	119
		10/23/08	13.4	7.08	913	5.4	78
		3/5/09	15.3	7.25	895	2.7	13
		6/19/09	16.0	7.12	925	5.4	104
		9/30/09	15.8	6.58	829	4.6	31
		3/30/10	15.3	7.08	776	6.9	-25
		9/17/10	17.2	7.02	865	5.2	164
		9/28/11	14.6	7.44	677	5.6	125

TABLE A. 2 (Cont.)

Well \begin{tabular}{cccccccc}
\hline Screen Interval

$(\mathrm{ft} \mathrm{BGL})$

\quad

Sample

Date

\quad

Temperature

$\left({ }^{\circ} \mathrm{C}\right)$

$\quad \mathrm{pH} \quad$

Conductivity

$(\mu \mathrm{S} / \mathrm{cm})$

Dissolved

Oxygen

$(\mathrm{mg} / \mathrm{L})$

Oxygen
Reduction
Potential
(mV)

\hline
\end{tabular}

CCC/USDA wells installed during 2006-2007 investigation (cont.)

MW10D	115-125	4/6/07	12.1	6.21	992	-	-
		11/19/07	14.5	7.42	1175	-	-
		3/9/08	13.7	7.01	1024	5.1	236
		7/11/08	17.4	6.78	1090	12.6	117
		10/23/08	13.5	7.01	1000	5.0	93
		3/5/09	15.9	7.20	969	4.4	12
		6/19/09	16.9	7.08	1035	5.7	109
		9/30/09	15.8	6.62	922	5.5	32
		3/30/10	15.1	7.00	835	6.4	-34
		9/17/10	17.6	6.97	955	5.7	204
		9/28/11	15.7	7.36	735	6.1	138
MW11S	40-50	4/4/07	12.8	6.14	1027	-	-
		11/19/07	11.2	7.15	1174	-	-
		3/5/08	9.4	6.81	1122	2.3	241
		7/10/08	19.5	6.47	1224	1.9	166
		10/23/08	10.2	6.99	1085	5.8	146
		3/4/09	14.5	7.11	1186	4.3	37
		6/19/09	15.0	6.81	1159	3.1	173
		10/1/09	15.9	6.67	1114	2.2	203
		3/31/10	18.0	6.81	958	6.1	84
		9/18/10	15.8	6.98	1178	2.0	185
MW11M	90-100	4/5/07	7.5	7.60	1097	-	-
		11/19/07	11.9	7.17	1144	-	-
		3/6/08	10.8	7.06	997	2.7	254
		7/10/08	31.9	7.08	1124	3.9	149
		10/23/08	12.4	7.06	962	3.2	116
		3/4/09	13.6	7.33	910	4.9	28
		6/19/09	14.7	6.92	973	4.8	185
		10/1/09	14.5	6.85	919	6.7	153
		3/31/10	17.4	6.96	742	5.5	67
		9/18/10	16.0	7.22	846	8.8	174
MW11D	125-135	4/4/07	13.8	6.18	990	-	-
		11/19/07	13.1	7.22	987	-	-
		3/5/08	6.0	7.06	872	6.9	252
		7/10/08	17.5	6.25	957	7.1	177
		10/23/08	12.3	7.11	863	8.7	123
		3/4/09	14.3	7.23	848	4.5	27
		6/19/09	17.4	6.96	885	5.9	131
		10/1/09	14.7	6.85	854	6.9	154
		4/1/10	17.4	6.91	750	7.4	99
		9/18/10	15.8	7.11	871	6.5	189

TABLE A. 2 (Cont.)

Well \begin{tabular}{cccccccc}
\hline Screen Interval

$(\mathrm{ft} \mathrm{BGL})$

\quad

Sample

Date

\quad

Temperature

$\left({ }^{\circ} \mathrm{C}\right)$

$\quad \mathrm{pH} \quad$

Conductivity

$(\mu \mathrm{S} / \mathrm{cm})$

Dissolved

Oxygen

$(\mathrm{mg} / \mathrm{L})$

Oxygen
Reduction
Potential
(mV)

\hline
\end{tabular}

CCC/USDA wells installed during 2006-2007 investigation (cont.)

MW12S	43-53	4/5/07a ${ }^{\text {a }}$	-	-	-	-	-
		11/19/07a	-	-	-	-	-
		3/10/08 ${ }^{\text {a }}$	-	-	-	-	-
		7/10/08 ${ }^{\text {a }}$	-	-	-	-	-
		10/22/08 ${ }^{\text {a }}$	-	-	-	-	-
		3/4/09 ${ }^{\text {a }}$	-	-	-	-	-
		6/19/09	20.5	7.00	1436	-	-
		10/1/09 ${ }^{\text {a }}$	-	-	-	-	-
		$3 / 31 / 10^{\text {a }}$	-	-	-	-	-
		9/18/10 ${ }^{\text {a }}$	-	-	-	-	-
MW12M	90-100	4/5/07	12.6	6.42	867	-	-
		11/19/07	14.9	7.13	835	-	-
		3/10/08	12.6	7.13	665	1.8	212
		7/10/08	16.9	7.09	878	8.2	87
		10/22/08	12.2	7.20	785	8.9	126
		3/4/09	14.1	7.24	851	2.2	20
		6/19/09	17.0	6.99	856	2.3	112
		10/1/09	14.4	6.81	840	3.4	52
		3/31/10	17.5	7.05	334	0.4	36
		9/18/10	15.8	7.13	649	0.2	-61
		9/28/11	14.8	7.82	648	1.8	39
MW12D	115-125	4/5/07	14.0	6.36	930	-	-
		11/18/07	15.6	6.95	571	-	-
		3/9/08	8.8	7.13	881	5.3	237
		7/11/08	19.9	6.01	987	4.7	197
		10/22/08	12.3	7.09	873	8.0	136
		3/4/09	14.4	7.25	923	4.1	21
		6/19/09	16.4	6.96	895	5.1	150
		10/1/09	15.8	6.85	869	6.7	154
		3/31/10	16.6	6.89	753	6.6	103
		9/18/10	15.5	6.97	872	6.2	139
MW13S	112-122	4/5/07	9.8	6.42	946	-	-
		11/19/07	16.5	7.21	893	-	-
		3/10/08	12.2	7.13	810	6.2	199
		7/9/08	17.4	6.99	875	7.7	116
		10/22/08	13.5	7.08	793	5.1	100
		3/4/09	13.8	7.23	818	4.4	29
		6/18/09	17.6	7.04	803	6.1	104
		9/30/09	15.4	5.74	721	6.1	177
		4/1/10	15.0	7.14	667	7.5	64
		9/18/10	16.7	7.42	772	12.9	186
		9/28/11	16.8	7.60	633	6.8	154

TABLE A. 2 (Cont.)

Well \begin{tabular}{cccccccc}
\hline Screen Interval

$(\mathrm{ft} \mathrm{BGL})$

\quad

Sample

Date

\quad

Temperature

$\left({ }^{\circ} \mathrm{C}\right)$

$\quad \mathrm{pH} \quad$

Conductivity

$(\mu \mathrm{S} / \mathrm{cm})$

Dissolved

Oxygen

$(\mathrm{mg} / \mathrm{L})$

\quad

Oxygen
Reduction
Potential
(mV)

\hline
\end{tabular}

CCC/USDA wells installed during 2006-2007 investigation (cont.)

MW13D	127-137	4/5/07	14.9	6.25	397	-	-
		11/19/07	17.0	7.00	763	-	-
		3/9/08	13.1	7.09	758	6.0	213
		7/9/08	18.6	7.07	848	18.1	57
		10/22/08	13.3	7.06	824	5.3	98
		3/4/09	14.5	7.19	833	4.0	25
		6/18/09	17.5	6.93	828	5.6	117
		9/30/09	17.4	5.99	706	5.6	142
		4/1/10	16.3	7.09	694	6.6	21
		9/18/10	17.3	7.14	803	6.3	189
		9/28/11	18.0	7.59	687	16.1	137
MW14S	108-118	4/4/07	13.4	6.50	704	-	-
		11/18/07	12.9	7.26	966	-	-
		3/8/08	13.2	7.20	729	6.6	208
		7/10/08	17.4	7.16	775	16.4	87
		10/22/08	13.2	7.11	716	5.8	90
		3/4/09	13.8	7.15	736	9.0	268
		6/18/09	17.5	7.01	742	5.2	97
		10/1/09	16.0	6.25	663	5.8	99
		4/1/10	17.8	6.96	625	7.7	73
		9/18/10	16.4	7.11	705	6.8	193
		9/28/11	17.2	7.62	592	7.0	118
MW14D	123-133	4/4/07	14.7	6.34	932	-	-
		11/18/07	13.2	7.47	739	-	-
		3/8/08	12.0	7.06	1424	2.0	282
		7/10/08	17.7	7.07	1459	14.5	86
		10/22/08	13.0	7.00	1212	1.4	79
		3/5/09	13.6	7.06	1339	2.2	69
		6/18/09	19.8	7.04	1523	2.0	46
		10/1/09	15.5	6.21	1154	1.6	90
		4/1/10	17.8	6.93	1189	1.8	67
		9/17/10	16.1	7.09	1162	6.5	45
MW15S	88-98	4/4/07	13.1	8.03	854	-	-
		11/18/07	13.9	NR	1883	-	-
		3/10/08	12.1	8.67	697	5.5	173
		7/12/08	14.0	8.88	660	11.6	94
		10/23/08	13.0	8.00	789	5.3	67
		3/5/09	15.7	8.78	589	7.5	163
		6/17/09	18.2	9.13	386	4.8	62
		9/29/09	15.4	7.40	786	6.9	181
		3/30/10	15.7	7.81	467	6.7	63
		9/18/10	16.4	7.49	776	5.8	127

TABLE A. 2 (Cont.)

Well \begin{tabular}{cccccccc}
\hline Screen Interval

$(\mathrm{ft} \mathrm{BGL})$

\quad

Sample

Date

\quad

Temperature

$\left({ }^{\circ} \mathrm{C}\right)$

$\quad \mathrm{pH} \quad$

Conductivity

$(\mu \mathrm{S} / \mathrm{cm})$

Dissolved

Oxygen

$(\mathrm{mg} / \mathrm{L})$

Oxygen
Reduction
Potential
(mV)

\hline
\end{tabular}

CCC/USDA wells installed during 2006-2007 investigation (cont.)

MW15D	105-115	4/4/07	14.8	6.15	2980	-	-
		11/18/07	13.1	6.85	2190	-	-
		3/8/08	9.0	6.85	2912	0.6	131
		7/12/08	14.1	6.80	3067	1.1	90
		10/24/08	13.0	6.81	2876	0.3	27
		3/5/09	15.8	6.82	2945	0.4	-15
		6/17/09	18.6	6.71	2887	0.6	51
		9/29/09	15.6	6.53	2848	0.3	92
		3/30/10	17.3	6.68	2486	0.3	54
		9/18/10	16.2	6.75	2778	0.2	-38
MW16S	76-86	4/4/07	12.8	6.35	1708	-	-
		11/19/07	15.0	6.94	1616	-	-
		3/7/08	7.3	6.96	1968	3.5	184
		7/11/08	18.8	6.71	2883	1.1	52
		10/23/08	11.6	7.01	1350	6.0	136
		3/5/09	16.3	7.19	1505	2.5	12
		6/18/09	15.9	7.03	971	5.6	101
		9/29/09	14.3	6.76	963	7.5	123
		3/30/10	16.6	6.92	828	6.9	90
		9/18/10	17.0	6.84	966	5.6	106
MW16D	90-100	4/4/07	14.1	6.17	2910	-	-
		11/19/07	12.5	6.78	2400	-	-
		3/7/08	7.0	6.86	2866	0.5	140
		7/11/08	18.9	6.64	3134	0.4	32
		10/23/08	11.3	6.79	2791	0.5	37
		3/5/09	15.6	6.94	2926	0.3	14
		6/18/09	18.3	6.77	2867	0.3	46
		9/29/09	14.4	6.67	2583	0.6	17
		3/30/10	16.3	6.59	2429	0.2	78
		9/18/10	15.7	6.68	2759	0.2	-53
MW17	120-130	4/4/07	16.0	6.44	861	-	-
		11/19/07	8.3	7.15	610	-	-
		3/5/08	5.5	7.12	804	7.0	239
		7/9/08	17.5	7.11	843	20.6	89
		10/22/08	13.1	7.10	777	8.4	110
		3/4/09	14.1	7.12	823	8.5	258
		6/17/09	18.4	7.01	825	5.7	103
		9/30/09	14.8	6.89	800	7.7	248
		3/31/10	14.1	7.15	687	7.0	-66
		9/17/10	19.2	7.22	790	9.6	153
		9/28/11	13.9	7.83	634	5.2	351

TABLE A. 2 (Cont.)

Well	Screen Interval $(\mathrm{ft} \mathrm{BGL})$	Sample Date	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	pH	Conductivity $(\mu \mathrm{S} / \mathrm{cm})$	Dissolved Oxygen $(\mathrm{mg} / \mathrm{L})$	Oxygen Reduction Potential (mV)

Private wells

Oentrich	150	7/20/06	-	-	-	-	-
		8/2/06	-	-	-	-	-
		4/5/07	-	-	-	-	-
		11/19/07	12.1	8.26	1830	-	-
		3/6/08	-	-	-	-	-
		7/11/08	-	-	-	-	-
		10/23/08	-	-	-	-	-
		3/5/09	-	-	-	-	-
		6/18/09	15.3	7.15	1270	-	-
		9/30/09	15.6	7.14	1275	-	-
		4/1/10	12.8	7.41	1017	-	-
		9/18/10	-	-	-	-	-
Sedivy	138	8/22/06	-	-	-	-	-
		9/13/06	22.5	6.57	739	-	-
Public wells							
PWS2	155	11/20/07	-	-	955	-	-
		6/18/09	-	-	863	-	-
		9/30/09	-	-	851	-	-
		12/14/09	-	-	857	-	-
		3/31/10	-	-	853	-	-
		6/17/10	-	-	866	-	-
		9/28/11	15.2	8.04	694	-	-
		12/12/11	15.1	7.88	694	-	-
PWS3	160	11/20/07	-	-	999	-	-
		6/18/09	_	_	867	-	-
		9/30/09	-	-	858	-	-
		12/14/09	-	-	859	-	-
		3/31/10	-	-	867	-	-
		6/17/10	-	-	880	-	-
		9/28/11	15.7	7.97	721	-	-
		12/12/11	15.0	7.83	718	-	-

a Not sampled (well dry).

Appendix B:

Results from the AGEM Laboratory for Dual Analyses of Samples Collected in 2011 and for Quality Control Samples

TABLE B. 1 Analytical results from the AGEM Laboratory for quality control samples collected to monitor sample collection and handling activities in 2011.
$\left.\begin{array}{llllllllll}\hline & & & & & \text { Concentration (} \mu \mathrm{g} / \mathrm{L} \text {) }\end{array}\right]$
a ND, contaminant not detected at an instrument detection limit of $0.1 \mu \mathrm{~g} / \mathrm{L}$.
b J, estimated concentration below the purge-and-trap method quantitation limit of $1.0 \mu \mathrm{~g} / \mathrm{L}$.

TABLE B. 2 Results for verification organic analyses during groundwater monitoring in 2011.

Location	Sample	Sample Date and Time	Concentration ($\mu \mathrm{g} / \mathrm{L}$)					
			AGEM Laboratory			TestAmerica		
			Carbon Tetrachloride	Chloroform	Methylene Chloride	Carbon Tetrachloride	Chloroform	Methylene Chloride
MW13S	BAMW13S-W-28814	9/28/11 10:52	8.1	0.7 J	$N D^{\text {a }}$	8.3	0.69	ND
MW14S	BAMW14S-W-28816	9/28/11 16:40	3.4	ND	ND	2.8	0.21 Jb	ND
MW17	BAMW17-W-28817	9/28/11 15:10	0.4 J	ND	ND	0.33 J	ND	ND
QC	BAQCTB-W-28825	9/28/11 18:40	ND	ND	ND	ND	ND	ND

a ND, not detected at an instrument detection limit of $0.1 \mu \mathrm{~g} / \mathrm{L}$.
b J, estimated concentration below the method quantitation limit of $1.0 \mu \mathrm{~g} / \mathrm{L}$ at the AGEM Laboratatory (for modified EPA Method 524.2) or 0.5 $\mu \mathrm{g} / \mathrm{L}$ at TestAmerica (for EPA Method SOM01 - trace volatiles).

Supplement 1:

Waste Characterization Data

November 11, 2011

Mr. Travis Kamler
TCW Construction Inc
141 M Street
Lincoln, NE 68508

RE: Project: KS/MO Waste Water

Pace Project No.: 60109211

Dear Mr. Kamler:
Enclosed are the analytical results for sample(s) received by the laboratory on November 01, 2011. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,
Srudiy Siciazon

Trudy Gipson
trudy.gipson@pacelabs.com
Project Manager

Enclosures
cc: Mr. David Surgnier

CERTIFICATIONS

Project: KS/MO Waste Water
Pace Project No.: 60109211

Kansas Certification IDs

9608 Loiret Boulevard, Lenexa, KS 66219
A2LA Certification \#: 2456.01
Arkansas Certification \#: 05-008-0
illinois Certification \#: 001191
lowa Certification \#: 118
Kansas/NELAP Certification \#: E-10116

Louisiana Certification \#: 03055
Nevada Certification \#: KS000212008A
Oklahoma Certification \#: 9205/9935
Texas Certification \#: T104704407-08-TX
Utah Certification \#: 9135995665

SAMPLE SUMMARY

Project:	KS/MO Waste Water
Pace Project No.:	60109211

Lab ID	Sample ID	Matrix	Date Coilected	Date Received
60109211001	AGPURGE-W-10111	Water	10/31/11 09:00	11/01/11 09:20
60109211002	BAPURGE-W-10112	Water	10/31/11 12:55	11/01/11 09:20
60109211003	CNPURGE-W-10113	Water	10/31/11 14:02	11/01/11 09:20
60109211004	EUPURGE-W-10114	Water	10/31/11 15:52	11/01/11 09:20
60109211005	HAPURGE-W-10115	Water	10/31/11 12:27	11/01/11 09:20
60109211006	MRPURGE-W-10116	Water	10/31/11 14:42	11/01/11 09:20
60109211007	SVPURGE-W-10117	Water	10/31/11 18:30	11/01/11 09:20

Pace Analytical Services, Inc. 9608 Loiret Blvd.
Lenexa, KS 66219

SAMPLE ANALYTE COUNT

Project:	KS/MO Waste Water
Pace Project No.:	60109211

Lab ID	Sample ID	Method	Analysts	Analytes Reported
60109211001	AGPURGE-W-10111	EPA 504.1	NAW	1
		EPA 5030B/8260	HMW	70
		- EPA 353.2	AJM	1
60109211002	BAPURGE-W-10112	EPA 504.1	NAW	1
		EPA 5030B/8260	HMW	70
		EPA 353.2	AJM	1
60109211003	CNPURGE-W-10113	EPA 504.1	NAW	1
		EPA 5030B/8260	HMW	70
		EPA 353.2	AJM	1
60109211004	EUPURGE-W-10114	EPA 504.1	NAW	1
		EPA 5030B/8260	HMW	70
		EPA 353.2	AJM	1
60109211005	HAPURGE-W-10115	EPA 504.1	NAW	1
		EPA 5030B/8260	HMW	70
		- EPA 353.2	AJM	1
60109211006	MRPURGE-W-10116	EPA 504.1	NAW	1
		EPA 5030B/8260	HMW	70
		EPA 353.2	AJM	1
60109211007	SVPURGE-W-10117	EPA 504.1	NAW	1
		EPA 5030B/8260	HMW	70
		EPA 353.2	AJM	1

ANALYTICAL RESULTS

Project: KS/MO Waste Water

Pace Project No.: 60109211

Sample: AGPURGE-W-10111 Parameters	Lab ID: 60109211001 Results Units	Collected: 10/31/11 Report Limit	$\begin{aligned} & 09: 00 \\ & \text { DF } \end{aligned}$	Received: 11 Prepared	01/11 09:20 M Analyzed	trix: Water CAS No.	Qual
504 GCS EDB and DBCP	Analytical Method: EPA 504.1 Preparation Method: EPA 504.1						
1,2-Dibromoethane (EDB)	ND ug/L	0.028	1	11/07/11 00:00	11/08/11 00:52	106-93-4	
8260 MSV	Analytical Method: EPA 5030B/8260						
Acetone	ND ug/L	10.0	1		11/04/11 20:18	67-64-1	
Benzene	ND ug/L	1.0	1		11/04/11 20:18	71-43-2	
Bromobenzene	ND ug/L	1.0	1		11/04/11 20:18	108-86-1	
Bromochloromethane	ND ug/L	1.0	1		11/04/11 20:18	74-97-5	
Bromodichloromethane	ND ug/L	1.0	1		11/04/11 20:18	75-27-4	
Bromoform	ND ug/L	1.0	1		11/04/11 20:18	75-25-2	
Bromomethane	ND ug/L	1.0	1		11/04/11 20:18	74-83-9	
2-Butanone (MEK)	ND ug/L	10.0	1		11/04/11 20:18	78-93-3	
n-Butylbenzene	ND ug/L	1.0	1		11/04/11 20:18	104-51-8	
sec-Butylbenzene	ND ug/L	1.0	1		11/04/11 20:18	135-98-8	
tert-Butylbenzene	ND ug/L	1.0	1		11/04/11 20:18	98-06-6	
Carbon disulfide	ND ug/L	5.0	1		11/04/11 20:18	75-15-0	
Carbon tetrachloride	21.8 ug/L	1.0	1		11/04/11 20:18	56-23-5	
Chlorobenzene	ND ug/L	1.0	1		11/04/11 20:18	108-90-7	
Chloroethane	ND ug/L	1.0	1		11/04/11 20:18	75-00-3	
Chloroform	1.6 ug/L	1.0	1		11/04/11 20:18	67-66-3	
Chloromethane	ND ug/L.	1.0	1		11/04/11 20:18	74-87-3	
2-Chlorotoluene	ND ug/L	1.0	1		11/04/11 20:18	95-49-8	
4-Chlorotoluene	ND ug/L	1.0	1		11/04/11 20:18	106-43-4	
1,2-Dibromo-3-chloropropane	ND ug/L	2.5	1		11/04/11 20:18	96-12-8	
Dibromochloromethane	ND ug/L	1.0	1		11/04/11 20:18	124-48-1	
1,2-Dibromoethane (EDB)	ND ug/L	1.0	1		11/04/11 20:18	106-93-4	
Dibromomethane	ND ug/L	1.0	1		11/04/11 20:18	74-95-3	
1,2-Dichlorobenzene	ND ug/L	1.0	1		11/04/11 20:18	95-50-1	
1,3-Dichlorobenzene	ND ug/L	1.0	1		11/04/11 20:18	541-73-1	
1,4-Dichlorobenzene	ND ug/L	1.0	1		11/04/11 20:18	106-46-7	
Dichlorodifluoromethane	ND ug/L	1.0	1		11/04/11 20:18	75-71-8	
1,1-Dichloroethane	ND ug/L	1.0	1		11/04/11 20:18	75-34-3	
1,2-Dichloroethane	ND ug/L	1.0	1		11/04/11 20:18	107-06-2	
1,2-Dichloroethene (Total)	ND ug/L	1.0	1		11/04/11 20:18	540-59-0	
1,1-Dichloroethene	ND ug/L	1.0	1		11/04/11 20:18	75-35-4	
cis-1,2-Dichloroethene	ND ug/L	1.0	1		11/04/11 20:18	156-59-2	
trans-1,2-Dichloroethene	ND ug/L	1.0	1		11/04/11 20:18	156-60-5	
1,2-Dichloropropane	ND ug/L	1.0	1		11/04/11 20:18	78-87-5	
1,3-Dichloropropane	ND ug/L	1.0	1		11/04/11 20:18	142-28-9	
2,2-Dichloropropane	ND ug/L	1.0	1		11/04/11 20:18	594-20-7	
1,1-Dichloropropene	ND ug/L'	1.0	1		11/04/11 20:18	563-58-6	
cis-1,3-Dichloropropene	ND ugh	1.0	1		11/04/11 20:18	10061-01-5	
trans-1,3-Dichloropropene	ND ug/L	1.0	1		11/04/11 20:18	10061-02-6	
Ethylbenzene	ND ug/L	1.0	1		11/04/11 20:18	100-41-4	
Hexachioro-1,3-butadiene	ND ug/L	1.0	1		11/04/11 20:18	87-68-3	
2-Hexanone	ND ug/L	10.0	1		11/04/11 20:18	591-78-6	
Isopropylbenzene (Cumene)	ND ug/L	1.0	1		11/04/11 20:18	98-82-8	
p-Isopropyltoluene	ND ug/L	1.0	1		11/04/11 20:18	99-87-6	

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

ANALYTICAL RESULTS

Project:	KS/MO Waste Water
Pace Project No.:	60109211

This report shall not be reproduced, except in full,
without the written consent of Pace Analytical Services, Inc..

ANALYTICAL RESULTS

Project: KS/MO Waste Water

Pace Project No.: 60109211

Sample: BAPURGE-W-10112 Parameters	Lab ID: 60109211002 Results Units	Collected: 10/31/4 Report Limit	$12: 55$ DF	Received: 11/ Prepared	01/11 09:20 Analyzed	trix: Water CAS No.	Qual
504 GCS EDB and DBCP	Analytical Method: EPA 504.1 Preparation Method: EPA 504.1						
1,2-Dibromoethane (EDB)	ND ug/L	0.029	1	11/07/11 00:00	11/08/11 01:04	106-93-4	
8260 MSV	Analytical Method: EPA 5030B/8260						
Acetone	ND ug/L	10.0	1		11/04/11 20:35	67-64-1	
Benzene	ND ug/L	1.0	1		11/04/11 20:35	71-43-2	
Bromobenzene	ND ug/L	1.0	1		11/04/11 20:35	108-86-1	
Bromochloromethane	ND ug/L	1.0	1		11/04/11 20:35	74-97-5	
Bromodichloromethane	ND ug/L	1.0	1		11/04/11 20:35	75-27-4	
Bromoform	ND ug/L	1.0	1		11/04/11 20:35	75-25-2	
Bromomethane	ND ug/L	1.0	1		11/04/11 20:35	74-83-9	
2-Butanone (MEK)	ND ug/L	10.0	1		11/04/11 20:35	78-93-3	
n-Butylbenzene	ND ug/L	1.0	1		11/04/11 20:35	104-51-8	
sec-Butylbenzene	ND ug/L	1.0	1		11/04/11 20:35	135-98-8	
tert-Butylbenzene	ND ug/L	1.0	1		11/04/11 20:35	98-06-6	
Carbon disulfide	ND ug/L	5.0	1		11/04/11 20:35	75-15-0	
Carbon tetrachloride	1.1 ug/L	1.0	1		11/04/11 20:35	56-23-5	
Chlorobenzene	ND ug/L	1.0	1		11/04/11 20:35	108-90-7	
Chloroethane	ND ug/L	1.0	1		11/04/11 20:35	75-00-3	
Chloroform	ND ug/L	1.0	1		11/04/11 20:35	67-66-3	
Chloromethane	ND ug/L	1.0	1		11/04/11 20:35	74-87-3	
2-Chlorotoluene	ND ug/L	1.0	1		11/04/11 20:35	95-49-8	
4-Chlorotoluene	ND ug/L	1.0	1		11/04/11 20:35	106-43-4	
1,2-Dibromo-3-chloropropane	ND ug/L	2.5	1		11/04/11 20:35	96-12-8	
Dibromochloromethane	ND ug/L	1.0	1		11/04/11 20:35	124-48-1	
1,2-Dibromoethane (EDB)	ND ug/L	1.0	1		11/04/11 20:35	106-93-4	
Dibromomethane	ND ug/L	1.0	1		11/04/11 20:35	74-95-3	
1,2-Dichlorobenzene	ND ug/L	1.0	1		11/04/11 20:35	95-50-1	
1,3-Dichlorobenzene	ND ug/L	1.0	1		11/04/11 20:35	541-73-1	
1,4-Dichlorobenzene	ND ug/L	1.0	1		11/04/11 20:35	106-46-7	
Dichlorodifluoromethane	ND ug/L	1.0	1		11/04/11 20:35	75-71-8	
1,1-Dichloroethane	ND ug/L	1.0	1		11/04/11 20:35	75-34-3	
1,2-Dichloroethane	ND ug/L	1.0	1		11/04/11 20:35	107-06-2	
1,2-Dichloroethene (Total)	ND ug/L	1.0	1		11/04/11 20:35	540-59-0	
1,1-Dichloroethene	ND ug/L	1.0	1		11/04/11 20:35	75-35-4	
cis-1,2-Dichloroethene	ND ug/L	1.0	1		11/04/11 20:35	156-59-2	
trans-1,2-Dichloroethene	ND ug/L	1.0	1		11/04/11 20:35	156-60-5	
1,2-Dichloropropane	ND ug/L	1.0	1		11/04/11 20:35	78-87-5	
1,3-Dichloropropane	ND ug/L	1.0	1		11/04/11 20:35	142-28-9	
2,2-Dichloropropane	ND ug/L	1.0	1		11/04/11 20:35	594-20-7	
1,1-Dichloropropene	ND ug/L	1.0	1		11/04/11 20:35	563-58-6	
cis-1,3-Dichloropropene	ND ug/L	1.0	1		11/04/11 20:35	10061-01-5	
trans-1,3-Dichloropropene	ND ug/L	1.0	1		11/04/11 20:35	10061-02-6	
Ethylbenzene	ND ug/L	1.0	1		11/04/11 20:35	100-41-4	
Hexachloro-1,3-butadiene	ND ug/L	1.0	1		11/04/11 20:35	87-68-3	
2-Hexanone	ND ug/L	10.0	1		11/04/11 20:35	591-78-6	
Isopropylbenzene (Cumene)	ND ug/L	1.0	1		11/04/11 20:35	98-82-8	
p-Isopropyltoluene	ND ug/L	1.0	1		11/04/11 20:35	99-87-6	

This report shall not be reproduced, except in full,
without the written consent of Pace Analytical Services, Inc..

ANALYTICAL RESULTS

Project: KS/MO Waste Water Pace Project No.: 60109211							
Sample: BAPURGE-W-10112	Lab ID: 60109211002	Collected: 10/31/11 12:55		Received: 11/01/11 09:20		Matrix: Water	
	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical Method: EPA 5	30B/8260					
Methylene chloride	ND ug/L	1.0	1		11/04/11 20:35	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND ug/L	10.0	1		11/04/11 20:35	108-10-1	
Methyl-tert-butyl ether	ND ug/L	1.0	1		11/04/11 20:35	1634-04-4	
Naphthalene	ND ug/L	10.0	1		11/04/11 20:35	91-20-3	
n-Propylbenzene	ND ug/L	1.0	1		11/04/11 20:35	103-65-1	
Styrene	ND ug/L	1.0	1		11/04/11 20:35	100-42-5	
1,1,1,2-Tetrachloroethane	ND ug/L	1.0	1		11/04/11 20:35	630-20-6	
1,1,2,2-Tetrachloroethane	ND ug/L	1.0	1		11/04/11 20:35	79-34-5	
Tetrachloroethene	ND ug/L	1.0	1		11/04/11 20:35	127-18-4	
Toluene	ND ug/L	1.0	1		11/04/11 20:35	108-88-3	
1,2,3-Trichlorobenzene	ND ug/L	1.0	1		11/04/11 20:35	87-61-6	
1,2,4-Trichlorobenzene	ND ug/L	1.0	1		11/04/11 20:35	120-82-1	
1,1,1-Trichloroethane	ND ug/L	1.0	1		11/04/11 20:35	71-55-6	
1,1,2-Trichloroethane	ND ug/L	1.0	1		11/04/11 20:35	79-00-5	
Trichloroethene	ND ug/L	1.0	1		11/04/11 20:35	79-01-6	
Trichlorofluoromethane	ND ug/L	1.0	1		11/04/11 20:35	75-69-4	
1,2,3-Trichloropropane	ND ug/L	2.5	1		11/04/11 20:35	96-18-4	
1,2,4-Trimethylbenzene	ND ug/L	1.0	1		11/04/11 20:35	95-63-6	
1,3,5-Trimethylbenzene	ND ug/L	1.0	1		11/04/11 20:35	108-67-8	
Vinyl chloride	ND ug/L	1.0	1		11/04/11 20:35	75-01-4	
Xylene (Total)	ND ug/L	3.0	1		11/04/11 20:35	1330-20-7	
4-Bromofluorobenzene (S)	102 \%	87-113	1		11/04/11 20:35	460-00-4	
Dibromofluoromethane (S)	98%	86-112	1		11/04/11 20:35	1868-53-7	
1,2-Dichloroethane-d4 (S)	101 \%	82-119	1		11/04/11 20:35	17060-07-0	
Toluene-d8 (S)	95%	90-110	1		11/04/11 20:35	2037-26-5	
Preservation pH	7.0	0.10	1		11/04/11 20:35		
353.2 Nitrogen, $\mathrm{NO} 2 / \mathrm{NO} 3$ unpres	Analytical Method: EPA 353.2						
Nitrogen, Nitrate	$6.1 \mathrm{mg} / \mathrm{L}$	0.20	1		11/02/11 09:17		

This report shall not be reproduced, except in full,
without the written consent of Pace Analytical Services, Inc..

ANALYTICAL RESULTS

Project: . KS/MO Waste Water

Pace Project No.: 60109211

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Pace Analytical Services, Inc.
9608 Loiret Blvd.
Lenexa, KS 66219
(913)599-5665

ANALYTICAL RESULTS

Project: KS/MO Waste Water
Pace Project No.: 60109211

Sample: CNPURGE-W-10113 Parameters	Lab ID: 60109211003 Results Units	Collected: 10/31/11 14:02		Received: 11/01/11 09:20		Matrix: Water	
		Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical Method: EPA 5030B/8260						
Methylene chloride	ND ug/L	1.0	1		11/04/11 20:51	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND ug/L	10.0	1		11/04/11 20:51	108-10-1	
Methyl-tert-butyl ether	ND ug/L	1.0	1		11/04/11 20:51	1634-04-4	
Naphthalene	ND ug/L	10.0	1		11/04/11 20:51	91-20-3	
n-Propylbenzene	ND ug/L	1.0	1		11/04/11 20:51	103-65-1	
Styrene	ND ug/L	1.0	1		11/04/11 20:51	100-42-5	
1,1,1,2-Tetrachloroethane	ND ug/L	1.0	1		11/04/11 20:51	630-20-6	
1,1,2,2-Tetrachloroethane	ND ug/L	1.0	1		11/04/11 20:51	79-34-5	
Tetrachloroethene	ND ug/L	1.0	1		11/04/11 20:51	127-18-4	
Toluene	ND ug/L	1.0	1		11/04/11 20:51	108-88-3	
1,2,3-Trichlorobenzene	ND ug/L	1.0	1		11/04/11 20:51	87-61-6	
1,2,4-Trichlorobenzene	ND ug/L	1.0	1		11/04/11 20:51	120-82-1	
1,1,1-Trichloroethane	ND ug/L	1.0	1		11/04/11 20:51	71-55-6	
1,1,2-Trichloroethane	ND ug/L	1.0	1		11/04/11 20:51	79-00-5	
Trichloroethene	ND ug/L	1.0	1		11/04/11 20:51	79-01-6	
Trichlorofluoromethane	ND ug/L	1.0	1		11/04/11 20:51	75-69-4	
1,2,3-Trichloropropane	ND ug/L	2.5	1		11/04/11 20:51	96-18-4	
1,2,4-Trimethylbenzene	ND ug/L	1.0	1		11/04/11 20:51	95-63-6	
1,3,5-Trimethylbenzene	ND ug/L	1.0	1		11/04/11 20:51	108-67-8	
Vinyl chloride	ND ug/L	1.0	1		11/04/11 20:51	75-01-4	
Xylene (Total)	ND ug/L	3.0	1		11/04/11 20:51	1330-20-7	
4-Bromofluorobenzene (S)	107 \%	87-113	1		11/04/11 20:51	460-00-4	
Dibromofluoromethane (S)	110 \%	86-112	1		11/04/11 20:51	1868-53-7	
1,2-Dichloroethane-d4 (S)	114%	82-119	1		11/04/11 $20: 51$	17060-07-0	
Toluene-d8 (S)	108%	90-110	1		11/04/11 20:51	2037-26-5	
Preservation pH	7.0	0.10	1		11/04/11 20:51		
353.2 Nitrogen, NO2/NO3 unpres	Analytical Method: EPA 353.2						
Nitrogen, Nitrate	$4.4 \mathrm{mg} / \mathrm{L}$	0.10	1		11/02/11 09:06		

This report shall not be reproduced, except in full,
without the written consent of Pace Analytical Services, Inc.

ANALYTICAL RESULTS

Project: KS/MO Waste Water
Pace Project No.: 60109211

Sample: EUPURGE-W-10114 Parameters	$\begin{array}{lr}\text { Lab ID: } & 60109211004 \\ \text { Results } & \text { Units }\end{array}$	Collected: 10/31/1 Report Limit	$\begin{aligned} & 15: 52 \\ & D F \end{aligned}$	Received: 11 Prepared	01/11 09:20 Analyzed	trix: Water CAS No.	Qual
504 GCS EDB and DBCP	Analytical Method: EPA 504.1 Preparation Method: EPA 504.1						
1,2-Dibromoethane (EDB)	ND ug/L	0.029	1	11/07/11 00:00	11/08/11 01:30	106-93-4	
8260 MSV	Analytical Method: EPA 5030B/8260						
Acetone	ND ug/L	10.0	1		11/04/11 21:07	67-64-1	
Benzene	ND ug/L	1.0	1		11/04/11 21:07	71-43-2	
Bromobenzene	ND ug/L	1.0	1		11/04/11 21:07	108-86-1	
Bromochloromethane	ND ug/L	1.0	1		11/04/11 21:07	74-97-5	
Bromodichloromethane	ND ug/L	1.0	1		11/04/11 21:07	75-27-4	
Bromoform	ND ug/L	1.0	1		11/04/11 21:07	75-25-2	
Bromomethane	ND ug/L	1.0	1		11/04/11 21:07	74-83-9	
2-Butanone (MEK)	ND ug/L	10.0	1		11/04/11 21:07	78-93-3	
n-Butylbenzene	ND ug/L	1.0	1		11/04/11 21:07	104-51-8	
sec-Butylbenzene	ND ug/L	1.0	1		11/04/11 21:07	135-98-8	
tert-Butylbenzene	ND ug/L	1.0	1		11/04/11 21:07	98-06-6	
Carbon disulfide	ND ug/L	5.0	1		11/04/11 21:07	75-15-0	
Carbon tetrachloride	ND ug/L	1.0	1		11/04/11 21:07	56-23-5	
Chlorobenzene	ND ug/L	1.0	1		11/04/11 21:07	108-90-7	
Chloroethane	ND ug/L	1.0	1		11/04/11 21:07	75-00-3	
Chloroform	ND ug/L	1.0	1		11/04/11 21:07	67-66-3	
Chloromethane	ND ug/L	1.0	1		11/04/11 21:07	74-87-3	
2-Chlorotoluene	ND ug/L	1.0	1		11/04/11 21:07	95-49-8	
4-Chlorotoluene	ND ug/L	1.0	1		11/04/11 21:07	106-43-4	
1,2-Dibromo-3-chloropropane	ND ug/L	2.5	1		11/04/11 21:07	96-12-8	
Dibromochloromethane	ND ug/L	1.0	1		11/04/11 21:07	124-48-1	
1,2-Dibromoethane (EDB)	ND ug/L	1.0	1		11/04/11 21:07	106-93-4	
Dibromomethane	ND ug/L	1.0	1		11/04/11 21:07	74-95-3	
1,2-Dichlorobenzene	ND ug/L	1.0	1		11/04/11 21:07	95-50-1	
1,3-Dichlorobenzene	ND ug/L	1.0	1		11/04/11 21:07	541-73-1	
1,4-Dichlorobenzene	ND ug/L	1.0	1		11/04/11 21:07	106-46-7	
Dichlorodifluoromethane	ND ug/L	1.0	1		11/04/11 21:07	75-71-8	
1,1-Dichloroethane	ND ug/L	1.0	1		11/04/11 21:07	75-34-3	
1,2-Dichloroethane	ND ug/L	1.0	1		11/04/11 21:07	107-06-2	
1,2-Dichloroethene (Total)	ND ug/L	1.0	1		11/04/11 21:07	540-59-0	
1,1-Dichloroethene	ND ug/L	1.0	1		11/04/11 21:07	75-35-4	
cis-1,2-Dichloroethene	ND ug/L	1.0	1		11/04/11 21:07	156-59-2	
trans-1,2-Dichloroethene	ND ug/L	1.0	1		11/04/11 21:07	156-60-5	
1,2-Dichloropropane	ND ug/L	1.0	1		11/04/11 21:07	78-87-5	
1,3-Dichloropropane	ND ug/L	1.0	1		11/04/11 21:07	142-28-9	
2,2-Dichloropropane	ND ug/L	1.0	1		11/04/11 21:07	594-20-7	
1,1-Dichloropropene	ND ug/L	1.0	1		11/04/11 21:07	563-58-6	
cis-1,3-Dichloropropene	ND ug/L	1.0	1		11/04/11 21:07	10061-01-5	
trans-1,3-Dichloropropene	ND ught	1.0	1		11/04/11 21:07	10061-02-6	
Ethylbenzene	ND ug/L	1.0	1		11/04/11 21:07	100-41-4	
Hexachloro-1,3-butadiene	ND ug/L	1.0	1		11/04/11 21:07	87-68-3	
2-Hexanone	ND ug/L	10.0	1		11/04/11 21:07	591-78-6	
Isopropylbenzene (Cumene)	ND ug/L	1.0	1		11/04/11 21:07	98-82-8	
p-Isopropyltoluene	ND ug/L	1.0	1		11/04/11 21:07	99-87-6	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

ANALYTICAL RESULTS

Project: KS/MO Waste Pace Project No.: 60109211	KS/MO Waste Water						
Sample: EUPURGE-W-10114	Lab ID: 60109211004	Collected: 10/31/11	15:52	Received:	1/11 09:20	atrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical Method: EPA 5030B/8260						
Methylene chloride	ND ug/L	1.0	1		11/04/11 21:07	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND ug/L	10.0	1		11/04/11 21:07	108-10-1	
Methyl-tert-butyl ether	ND ug/L	1.0	1		11/04/11 21:07	1634-04-4	
Naphthalene	ND ug/L	10.0	1		11/04/11 21:07	91-20-3	
n-Propylbenzene	ND ug/L	1.0	1		11/04/11 21:07	103-65-1	
Styrene	ND ug/L	1.0	1		11/04/11 21:07	100-42-5	
1,1,1,2-Tetrachloroethane	ND ug/L	1.0	1		11/04/11 21:07	630-20-6	
1,1,2,2-Tetrachloroethane	ND ug/L	1.0	1		11/04/11 21:07	79-34-5	
Tetrachloroethene	ND ug/L	1.0	1		11/04/11 21:07	127-18-4	
Toluene	ND ug/L	1.0	1		11/04/11 21:07	108-88-3	
1,2,3-Trichlorobenzene	ND ug/L	1.0	1		11/04/11 21:07	87-61-6	
1,2,4-Trichlorobenzene	ND ug/L	1.0	1		11/04/11 21:07	120-82-1	
1,1,1-Trichloroethane	ND ug/L	1.0	1		11/04/11 21:07	71-55-6	
1,1,2-Trichloroethane	ND ug/L	1.0	1		11/04/11 21:07	79-00-5	
Trichloroethene	ND ug/L	1.0	1		11/04/11 21:07	79-01-6	
Trichlorofluoromethane	ND ug/L	1.0	1		11/04/11 21:07	75-69-4	
1,2,3-Trichloropropane	ND ug/L	2.5	1		11/04/11 21:07	96-18-4	
1,2,4-Trimethylbenzene	ND ug/L	1.0	1		11/04/11 21:07	95-63-6	
1,3,5-Trimethylbenzene	ND ug/L	1.0	1		11/04/11 21:07	108-67-8	
Vinyl chloride	ND ug/L	1.0	1		11/04/11 21:07	75-01-4	
Xylene (Total)	ND ug/L	3.0	1		11/04/11 21:07	1330-20-7	
4-Bromofluorobenzene (S)	106 \%	87-113	1		11/04/11 21:07	460-00-4	
Dibromofluoromethane (S)	108 \%	86-112	1		11/04/11 21:07	1868-53-7	
1,2-Dichloroethane-d4 (S)	113 \%	82-119	1		11/04/11 21:07	17060-07-0	
Toluene-d8 (S)	105 \%	90-110	1		11/04/11 21:07	2037-26-5	
Preservation pH	7.0	0.10	1		11/04/11 21:07		
353.2 Nitrogen, $\mathrm{NO} 2 / \mathrm{NO} 3$ unpres	Analytical Method: EPA						
Nitrogen, Nitrate	10.6 mg/L	0.50	1		11/02/11 09:21		

This report shall not be reproduced, except in full,
without the written consent of Pace Analytical Services, Inc..

Pace Analytical Services, Inc.
9608 Loiret Blvd.
Lenexa, KS 66219
(913)599-5665

ANALYTICAL RESULTS

Project: KS/MO Waste Water
Pace Project No.: 60109211

Sample: HAPURGE-W-10115	Lab ID: $\mathbf{6 0 1 0 9 2 1 1 0 0 5}$	Collected: $10 / 31 / 11$	$12: 27$	Received:	11/01/11 09:20	Matrix: Water			
Parameters	Results		Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual

504 GCS EDB and DBCP
1,2-Dibromoethane (EDB)
8260 MSV

Acetone	ND ug/L	10.0	1	11/04/11 21:24	67-64-1
Benzene	ND ug/L	1.0	1	11/04/11 21:24	71-43-2
Bromobenzene	ND ug/L	1.0	1	11/04/11 21:24	108-86-1
Bromochloromethane	ND ug/L	1.0	1	11/04/11 21:24	74-97-5
Bromodichloromethane	ND ug/L	1.0	1	11/04/11 21:24	75-27-4
Bromoform	ND ug/L	1.0	1	11/04/11 21:24	75-25-2
Bromomethane	ND ug/L	1.0	1	11/04/11 21:24	74-83-9
2-Butanone (MEK)	ND ug/L	10.0	1	11/04/11 21:24	78-93-3
n-Butylbenzene	ND ug/L	1.0	1	11/04/11 21:24	104-51-8
sec-Butylbenzene	ND ug/L	1.0	1	11/04/11 21:24	135-98-8
tert-Butylbenzene	ND ug/L	1.0	1	11/04/11 21:24	98-06-6
Carbon disulfide	ND ug/L	5.0	1	11/04/11 21:24	75-15-0
Carbon tetrachloride	6.1 ug/L	1.0	1	11/04/11 21:24	56-23-5
Chlorobenzene	ND ug/L	1.0	1	11/04/11 21:24	108-90-7
Chloroethane	ND ug/L	1.0	1	11/04/11 21:24	75-00-3
Chloroform	ND ug/L	1.0	1	11/04/11 21:24	67-66-3
Chloromethane	ND ug/L	1.0	1	11/04/11 21:24	74-87-3
2-Chlorotoluene	ND ug/L	1.0	1	11/04/11 21:24	95-49-8
4-Chlorotoluene	ND ug/L	1.0	1	11/04/11 21:24	106-43-4
1,2-Dibromo-3-chloropropane	ND ug/L	2.5	1	11/04/11 21:24	96-12-8
Dibromochloromethane	ND ug/L	1.0	1	11/04/11 21:24	124-48-1
1,2-Dibromoethane (EDB)	ND ug/L	1.0	1	11/04/11 21:24	106-93-4
Dibromomethane	ND ug/L	1.0	1	11/04/11 21:24	74-95-3
1,2-Dichlorobenzene	ND ug/L	1.0	1	11/04/11 21:24	95-50-1
1,3-Dichlorobenzene	ND ug/L	1.0	1	11/04/11 21:24	541-73-1
1,4-Dichlorobenzene	ND ug/L	1.0	1	11/04/11 21:24	106-46-7
Dichlorodifluoromethane	ND ug/L	1.0	1	11/04/11 21:24	75-71-8
1,1-Dichloroethane	ND ug/L	1.0	1	11/04/11 21:24	75-34-3
1,2-Dichloroethane	ND ug/L	1.0	1	11/04/11 21:24	107-06-2
1,2-Dichloroethene (Total)	ND ug/L	1.0	1	11/04/11 21:24	540-59-0
1,1-Dichloroethene	ND ug/L	1.0	1	11/04/11 21:24	75-35-4
cis-1,2-Dichloroethene	ND ug/L	1.0	1	11/04/11 21:24	156-59-2
trans-1,2-Dichloroethene	ND ug/L	1.0	1	11/04/11 21:24	156-60-5
1,2-Dichloropropane	ND ug/L	1.0	1	11/04/11 21:24	78-87-5
1,3-Dichloropropane	ND ug/L	1.0	1	11/04/11 21:24	142-28-9
2,2-Dichloropropane	ND ug/L	1.0	1	11/04/11 21:24	594-20-7
1,1-Dichloropropene	ND ug/L	1.0	1	11/04/11 21:24	563-58-6
cis-1,3-Dichloropropene	ND ug/L	1.0	1	11/04/11 21:24	10061-01-5
trans-1,3-Dichloropropene	ND ug/L	1.0	1	11/04/11 21:24	10061-02-6
Ethylbenzene	ND ug/L	1.0	1	11/04/11 21:24	100-41-4
Hexachloro-1,3-butadiene	ND ug/L	1.0	1	11/04/11 21:24	87-68-3
2-Hexanone	ND ug/L	10.0	1	11/04/11 21:24	591-78-6
Isopropylbenzene (Cumene)	ND ug/L	1.0	1	11/04/11 21:24	98-82-8
p-Isopropyltoluene	ND ug/L	1.0	1	11/04/11 21:24	99-87-6

Analytical Method: EPA 504.1 Preparation Method: EPA 504.1
$0.028 \quad 1 \quad 11 / 07 / 1100: 00 \quad 11 / 08 / 1101: 43 \quad 106-93-4$

Analytical Method: EPA 5030B/8260

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Pace Analytical Services, Inc. 9608 Loiret Blvd.
Lenexa, KS 66219 (913)599-5665

ANALYTICAL RESULTS

Project: KS/MO Waste Water
Pace Project No.: 60109211

Sample: HAPURGE-W-10115 Parameters	Lab ID: 60109211005 Results Units	Collected: 10/31/11 12:27		Received: 11/01/11 09:20		Matrix: Water	
		Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical Method: EPA 5030B/8260						
Methylene chloride	ND ug/L	1.0	1		11/04/11 21:24	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND ug/L	10.0	1		11/04/11 21:24	108-10-1	
Methyl-tert-butyl ether	ND ug/L	1.0	1		11/04/11 21:24	1634-04-4	
Naphthalene	ND ug/L	10.0	1		11/04/11 21:24	91-20-3	
n-Propylbenzene	ND ug/L	1.0	1		11/04/11 21:24	103-65-1	
Styrene	ND ug/L	1.0	1		11/04/11 21:24	100-42-5	
1,1,1,2-Tetrachloroethane	ND ug/L	1.0	1		11/04/11 21:24	630-20-6	
1,1,2,2-Tetrachloroethane	ND ug/L	1.0	1		11/04/11 21:24	79-34-5	
Tetrachloroethene	ND ug/L'	1.0	1		11/04/11 21:24	127-18-4	
Toluene	ND ug/L	1.0	1		11/04/11 21:24	108-88-3	
1,2,3-Trichlorobenzene	ND ug/L	1.0	1		11/04/11 21:24	87-61-6	
1,2,4-Trichlorobenzene	ND ug/L	1.0	1		11/04/11 21:24	120-82-1	
1,1,1-Trichloroethane	ND ug/L	1.0	1		11/04/11 21:24	71-55-6	
1,1,2-Trichloroethane	ND ug/L	1.0	1		11/04/11 21:24	79-00-5	
Trichloroethene	ND ug/L	1.0	1		11/04/11 21:24	79-01-6	
Trichlorofluoromethane	ND ug/L	1.0	1		11/04/11 21:24	75-69-4	
1,2,3-Trichloropropane	ND ug/L	2.5	1		11/04/11 21:24	96-18-4	
1,2,4-Trimethylbenzene	ND ug/L	1.0	1		11/04/11 21:24	95-63-6	
1,3,5-Trimethylbenzene	ND ug/L	1.0	1		11/04/11 21:24	108-67-8	
Vinyl chloride	ND ug/L	1.0	1		11/04/11 21:24	75-01-4	
Xylene (Total)	ND ug/L	3.0	1		11/04/11 21:24	1330-20-7	
4-Bromofluorobenzene (S)	106 \%	87-113	1		11/04/11 21:24	460-00-4	
Dibromofluoromethane (S)	103%	86-112	1		11/04/11 21:24	1868-53-7	
1,2-Dichloroethane-d4 (S)	106%	82-119	1		11/04/11 21:24	17060-07-0	
Toluene-d8 (S)	100%	90-110	1		11/04/11 21:24	2037-26-5	
Preservation pH	7.0	0.10	1	.	11/04/11 21:24		
353.2 Nitrogen, NO2/NO3 unpres	Analytical Method: EPA 353.2						
Nitrogen, Nitrate	$5.7 \mathrm{mg} / \mathrm{L}$	0.20	1		11/02/11 09:16		

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

ANALYTICAL RESULTS

Project: KS/MO Waste Water
Pace Project No.: 60109211

Sample: MRPURGE-W-10116 Parameters	Lab ID: 60109211006	Collected: 10/31/11 Report Limit	$\begin{aligned} & 14: 42 \\ & \text { DF } \end{aligned}$	Received: 11/ Prepared	Analyzed	atrix: Water CAS No.	Qual
504 GCS EDB and DBCP	Analytical Method: EPA 504.1 Preparation Method: EPA 504.1						
1,2-Dibromoethane (EDB)	ND ug/L	0.029	1	11/07/11 00:00	11/08/11 01:55	106-93-4	
8260 MSV	Analytical Method: EPA 5030B/8260						
Acetone	ND ug/L	10.0	1		11/04/11 21:40	67-64-1	
Benzene	ND ug/L	1.0	1		11/04/11 21:40	71-43-2	
Bromobenzene	ND ug/L	1.0	1		11/04/11 21:40	108-86-1	
Bromochloromethane	ND ug/L	1.0	1		11/04/11 21:40	74-97-5	
Bromodichloromethane	ND ug/L	1.0	1		11/04/11 21:40	75-27-4	
Bromoform	ND ug/L	1.0	1		11/04/11 21:40	75-25-2	
Bromomethane	ND ug/L	1.0	1		11/04/11 21:40	74-83-9	
2-Butanone (MEK)	ND ug/L	10.0	1		11/04/11 21:40	78-93-3	
n-Butylbenzene	ND ug/L	1.0	1		11/04/11 21:40	104-51-8	
sec-Butylbenzene	ND ug/L	1.0	1		11/04/11 21:40	135-98-8	
tert-Butylbenzene	ND ug/L	1.0	1		11/04/11 21:40	98-06-6	
Carbon disulfide	ND ug/L	5.0	1		11/04/11 21:40	75-15-0	
Carbon tetrachloride	3.4 ug/L	1.0	1		11/04/11 21:40	56-23-5	
Chlorobenzene	ND ug/L	1.0	1		11/04/11 21:40	108-90-7	
Chloroethane	ND ug/L	1.0	1		11/04/11 21:40	75-00-3	
Chloroform	ND ug/L	1.0	1		11/04/11 21:40	67-66-3	
Chloromethane	ND ug/L	1.0	1		11/04/11 21:40	74-87-3	
2-Chlorotoluene	ND ug/L	1.0	1		11/04/11 21:40	95-49-8	
4-Chlorotoluene	ND ug/L	1.0	1		11/04/11 21:40	106-43-4	
1,2-Dibromo-3-chloropropane	ND ug/L	2.5	1		11/04/11 21:40	96-12-8	
Dibromochloromethane	ND ug/L	1.0	1		11/04/11 21:40	124-48-1	
1,2-Dibromoethane (EDB)	ND ug/L	1.0	1		11/04/11 21:40	106-93-4	
Dibromomethane	ND ug/L	1.0	1		11/04/11 21:40	74-95-3	
1,2-Dichlorobenzene	ND ug/L	1.0	1		11/04/11 21:40	95-50-1	
1,3-Dichlorobenzene	ND ug/L	1.0	1		11/04/11 21:40	541-73-1	
1,4-Dichlorobenzene	ND ug/L	1.0	1		11/04/11 21:40	106-46-7	
Dichlorodifluoromethane	ND ug/L	1.0	1		11/04/11 21:40	75-71-8	
1,1-Dichloroethane	ND ug/L	1.0	1		11/04/11 21:40	75-34-3	
1,2-Dichloroethane	ND ug/L	1.0	1		11/04/11 21:40	107-06-2	
1,2-Dichloroethene (Total)	ND ug/L	1.0	1		11/04/11 21:40	540-59-0	
1,1-Dichloroethene	ND ug/L	1.0	1		11/04/11 21:40	75-35-4	
cis-1,2-Dichloroethene	ND ug/L	1.0	1		11/04/11 21:40	156-59-2	
trans-1,2-Dichloroethene	ND ug/L	1.0	1		11/04/11 21:40	156-60-5	
1,2-Dichloropropane	ND ug/L	1.0	1		11/04/11 21:40	78-87-5	
1,3-Dichloropropane	ND ug/L	1.0	1		11/04/11 21:40	142-28-9	
2,2-Dichloropropane	ND ug/L	1.0	1		11/04/11 21:40	594-20-7	
1,1-Dichloropropene	ND ug/L	1.0	1		11/04/11 21:40	563-58-6	
cis-1,3-Dichloropropene	ND ug/L	1.0	1		11/04/11 21:40	10061-01-5	
trans-1,3-Dichloropropene	ND ug/L	1.0	1		11/04/11 21:40	10061-02-6	
Ethylbenzene	ND ug/L	1.0	1		11/04/11 21:40	100-41-4	
Hexachloro-1,3-butadiene	ND ug/L	1.0	1		11/04/11 21:40	87-68-3	
2-Hexanone	ND ug/L	10.0	1		11/04/11 21:40	591-78-6	
Isopropylbenzene (Cumene)	ND ug/L	1.0	1		11/04/11 21:40	98-82-8	
p-isopropyltoluene	ND ug/L	1.0	1		11/04/11 21:40	99-87-6	

Date: 11/11/2011 11:15 AM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Pace Analytical Services, Inc.
9608 Loiret Blvd.
Lenexa, KS 66219

ANALYTICAL RESULTS

Project: KS/MO Waste Water
Pace Project No.: 60109211

Pace Analytical Services, Inc.
9608 Loiret Blvd.
Lenexa, KS 66219
(913)599-5665

ANALYTICAL RESULTS

Project: KS/MO Waste Water
Pace Project No.: 60109211

Sample: SVPURGE-W-10117 Parameters	Lab ID: 60109211007 Results Units	Collected: 10/31/1 Report Limit	18:30 DF	Received: 11 Prepared	Analyzed	atrix: Water CAS No.
504 GCS EDB and DBCP	Analytical Method: EPA 504.1 Preparation Method: EPA 504.1					
1,2-Dibromoethane (EDB)	ND ug/L	0.029	1	11/07/11 00:00	11/08/11 02:09	106-93-4
8260 MSV	Analytical Method: EPA 5030B/8260					
Acetone	ND ug/L	10.0	1		11/04/11 21:56	67-64-1
Benzene	ND ug/L	1.0	1		11/04/11 21:56	71-43-2
Bromobenzene	ND ug/L	1.0	1		11/04/11 21:56	108-86-1
Bromochloromethane	ND ug/L	1.0	1		11/04/11 21:56	74-97-5
Bromodichloromethane	ND ug/L	1.0	1		11/04/11 21:56	75-27-4
Bromoform	ND ug/L	1.0	1		11/04/11 21:56	75-25-2
Bromomethane	ND ug/L	1.0	1		11/04/11 21:56	74-83-9
2-Butanone (MEK)	ND ug/L	10.0	1		11/04/11 21:56	78-93-3
n-Butyibenzene	ND ug/L	1.0	1		11/04/11 21:56	104-51-8
sec-Butylbenzene	ND ug/L	1.0	1		11/04/11 21:56	135-98-8
tert-Butylbenzene	ND ug/L	1.0	1		11/04/11 21:56	98-06-6
Carbon disulfide	ND ug/L	5.0	1		11/04/11 21:56	75-15-0
Carbon tetrachloride	6.9 ug/L	1.0	1		11/04/11 21:56	56-23-5
Chlorobenzene	ND ug/L	1.0	1		11/04/11 21:56	108-90-7
Chloroethane	ND ug/L	1.0	1		-11/04/11 21:56	75-00-3
Chloroform	3.3 ug/L	1.0	1		11/04/11 21:56	67-66-3
Chloromethane	ND ug/L	1.0	1		11/04/11 21:56	74-87-3
2-Chlorotoluene	ND ug/L	1.0	1		11/04/11 21:56	95-49-8
4-Chlorotoluene	ND ug/L	1.0	1		11/04/11 21:56	106-43-4
1,2-Dibromo-3-chloropropane	ND ug/L	2.5	1		11/04/11 21:56	96-12-8
Dibromochloromethane	ND ug/L	1.0	1		11/04/11 21:56	124-48-1
1,2-Dibromoethane (EDB)	ND ug/L	1.0	1		11/04/11 21:56	106-93-4
Dibromomethane	ND ug/L	1.0	1		11/04/11 21:56	74-95-3
1,2-Dichlorobenzene	ND ug/L	1.0	1		11/04/11 21:56	95-50-1
1,3-Dichlorobenzene	ND ug/L	1.0	1		11/04/11 21:56	541-73-1
1,4-Dichlorobenzene	ND ug/L	1.0	1		11/04/11 21:56	106-46-7
Dichiorodifluoromethane	ND ug/L	1.0	1		11/04/11 21:56	75-71-8
1,1-Dichloroethane	ND ug/L	1.0	1		11/04/11 21:56	75-34-3
1,2-Dichloroethane	ND ug/L	1.0	1		11/04/11 21:56	107-06-2
1,2-Dichloroethene (Total)	ND ug/L	1.0	1		11/04/11 21:56	540-59-0
1,1-Dichloroethene	ND ug/L	1.0	1		11/04/11 21:56	75-35-4
cis-1,2-Dichloroethene	ND ug/L	1.0	1		11/04/11 21:56	156-59-2
trans-1,2-Dichloroethene	ND ug/L	1.0	1		11/04/11 21:56	156-60-5
1,2-Dichloropropane	ND ug/L	1.0	1		11/04/11 21:56	78-87-5
1,3-Dichloropropane	ND ug/L	1.0	1		11/04/11 21:56	142-28-9
2,2-Dichloropropane	ND ug/L	1.0	1		11/04/11 21:56	594-20-7
1,1-Dichloropropene	ND ug/L	1.0	1		11/04/11 21:56	563-58-6
cis-1,3-Dichloropropene	ND ug/L	1.0	1		11/04/11 21:56	10061-01-5
trans-1,3-Dichloropropene	ND ug/L	1.0	1		11/04/11 21:56	10061-02-6
Ethylbenzene	ND ug/L	1.0	1		11/04/11 21:56	100-41-4
Hexachloro-1,3-butadiene	ND ug/L	1.0	1		11/04/11 21:56	87-68-3
2-Hexanone	ND ug/L	10.0	1		11/04/11 21:56	591-78-6
Isopropylbenzene (Cumene)	ND ug/L	1.0	1		11/04/11 21:56	98-82-8
p-isopropyltoluene	ND ug/L	1.0	1		11/04/11 21:56	99-87-6

Date: 11/11/2011 11:15 AM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,
without the written consent of Pace Analytical Services, Inc..

ANALYTICAL RESULTS

Project: KS/MO Waste Water

Pace Project No.: 60109211

Sample: SVPURGE-W-10117 Parameters	Lab ID: 60109211007	Collected: 10/31/11 18:30		Received: 11/01/11 09:20		Matrix: Water	
	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical Method: EPA 5030B/8260						
Methylene chloride	ND ug/L	1.0	1		11/04/11 21:56	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND ug/L	10.0	1		11/04/11 21:56	108-10-1	
Methyl-tert-butyl ether	ND ug/L	1.0	1		11/04/11 21:56	1634-04-4	
Naphthalene	ND ug/L	10.0	1		11/04/11 21:56	91-20-3	
n-Propylbenzene	ND ug/L	1.0	1		11/04/11 21:56	103-65-1	
Styrene	ND ug/L	1.0	1		11/04/11 21:56	100-42-5	
1,1,1,2-Tetrachloroethane	ND ug/L	1.0	1		11/04/11 21:56	630-20-6	
1,1,2,2-Tetrachloroethane	ND ug/L	1.0	1		11/04/11 21:56	79-34-5	
Tetrachloroethene	ND ug/L	1.0	1		11/04/11 21:56	127-18-4	
Toluene	ND úg/L	1.0	1		11/04/11 21:56	108-88-3	
1,2,3-Trichlorobenzene	ND ug/L	1.0	1		11/04/11 21:56	87-61-6	
1,2,4-Trichlorobenzene	ND ug/L	1.0	1		11/04/11 21:56	120-82-1	
1,1,1-Trichloroethane	ND ug/L	1.0	1		11/04/11 21:56	71-55-6	
1,1,2-Trichloroethane	ND ug/L	1.0	1		11/04/11 21:56	79-00-5	
Trichloroethene	ND ug/L	1.0	1		11/04/11 21:56	79-01-6	
Trichlorofluoromethane	ND ug/L	1.0	1		11/04/11 21:56	75-69-4	
1,2,3-Trichloropropane	ND ug/L	2.5	1		11/04/11 21:56	96-18-4	
1,2,4-Trimethylbenzene	ND ug/L	1.0	1		11/04/11 21:56	95-63-6	
1,3,5-Trimethylbenzene	ND ug/L	1.0	1		11/04/11 21:56	108-67-8	
Vinyl chloride	ND ug/L	1.0	1		11/04/11 21:56	75-01-4	
Xylene (Total)	ND ug/L	3.0	1		11/04/11 21:56	1330-20-7	
4-Bromofluorobenzene (S)	90%	87-113	1		11/04/11 21:56	460-00-4	
Dibromofluoromethane (S)	106%	86-112	1		11/04/11 21:56	1868-53-7	
1,2-Dichloroethane-d4 (S)	111 \%	82-119	1		11/04/11 21:56	17060-07-0	
Toluene-d8 (S)	110 \%	90-110	1		11/04/11 21:56	2037-26-5	
Preservation pH	7.0	0.10	1		11/04/11 21:56		
353.2 Nitrogen, NO2/NO3 unpres	Analytical Method: EPA 353.2						
Nitrogen, Nitrate	$0.41 \mathrm{mg} / \mathrm{L}$	0.10	1		11/02/11 09:11		

This report shall not be reproduced, except in full,
without the written consent of Pace Analytical Services, Inc..

Pace Analytical Services, Inc.
9608 Loiret Blvd.
Lenexa, KS 66219 (913)599-5665

QUALITY CONTROL DATA

Project:	KS/MO Waste Water
Pace Project No.	60109211

Pace Project No.: 60109211

QC Batch:	OEXT/31027	Analysis Method:	EPA 504.1
QC Batch Method:	EPA 504.1	Analysis Description:	GCS 504 EDB DBCP

Associated Lab Samples: $\quad 60109211001,60109211002,60109211003,60109211004,60109211005,60109211006,60109211007$
METHOD BLANK: 906554
Matrix: Water
Associated Lab Samples: $\quad 60109211001,60109211002,60109211003,60109211004,60109211005,60109211006,60109211007$
Parameter
1,2-Dibromoethane (EDB)
ug/L

QUALITY CONTROL DATA

Project: KS/MO Waste Water

Pace Project No.: 60109211

QC Batch:	MSV/41422	Analysis Method:	EPA 5030B/8260
QC Batch Method:	EPA 5030B/8260	Analysis Description:	8260 MSV Water 7 day
Associated Lab Samples:	$60109211001,60109211002,60109211003,60109211004,60109211005,60109211006,60109211007$		

METHOD BLANK: 905182		Matrix:	Vater		
Associated Lab Samples:	001, 601092	9211003, 6	09211004, 60	09211005,6010	1006, 60109211007
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND	1.0	11/04/11 17:52	
1,1,1-Trichloroethane	ug/L	ND	1.0	11/04/11 17:52	
1,1,2,2-Tetrachloroethane	ug/L	ND	1.0	11/04/11 17:52	
1,1,2-Trichloroethane	ug/L	ND	1.0	11/04/11 17:52	
1,1-Dichloroethane	ug/L	ND	1.0	11/04/11 17:52	
1,1-Dichloroethene	ug/L	ND	1.0	11/04/11 17:52	
1,1-Dichloropropene	$u g / L$	ND	1.0	11/04/11 17:52	
1,2,3-Trichlorobenzene	ug/L	ND	1.0	11/04/11 17:52	
1,2,3-Trichloropropane	ug / L	ND	2.5	11/04/11 17:52	
1,2,4-Trichlorobenzene	ug/L	ND	1.0	11/04/11 17:52	
1,2,4-Trimethylbenzene	ug/L	ND	1.0	11/04/11 17:52	
1,2-Dibromo-3-chloropropane	ug/L	ND	2.5	11/04/11 17:52	
1,2-Dibromoethane (EDB)	ug/L	ND	1.0	11/04/11 17:52	
1,2-Dichlorobenzene	ug/L	ND	1.0	11/04/11 17:52	
1,2-Dichloroethane	ug/L	ND	1.0	11/04/11 17:52	
1,2-Dichloroethene (Total)	ug/L	ND	1.0	11/04/11 17:52	
1,2-Dichloropropane	ug/L	ND	1.0	11/04/11 17:52	
1,3,5-Trimethylbenzene	ug/L	ND	1.0	11/04/11 17:52	
1,3-Dichlorobenzene	ug/L	ND	1.0	11/04/11 17:52	
1,3-Dichloropropane	ug/L	ND	1.0	11/04/11 17:52	
1,4-Dichlorobenzene	ug/L	ND	1.0	11/04/11 17:52	
2,2-Dichloropropane	ug/L	ND	1.0	11/04/11 17:52	
2-Butanone (MEK)	ug/L	ND	10.0	11/04/11 17:52	
2-Chlorotoluene	ug/L	ND	1.0	11/04/11 17:52	
2-Hexanone	ug/L	ND	10.0	11/04/11 17:52	
4-Chlorotoluene	ug/L	ND	1.0	11/04/11 17:52	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	10.0	11/04/11 17:52	
Acetone	ug/L	ND	10.0	11/04/11 17:52	
Benzene	ug/L	ND	1.0	11/04/11 17:52	
Bromobenzene	ug/L	ND	1.0	11/04/11 17:52	
Bromochloromethane	ug/L	ND	1.0	11/04/11 17:52	
Bromodichloromethane	ug/L	ND	1.0	11/04/11 17:52	
Bromoform	ug/L	ND	1.0	11/04/11 17:52	
Bromomethane	ug/L	ND	1.0	11/04/11 17:52	
Carbon disulfide	ug/L	ND	5.0	11/04/11 17:52	
Carbon tetrachloride	ug/L	ND	1.0	11/04/11 17:52	
Chlorobenzene	ug/L	ND	1.0	11/04/11 17:52	
Chloroethane	ug/L	ND	1.0	11/04/11 17:52	
Chioroform	ug/L	ND	1.0	11/04/11 17:52	
Chloromethane	ug/L	ND	1.0	11/04/11 17:52	
cis-1,2-Dichloroethene	ug/L	ND	1.0	11/04/11 17:52	
cis-1,3-Dichloropropene	ug/L	ND	1.0	11/04/11 17:52	
Dibromochloromethane	ug/L	ND	1.0	11/04/11 17:52	

This report shall not be reproduced, except in full,
without the written consent of Pace Analytical Services, Inc..

Pace Analytical Services, Inc.

QUALITY CONTROL DATA

Project: KS/MO Waste Water
Pace Project No.: 60109211
METHOD BLANK: 905182 Matrix: Water

Associated Lab Samples: 60109211001, 60109211002, 60109211003, 60109211004, 60109211005, 60109211006, 60109211007

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Dibromomethane	ug/L	ND	1.0	11/04/11 17:52	
Dichiorodifluoromethane	ug/L	ND	1.0	11/04/11 17:52	
Ethylbenzene	ug/L	ND	1.0	11/04/11 17:52	
Hexachloro-1,3-butadiene	ug/L	ND	1.0	11/04/11 17:52	
Isopropylbenzene (Cumene)	ug/L	ND	1.0	11/04/11 17:52	
Methyl-tert-butyl ether	ug/L	ND	1.0	11/04/11 17:52	
Methylene chloride	ug/L	ND	1.0	11/04/11 17:52	
n -Butylbenzene	ug/L	ND	1.0	11/04/11 17:52	
n-Propylbenzene	ug/L	ND	1.0	11/04/11 17:52	
Naphthalene	ug/L	ND	10.0	11/04/11 17:52	
p-Isopropyltoluene	ug/L	ND	1.0	11/04/11 17:52	
sec-Butylbenzene	ug/L	ND	1.0	11/04/11 17:52	
Styrene	ug/L	ND	1.0	11/04/11 17:52	
tert-Butylbenzene	ug/L	ND	1.0	11/04/11 17:52	
Tetrachloroethene	ug/L	ND	1.0	11/04/11 17:52	
Toluene	ug/L	ND	1.0	11/04/11 17:52	
trans-1,2-Dichloroethene	ug/L	ND	1.0	11/04/11 17:52	
trans-1,3-Dichloropropene	ug/L	ND	1.0	11/04/11 17:52	
Trichloroethene	ug/L	ND	1.0	11/04/11 17:52	
Trichlorofluoromethane	ug/L	ND	1.0	11/04/11 17:52	
Vinyl chloride	ug/L	ND	1.0	11/04/11 17:52	
Xylene (Total)	ug/L	ND	3.0	11/04/11 17:52	
1,2-Dichloroethane-d4 (S)	\%	107	82-119	11/04/11 17:52	
4-Bromofluorobenzene (S)	\%	97	87-113	11/04/11 17:52	
Dibromofluoromethane (S)	\%	105	86-112	11/04/11 17:52	
Toluene-d8 (S)	\%	103	90-110	11/04/11 17:52	

LABORATORY CONTROL SAMPLE: Parameter	905183					
	Units	Spike Conc	LCS Result	$\begin{gathered} \text { LCS } \\ \% \operatorname{Rec} \end{gathered}$	\% Rec Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	20	17.3	86	81-121	
1,1,1-Trichloroethane	ug/L	20	17.6	88	82-119	
1,1,2,2-Tetrachloroethane	ug/L	20	18.1	91	78-124	
1,1,2-Trichloroethane	ug/L	20	20.3	102	79-121	
1,1-Dichloroethane	ug/L	20	18.3	91	73-119	
1,1-Dichloroethene	ug/L	20	17.7	89	75-120	
1,1-Dichloropropene	ug/L	20	18.5	93	79-123	
1,2,3-Trichlorobenzene	ug/L	20	17.8	89	73-122	
1,2,3-Trichloropropane	ug/L	20	18.1	91	77-124	,
1,2,4-Trichlorobenzene	ug/L	20	17.4	87	75-120	
1,2,4-Trimethylbenzene	ug/L	20	18.7	94	77-120	
1,2-Dibromo-3-chloropropane	ug / L	20	16.7	84	69-125	
1,2-Dibromoethane (EDB)	ug/L	20	18.8	94	85-121	
1,2-Dichlorobenzene	ug/L	20	19.2	96	82-115	
1,2-Dichloroethane	ug/L	20	19.3	96	77-125	

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

QUALITY CONTROL DATA

Project: KS/MO Waste Water
Pace Project No.: 60109211

QUALITY CONTROL DATA

Project:	KS/MO Waste Water
Pace Project No.:	60109211

LABORATORY CONTROL SAMPLE:	905183					
	Units	Spike Conc.	LCS Result	$\begin{gathered} \text { LCS } \\ \% \operatorname{Rec} \end{gathered}$	\% Rec Limits	Qualifiers
Vinyl chloride	$u g / L$	20	17.5	88	57-163	
Xylene (Total)	ug/L	60	53.9	90	75-120	
1,2-Dichioroethane-d4 (S)	\%			103	82-119	
4-Bromofluorobenzene (S)	\%			104	87-113	
Dibromofluoromethane (S)	\%			101	86-112	
Toluene-d8 (S)	\%			99	90-110	

QUALITY CONTROL DATA

Project:	KS/MO Waste Water
Pace Project No.:	60109211

QC Batch:	WETA/18128	Analysis Method:	EPA 353.2
QC Batch Method:	EPA 353.2	Analysis Description:	353.2 Nitrate + Nitrite, Unpres.
Associated Lab Samples:	60109211001		

METHOD BLANK: 903260 Matrix: Water

Associated Lab Samples: 60109211001

$\frac{\text { Parameter }}{\text { Nitrogen, Nitrate }} \frac{\text { Units }}{\mathrm{mg} / \mathrm{L}} \frac{$| Blank |
| :---: |
| Result |}{}$\frac{$| Reporting |
| :---: |
| Limit |}{ND}$\frac{\text { Analyzed }}{11 / 02 / 1108: 39} \xrightarrow{\text { Qualifiers }}$

MATRIX SPIKE SAMPLE:	903263						
		60109214002	Spike	MS	MS	\% Rec	
Parameter	Units	Result	Conc.	Result	\% Rec	Limits	Qualifiers
Nitrogen, Nitrate	mg/L	ND	1.6	1.6	102	90-	

SAMPLE DUPLICATE: 903264						
		60109214008	Dup		Max	.
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Nitrogen, Nitrate		ND	ND			

Pace Analytical Services, Inc. 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

QUALITY CONTROL DATA

Project: KS/MO Waste Water

Pace Project No.: 60109211

QC Batch:	WETA18129	Analysis Method:	EPA 353.2
QC Batch Method:	EPA 353.2	Analysis Description:	353.2 Nitrate + Nitrite, Unpres.

Associated Lab Samples: $\quad 60109211002,60109211003,60109211004,60109211005,60109211006,60109211007$

METHOD BLANK: 903266	Matrix: Water				
Associated Lab Samples: 60109211002, 60109211003, 60109211004, 60109211005, 60109211006, 60109211007					
Parameter	Units	Blank	Reporting		
		Result	Limit	Analyzed	Qualifiers
Nitrogen, Nitrate	mg / L	ND	0.10	/02/11 09:03	

LABORATORY CONTROL SAMPLE: 903267							
Parameter	Units	Spike Conc.	LCS Result	$\begin{gathered} \text { LCS } \\ \% \operatorname{Rec} \end{gathered}$	\% Rec Limits	Qualifiers	
Nitrogen, Nitrate	mg / L	1.6	1.6	98	90-110		
MATRIX SPIKE SAMPLE:	903268						
		60109211007	Spike	MS	MS	\% Rec	
Parameter	Uhits	Result	Conc.	Result	\% Rec	Limits	Qualifiers
Nitrogen, Nitrate	mg/L	0.4	1.6			90-	

SAMPLE DUPLICATE: 903269

		60109238001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Nitrogen, Nitrate	mg / L	6.8	6.8		15	

QUALIFIERS

Project: KS/MO Waste Water

Pace Project No.: 60109211

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of
the sample aliquot, or moisture content.
ND - Not Detected at or above adjusted reporting limit.
J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.
MDL - Adjusted Method Detection Limit.
S - Surrogate
1,2-Diphenyihydrazine (8270 listed analyte) decomposes to Azobenzene.
Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate \% recovery and RPD values.
LCS(D) - Laboratory Control Sample (Duplicate)
MS(D) - Matrix Spike (Duplicate)
DUP - Sample Duplicate
RPD - Refative Percent Difference
NC - Not Calculable.
SG - Silica Gel - Clean-Up
U - Indicates the compound was analyzed for, but not detected.
N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270 . The result reported for
each analyte is a combined concentration.
Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

BATCH QUALIFIERS

Batch: MSV/41422
[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.
 Project Number:

$$
\begin{array}{l|l|l}
\begin{array}{l}
\text { Matrix Codes } \\
\text { MATRIX / CODE }
\end{array} & \underset{0}{E} & \underset{0}{\underline{0}} \\
\hline
\end{array}
$$ $\frac{\text { MATRIX / CODE }}{\text { Dinking Water OW }}$

 Water
Waste Water
Product Proluct
Solilisolid

old Lincoln NE 68508 EngikToilen@+cwconstrection. com | Phone: | |
| :--- | :--- |
| $40 \lambda 2167255$ | Fax: |
| Requested Due DateiTAT: | |

Section D RequiredClient Information

SAMPLE ID
(A-Z, O-9 /,
1 AGPURGE-W-10111

r
2
0
2
1
3
1
4
3
0
5
0
0
4
0

3 CNPGRGE - W- 10113

n
0
2
1
3
\vdots
4
3
2
3
2
2
\vdots

7 SVPGRGE-W-10117
${ }^{7}$ S S
8
9
∞ the 2011 Year

ORIGINAL

Sample Condition Upon Receipt

Client Name: TCW Const.
Project \# 601092.11

Optional	
Proj. Due Date: Proj. Name:	$11 / 1$

Chain of Custody present:	Whes	-no	- N/A	1.		
Chain of Custody filled out:	DYes	\square No	-N/A	2.		
Chain of Custody relinquished:	FYes	$\square \mathrm{No}$	-N/A	3.		
Sampler name \& signature on COC :	dyes [- ${ }^{\text {No }}$	-N/A	4.		
Samples arrived within holding time:	\#Yes [\square No	- N/A	5.		
Short Hold Time analyses (<72hr):	\% Yes	- No	IN/A	6. NO_{3}		
Rush Turn Around Time requested:	$\square \mathrm{Yes}$,	ENo	- N/A	7.		
Sufficient volume:	\#Yes [$\square \mathrm{No}$	IINA	8.		
Correct containers used: -Pace containers used:	\square Yes 7 Yes	- N 。 $\square \text { No }$	[iN/A ■n/a	9.		
Containers intact:	Wres	- ${ }^{\text {no }}$	-N/A	10.		
Unpreserved 5035A soils frozen w/in 48hrs?	$\square \mathrm{Yes}$ [$\square \mathrm{No}$	¢ ${ }^{\text {N/A }}$	11.		
Filtered volume received for dissolved tests	$\square \mathrm{Yes}$ [$\square \mathrm{No}$	ERNA	12.		
Sample labels match COC: -Includes date/time/ID/analyses Matrix:	EYYes water		■N/A	13.		
All containers needing preservation have been checked. All containers needing preservation are found to be in compliance with EPA recommendation.		\square No ■No	$\psi_{\mathrm{N} / \mathrm{A}}$ 7 7 N/A	14.		
Exceptions: VOA, coliform, TOC, O\&G, WI-DRO (water), Phenolics	Ores			Initial when completed	Lot \# of added preservative	
Trip Blank present: Pace Trip Blank lot \# (if purchased): \qquad Mh	$\square \mathrm{Yes}$	ZiNo	$\square \mathrm{N} / \mathrm{A}$	15.		
Headspace in VOA vials ($>6 \mathrm{~mm}$)	$\square \mathrm{Yes} 7$	¢No	[INA	16.		
Project sampled in USDA Regulated Area:	DYes	口no	[7NA	17. List State:		Q

Client Notification/Resolution: \quad Copy COC to Client? $\quad \mathrm{Y} /(\mathrm{N} \quad$ Field Data Required?
Person Contacted:
Comments/ Resolution:

[^1]
Supplement 2:

Sample Documentation from TestAmerica Laboratories, Inc.

ANALYTICAL REPORT

Job Number: 200-7268-1
SDG Number: 200-7268
Job Description: Barnes (200-7268)
Contract Number: 1E-30401
For:
Argonne National Laboratory
9700 South Cass Avenue
Building 203
Office B-149
Argonne, IL 60439
Attention: Mr. Clyde Dennis

The test results in this report relate only to sample(s) as received by the laboratory. These test results were derived under a quality system that adheres to the requirements of NELAC. Pursuant to NELAC, this report may not be produced in full without written approval from the laboratory

Table of Contents

Cover Title Page 1
Report Narrative 4
Case Narrative 4
Qualifier Definition 6
External Chain of Custody 7
Internal Chain of Custody 8
Shipping Documentation 10
Airbills (if Applicable) 11
Sample Receipt and Log In Check List 12
Methodology Review 14
QC Summary - SOM01.2 Volatiles-Trace 15
QC Summary - SOM01.2 Volatiles-Trace 15
Deuterated Monitoring Compound Summary 15
Method Blank 17
GC/MS Instrument Performance Check 18
Internal Standard Area and RT Summary 20
Sample Data - SOM01.2 Volatiles-Trace 21
Sample Data - SOM01.2 Volatiles-Trace 21
BAMW13S-W-28814 21
BAMW14S-W-28816 24
BAMW17-W-28817 27
BAQCTB-W-28825 30
Standards - SOM01.2 Volatiles-Trace 33
Standards - SOM01.2 Volatiles-Trace 33
Initial Calibration Data 33
CCV Data, including closing CCV 36

Table of Contents

Raw Qc Data - SOM01.2 Volatiles-Trace 42
Raw Qc Data - SOM01.2 Volatiles-Trace 42
Raw Qc Data - SOM01.2 Volatiles-Trace 42
Blank Data 42

CASE NARRATIVE

Client: Argonne National Laboratory

Project: Barnes (200-7268)

Report Number: 200-7268-1

Abstract

Enclosed is the data set for the referenced project work. With the exceptions noted as flags or footnotes, standard analytical protocols were followed in performing the analytical work and the applied control limits were met.

Calculations were performed before rounding to avoid round-off errors in calculated results. All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

\section*{Receipt}

The samples were received on 09/30/2011. Documentation of the condition of the samples at the time of their receipt and any exception to the laboratory's Sample Acceptance Policy is documented in the Shipping and Receiving section of this submittal. The samples, as received, were not acid preserved. On that basis, the laboratory did provide for the analytical work to be performed within seven days of sample collection.

SOM01.2 Volatile Organics (Trace Level Water)

A storage blank was prepared for volatile organics analysis, and stored in association with the storage of the samples. That storage blank, identified as VHBLK01, was carried through the holding period with the samples, and analyzed.

Each sample in the sample set was analyzed without a dilution. Each of the analyses associated with the sample set exhibited an acceptable internal standard performance. There was an acceptable recovery of each deuterated monitoring compound (DMC) in the analysis of the method blank associated with the analytical work, and in the analysis of the storage blank associated with the sample set. The analysis of the samples in this sample set did meet the technical acceptance criteria specific to DMC recoveries, although not all DMC recoveries were within the control range in each analysis. The technical acceptance criteria does provide for the recovery of up to three DMCs to fall outside of the control range in the analysis of field samples. Matrix spike and matrix spike duplicate analyses were not performed on samples in this sample set. Trace concentrations of acetone, carbon disulfide, toluene, 1,3-dichlorobenzene, and 1,2,4-trichlorobenzene were identified in the analysis of the method blank associated with the analytical work. The concentration of each analyte in that analysis was below the established reporting limit, and the analysis did meet the technical acceptance criteria for a compliant method blank analysis. A trace concentration of acetone was identified in the analysis of the storage blank associated with the sample set. The concentration of acetone in that analysis was below the established reporting limit, and the analysis did meet the technical acceptance criteria for a compliant storage blank analysis. Present in the method blank and storage blank analyses was a non-target constituent that represents a compound that is related to the DMC formulation. The fact that the presence of this compound is not within the laboratory's control is at issue. The derived results for that compound have been qualified with an "X" qualifier to reflect the source of the contamination.

The responses for each of the target analytes met the relative standard deviation criterion in the initial calibration. The response for each target analyte met the percent difference criterion in the opening/continuing calibration check acquisition. The response for each target analyte met the 50.0 percent difference criterion in the closing calibration check acquisition.

The primary quantitation mass for methylcyclohexane that is specified in the Statement of Work is mass 83 . The laboratory did identify a contribution to mass 83 from 1,2-dichloropropane- d_{6}, one of the deuterated monitoring compounds (DMCs). The laboratory did change the primary quantitation mass assignment to mass 55 for the quantification of methylcyclohexane.

Manual integration was employed in deriving certain of the analytical results. The values that have been derived from manual integration are qualified on the quantitation reports. Extracted ion current profiles for each manual integration are included in the data package, and further documented at the end of this submittal.

DATA REPORTING QUALIFIERS

Client: Argonne National Laboratory
Job Number: 200-7268-1
Sdg Number: 200-7268

Lab Section

Qualifier

Description
GC/MS VOA

U

J

J
X
*

B

Analyzed for but not detected.
Indicates an Estimated Value for TICs
Indicates an estimated value.
See case narrative notes for explanation of the ' X ' flag
Surrogate exceeds the control limit
The analyte was found in an associated blank, as well as in the sample.

TestAmerica Burlington
INTERNAL CHAIN OF CUSTODY LOG (ICOC)

${ }^{1}$ Extract, digestate, or any other prepared sample that is no longer in original sample container ${ }^{2}$ Miliftary Time
TestAmerica Burlington
INTERNAL CHAIN OF CUSTODY LOG (ICOC)

${ }^{\circ}{ }^{1}$ Extract, digestate, or any other prepared sample that is no longer in original sample container

Shipping and Receiving Documents

Login Sample Receipt Checklist

Client: Argonne National Laboratory
Job Number: 200-7268-1 SDG Number: 200-7268

Login Number: 7268
List Source: TestAmerica Burlington
List Number: 1
Creator: Holt, Jamie

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	True	NO CUSTODY SEAL NUMBERS
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	$0.6^{\circ} \mathrm{C}$, IR GUN ID: $96, \mathrm{CF}: 0$
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	Sample volumes received unpreserved.
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is $<6 \mathrm{~mm}$ ($1 / 4^{\prime \prime}$) in diameter.	True	.
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Sample Login Acknowledgement

Job 200-7268-1

Client Job Description:	Barnes (200-7268)	Report To:
Purchase Order \#:	1E-30401	Argonne National Laboratory
Work Order \#:	$1 \mathrm{E}-30401$	Jorge Alvarado
Project Manager:	Kirk F Young	9700 South Cass Avenue
Job Due Date:	$10 / 14 / 2011$	Building 203
Job TAT:	14 Days	Office B-149
Max Deliverable Level:	N	Argonne, IL 60439
		Bill To:
Earliest Deliverable Due:	$10 / 14 / 2011$	Argonne National Laboratory
		Accounts Payable
		Chief Financial Offices 9700 S. Cass Ave. Building 201
		Argonne, IL 60439

Login 200-7268

Sample Receipt:
9/30/2011 10:20:00 AM
FedEx Priority Overnight

e\#	Client Sample ID
Method	Method Description / Work Location
200-7268-1	BAMW13S-W-28814
SOM01.2_Vol_Tr	r SOM01.2 Trace Volatile Organics / In-Lab
200-7268-2	BAMW14S-W-28816
SOM01.2_Vol_	I SOM01.2 Trace Volatile Organics / In-Lab
200-7268-3 B	BAMW17-W-28817
SOM01.2_ Vol_Tr	r SOM01.2 Trace Volatile Organics / In-Lab
200-7268-4 B	BAQCTB-W-28825
SOM01.2_Vol_Tr	r SOM01.2 Trace Volatile Organics / In-Lab
200-7268-5	VHBLK01

Number of Coolers: $\quad 1$
Cooler Temperature(s) (\mathbf{C}°): 0.6 ;

Date Sampled	Matrix	
	Rpt Basis	Dry/Wet**
9/28/2011 12:00:00 AM	Water	
	Total	Wet
9/28/2011 12:00:00 AM	Water	
	Total	Wet
9/28/2011 12:00:00 AM	Water	
	Total	Wet
9/28/2011 12:00:00 AM	Water	
	Total	Wet
9/30/2011 2:30:00 PM	Water	
	Total	Wet

[^2]** Wet/Dry indicates whether the reported results will be corrected forpacequare. Bonteft, ind based on sample Wet weight or Dry

METHODOLOGY SUMMARY

| Laboratory: | TestAmerica Laboratories | Project No: |
| :--- | :--- | :--- | :--- |
| Location: | South Burlington, Vermont | SDG No: 200-7268 |
| VOA | | |
| Volatile Organics Trace - USEPA CLP SOM01.2 | | |

2A - FORM II VOA-1
WATER VOLATILE DEUTERATED MONITORING COMPOUND RECOVERY
 Level: (TRACE or LOW) TRACE

VDMC1	$(V C L)=$ Vinyl Chloride-d3
VDMC2	$(C L A)=$ Chloroethane-d5
VDMC3	$(D C E)=1,1-D i c h l o r o e t h e n e-d 2$
VDMC4	$(B U T)=2-$ Butanone-d5
VDMC5	$(C L F)=$ Chloroform-d
VDMC6	$(D C A)=1,2-D i c h l o r o e t h a n e-d 4$
VDMC7	$(B E N)=$ Benzene-d 6

QC LIMITS
$(65-131)$
$(71-131)$
$(55-104)$
$(49-155)$
$(78-121)$
$(78-129)$
$(77-124)$

[^3]Lab Name: TESTAMERICA BURLINGTON Contract: 8E-00302
Lab Code: STLV Case No.: BARNES Mod. Ref No.: SDG No.: $200-7268$

Level: (TRACE or LOW) TRACE

	EPA SAMPLE NO.	$\begin{aligned} & \hline \text { VDMC8 } \\ & \text { (DPA) \# } \end{aligned}$	$\begin{gathered} \hline \text { VDMC9 } \\ \text { (TOL) } \# \end{gathered}$	$\begin{aligned} & \text { VDMC10 } \\ & \text { (TDP) \# } \end{aligned}$	VDMC11 (HEX) \#	$\begin{aligned} & \text { VDMC12 } \\ & \text { (TCA) \# } \end{aligned}$	VDMC13 (DCZ) \#	OTHER	$\begin{aligned} & \text { TOT } \\ & \text { OUT } \end{aligned}$
01	VBLKDG	96	89	86	93	92	96		0
02	BAQCTB-W-28825	97	89	88	95	94	90		0
03	BAMW13S-W-2881 4	94	87	82	177 *	88	90		2
04	BAMW145-W-2881 6	88	82	76	171 *	82	88		2
05	BAMW17-W-28817	93	87	81	174 *	89	93		2
06	VHBLK01	88	81	76	81	85	92		0

VDMC8	(DPA)	= 1,2-Dichloropropane-d6
VDMC9	(TOL)	= Toluene-d8
VDMC10	(TDP)	= trans-1,3-Dichloropropene-d4
VDMC11	(HEX)	$=2-H e x a n o n e-d 5$
VDMC12	(TCA)	= 1,1,2,2-Tetrachloroethane-d2
VDMC13	(DCZ)	= 1,2-Dichlorobenzene- d 4

QC LIMITS
$(79-124)$
$(77-121)$
$(73-121)$
$(28-135)$
$(73-125)$
$(80-131)$

\# Column to be used to flag recovery values

* Values outside of contract required QC limits

Report 1,4-Dioxane-d8 for Low-Medium VOA analysis only

4A - FORM IV VOA
EPA SAMPLE NO.
VOLATILE METHOD BLANK SUMMARY \square

	EPA SAMPLE NO.	$\begin{gathered} \text { LAB } \\ \text { SAMPLE ID } \end{gathered}$	$\begin{aligned} & \text { LAB } \\ & \text { FILE ID } \end{aligned}$	TIME ANALYZED
01	$\begin{aligned} & \text { BAQCTB-W-288 } \\ & 25 \end{aligned}$	200-7268-4	DHSD05.D	1010
02	$\begin{aligned} & \text { BAMW13S-W-28 } \\ & 814 \end{aligned}$	200-7268-1	DHSD06.D	1035
03	$\begin{aligned} & \text { BAMW145-W-28 } \\ & 816 \end{aligned}$	200-7268-2	DHSD07.D	1100
04	$\begin{aligned} & \text { BAMW17-W-288 } \\ & 17 \end{aligned}$	200-7268-3	DHSD08.D	1125
05	VHBLK01	200-7268-5	DHSD15.D	1456

COMMENTS:

> 5A - FORM V VOA VOLATILE ORGANICS INSTRUMENT
> PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

EPA SAMPLE NO.

Lab Name: TESTAMERICA BURLINGTON Case No.: BARNES Mod. Ref No.: Contract: 8E-00302

Lab Code: STLV Lab File Id: DHSO2.D

Instrument Id: D.i
GC Column: DB-624
DB-624 ID: 0.20 \qquad (mm)

m / e	ION ABUNDANCE CRITERIA	$\%$ RELATIVE ABUNDANCE
50	$15.0-40.0 \%$ of mass 95	20.6
75	$30.0-80.0 \%$ of mass 95	43.2
95	Base peak, 100% relative abundance	100
96	$5.0-9.0 \%$ of mass 95	7.1
173	Less than 2.0% of mass 174	$0.4(1) 0.6) 1$
174	$50.0-120 \%$ of mass 95	71.4
175	$5.0-9.0 \%$ of mass 174	$5.1 \quad(7.1) 1$
176	$95.0-101 \%$ of mass 174	$69.8(97.7) 1$
177	$5.0-9.0 \%$ of mass 176	$4.5(16.4) 2$

l - Value is \%mass 174 2 Value is \%mass 176

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED	
01	VSTD0.5DB	IC $200-25802 / 5$	DHSO5.D	$09 / 22 / 2011$	0848
02	VSTD001DB	IC $200-25802 / 6$	DHS06.D	$09 / 22 / 2011$	0913
04	VSTD005DB	ICIS $200-25802 / 7$	DHSO7.D	$09 / 22 / 2011$	0938
05	VSTD010DB	IC $200-25802 / 8$	DHS08.D	$09 / 22 / 2011$	1002
	VSTD020DB	IC $200-25802 / 9$	DHS09.D	$09 / 22 / 2011$	1038

5A - FORM V VOA
VOLATILE ORGANICS INSTRUMENT
PEREORMANCE CHECK
BROMOFLUOROBENZENE (BEB)

EPA SAMPLE NO. ORGANICS INSTRUMENT
(BEB)
\square
BEBDG

Lab Name: TESTAMERICA BURLINGTON
Contract: 8E-00302
Lab Code: STLV Case No.: BARNES Mod. Ref No. \qquad SDG No.: 200-7268
Lab.File Id: DHSD01.D
Instrument Id: D.i
GC Column: DB-624 ID: 0.20
(mm)

m / e	ION ABUNDANCE CRITERIA	\% RELATIVE ABUNDANCE
50	15.0-40.0\% of mass 95	25.7
75	$30.0-80.0 \%$ of mass 95	42.9
95	Base peak, 100\% relative abundance	100
96	$5.0-9.0 \%$ of mass 95	6.8
173	Less than 2.0\% of mass 174	0.4 (0.5)1
174	50.0-120\% of mass 95	82.2
175	$5.0-9.0 \%$ of mass 174	$5.5(6.7) 1$
176	95.0 - 101\% of mass 174	78.2 (95.2)1
177	5.0-9.0\% of mass 176	$4.7(6.0) 2$

1 - value is \%mass $174 \quad 2$ - Value is \%mass 176

	$\begin{gathered} \text { EPA } \\ \text { SAMPLE NO. } \end{gathered}$	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
01	VSTD005DG	CCVIS 200-26126/2	DHSD02.D	10/03/2011	0854
02	VBLKDG	MB 200-26126/3	DHSD03. D	10/03/2011	0919
03	$\begin{aligned} & \text { BAQCTB-W-2 } \\ & 8825 \end{aligned}$	200-7268-4	DHSD05.D	10/03/2011	1010
04	$\begin{aligned} & \text { BAMW13S-W- } \\ & 28814 \end{aligned}$	200-7268-1	DHSD06.D	10/03/2011	1035
05	$\begin{aligned} & \text { BAMW145-W- } \\ & 28816 \end{aligned}$	200-7268-2	DHSD07.D	10/03/2011	1100
06	$\begin{aligned} & \text { BAMW17-W-2 } \\ & 8817 \\ & \hline \end{aligned}$	200-7268-3	DHSD08. ${ }^{\text {D }}$	10/03/2011	1125
07	VHBLK01	200-7268-5	DHSD15.D	10/03/2011	1456
08	VSTD005GD	CCVC 200-26126/16	DHSD16.D	10/03/2011	1521

Lab Name: TESTAMERICA BURLINGTON
Lab Code: STLV Case No.: BARNES Mod. Ref No.:

Contract: 8E-00302

GC Column: DB-624 \qquad ID: 0.20

EPA Sample No. (VSTD\#\#\#\#\#): VSTD005DG

Lab File ID (Standard): DHSDO2.D
Instrument ID: D.i

		$\begin{gathered} \hline \text { IS1 (CBZ) } \\ \text { AREA } \end{gathered}$	RT \#	$\begin{gathered} \text { IS2 (DFB) } \\ \text { AREA } \end{gathered}$	RT \#	$\begin{gathered} \text { IS3 (DCB) } \\ \text { AREA } \end{gathered}$	RT \#
	12 HOUR STD	203303	8.73	239176	5.37	100305	11.56
	UPPER LIMIT	284624	9.06	334846	5.70	140427	11.89
	LOWER LIMIT	121982	8.40	143506	5.04	60183	11.23
	EPA SAMPLE NO.						
01	VBLKDG	192667	8.73	223517	5.37	82863	11.56
02	BAQCTB-W-28825	175366	8.73	204518	5.37	78960	11.56
03	BAMW13S-W-2881 4	174948	8.73	205714	5.37	72759	11.56
04	BAMW145-W-2881 6	184082	8.73	216076	5.37	75905	11.56
05	BAMW17-W-28817	177767	8.73	204092	5.37	72714	11.56
06	VHBLK01	163937	8.73	184959	5.37	66069	11.56

```
IS1 (CBZ) = Chlorobenzene-d5
IS2 (DFB) = 1,4-Difluorobenzene
IS3 (DCB) = 1,4-Dichlorobenzene-d4
AREA UPPER LIMIT = 140% (Trace Volatiles) of internal standard area
AREA LOWER LIMIT = 60% (Trace Volatiles) of internal standard area
RT UPPER LIMIT = + 0.33 (Trace Volatiles) minutes of internal standard RT
RT LOWER LIMIT = - 0.33 (Trace Volatiles) minutes of internal standard RT
```

\# Column used to flag values outside contract required QC limits with an asterisk.

VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: TESTAMERICA BURLINGTON Contract: 8E-00302

Lab Code: STLV Case No.: BARNES Mod. Ref No. \qquad SDG No.: 200-7268
Matrix: (SOIL/SED/WATER) Water

Sample wt/vol: 25.0 $(\mathrm{g} / \mathrm{mL}) \mathrm{mL}$
Leve1: (TRACE/LOW/MED) TRACE
\% Moisture: not dec.
GC Column: DB-624
\qquad

Soil Extract Volume: \qquad (uL)
Purge Volume: 25.0 \qquad (mL)
Lab Sample ID: $\frac{200-7268-1}{}$
Lab File ID: $\frac{\text { DHSD06.D }}{0 / 30 / 2011}$
Date Received: $\quad \underline{10 / 03 / 2011}$
Date Analyzed:
Dilution Factor: 1.0

Soil Aliquot Volume: \qquad (uL)

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
75-71-8	Dichlorodifluoromethane	0.50	U
74-87-3	Chloromethane	0.50	U
75-01-4	Vinyl chloride	0.50	U
74-83-9	Bromomethane	0.50	U
75-00-3	Chloroethane	0.50	U
75-69-4	Trichlorofluoromethane	0.50	U
75-35-4	1,1-Dichloroethene	0.50	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	U
67-64-1	Acetone	1.9	J B
75-15-0	Carbon disulfide	0.50	U
79-20-9	Methyl acetate	0.50	U
75-09-2	Methylene Chloride	0.50	U
156-60-5	trans-1,2-Dichloroethene	0.50	U
1634-04-4	Methyl tert-butyl ether	0.50	U
75-34-3	1,1-Dichloroethane	0.50	U
156-59-2	cis-1,2-Dichloroethene	0.50	U
78-93-3	2-Butanone	5.0	U
74-97-5	Bromochloromethane	0.50	U
67-66-3	Chloroform	0.69	
71-55-6	1,1,1-Trichloroethane	0.50	U
110-82-7	Cyclohexane	0.50	U
56-23-5	Carbon tetrachloride	8.3	
71-43-2	Benzene	0.50	U
107-06-2	1,2-Dichloroethane	0.50	U

Lab Name: TESTAMERICA BURLINGTON Contract: 8E-00302

Lab Code: STLV Case No.: BARNES Mod. Ref No. \qquad SDG No.: 200-7268

Matrix: (SOIL/SED/WATER)	Water	
Sample wt/vol: $\frac{25.0}{(\mathrm{~g} / \mathrm{mL})} \mathrm{mL}$		
Level: (TRACE/LOW/MED)	TRACE	
\% Moisture: not dec.		

GC Column: DB-624 ID: 0.20 (mm)

Soil Extract Volume: \qquad (uL) (mL)

Purge Volume: 25.0
Lab Sample ID: $\frac{200-7268-1}{}$
Lab File ID: DHSD06.D
Date Received: $\underline{09 / 30 / 2011}$
Date Analyzed: $10 / 03 / 2011$
Dilution Factor: 1.0

Soil Aliquot Volume: (uL)

| CAS NO. | COMPOUND | CONCENTRATION UNITS: |
| :--- | :--- | ---: | :---: |
| (ug/L or ug/kg) ug / L | | | Q

Matrix: (SOIL/SED/WATER) Water

Lab Sample ID: 200-7268-1
Sample wt/vol: $25.0 \quad(\mathrm{~g} / \mathrm{mL}) \mathrm{mL}$
Lab File ID: DHSD06.D
Level: (TRACE or LOW/MED) TRACE
Date Received: 09/30/2011
Date Analyzed: 10/03/2011
\% Moisture: not dec. \qquad
GC Column: DB-624 ID: 0.20 (mm
Soil Extract Volume: (uL)

CONCENTRATION UNITS: (ug/L or $\mathrm{ug} / \mathrm{kg}$) ug/L
Soil Aliquot Volume: \qquad (uL)

Purge Volume: 25.0 (mL)

	CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
01		Unknown	6.69	3.0	B X J
02	E966796 ${ }^{1}$	Total Alkanes	N/A		

1 EPA-designated Registry Number.

1A - FORM I VOA-1
EPA SAMPLE NO.
VOLATILE ORGANICS ANALYSIS DATA SHEET
Lab Name: TESTAMERICA BURLINGTON
Lab Code: STLV Case No.: BARNES Mod. Ref No

Contract: 8E-00302
Lab Code: STLV Case No.: BARNES Mod. Ref No.: \qquad SDG No.: 200-7268
Matrix: (SOIL/SED/WATER) Water

Sample wt/vol: $25.0(\mathrm{~g} / \mathrm{mL}) \mathrm{mL}$
Level: (TRACE/LOW/MED) TRACE
\% Moisture: not dec. \qquad

GC Column: DB-624 ID: 0.20 (mm)

Soil Extract Volume:
(uL)
Lab Sample ID: 200-7268-2
Lab File ID: DHSD07.D
Date Received: 09/30/2011
Date Analyzed: 10/03/2011
Dilution Factor: 1.0
Soil Aliquot Volume:
(uL)
Purge Volume: 25.0 (mL)

| CAS NO. | COMPOUND | CONCENTRATION UNITS: | (ug/L or $\mathrm{ug} / \mathrm{kg}$) ug / L |
| :--- | :--- | ---: | :--- | Q

Report 1,4-Dioxane for Low-Medium VOA analysis only

Contract: 8E-00302
Lab Code: STLV Case No.: BARNES Mod. Ref No. \qquad SDG No.: 200-7268

Matrix: (SOIL/SED/WATER)	Water
Sample wt/vol: 25.0	$(\mathrm{~g} / \mathrm{mL}) \mathrm{mL}$

Level: (TRACE/LOW/MED) TRACE
\% Moisture: not dec.
GC Column: DB-624
\qquad ID: 0.20 (mm)

Soil Extract Volume: \qquad

Lab Sample ID: 200-7268-2
Lab File ID: DHSD07.D
Date Received: 09/30/2011
Date Analyzed: 10/03/2011
Dilution Factor: 1.0
Soil Aliquot Volume: \qquad (uL)

Purge Volume: 25.0 (mL)

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug / L or $\mathrm{ug} / \mathrm{kg}$) ug/L	Q
79-01-6	Trichloroethene	0.50	U
108-87-2	Methylcyclohexane	0.50	U
78-87-5	1,2-Dichloropropane	0.50	U
75-27-4	Bromodichloromethane	0.50	U
10061-01-5	cis-1,3-Dichloropropene	0.50	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	0.0071	J B
10061-02-6	trans-1,3-Dichloropropene	0.50	U
79-00-5	1,1,2-Trichloroethane	0.50	U
127-18-4	Tetrachloroethene	0.50	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	0.50	U
106-93-4	1,2-Dibromoethane	0.50	U
108-90-7	Chlorobenzene	0.50	U
100-41-4	Ethylbenzene	0.50	U
95-47-6	o-Xylene	0.50	U
179601-23-1	m, p-xylene	0.50	U
100-42-5	Styrene	0.50	U
75-25-2	Bromoform	0.50	U
98-82-8	Isopropylbenzene	0.50	U
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U
541-73-1	1,3-Dichlorobenzene	0.50	U
106-46-7	1,4-Dichlorobenzene	0.50	U
95-50-1	1,2-Dichlorobenzene	0.50	U
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U
120-82-1	1,2,4-Trichlorobenzene	0.50	U
87-61-6	1,2,3-Trichlorobenzene	0.50	U

1J - FORM I VOA-TIC
EPA SAMPLE NO.
VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS
Lab Name: TESTAMERICA BURLINGTON
Contract: 8E-00302

Lab Code: STLV Case No.: BARNES Mod. Ref No.: \qquad
Matrix: (SOIL/SED/WATER) Water

Sample wt/vol: $25.0 \quad(\mathrm{~g} / \mathrm{mL}) \mathrm{mL}$
Level: (TRACE or LOW/MED) TRACE
Lab Sample ID: 200-7268-2
Lab File ID: DHSD07.D
\% Moisture: not dec.
Date Received: 09/30/2011
Date Analyzed: 10/03/2011
GC Column: DB-624 ID: 0.20 (mm)
Soil Extract Volume: \qquad (uL)

Dilution Factor: 1.0

CONCENTRATION UNITS: (ug/L or $u g / \mathrm{kg}$) ug/L
Soil Aliquot Volume: \qquad (uL)

Purge Volume: 25.0 (m.L)

	CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
01		Unknown	6.69	2.8	B X J
02	E9667961	Total Alkanes	N/A		

Lab Name: TESTAMERICA BURLINGTON Contract: 8E-00302

Lab Code: STLV Case No. BARNES Mod. Ref No.: \qquad SDG No.: 200-7268
Matrix: (SOIL/SED/WATER) Water
Lab Sample ID: 200-7268-3

Sample wt/vol: 25.0
$(\mathrm{g} / \mathrm{mL}) \mathrm{mL}$
Level: (TRACE/LOW/MED) TRACE
\% Moisture: not dec. \qquad
(mm)

Soil Extract Volume: ID: 0.20
(uL)
Lab File ID: $\frac{\text { DHSD08.D }}{}$
Date Received: $\frac{09 / 30 / 2011}{10 / 03 / 2011}$
Date Analyzed: $\frac{1.0}{\text { Dilution Factor: }}$
\qquad Soil Aliquot Volume: \qquad (uL)

Purge Volume: 25.0 (mL)

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug / L or $\mathrm{ug} / \mathrm{kg}$) ug/L	Q
75-71-8	Dichlorodifluoromethane	0.50	U
74-87-3	Chloromethane	0.50	U
75-01-4	Vinyl chloride	0.50	U
74-83-9	Bromomethane	0.50	U
75-00-3	Chloroethane	0.50	U
75-69-4	Trichlorofluoromethane	0.50	U
75-35-4	1,1-Dichloroethene	0.50	U
76-13-1	1,1,2-Trichloro-l,2,2-trifluoroethane	0.50	U
67-64-1	Acetone	5.0	U
75-15-0	Carbon disulfide	0.50	U
79-20-9	Methyl acetate	0.50	U
75-09-2	Methylene Chloride	0.50	U
156-60-5	trans-l,2-Dichloroethene	0.50	U
1634-04-4	Methyl tert-butyl ether	0.50	U
75-34-3	1,1-Dichloroethane	0.50	U
156-59-2	cis-1,2-Dichloroethene	0.50	U
78-93-3	2-Butanone	5.0	U
74-97-5	Bromochloromethane	0.50	U
67-66-3	Chloroform	0.50	U
71-55-6	1,1,1-Trichloroethane	0.50	U
110-82-7	Cyclohexane	0.50	U
56-23-5	Carbon tetrachloride	0.33	J
71-43-2	Benzene	0.50	U
107-06-2	1,2-Dichloroethane	0.50	U

Lab Name: TESTAMERICA BURLINGTON
Lab Code: STLV Case No.: BARNES Mod. Ref No.
Contract: $8 \mathrm{E}-00302$
Matrix: (SOIL/SED/WATER) Water

Sample wt/vol: $25.0 \quad(\mathrm{~g} / \mathrm{mL}) \mathrm{mL}$
Level: (TRACE/LOW/MED) TRACE
\% Moisture: not dec.
GC Column: DB-624 ID: 0.20 (mm)

Soil Extract Volume: (uL)
\qquad SDG No.: 200-7268

Lab Sample ID: 200-7268-3
Lab File ID: DHSD08.D
Date Received: 09/30/2011
Date Analyzed: 10/03/2011
Dilution Factor: 1.0
Soil Aliquot Volume: \qquad (uL)

Purge Volume: 25.0 (mL)

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug / L or $\mathrm{ug} / \mathrm{kg}$) ug/L	Q
79-01-6	Trichloroethene	0.50	U
108-87-2	Methylcyclohexane	0.50	U
78-87-5	1,2-Dichloropropane	0.50	U
75-27-4	Bromodichloromethane	0.50	U
10061-01-5	Cis-1,3-Dichloropropene	0.50	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	0.0070	J B
10061-02-6	trans-1,3-Dichloropropene	0.50	U
79-00-5	1,1,2-Trichloroethane	0.50	U
127-18-4	Tetrachloroethene	0.50	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	0.50	U
106-93-4	1,2-Dibromoethane	0.50	U
108-90-7	Chlorobenzene	0.50	U
100-41-4	Ethylbenzene	0.50	U
95-47-6	o-xylene	0.50	U
179601-23-1	m, p-xylene	0.50	U
100-42-5	Styrene	0.50	U
75-25-2	Bromoform	0.50	U
98-82-8	Isopropylbenzene	0.50	U
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U
541-73-1	1,3-Dichlorobenzene	0.50	U
106-46-7	1,4-Dichlorobenzene	0.50	U
95-50-1	1,2-Dichlorobenzene	0.50	U
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U
120-82-1	1,2,4-Trichlorobenzene	0.50	U
87-61-6	1,2,3-Trichlorobenzene	0.50	U

1A - FORM I VOA-1
EPA SAMPLE NO.
VOLATILE ORGANICS ANALYSIS DATA SHEET

Contract: 8E-00302

Matrix: (SOIL/SED/WATER)	Water
Sample wt/vol: 25.0	$(\mathrm{g} / \mathrm{mL}) \mathrm{mL}$

\qquad SDG No.: 200-7268

Level: (TRACE/LOW/MED) TRACE
\% Moisture: not dec.
GC Column: $\mathrm{DB}-624$
ID: 0.20 (mma)
Soil Extract Volume: (uL)
Lab Sample ID: $\underline{200-7268-4}$
Lab File ID: DHSD05.D
Date Received: $\frac{09 / 30 / 2011}{}$
Date Analyzed: $\frac{10 / 03 / 2011}{}$
Dilution Factor: 1.0
Soil Aliquot Volume:

Purge Volume: 25.0 (mL)

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or $\mathrm{ug} / \mathrm{kg}$) ug/L	Q
$75-71-8$	Dichlorodifluoromethane	0.50	U
$74-87-3$	Chloromethane	0.50	U
$75-01-4$	Vinyl chloride	0.50	U
$74-83-9$	Bromomethane	0.50	U
$75-00-3$	Chloroethane	0.50	U
$75-69-4$	Trichlorofluoromethane	0.50	U
$75-35-4$	$1,1-$ Dichloroethene	0.50	U
$76-13-1$	1,1,2-Trichloro-1,2,2-tri.fluoroethane	0.50	U
$67-64-1$	Acetone	4.6	J
$75-15-0$	Carbon disulfide	0.056	J B
$79-20-9$	Methyl acetate	0.50	U
$75-09-2$	Methylene Chloride	0.50	U
$156-60-5$	trans-1,2-Dichloroethene	0.50	U
$1634-04-4$	Methyl tert-butyl ether	0.50	U
$75-34-3$	$1,1-$ Dichloroethane	0.50	U
$156-59-2$	Cis-1,2-Dichloroethene	0.50	U
$78-93-3$	2-Butanone	5.0	U
$74-97-5$	Bromochloromethane	0.50	U
$67-66-3$	Chloroform	0.50	U
$71-55-6$	$1,1, l-T r i c h l o r o e t h a n e$	0.50	U
$110-82-7$	Cyclohexane	0.50	U
$56-23-5$	Carbon tetrachloride	0.50	U
$71-43-2$	Benzene	0.078	J
$107-06-2$	$1,2-$ Dichloroethane	0.50	U

Lab Name: TESTAMERICA BURLINGTON Contract: 8E-00302

Lab Code: STLV Case No.: BARNES Mod. Ref No.: \qquad SDG No.: 200-7268
Matrix: (SOIL/SED/WATER) water

Sample wt/vol: $25.0 \quad(\mathrm{~g} / \mathrm{mL}) \mathrm{mL}$
Level: (TRACE/LOW/MED) TRACE
\% Moisture: not dec.
GC Column: DB-624 ID: 0.20
(mm)

Soil Extract Volume: \qquad (uL) (mL L)
Purge Volume: 25.0 -

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug / L or $\mathrm{ug} / \mathrm{kg}$) ug/L	Q
79-01-6	Trichloroethene	0.50	U
108-87-2	Methylcyclohexane	0.50	U
78-87-5	1,2-Dichloropropane	0.50	U
75-27-4	Bromodichloromethane	0.50	U
10061-01-5	cis-1,3-Dichloropropene	0.50	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	0.53	B
10061-02-6	trans-1,3-Dichloropropene	0.50	U
79-00-5	1,1,2-Trichloroethane	0.50	U
127-18-4	Tetrachloroethene	0.50	U
591-78-6	2-Hexanone	5. 0	U
124-48-1	Dibromochloromethane	0.50	U
106-93-4	1,2-Dibromoethane	0.50	U
108-90-7	Chlorobenzene	0.50	U
100-41-4	Ethylbenzene	0.030	J
95-47-6	o-xylene	0.024	J
179601-23-1	m, p-xylene	0.085	J
100-42-5	Styrene	0.18	J
75-25-2	Bromoform	0.50	U
98-82-8	Isopropylbenzene	0.50	U
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U
541-73-1	1,3-Dichlorobenzene	0.50	U
106-46-7	1,4-Dichlorobenzene	0.50	U
95-50-1	1,2-Dichlorobenzene	0.50	U
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U
120-82-1	1,2,4-Trichlorobenzene	0.50	U
87-61-6	1,2,3-Trichlorobenzene	0.50	U

| Lab Name: | TESTAMERICA BURLINGTON | Contract: | $\frac{8 E-00302}{}$ |
| :--- | :--- | :--- | :--- | :--- |
| Lab Code: STLV Case No.: BARNES Mod. Ref No.: | SDG No.: 200-7268 | | |

Matrix: (SOIL/SED/WATER) Water

Lab Sample ID: 200-7268-4
Sample wt/vol: $25.0 \quad(\mathrm{~g} / \mathrm{mL}) \mathrm{mL}$
Lab File ID: DHSD05.D
Date Received: 09/30/2011
Date Analyzed: 10/03/2011
\% Moisture: not dec.
GC Column: DB-624 ID: 0.20 (mm)
Dilution Factor: 1.0
Soil Extract Volume: (uL)

Soil Aliquot Volume: \qquad (uL)

$$
\text { CONCENTRATION UNITS: (ug/L or } \mathrm{ug} / \mathrm{kg}) \quad \underline{\mathrm{ug} / \mathrm{L}} \quad \text { Purge Volume: } 25.0 \quad(\mathrm{~mL})
$$

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
	Unknown	6.69	3.2	B X J
	E9667961	Total Alkanes	N/A	

6A - FORM VI VOA-1
VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: TESTAMERI	TESTAMERICA BURLINGTON		Contract:		8E-00302	
Lab Code: STLV	Case No.:	BARNES	Mod. Ref No.:		SDG No.: 200-7268	
Instrument ID: D.i			Calibration	Date (s) :	09/22/2011	09/22/2011
Heated Purge: (Y / N)	N		Calibration	Time (s) :	0848	1038
Purge Volume: 25.0			(mL)			

GC Column: DB-624 ID: 0.20 (mm) Length: 25 (m)

LAB FILE ID: $\operatorname{RRF} \underline{5.0}=\underline{\text { DHS07.D }}$ COMPOUND	$\begin{aligned} & \operatorname{RRF} \underline{0.5}=\underline{\text { DHSO5.D }} \\ & \operatorname{RRF} 10=\underline{D H S O 8 . D} \end{aligned}$			$\begin{aligned} & \operatorname{RRF} 1.0=\text { DHS06.D } \\ & \operatorname{RRF} 20=\text { DHS09.D } \end{aligned}$			
	RRF 0.5	RRF1.0	RRF 5.0	RRF 10	RRF20	$\overline{\mathrm{RRF}}$	\%RSD
Dichlorodifluoromethane	0.507	0.475	0.480	0.489	0.487	0.488	2.5
Chloromethane	0.801	0.648	0.594	0.593	0.584	0.644	14.2
Vinyl chloride	0.452	0.427	0.424	0.442	0.437	0.436	2.6
Bromomethane	0.206	0.200	0.187	0.193	0.193	0.196	3.7
Chloroethane	0.267	0.214	0.205	0.221	0.215	0.224	11.0
Trichlorofluoromethane	0.542	0.522	0.528	0.542	0.542	0.535	1.7
1,1-Dichloroethene	0.257	0.254	0.260	0.261	0.253	0.257	1.3
1,1,2-Trichloro-1,2,2-trifluoroethane	0.304	0.307	0.305	0.308	0.299	0.305	1.2
Acetone	0.029	0.026	0.022	0.023	0.021	0.024	13.5
Carbon disulfide	0.758	0.658	0.663	0.696	0.711	0.697	5.8
Methyl acetate	0.066	0.060	0.057	0.062	0.058	0.060	5.5
Methylene Chloride	0.226	0.213	0.209	0.221	0.209	0.216	3.5
trans-1,2-Dichloroethene	0.305	0.308	0.304	0.321	0.315	0.311	2.3
Methyl tert-butyl ether	0.373	0.361	0.364	0.385	0.354	0.367	3.3
1,1-Dichloroethane	0.600	0.585	0.592	0.617	0.608	0.600	2.1
cis-1,2-Dichloroethene	0.330	0.299	0.305	0.317	0.312	0.313	3.7
2-Butanone	0.040	0.040	0.039	0.042	0.039	0.040	3.7
Bromochloromethane	0.113	0.103	0.103	0.107	0.102	0.106	4.1
Chloroform	0.500	0.463	0.480	0.502	0.488	0.487	3.3
1,1,1-Trichloroethane	0.547	0.528	0.530	0.567	0.578	0.550	4.0
Cyclohexane	0.846	0.839	0.869	0.918	0.917	0.878	4.3
Carbon tetrachloride	0.509	0.475	0.509	0.535	0.547	0.515	5.4
Benzene	1.568	1.515	1.482	1.544	1.514	1.525	2.2
1,2-Dichloroethane	0.272	0.252	0.271	0.279	0.268	0.268	3.7
Trichloroethene	0.394	0.385	0.377	0.396	0.397	0.390	2.2
Methylcyclohexane	0.721	0.692	0.715	0.753	0.755	0.727	3.7

Report 1,4-Dioxane for Low-Medium VOA analysis only

6B - FORM VI VOA-2
VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: TESTAMER	TESTAMERICA BURLINGTON			Contract: 8		8E-00302	
Lab Code: STLV	Case No.:	BARNES	Mod.	. Ref No.:		SDG No.: 2	200-7268
Instrument ID: D.i				Calibration	Date(s) :	09/22/2011	09/22/2011
Heated Purge: (Y / N)	N			Calibration	Time (s) :	0848	1038

LAB FILE ID:	RRF $0.5=$ DHS05.D	RRF1.0 $=\underline{\text { DHS06.D }}$
RRF5.0 $=$ DHS07.D	RRF10 $=\underline{\text { DHS08.D }}$	RRF20 $=\underline{\text { DHS09.D }}$

COMPOUND	RRF 0.5	RRF1.0	RRF5 5.0	RRF10	RRF20	$\overline{\mathrm{RRF}}$	\%RSD
1,2-Dichloropropane	0.366	0.346	0.353	0.373	0.363	0.360	3.0
Bromodichloromethane	0.299	0.296	0.319	0.345	0.342	0.320	7.2
cis-1,3-Dichloropropene	0.383	0.394	0.423	0.461	0.445	0.421	7.8
4-Methyl-2-pentanone	0.104	0.106	0.116	0.125	0.116	0.113	7.8
Toluene	1.677	1.641	1.626	1.715	1.684	1.669	2.1
trans-1,3-Dichloropropene	0.266	0.275	0.304	0.330	0.317	0.298	9.1
1,1,2-Trichloroethane	0.169	0.158	0.162	0.169	0.158	0.163	3.2
Tetrachloroethene	0.322	0.307	0.308	0.321	0.319	0.315	2.3
2-Hexanone	0.072	0.074	0.081	0.086	0.078	0.078	6.9
Dibromochloromethane	0.170	0.166	0.183	0.206	0.203	0.186	10.0
1,2-Dibromoethane	0.146	0.143	0.146	0.157	0.149	0.148	3.4
Chlorobenzene	1.087	1.060	1.019	1.063	1.036	1.053	2.5
Ethylbenzene	1.819	1.784	1.862	1.965	1.939	1.874	4.1
o-Xylene	0.675	0.660	0.704	0.746	0.721	0.701	4.9
m, p-Xylene	0.741	0.722	0.754	0.796	0.782	0.759	3.9
Styrene	0.934	0.954	1.052	1.115	1.078	1.027	7.7
Bromoform	0.105	0.123	0.136	0.150	0.153	0.133	14.9
Isopropylbenzene	1.782	1.820	1.941	2.045	2.033	1.924	6.3
1,1,2,2-Tetrachloroethane	0.150	0.146	0.151	0.164	0.149	0.152	4.5
1,3-Dichlorobenzene	1.703	1.573	1.651	1.731	1.687	1.669	3.6
1,4-Dichlorobenzene	1.858	1.629	1.627	1.691	1.626	1.686	5.9
1,2-Dich1orobenzene	1.450	1.331	1.370	1.417	1.352	1.384	3.5
1,2-Dibromo-3-Chloropropane	0.043	0.036	0.038	0.043	0.042	0.040	8.2
1,2,4-Trichlorobenzene	0.793	0.688	0.756	0.806	0.785	0.766	6.1
1,2,3-Trichlorobenzene	0.568	0.536	0.576	0.603	0.584	0.573	4.3

LAB FILE ID:	$\begin{aligned} & \operatorname{RRF} 0.5=\underline{\text { DHS05.D }} \\ & \operatorname{RRF} 10=\text { DHS08.D } \end{aligned}$			$\begin{aligned} & \text { RRF1.0 }=\text { DHS06.D } \\ & \text { RRF20 }=\text { DHS09.D } \end{aligned}$			
RRF5.0 $=$ DHS07.D							
COMPOUND	RRF0.5	RRF1.0	RRF5.0	RRF10	RRF20	RRF	\%RSD
Vinyl Chloride-d3	0.431	0.382	0.368	0.377	0.370	0.385	6.8
Chloroethane-d5	0.247	0.237	0.229	0.231	0.225	0.234	3.6
1,1-Dichloroethene-d2	0.649	0.614	0.609	0.633	0.620	0.625	2.6
2-Butanone-d5	0.040	0.037	0.039	0.041	0.036	0.039	5.0
Chloroform-d	0.505	0.487	0.489	0.507	0.495	0.497	1.8
1,2-Dichloroethane-d4	0.210	0.195	0.193	0.197	0.188	0.196	4.1
Benzene-d6	1.524	1.480	1.440	1.494	1.481	1.484	2.0
1,2-Dichloropropane-d6	0.379	0.352	0.354	0.379	0.368	0.366	3.6
Toluene-d8	1.466	1.376	1.393	1.459	1.434	1.426	2.8
trans-1,3-Dichloropropene-d4	0.266	0.247	0.262	0.287	0.281	0.269	5.9
2-Hexanone-d5	0.031	0.034	0.038	0.042	0.038	0.037	11.1
1,1,2,2-Tetrachloroethane-d2	0.156	0.149	0.151	0.161	0.149	0.153	3.6
1,2-Dichlorobenzene-d4	0.910	0.811	0.804	0.833	0.798	0.831	5.5

Report 1,4-Dioxane-d8 for Low-Medium VOA analysis only

Purge Volume: 25.0 (mL)

COMPOUND	$\overline{\mathrm{RRF}}$	RRF5.0	$\begin{aligned} & \text { MIN } \\ & \text { RRF } \end{aligned}$	\% D	MAX $\%$ D
Dichlorodifluoromethane	0.488	0.465	0.010	-4.6	40.0
Chloromethane	0.644	0.678	0.010	5.3	40.0
Vinyl chloride	0.436	0.515	0.010	17.9	30.0
Bromomethane	0.196	0.172	0.010	-12.3	30.0
Chloroethane	0.224	0.264	0.010	17.5	40.0
Trichlorofluoromethane	0.535	0.555	0.010	3.6	40.0
1,1-Dichloroethene	0.257	0.297	0.010	15.6	30.0
1,1,2-Trich1oro-1,2,2-trifluoroethane	0.305	0.338	0.010	10.7	40.0
Acetone	0.024	0.023	0.010	-3.1	40.0
Carbon disulfide	0.697	0.798	0.010	14.5	40.0
Methyl acetate	0.060	0.064	0.010	6.0	40.0
Methylene Chloride	0.216	0.221	0.010	2.4	40.0
trans-1,2-Dichloroethene	0.311	0.295	0.010	-5.0	40.0
Methyl tert-butyl ether	0.367	0.282	0.010	-23.3	40.0
1,1-Dichloroethane	0.600	0.582	0.010	-3.1	30.0
cis-1,2-Dichloroethene	0.313	0.285	0.010	-9.0	40.0
2-Butanone	0.040	0.037	0.010	-8.2	40.0
Bromochloromethane	0.106	0.092	0.010	-13.4	30.0
Chloroform	0.487	0.444	0.010	-8.8	30.0
1,1,1-Trichloroethane	0.550	0.475	0.010	-13.5	30.0
Cyclohexane	0.878	0.875	0.010	-0.4	40.0
Carbon tetrachloride	0.515	0.447	0.010	-13.1	30.0
Benzene	1.525	1.415	0.010	-7.2	30.0
1,2-Dichloroethane	0.268	0.241	0.010	-10.0	30.0
Trichloroethene	0.390	0.336	0.010	-13.8	30.0
Methylcyclohexane	0.727	0.719	0.010	-1.1	40.0

Report 1,4-Dioxane for Low/Medium VOA analysis only

COMPOUND	$\overline{\mathrm{RRF}}$	RRF5.0	$\begin{aligned} & \text { MIN } \\ & \text { RRE } \end{aligned}$	\% D	MAX \% D
1,2-Dichloropropane	0.360	0.347	0.010	-3.7	40.0
Bromodichloromethane	0.320	0.274	0.010	-14.3	30.0
cis-1,3-Dichloropropene	0.421	0.372	0.010	-11.6	30.0
4-Methyl-2-pentanone	0.113	0.105	0.010	-7.6	40.0
Toluene	1.669	1.531	0.010	-8.3	30.0
trans-1,3-Dichloropropene	0.298	0.262	0.010	-12.3	30.0
1,1,2-Trichloroethane	0.163	0.140	0.010	-14.6	30.0
Tetrachloroethene	0.315	0.286	0.010	-9.3	30.0
2-Hexanone	0.078	0.071	0.010	-9.0	40.0
Dibromochloromethane	0.186	0.157	0.010	-15.7	30.0
1,2-Dibromoethane	0.148	0.120	0.010	-18.8	40.0
Chlorobenzene	1.053	0.950	0.010	-9.7	30.0
Ethylbenzene	1.874	1.755	0.010	-6.4	30.0
o-xylene	0.701	0.681	0.010	-2.9	30.0
m, p-Xylene	0.759	0.722	0.010	-4.8	30.0
Styrene	1.027	0.966	0.010	-5.9	30.0
Bromoform	0.133	0.114	0.010	-14.8	30.0
Isopropylbenzene	1.924	1.892	0.010	-1.7	40.0
1,1,2,2-Tetrachloroethane	0.152	0.136	0.010	-10.6	30.0
1,3-Dichlorobenzene	1.669	1.454	0.010	-12.9	30.0
1,4-Dichlorobenzene	1.686	1.451	0.010	-14.0	30.0
1,2-Dichlorobenzene	1.384	1.219	0.010	-11.9	30.0
1,2-Dibromo-3-Chloropropane	0.040	0.029	0.010	-27.7	40.0
1,2,4-Trichlorobenzene	0.766	0.626	0.010	-18.2	30.0
1,2,3-Trichlorobenzene	0.573	0.460	0.010	-19.7	30.0

Purge Volume: 25.0 (mL)

COMPOUND	$\overline{\text { RRF }}$	RRF5.0	MIN RRF	\%D	MAX \%D
Vinyl Chloride-d3	0.385	0.446	0.010	15.6	30.0
Chloroethane-d5	0.234	0.281	0.010	20.1	40.0
1,1-Dichloroethene-d2	0.625	0.686	0.010	9.8	30.0
2-Butanone-d5	0.039	0.035	0.010	-9.2	40.0
Chloroform-d	0.497	0.447	0.010	-10.0	30.0
1,2-Dichloroethane-d4	0.196	0.167	0.010	-14.8	30.0
Benzene-d6	1.484	1.340	0.010	-9.7	30.0
1,2-Dichloropropane-d6	0.366	0.335	0.010	-8.5	40.0
Toluene-d8	1.426	1.297	0.010	-9.0	30.0
trans-1,3-Dichloropropene-d4	0.269	0.217	0.010	-19.3	30.0
2-Hexanone-d5	0.037	0.029	0.010	-21.6	40.0
1,1,2,2-Tetrachloroethane-d2	0.153	0.133	0.010	-13.2	30.0
1,2-Dichlorobenzene-d4	0.831	0.697	0.010	-16.1	30.0

Heated Purge: (Y/N) N GC Column: DB-624 ID: 0.20 (mm) Length: 25 (m)

Purge Volume: 25.0 (mL)

COMPOUND	$\overline{R R F}$	RRF5.0	MIN RRF	$\% \mathrm{D}$	MAX \%D
1,2-Dichloropropane	0.360	0.356	0.010	-1.2	50.0
Bromodichloromethane	0.320	0.294	0.200	-8.1	50.0
Cis-1,3-Dichloropropene	0.421	0.388	0.200	-7.9	50.0
4-Methyl-2-pentanone	0.113	0.128	0.010	12.9	50.0
Toluene	1.669	1.540	0.400	-7.7	50.0
trans-1,3-Dichloropropene	0.298	0.280	0.100	-6.1	50.0
1,1,2-Trichloroethane	0.163	0.151	0.100	-7.7	50.0
Tetrachloroethene	0.315	0.285	0.100	-9.8	50.0
2-Hexanone	0.078	0.089	0.010	13.8	50.0
Dibromochloromethane	0.186	0.183	0.100	-1.2	50.0
1,2-Dibromoethane	0.148	0.134	0.010	-9.8	50.0
Chlorobenzene	1.053	0.984	0.500	-6.6	50.0
Ethylbenzene	1.874	1.759	0.100	-6.1	50.0
o-Xylene	0.701	0.690	0.300	-1.6	50.0
m,p-Xylene	0.759	0.743	0.300	-2.1	50.0
Styrene	1.027	1.042	0.300	1.5	50.0
Bromoform	0.133	0.130	0.050	-2.7	50.0
Isopropylbenzene	1.924	1.855	0.010	-3.6	50.0
1,1,2,2-Tetrachloroethane	0.152	0.158	0.100	4.2	50.0
1,3-Dichlorobenzene	1.669	1.417	0.400	-15.1	50.0
1,4-Dichlorobenzene	1.686	1.516	0.400	-10.1	50.0
1,2-Dichlorobenzene	1.384	1.290	0.400	-6.8	50.0
1,2-Dibromo-3-Chloropropane	0.040	0.034	0.010	-16.4	50.0
$1,2,4-T r i c h l o r o b e n z e n e ~$	0.766	0.609	0.200	-20.4	50.0
1,2,3-Trichlorobenzene	0.573	0.485	0.200	-15.5	50.0

1A - FORM I VOA-1
VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.
\square

Lab Name: TESTAMERICA BURLINGTON
Lab Code: STLV Case No.: BARNES Mod. Ref No.:

Matrix: (SOIL/SED/WATER)	Water
Sample wt/vol: 25.0	$(\mathrm{~g} / \mathrm{mL}) \mathrm{mL}$

Level: (TRACE/LOW/MED) TRACE
\% Moisture: not dec.
GC Column: DB-624
\qquad

Soil Extract Volume: ID: 0.20 (mm)
\qquad (uL)

Purge Volume: 25.0 \qquad (mL)

Contract: 8E-00302
\qquad SDG No.: 200-7268

Lab Sample ID: MB 200-26126/3
Lab File ID: DHSDO3.D
Date Received:
Date Analyzed: 10/03/2011
Dilution Factor: 1.0
Soil Aliquot Volume:

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
75-71-8	Dichlorodifluoromethane	0.50	U
74-87-3	Chloromethane	0.50	U
75-01-4	Vinyl chloride	0.50	U
74-83-9	Bromomethane	0.50	U
75-00-3	Chloroethane	0.50	U
75-69-4	Trichlorofluoromethane	0.50	U
75-35-4	1,1-Dichloroethene	0.50	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	U
67-64-1	Acetone	2.8	J
75-15-0	Carbon disulfide	0.10	J
79-20-9	Methyl acetate	0.50	U
75-09-2	Methylene Chloride	0.50	U
156-60-5	trans-1,2-Dichloroethene	0.50	U
1634-04-4	Methyl tert-butyl ether	0.50	U
75-34-3	1,l-Dichloroethane	0.50	U
156-59-2	cis-1,2-Dichloroethene	0.50	U
78-93-3	2-Butanone	5.0	U
74-97-5	Bromochloromethane	0.50	U
67-66-3	Chloroform	0.50	U
71-55-6	1,1,1-Trichloroethane	0.50	U
110-82-7	Cyclohexane	0.50	U
56-23-5	Carbon tetrachloride	0.50	U
71-43-2	Benzene	0.50	U
107-06-2	1,2-Dichloroethane	0.50	U

Lab Name: $\frac{\text { TESTAMERICA BURLINGTON }}{\text { Lab Code: STLV Case No.: BARNES Mod. Ref No. }}$.
Contract: $\frac{8 \mathrm{E}-00302}{\text { SDG No. }: ~ 200-7268}$

Matrix: (SOIL/SED/WATER)	Water
Sample wt/vol: 25.0	(g/mL) mL
Level: (TRACE/LOW/MED)	TRACE
Moisture: not dec.	

GC Column: DB-624 ID: 0.20 (mm)

Soil Extract Volume: (uL)

Lab Sample ID: MB 200-26126/3
Lab File ID: DHSD03.D
Date Received:
Date Analyzed: 10/03/2011
Dilution Factor: 1.0
Soil Aliquot Volume: \qquad (uL)

Purge Volume: 25.0 (mL)

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
79-01-6	Trichloroethene	0.50	U
108-87-2	Methylcyclohexane	0.50	U
78-87-5	1,2-Dichloropropane	0.50	U
75-27-4	Bromodichloromethane	0.50	U
10061-01-5	cis-1,3-Dichloropropene	0.50	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	0.0087	J
10061-02-6	trans-1,3-Dichloropropene	0.50	U
79-00-5	1,1,2-Trichloroethane	0.50	U
127-18-4	Tetrachloroethene	0.50	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	0.50	U
106-93-4	1,2-Dibromoethane	0.50	U
108-90-7	Chlorobenzene	0.50	U
100-41-4	Ethylbenzene	0.50	U
95-47-6	o-Xylene	0.50	U
179601-23-1	m,p-Xylene	0.50	U
100-42-5	Styrene	0.50	U
75-25-2	Bromoform	0.50	U
98-82-8	Isopropylbenzene	0.50	U
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U
541-73-1	1,3-Dichlorobenzene	0.030	J
106-46-7	1,4-Dichlorobenzene	0.50	U
95-50-1	1,2-Dichlorobenzene	0.50	U
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U
120-82-1	1,2,4-Trichlorobenzene	0.057	J
87-61-6	1,2,3-Trichlorobenzene	0.50	U

Lab Name: TESTAMERICA BURLINGTON
Lab Code: STLV Case No.: BARNES Mod. Ref No.:

Contract: 8E-00302
\qquad SDG No.: 200-7268

Matrix: (SOIL/SED/WATER)	Water
Sample wt/vol: 25.0	$(\mathrm{~g} / \mathrm{mL}) \mathrm{mL}$

Lab Sample ID: 200-7268-5

Level: (TRACE/LOW/MED) TRACE
\% Moisture: not dec.
GC Column: DB-624 ID: 0.20 (mm)

Soil Extract Volume:
(UL)
Lab File ID: DHSD15.D
Date Received:
Date Analyzed: 10/03/2011
Dilution Factor: 1.0
Soil Aliquot Volume: \qquad (uL)

Purge Volume: 25.0 (mL)

CAS NO.	COMPOUND	CONCENTRATION UNITS:	(ug/L or ug/kg) ug/L
$75-71-8$	Dichlorodifluoromethane	0.50	U
$74-87-3$	Chloromethane	0.50	U
$75-01-4$	Vinyl chloride	0.50	U
$74-83-9$	Bromomethane	0.50	U
$75-00-3$	Chloroethane	0.50	U
$75-69-4$	Trichlorofluoromethane	0.50	U
$75-35-4$	$1,1-$ Dichloroethene	0.50	U
$76-13-1$	$1,1,2-T r i c h l o r o-1,2,2-$ trifluoroethane	0.50	U
$67-64-1$	Acetone	2.4	J
$75-15-0$	Carbon disulfide	0.50	U
$79-20-9$	Methyl acetate	0.50	U
$75-09-2$	Methylene Chloride	0.50	U
$156-60-5$	trans-1,2-Dichloroethene	0.50	U
$1634-04-4$	Methyl tert-butyl ether	0.50	U
$75-34-3$	$1,1-$ Dichloroethane	0.50	U
$156-59-2$	cis-l,2-Dichloroethene	0.50	U
$78-93-3$	2-Butanone	5.0	U
$74-97-5$	Bromochloromethane	0.50	U
$67-66-3$	Chloroform	0.50	U
$71-55-6$	$1,1,1-T r i c h l o r o e t h a n e ~$	0.50	U
$110-82-7$	Cyclohexane	0.50	U
$56-23-5$	Carbon tetrachloride	0.50	U
$71-43-2$	Benzene	0.50	U
$107-06-2$	$1,2-$ Dichloroethane	0.50	U

Report 1,4-Dioxane for Low-Medium VOA analysis only
Lab Name: TESTAMERICA BURLINGTON \quad Contract: $\frac{8 E-00302}{}$
Lab Code: STLV Case No.: BARNES Mod. Ref No.:
\qquad SDG No.: 200-7268

Matrix: (SOIL/SED/WATER)	Water
Sample wt/vol: 25.0	$(\mathrm{~g} / \mathrm{mL}) \mathrm{mL}$

Level: (TRACE/LOW/MED) TRACE
\% Moisture: not dec.
GC Column: $\underline{D B-624}$ ID: 0.20 (mm)
Soil Extract Volume:
(uL)
Lab Sample ID: 200-7268-5
Lab File ID: DHSD15.D
Date Received:
Date Analyzed: 10/03/2011
Dilution Factor: 1.0
Soil Aliquot Volume: \qquad (uL)
Purge Volume: 25.0 (mL)

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or $\mathrm{ug} / \mathrm{kg}) \mathrm{ug} / \mathrm{L}$	Q
$79-01-6$	Trichloroethene	0.50	U
$108-87-2$	Methylcyclohexane	0.50	U
$78-87-5$	$1,2-$ Dichloropropane	0.50	U
$75-27-4$	Bromodichloromethane	0.50	U
$10061-01-5$	cis-1,3-Dichloropropene	0.50	U
$108-10-1$	$4-$ Methyl-2-pentanone	5.0	U
$108-88-3$	Toluene	0.50	U
$10061-02-6$	trans-1,3-Dichloropropene	0.50	U
$79-00-5$	$1,1,2-$ Trichloroethane	0.50	U
$127-18-4$	Tetrachloroethene	0.50	U
$591-78-6$	$2-$ Hexanone	5.0	U
$124-48-1$	Dibromochloromethane	0.50	U
$106-93-4$	$1,2-$ Dibromoethane	0.50	U
$108-90-7$	Chlorobenzene	0.50	U
$100-41-4$	Ethylbenzene	0.50	U
$95-47-6$	o-Xylene	0.50	U
$179601-23-1$	m, p-Xylene	0.50	U
$100-42-5$	Styrene	0.50	U
$75-25-2$	Bromoform	0.50	U
$98-82-8$	Isopropylbenzene	0.50	U
$79-34-5$	$1,1,2,2-T e t r a c h l o r o e t h a n e ~$	0.50	U
$541-73-1$	$1,3-$ Dichlorobenzene	0.50	U
$106-46-7$	$1,4-$ Dichlorobenzene	0.50	U
$95-50-1$	$1,2-$ Dichlorobenzene	0.50	U
$96-12-8$	$1,2-$ Dibromo-3-Chloropropane	0.50	U
$120-82-1$	$1,2,4-$ Trichlorobenzene	0.50	U
$87-61-6$	$1,2,3-$ Trichlorobenzene	0.50	U

Contract: 8E-00302
Lab Name: TESTAMERICA BURLINGTON Contract: 8E-00302

Lab Code: STLV Case No.: BARNES Mod. Ref No.: Lab Sample ID: 200-7268-5
Matrix: (SOIL/SED/WATER) Water

Sample wt/vol: $25.0(\mathrm{~g} / \mathrm{mL}) \mathrm{mL}$
Lab File ID: DHSD15.D
Level: (TRACE or LOW/MED) TRACE
\% Moisture: not dec. \qquad
GC Column: DB-624 ID: 0.20 (mm)
Soil Extract Volume: (uL)

CONCENTRATION UNITS: (ug/L or $\mathrm{ug} / \mathrm{kg}$) ug/L
Date Received: \qquad
Date Analyzed: 10/03/2011
Dilution Factor: 1.0
Soil Aliquot Volume: \qquad (uL)

Purge Volume: 25.0_(mL)

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
		Unknown	6.69	2.8
01	E9667961	Total Alkanes	N/A	

[^4]
Environmental Science Division

Argonne National Laboratory
9700 South Cass Avenue, Bldg. 203
Argonne, IL 60439-4843
www.anl.gov
us onanamearor

[^0]: a Sample types: FB, field blank; MW, monitoring well; PW, public water supply well; RI, rinsate; TB, trip blank.
 b Quality control sample.

[^1]: Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e out of hold, incorrect preservative, out of temp, incorect containers)

[^2]: *Method on-hold

[^3]: \# Column to be used to flag recovery values

 * Values outside of contract required QC limits

[^4]: 1EPA-designated Registry Number.

