

Annual Report of Monitoring at Morrill, Kansas, in 2011

Environmental Science Division

About Argonne National Laboratory

Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory's main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne and its pioneering science and technology programs, see www.anl.gov.

Availability of This Report

reports@adonis.osti.gov

This report is available, at no cost, at http://www.osti.gov/bridge. It is also available on paper to the U.S. Department of Energy and its contractors, for a processing fee, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone (865) 576-8401 fax (865) 576-5728

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, Argonne National Laboratory, or UChicago Argonne, LLC.

Annual Report of Monitoring at Morrill, Kansas, in 2011

by

Applied Geosciences and Environmental Management Section Environmental Science Division, Argonne National Laboratory

March 2012

Contents

No	otation	1		v								
1	Intro	duction	and Background	1-1								
2	Sam	ple Coll	lection and Analysis Activities	2-1								
	2.1 2.2 2.3 2.4 2.5 2.6	 Monitoring Well and Private Well Sampling and Analyses Surface Water and Sediment Sampling and Analyses Vegetation Sampling and Analyses Handling and Disposal of Investigation-Derived Waste 										
3	Resu	lts and	Discussion	3-1								
	3.1Groundwater Level Data											
4	Conc	clusions	and Recommendations	4-1								
	4.1 4.2		usions mendations Groundwater Monitoring Frequency Vegetation Sampling Frequency Sampling Methods	4-1 4-2 4-2 4-3 4-3								
5	Refe	rences.		5-1								
Ap	pendi	x A:	Sampling Activities at Morrill in 2011	A-1								
Ap	pendi	x B:	Results from the AGEM Laboratory for Dual Analyses of Samples Collected at Morrill in 2011 and for Quality Control Samples									
Su	pplem	nent 1:	Waste Characterization Data	n CD								
Supplement 2: Sample Documentation from TestAmerica Laboratories, Inc., for Groundwater Verification Samples												

Figures

1.1	Location of Brown County and Morrill, Kansas 1-	4
2.1	Groundwater monitoring network as of October 2011 2-	7
2.2	Locations of surface water and creek bed sediment sampling along Terrapin Creek in October 2011	8
2.3	Locations of native vegetation sampling downgradient of the former CCC/USDA facility and along Terrapin Creek in July 2011 2-	9
3.1	Potentiometric surface, based on water levels measured manually on January 5, 2012	5
3.2	Hydrographs summarizing results of long-term water level monitoring from January 1, 2011, to December 31, 2011	6
3.3a	Carbon tetrachloride concentrations in groundwater, April 2011 3-2	7
3.3b	Carbon tetrachloride concentrations in groundwater, October 2011 3-2	8
3.4a	Carbon tetrachloride concentrations in groundwater, April 2010 3-2	9
3.4b	Carbon tetrachloride concentrations in groundwater, September 2010 3-3	0
3.5	Carbon tetrachloride concentrations in vegetation, July 2011 3-3	1
4.1	Carbon tetrachloride concentrations in groundwater in October of 2003, 2007, and 2011	5

Tables

3.1	Hand-measured groundwater levels in 2011
3.2	Results of analyses at the AGEM Laboratory for volatile organic compounds in groundwater samples collected in 2003-2011
3.3	Field measurements for groundwater samples collected in 2003-2011 3-11
3.4	Results of analyses at the AGEM Laboratory for volatile organic compounds in surface water and sediment samples collected in 2007-2011 3-17
3.5	Results of analyses at the AGEM Laboratory for carbon tetrachloride and chloroform in vegetation samples collected in 2006-2011
4.1	Analytical results for carbon tetrachloride in groundwater samples collected at wells MW7W, MW8S, MW9S, and MW11S in September or October of years 2005-2011
A.1	Sequence of sampling activities in 2011 A-2
B.1	Analytical results from the AGEM Laboratory for quality control samples collected to monitor sample collection and handling activities in 2011 B-2
B.2	Analytical results from the AGEM Laboratory for dual analyses of samples collected in 2011
B.3	Analytical results from the AGEM Laboratory and TestAmerica for groundwater samples collected in 2011 and submitted for verification analysis

Notation

AGEM	Applied Geosciences and Environmental Management
AMSL	above mean sea level
BGL	below ground level
°C	degree(s) Celsius
CCC	Commodity Credit Corporation
CD	compact disc
DO	dissolved oxygen
EPA	U.S. Environmental Protection Agency
ft	foot (feet)
gal	gallon(s)
hr	hour(s)
in.	inch(es)
KDHE	Kansas Department of Health and Environment
L	liter(s)
µg/kg	microgram(s) per kilogram
µg/L	microgram(s) per liter
µS/cm	microsiemen(s) per centimeter
mg/L	milligram(s) per liter
mi	mile(s)
min	minute(s)
mV	millivolt(s)
ORP	oxidation-reduction potential
SOP	standard operating procedure
TOC	top of casing
USDA	U.S. Department of Agriculture
VOC	volatile organic compound

Annual Report of Monitoring at Morrill, Kansas, in 2011

1 Introduction and Background

Carbon tetrachloride contamination in groundwater at Morrill, Kansas, was initially identified in 1985 during statewide testing of public water supply wells for volatile organic compounds (VOCs). High levels of nitrate were also present in the wells. The city of Morrill is located in Brown County in the northeastern corner of the state, about 7 mi east of Sabetha (Figure 1.1). The population of Morrill as of the 2010 Census was approximately 230 (down from 277 in 2000). All residents of Morrill now obtain their drinking water from the Sabetha municipal water system via a pipeline constructed in 1991.

From 1922 to 1991, eight different public water supply wells served the Morrill municipal system. Because of poor water quality, use of the various public wells was discontinued over time. The water quality problems included high nitrate levels attributed to numerous animal feeding operations in the vicinity; application of fertilizer to agricultural lands; excessive hardness; and elevated iron, sulfate, and total dissolved solids concentrations (above acceptable levels). The use of the local groundwater from any public well for municipal supply purposes was terminated in 1991 at the direction of the Kansas Department of Health and Environment (KDHE), and water was obtained from the Sabetha municipal water system.

Investigations of the carbon tetrachloride and nitrate contamination by the KDHE in 1989, 1994, and 1996 (KDHE 1989; GeoCore 1994a-d, 1996) identified a localized plume of carbon tetrachloride in groundwater extending downgradient from a grain storage facility in the northwestern section of Morrill. The facility was formerly operated by the Commodity Credit Corporation (CCC), an agency of the U.S. Department of Agriculture (USDA), from 1950 to 1971. After termination of the CCC/USDA grain storage operations in 1971, the property and existing grain bins continued to be used for private grain storage, up to the present time. Prior to 1986, commercial grain fumigants were commonly used by the CCC/USDA, as well as private and commercial grain storage operations, to preserve grain.

Because the identified carbon tetrachloride contamination could, in part, be potentially linked to historical use of carbon tetrachloride-based fumigants at its former facility, in 2003 the CCC/USDA assumed responsibility for the site investigation of the carbon tetrachloride contamination. The CCC/USDA involvement began with development and implementation of a

work plan for a Phase I expedited site characterization (Argonne 2003). That investigation and subsequent investigations (Argonne 2004, 2005a) were performed by the Environmental Science Division of Argonne National Laboratory.

The initial investigation by the CCC/USDA in 2003 determined that soils at the former facility were not impacted by grain fumigation activities. Neither carbon tetrachloride nor chloroform was detected in near-surface soils or in subsurface soils collected to bedrock. Therefore, no identifiable human health risk is associated with either carbon tetrachloride or chloroform in shallow soils, which additionally pose no further threat of contamination to groundwater.

High carbon tetrachloride concentrations in groundwater (maximum 390 μ g/L in a sample collected from monitoring well MW3S — located on the former CCC/USDA property — in 1995) have declined significantly during long-term monitoring conducted earlier by the KDHE and currently by the CCC/USDA. The present maximum levels of < 50 μ g/L confirm that no continuing soil source remains at the former CCC/USDA facility. Nevertheless, carbon tetrachloride concentrations exceeding the KDHE Tier 2 risk-based screening level of 5.0 μ g/L remain.

In September 2005, the CCC/USDA initiated periodic sampling of groundwater, in accord with a program approved by the KDHE (2005), to monitor carbon tetrachloride concentrations in the groundwater.

Under the KDHE-approved monitoring plan (Argonne 2005b), groundwater is sampled twice yearly and analyzed for VOCs. During the initial 2 yr of monitoring, analysis for selected geochemical parameters was also conducted to aid in the evaluation of possible natural contaminant degradation (reductive dechlorination) processes in the subsurface environment. Consistently low levels of dissolved oxygen (DO) and oxidation-reduction potential (ORP) at monitoring well MW1D (in the deepest portion of the contaminated aquifer) and the presence of chloroform (the primary degradation product of carbon tetrachloride) suggest that some degree of reductive dechlorination is occurring.

The analytical results for groundwater sampling events at Morrill from September 2005 to September 2010 were documented previously (Argonne 2006, 2007a,b, 2008a,b, 2009, 2010, 2011). Those results consistently demonstrated the presence of carbon tetrachloride

contamination, at concentrations exceeding the KDHE Tier 2 risk-based screening level of $5.0 \mu g/L$ for this compound, in a groundwater plume extending southward from the former CCC/USDA facility, toward Terrapin Creek at the southern edge of the town.

Terrapin Creek is identified by the KDHE (2001) as tributary segment 308 to Walnut Creek, which in turn is located in the Big Nemaha Subbasin of the Missouri Basin. Walnut Creek is classified by the KDHE (2001) as impaired because of high levels of fecal coliform bacteria. Prevention of further degradation of Terrapin Creek by carbon tetrachloride is the regulatory driver for ongoing monitoring of the carbon tetrachloride plume (KDHE 2007a). No trend of increasing carbon tetrachloride levels near the creek has been indicated.

In 2006, the CCC/USDA recommended expansion of the approved monitoring program to include the collection and analysis of surface water samples along Terrapin Creek (Argonne 2007a). At the request of the KDHE (2007a), locations for both surface water and shallow sediment sampling were discussed with the KDHE in January 2007. An addendum to the existing monitoring plan (Appendix A in the report of 2009 monitoring [Argonne 2010]) and a standard operating procedure for sediment sampling (SOP AGEM-15; Appendix B in Argonne 2010) were submitted to the KDHE on the basis of these discussions and were subsequently approved (KDHE 2008b). To supplement the original scope of the monitoring, Argonne has also sampled natural vegetation at locations in the contaminant plume and along Terrapin Creek for analyses for VOCs.

In August 2010, indoor air sampling was conducted at seven residences, one church, and one business overlying the contaminant plume to evaluate the potential for vapor intrusion. Carbon tetrachloride contamination was not detected.

The April and October 2011 groundwater sampling events reported here represent a continuation of the approved monitoring program, as requested by the KDHE (2007b). The groundwater sampling is presently conducted, in accord with the monitoring plan (Argonne 2005b) and the addendum to that plan (Appendix A in Argonne 2010), in a network of 12 monitoring wells and 3 private wells at locations approved by the KDHE (2008b). In addition, since 2008, overflow from the Grimm irrigation well (installed in 2008 just south of Terrapin Creek) has also been sampled.

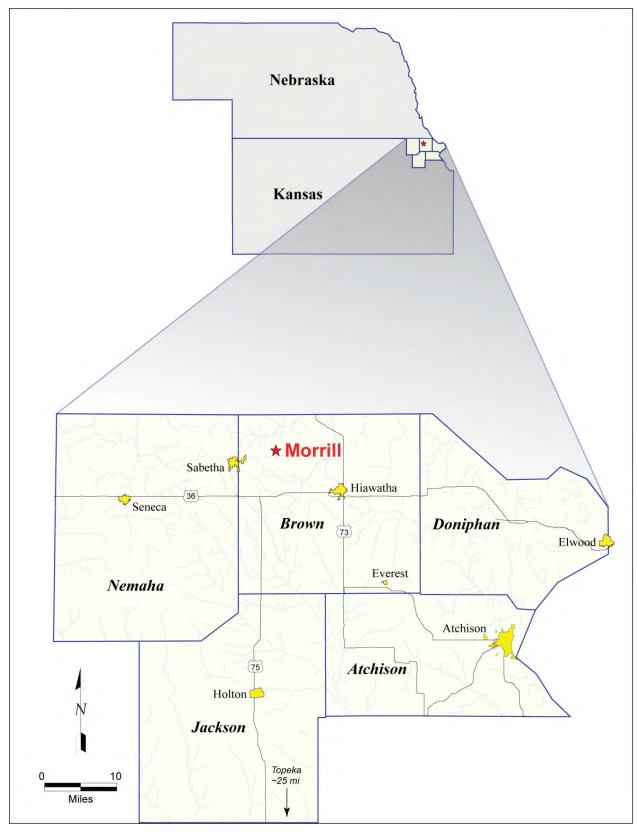


FIGURE 1.1 Location of Brown County and Morrill, Kansas.

2 Sample Collection and Analysis Activities

2.1 Measurement of Groundwater Levels

Data recorders currently installed in wells MW1S-MW4S and MW6S-MW8S are gathering long-term data on the groundwater elevation and gradient at Morrill in order to evaluate daily to seasonal variation. In addition, to calibrate the long-term data and to define the potentiometric surface, depths to groundwater and total well depths from the tops of the well casings are measured periodically in conjunction with the data recorder downloads, as well as during each groundwater sampling event, with an accuracy of ± 0.01 ft.

During the current reporting period, the data recorders were downloaded on April 13, 2011, and January 5, 2012. Water levels were measured manually in all monitoring wells on these dates, as well as during the sampling events on April 20-21, 2011, and October 3-4, 2011.

The groundwater level data are discussed in Section 3.1.

2.2 Monitoring Well and Private Well Sampling and Analyses

Monitoring wells MW1D and MW1S-MW11S and the Stone, Isch, and Rilinger private wells (Figure 2.1) were sampled on April 20-21, 2011, and October 3-4, 2011.

Samples were collected from monitoring wells by using a low-flow bladder pump. After measurement of water levels, each monitoring point was purged of a small volume, in accord with U.S. Environmental Protection Agency (EPA) procedure EPA/540/S-95/504 (Puls and Barcelona 1996; Yeskis and Zavala 2002) and the equipment manufacturers' instructions. Field measurements of temperature, pH, conductivity, DO, and ORP were taken during purging until the measurements stabilized. Field measurements of iron(II) were made as outlined in the monitoring plan (Argonne 2005b), in accord with procedures in the *Master Work Plan* (Argonne 2002). Samples from the Isch and Rilinger private wells were collected after a 5-min purge with the dedicated pump. The sample from the Stone private well was collected after purging of the well by bailing.

Prior sampling at well MW1S, which is located near the center of the contaminant plume and is screened over a 40-ft interval, has indicated that a representative sample is not collected by the low-flow sampling procedure. Therefore, since 2008 the well has also been sampled periodically after purging of three well volumes. This comparison sampling is discussed further in Section 3.5.

The sequence of activities during the 2011 sampling events is summarized in Appendix A, Table A.1.

Groundwater samples for VOCs analyses were collected in appropriate laboratory containers, labeled, packaged, and chilled to 4°C by placement in ice-filled coolers. The samples were shipped by an overnight delivery service to the Applied Geosciences and Environmental Management (AGEM) Laboratory at Argonne for VOCs analyses with EPA Method 524.2 (EPA 1995). Separate aliquots of selected samples (chosen in the field) were shipped to TestAmerica Laboratories, Inc., South Burlington, Vermont, for verification VOCs analysis.

The groundwater analysis results are presented and discussed in Section 3.2.

2.3 Surface Water and Sediment Sampling and Analyses

At the request of the KDHE (2007a), surface water samples and corresponding samples of the underlying shallow sediments in the creek bed are routinely collected for VOCs analyses at five locations along Terrapin Creek (Figure 2.2), as outlined in the monitoring plan addendum (Appendix A in Argonne 2010). The sampling was conducted in accord with procedures in the *Master Work Plan* (Argonne 2002) and SOP AGEM-15 (Appendix B in Argonne 2010). Surface water flow in Terrapin Creek south of Morrill originates at the outfall from an earthen dam and retention pond approximately 1,900 ft southwest of the former CCC/USDA facility (Figure 2.2). Surface water and sediment sampling location SMB, which is directly downstream from this outfall, is believed to lie upgradient, or cross-gradient, to groundwater flow (and hence possible contaminant migration) from the vicinity of the former CCC/USDA facility. (See Section 3.1.) Sampling locations SM1-SM4 were selected to lie downgradient and downstream from the carbon tetrachloride detections previously identified at MW8S and elsewhere in the monitoring well network.

Samples of surface water were collected in appropriate containers, labeled, preserved at 4°C, and shipped by an overnight delivery service to the AGEM Laboratory for VOCs analyses with EPA Method 524.2 (EPA 1995). Samples of the shallow creek bed sediments were collected by scooping the materials directly into appropriate laboratory containers. The samples were labeled, preserved on dry ice, and shipped to the AGEM Laboratory for sample preparation and VOCs analyses with modified EPA Methods 5030B and 8260B.

The surface water and sediment analysis results are presented and discussed in Section 3.3.

2.4 Vegetation Sampling and Analyses

Vegetation samples have been collected at locations within the contaminant plume and along Terrapin Creek and its tributaries south and southwest of the former CCC/USDA facility. Vegetation sampling locations, which have expanded over time, were selected along the apparent direction of groundwater flow from the former facility. Vegetation samples were collected at 18 locations in July 2007 (Argonne 2008a), at 25 locations in July 2008 (Argonne 2009), and at 22 locations in August 2009 (Argonne 2010). In July 2010 and July 2011, branch tissue samples were collected at 42 locations from mature ash, cottonwood, elm, hackberry, juniper, maple, mulberry, oak, Osage orange, pear, pine, walnut, and willow trees.

Figure 2.3 illustrates the locations of the vegetation sampling conducted on July 28, 2011. The sequence of sampling activities, including descriptions of sample locations and identifications of the trees sampled, is summarized in Table A.1, Appendix A. Analytical results are presented and discussed in Section 3.4.

The tree tissue samples were collected in appropriate laboratory containers, labeled, preserved on dry ice, and shipped to the AGEM Laboratory for carbon tetrachloride and chloroform analyses by a headspace technique based on a modification of EPA Method 5021 (http://www.epa.gov/epahome/index/; Alvarado and Rose 2004).

2.5 Handling and Disposal of Investigation-Derived Waste

The water generated as potentially contaminated investigation-derived waste was containerized on-site. The accumulated purge water was sampled on October 31, 2011 (along with wastewaters from several other CCC/USDA sites in Kansas), and analyzed by Pace Analytical Services, Inc., Lenexa, Kansas, for VOCs on November 4 with EPA Method 5030/8260, for ethylene dibromide on November 8 with EPA Method 504.1, and for nitrate/nitrite nitrogen on November 2 with EPA Method 353.2. Carbon tetrachloride was detected at 3.4 μ g/L. Nitrate/nitrite nitrogen was present at 13.8 mg/L. Ethylene dibromide was not detected. The laboratory results are in Supplement 1, on the compact disc (CD) inside the back cover of this report. The water was delivered on December 19, 2011 (together with purge water from several other CCC/USDA investigation sites in Kansas), for disposal at the Sabetha publicly owned wastewater treatment plant.

2.6 Quality Control for Sample Collection, Handling, and Analysis

The quality control/quality assurance procedures followed during the 2011 monitoring events are described in detail in the *Master Work Plan* (Argonne 2002) and SOP AGEM-15 (Appendix B in Argonne 2010). These procedures are summarized as follows:

- Sample collection and handling activities were monitored by the documentation of samples as they were collected and the use of chain-of-custody forms and custody seals to ensure sample integrity during handling and shipment.
- Samples designated for VOCs analyses were received with custody seals intact and at the appropriate preservation temperature. All samples were analyzed within the required holding times.
- Quality control samples (field blanks, equipment rinsates, and trip blanks) collected to monitor sample collection and handling activities were free of carbon tetrachloride contamination. Method blanks used to monitor analytical methodologies were free of carbon tetrachloride and chloroform contamination. Analytical results for quality control samples collected to monitor sample-handling activities are in Appendix B, Table B.1.

- Groundwater samples were analyzed for VOCs at the AGEM Laboratory with the purge-and-trap method on a gas chromatograph-mass spectrometer system (modified EPA Method 524.2). Calibration checks with each sample delivery group were required to be within ±20% of the standard. Surrogate standard determinations performed on samples and blanks were within the specified range of 80-120% for all samples, in either the initial analysis or a successful reanalysis. Accuracy and precision of the analytical methodology was evident in the analysis of four replicate samples and duplicate analysis of eight additional samples, with an average relative percent difference values of approximately < 5% between the initial analysis and the associated quality control analysis for both carbon tetrachloride and chloroform (Appendix B, Table B.2). The groundwater analytical data from the AGEM Laboratory are acceptable for quantitative determination of contaminant distribution.
- In accordance with the procedures defined in the Master Work Plan (Argonne • 2002), the analyses of water samples at the AGEM Laboratory were verified by a second laboratory. Accordingly, groundwater samples collected during each of the 2011 monitoring events were submitted to TestAmerica for analysis according to the EPA's Contract Laboratory Program methodology. Complete analytical results for three groundwater samples and one trip blank collected in April 2011 are in sample delivery group 200-4827 in Supplement 2 (on CD). Complete analytical results for three groundwater samples, one surface water sample, and one trip blank collected in October 2011 are in sample delivery group 200-7357 in Supplement 2 (on CD). The results are summarized in Appendix B, Table B.3. Although the results from TestAmerica support the results from the AGEM Laboratory, the results for some samples are not comparable. Samples from MW11S with quantitative levels of carbon tetrachloride and from the Rilinger private well with nearquantitative levels compare well between the two laboratories, with relative percent difference values of < 10%. Other samples are not directly comparable between the two laboratories, because trace levels of carbon tetrachloride were detected in blanks associated with the analyses at TestAmerica, including the two trip blanks.

• Vegetation samples were analyzed for carbon tetrachloride and chloroform at the AGEM Laboratory by using a gas chromatograph with electron capture detection to achieve the low detection limits required. An 11-point calibration of the gas chromatograph system was established on the basis of the mass of known quantities of carbon tetrachloride and chloroform.

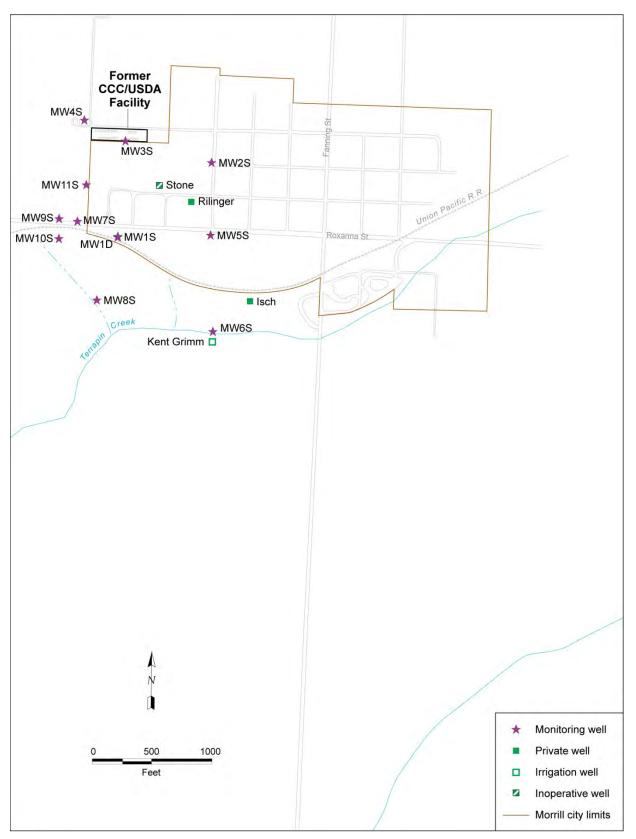


FIGURE 2.1 Groundwater monitoring network as of October 2011.

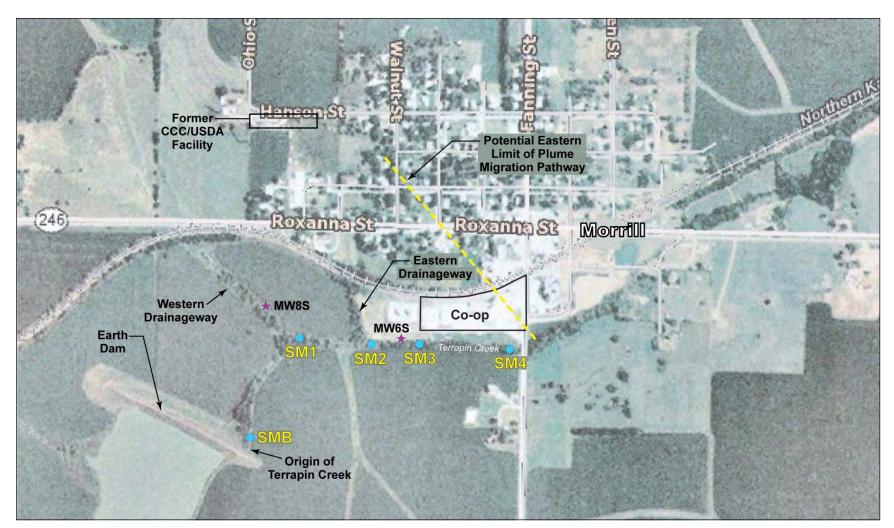


FIGURE 2.2 Locations of surface water and creek bed sediment sampling along Terrapin Creek in October 2011.

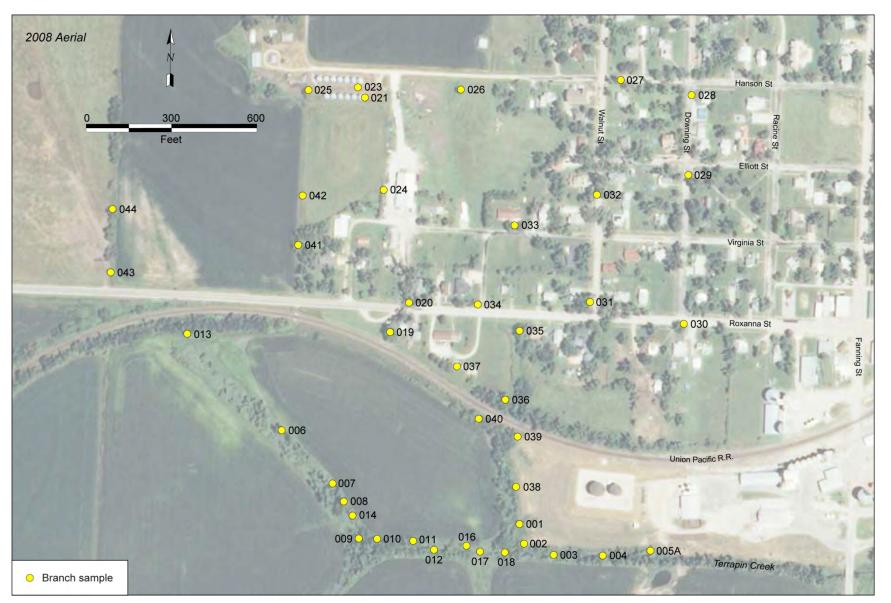


FIGURE 2.3 Locations of native vegetation sampling downgradient of the former CCC/USDA facility and along Terrapin Creek in July 2011.

3 Results and Discussion

3.1 Groundwater Level Data

Depths to groundwater were measured manually in all available monitoring wells on April 13, 2011, and January 5, 2012, in conjunction with data recorder downloads. These hand-measured water level data, along with hand-measured levels from the April 20-21, 2011, and October 3-4, 2011, sampling events, are in Table 3.1.

As in previous years, groundwater flow during 2011 (Figure 3.1) was predominantly to the south, from the vicinity of the former CCC/USDA facility toward Terrapin Creek.

Hydrographs recorded in 2011 for the Morrill monitoring wells (Figure 3.2) illustrate rises in water levels reflecting seasonal responses to spring precipitation and recharge, followed by generally declining groundwater levels during the remainder of the year. Similar seasonal responses have been observed annually (to varying extents) throughout Argonne's investigations at Morrill.

The hydrograph in Figure 3.2 for monitoring well MW6S is marked by a series of sharp downward "spikes" in the water level at this location during May and July-August, 2011. The observed events reflect transient drawdown in response to pumping of the Grimm irrigation well (location TD12), which was installed just south of the MW6S location in March 2008 (Argonne 2008b). Little or no distinct response to the pumping of the Grimm irrigation well is apparent at the other monitoring well locations; however, the operation of the Grimm well empirically coincides with the decline in water levels observed at all locations in the summer and fall 2007, in the absence of the Grimm well pumping, suggests that spring precipitation and recharge represent the predominant factors affecting the local groundwater level patterns.

3.2 Groundwater Analysis Results

The analytical data for VOCs in the groundwater samples collected in April and October 2011 are in Table 3.2, together with data for the previous sampling events conducted under the KDHE-approved monitoring plan (Argonne 2005b). The results of field measurements on the

groundwater samples are in Table 3.3. The April and October 2011 data for carbon tetrachloride in groundwater are illustrated in Figures 3.3a and 3.3b, respectively. For comparison, the results of the groundwater sampling in April and September 2010 are in Figures 3.4a and 3.4b, respectively.

In April 2011 (Figure 3.3a), carbon tetrachloride was detected at 9 of the 15 monitoring locations, at concentrations ranging from < 1 μ g/L (at the Rilinger private well and 3 monitoring wells) to a maximum of 38 μ g/L (at well MW11S). Low levels of chloroform (< 1-1.2 μ g/L) were detected in 5 wells (Table 3.2).

In October 2011 (Figure 3.3b), carbon tetrachloride was detected at 8 of the 15 monitoring locations, at concentrations ranging from $< 1 \ \mu g/L$ (at the Rilinger private well and 2 monitoring wells) to a maximum of 49 $\mu g/L$ (at well MW3S). Low levels of chloroform ($< 1-1.8 \ \mu g/L$) were detected in 4 wells (Table 3.2).

The results in Table 3.2, Figures 3.3a,b, and Figures 3.4a,b indicate no significant changes in the concentrations or distribution of carbon tetrachloride in the groundwater during the 2011 review period or in comparison to the results of the spring and fall 2010 monitoring.

3.3 Surface Water and Sediment Analysis Results

Table 3.4 presents the results of VOCs analyses of the surface water and shallow sediment samples collected (at the request of the KDHE [2007a]) along Terrapin Creek. No carbon tetrachloride was detected in the surface water samples collected at locations shown in Figure 2.2, at an analytical method detection limit of 0.1 μ g/L. Similarly, no carbon tetrachloride was identified in the associated sediment samples at an analytical method detection limit of 1.0 μ g/kg. The 2011 results therefore indicate that the surface waters and underlying sediments of Terrapin Creek remain uncontaminated by carbon tetrachloride.

3.4 Vegetation Analysis Results and Observations

The July 2008 vegetation sampling event involved expansion to include locations at and directly downgradient from the former CCC/USDA facility (locations MR019 to MR024; Figure 2.3). The sampling area was expanded further in July 2010 by adding locations MR025-

MR044 (Figure 2.3) along the pathway from the former facility and toward Terrapin Creek. Essentially the same locations were sampled in July 2011.

Analytical data for carbon tetrachloride and chloroform in tree branch samples collected in July 2011 (and in previous years) are shown in Table 3.5. In the July 2011 sampling, trace concentrations of carbon tetrachloride were identified at 2 of 42 locations sampled (MR037 and MR043; Figure 3.5). The analytical method detection limit was $0.1 \mu g/kg$.

3.5 Comparison of Analytical Results for Samples Collected after Low-Flow Purging and after Purging of Three Well Volumes

Of particular concern at Morrill has been the applicability of the low-flow sampling method for the wells installed by the KDHE in 1995 with screen intervals of 30-40 ft. At the request of the KDHE (2008a), selected wells were sampled in October 2008 by using both the low-flow purging technique and the three-well-volume purging technique to confirm the suitability of the low-flow method for groundwater sampling at Morrill. As reported previously (Argonne 2009), samples were collected by both methods in October 2008 from wells MW1S, MW2S, and MW3S (installed by the KDHE in 1995 with 30- to 40-ft screens), as well as from well MW11S (installed by Argonne in 2004 with a 15-ft screen). Results for all pairs except the MW1S samples compared favorably; the low-flow results for well MW1S (centrally located in the plume) were dramatically lower than the three-volume-purge results. Low-flow results for MW1S in October 2008 were therefore considered non-representative, and the value for the sample obtained after purging of three well volumes was honored instead (Argonne 2009). Sampling conducted in later years has continued this evaluation of the suitability of the low-flow sampling method.

In October 2011, sampling of well MW1S with the low-flow procedure resulted in a carbon tetrachloride detection at $1.7 \,\mu$ g/L. Subsequent sampling with the three-volume-purge method resulted in a carbon tetrachloride detection of $23 \,\mu$ g/L. This higher concentration is considered representative of the contaminant level at this location. This was the fourth sampling event (October 2008, September 2009, April 2010, and October 2011) in which a similar pattern was observed for well MW1S.

		April	13, 2011	April 2	0-21, 2011	Octobe	er 3-4, 2011	Janua	ary 5, 2012	
Well	Top of Casing Elevation (ft AMSL)	Depth to Water (ft BGL)	Groundwater Elevation (ft AMSL)							
MW1S	1124.68	27.40	1097.28	23.45	1101.23	21.80	1102.88	24.61	1100.07	
MW1D	1124.63	32.51	1092.12	30.15	1094.48	29.06	1095.57	31.90	1092.73	
MW2S	1137.07	37.39	1099.68	36.00	1101.07	32.73	1104.34	33.25	1103.82	
MW3S	1135.76	32.76	1103.00	32.06	1103.70	25.95	1109.81	25.95	1109.81	
MW4S	1143.61	42.18	1101.43	42.39	1101.22	35.60	1108.01	36.48	1107.13	
MW5S	1122.21	26.19	1096.02	24.43	1097.78	21.10	1101.11	22.38	1099.83	
MW6S	1090.97	6.16	1084.81	6.52	1084.45	6.49	1084.48	6.03	1084.94	
MW7S	1119.86	20.64	1099.22	19.69	1100.17	7.11	1112.75	16.86	1103.00	
MW8S	1098.53	3.84	1094.69	2.73	1095.80	4.91	1093.62	2.57	1095.96	
MW9S	1118.31	23.96	1094.35	23.76	1094.55	22.35	1095.96	22.76	1095.55	
MW10S	1110.78	14.17	1096.61	13.69	1097.09	12.54	1098.24	12.48	1098.30	
MW11S	1133.08	39.59	1093.49	39.16	1093.92	36.83	1096.25	36.88	1096.20	

TABLE 3.1 Hand-measured groundwater levels in 2011.	TABLE 3.1	dwater levels in 2011.
---	-----------	------------------------

TABLE 3.2 Results of analyses at the AGEM Laboratory for volatile organic compounds in groundwater samples collected in 2003-2011. Shading indicates sample collection with the low-flow procedure.

							Pump	Со	ncentration (µg/	'L)	_	
Location	Screen Interval (ft BGL)	Sample Date	Depth to Water (ft BOTC)	Depth of well (ft BTOC)	Volume Purged	Purge Units	Intake Position (ft BGL)	Carbon Tetrachloride	Chloroform	Methylene Chloride	Comment	Sample
MW1S	11-51	10/23/03	30.4	54.0	70	gal	-	33	1.6	ND ^a		MRMW1S-W-16422
MW1S	11-51	6/2/04	27.0	53.9	53	gal	-	19	0.9	ND		MRMW1S-W-16461
MW1S	11-51	9/13/05	24.2	53.9	57	gal	-	35	1.7	ND		MRMW1S-W-19259
MW1S	11-51	3/22/06	29.0	54.0	48	gal	-	40	1.8	ND		MRMW1S-W-20008
MW1S	11-51	9/20/06	26.8	54.0	55	gal	-	23	0.9 J ^b	ND		MRMW1S-W-22495
MW1S	11-51	3/21/07	25.8	54.0	55	gal	-	23	1.1	ND		MRMW1S-W-16488
MW1S MW1S	11-51 11-51	10/1/07 4/14/08	21.7 16.2	54.0 54.0	63 5.5	gal L	-	56 0.3 J	2.7 ND	ND ND	April monitoring.	MRMW1S-W-16595 MRMW1S-W-23230
MW1S	11-51	4/14/08	16.0	54.0 54.0	6.3	L	-	0.3 J 0.2 J	ND	ND	Confirm low carbon tetrachloride.	MRMW1S-W-23259
MW1S	11-51	5/1/08	_	_	3.2	L	22.0	ND	ND	ND	Top of screen.	MRMW1S-22-W-23275
MW1S	11-51	5/1/08	-	-	3.2	Ē	27.0	ND	ND	ND	Middle of screen.	MRMW1S-27-W-23276
MW1S	11-51	5/1/08	-	-	4.3	L	48.0	0.3 J	ND	ND	Bottom of screen.	MRMW1S-48-W-23277
MW1S	11-51	10/20/08	25.8	54.0	6.0	L	31.0	0.7 J	ND	ND	Low flow.	MRMW1S-W-27620
MW1S	11-51	10/21/08	-	-	-	-	-	35	1.8	ND	Full purge.	MRMW1S-W-27649
MW1S	11-51	4/24/09	24.4	54.0	5.0	L	39.2	ND	ND	ND		MRMW1S-W-27652
MW1S	11-51	9/3/09	19.0	54.0	8.0	L	35.0	ND	ND	ND	Low flow.	MRMW1S-W-29942
MW1S	11-51	9/4/09	19.3	51.2	244	L	50.0	34	1.7	ND	Three well volumes.	MRMW1S-W-29971
MW1S	11-51	4/7/10	11.7	51.3	7.0	L	16.6	ND	ND ND	ND	Top of screen.	MRMW1ST-W-29981
MW1S MW1S	11-51 11-51	4/7/10 4/7/10	11.6 11.7	51.3 51.3	6.0 6.0	L	31.5 46.3	ND ND	ND	ND ND	Middle of screen. Bottom of screen.	MRMW1SM-W-29980 MRMW1SB-W-29979
MW1S	11-51	4/7/10	11.5	51.3	80	gal	49.0	21	1.2	ND	Three well volumes.	MRMW1S3X-W-29982
MW1S	11-51	9/22/10	19.9	54.0	10	L	31.0	1.6	ND	ND	Low flow.	MRMW1S5X-W-25362
MW1S	11-51	4/20/11	23.5	54.0	6.5	Ē	37.0	0.3 J	ND	ND	Low flow.	MRMW1S-W-30038
MW1S	11-51	10/4/11	21.8	54.0	8.0	Ē	34.9	1.7	ND	ND	Low flow.	MRMW1S-W-30067
MW1S	11-51	10/12/11	22.1	54.0	6.0	L	36.6	1.5	ND	ND	Low flow.	MRMW1S-W-30091
MW1S	11-51	10/12/11	22.4	54.0	65	gal	49.0	23	1.2	ND	Three well volumes.	MRMW1S3X-W-30093
MW1D	63-88	10/22/03	28.4	88.5	92	gal	-	ND	ND	ND		MRMW1D-W-16421
MW1D	63-88	6/2/04	26.8	88.6	140	gal	-	ND	ND	ND		MRMW1D-W-16458
MW1D	63-88	9/13/05	23.7	88.6	200	gal	-	ND	ND	ND		MRMW1D-W-16518
MW1D	63-88	3/19/06	26.9	88.6	112	gal	-	ND	ND	0.4 J B ^c		MRMW1D-W-19986
MW1D	63-88	9/20/06	25.5	88.8	125	gal	-	ND	ND	ND		MRMW1D-W-16532
MW1D	63-88	3/21/07	25.8	88.8	125	gal	-	ND	ND	ND		MRMW1D-W-16487
MW1D	63-88	10/1/07	22.8	89.4	130	gal	-	ND	ND	ND		MRMW1D-W-16596
MW1D	63-88	4/14/08	29.5	89.0	6.0	L	-	ND	ND	ND		MRMW1D-W-23231
MW1D	63-88	10/20/08	30.4	89.0	7.0	L	75.5	ND	ND	ND		MRMW1D-W-27621
MW1D	63-88	4/24/09	31.0	89.0	7.0	L	75.5 75 5	ND	ND	ND		MRMW1D-W-27653
MW1D MW1D	63-88 63-88	9/3/09 4/6/10	27.1 24.7	89.0 89.0	6.5 8.5	L	75.5 75.5	ND ND	ND ND	ND ND		MRMW1D-W-29943 MRMW1D-W-29983
MW1D MW1D	63-88	4/6/10 9/22/10	24.7 27.9	89.0 89.0	8.5 9.0	L	75.5 75.5	ND ND	ND	ND ND		MRMW1D-W-29983 MRMW1D-W-30011
MW1D	63-88	9/22/10	30.2	89.0 89.0	9.0 5.5	L	75.5 75.5	ND	ND	ND		MRMW1D-W-30039
MW1D	63-88	10/4/11	29.1	89.0	6.5	L	75.5	ND	ND	ND		MRMW1D-W-30068
MW1D	63-88	10/4/11	29.1	89.0	6.5	Ē	75.5	ND	ND	ND	Replicate.	MRMW1DDUP-W-30084

	_						Pump	Cor	ncentration (µg/	L)	_	
Location	Screen Interval (ft BGL)	Sample Date	Depth to Water (ft BOTC)	Depth of well (ft BTOC)	Volume Purged	Purge Units	Intake Position (ft BGL)	Carbon Tetrachloride	Chloroform	Methylene Chloride	Comment	Sample
MW2S	13-53	10/22/03	42.2	53.4	Purge	ed dry, sar	npled.	ND	ND	ND		MRMW02-W-16419
MW2S	13-53	6/2/04	37.4	53.3	31	gal	-	ND	ND	ND		MRMW2S-W-16459
MW2S	13-53	9/14/05	33.7	53.3	38	gal	-	ND	ND	ND		MRMW2S-W-19264
MW2S	13-53	3/21/06	40.9	53.3	27	gal	-	ND	ND	ND		MRMW2S-W-19992
MW2S MW2S	13-53 13-53	9/18/06	36.5 35.8	53.3 53.3	28 35	gal	_	ND ND	ND ND	ND ND		MRMW2S-W-22488 MRMW2S-W-16559
MW2S	13-53	3/22/07 10/3/07	31.2	53.5	33 44	gal gal	_	ND	ND	ND		MRMW2S-W-16559 MRMW2S-W-16587
MW2S	13-53	4/15/08	23.6	53.4	2.2	L	_	ND	ND	ND		MRMW2S-W-23232
MW2S	13-53	10/21/08	33.7	53.5	5.0	Ē	33.0	ND	ND	ND	Low flow.	MRMW2S-W-27622
MW2S	13-53	10/21/08	-	_	_	-	-	ND	ND	ND	Full purge.	MRMW2S-W-27652
MW2S	13-53	4/23/09	33.2	53.5	6.5	L	43.4	ND	0.6 J	ND	1 0	MRMW2S-W-27654
MW2S	13-53	9/3/09	29.4	53.5	5.4	L	41.2	ND	ND	ND		MRMW2S-W-29944
MW2S	13-53	4/6/10	18.6	52.4	6.5	L	36.0	ND	ND	ND		MRMW2S-W-29984
MW2S	13-53	9/22/10	31.3	53.0	7.0	L	33.0	ND	ND	ND		MRMW2S-W-30012
MW2S	13-53	4/20/11	36.0	53.5	8.0	L	44.5	ND	ND	ND		MRMW2S-W-30040
MW2S	13-53	4/20/11	36.0 32.7	53.5	8.0 7.5	L	44.5 42.6	ND ND	ND ND	ND ND	Replicate.	MRMW2SDUP-W-30055
MW2S	13-53	10/4/11	32.1	53.5	7.5	L	42.0	ND	ND	ND		MRMW2S-W-30069
MW3S	18-48	10/23/03	36.5	47.8	73	gal	_	89	2.7	ND		MRMW03-W-16423
MW3S	18-48	6/2/04	30.7	47.5	34	gal	_	110	3.2	ND		MRMW3S-W-16462
MW3S	18-48	9/13/05	25.6	47.6	50	gal	-	101	3.2	ND		MRMW3S-W-19261
MW3S	18-48	3/23/06	35.6	47.7	28	gal	-	91	2.6	ND		MRMW3S-W-19994
MW3S	18-48	9/20/06	29.4	47.8	22	gal	-	49	1.5	ND		MRMW3S-W-22496
MW3S	18-48	3/22/07	26.2	47.8	45	gal	-	84	2.3	ND		MRMW3S-W-16563
MW3S	18-48	10/3/07	22.7	47.9	50	gal	-	61	2.0	ND		MRMW3S-W-16585
MW3S	18-48	4/14/08	17.0	47.8	3.3	L	-	8.2	0.4 J	ND	April monitoring.	MRMW3S-W-23233
MW3S	18-48	4/22/08	15.8	47.8	6.5	L	-	0.7 J	ND	ND	Confirm low carbon tetrachloride.	MRMW3S-W-23260
MW3S	18-48	5/1/08	_	_	2.6	L	26.0	0.4 J	ND	ND	Top of screen.	MRMW3S-26-W-23269
MW3S	18-48	5/1/08	_	_	2.8	L	38.0	0.4 J	ND	ND	Middle of screen.	MRMW3S-38-W-23270
MW3S	18-48	5/1/08	_	_	3.2	Ē	45.0	0.5 J	ND	ND	Bottom of screen.	MRMW3S-45-W-23271
MW3S	18-48	10/21/08	27.0	47.8	4.2	L	33.0	55	1.4	ND	Low flow.	MRMW3S-W-27623
MW3S	18-48	10/21/08	-	-	-	-	-	63	1.6	ND	Full purge.	MRMW3S-W-27650
MW3S	18-48	4/23/09	26.7	47.8	5.0	L	37.3	29	1.4	ND		MRMW3S-W-27655
MW3S	18-48	9/3/09	22.4	47.8	5.5	L	35.2	30	1.1	ND	Low flow.	MRMW3S-W-29945
MW3S	18-48	9/4/09	22.6	47.8	190	L	46.0	28	0.9 J	ND	Three well volumes.	MRMW3S-W-29972
MW3S	18-48	4/6/10	12.1	47.8	6.0	L	33.0 33.0	3.5	0.2 J	ND ND		MRMW3S-W-29985
MW3S MW3S	18-48	9/23/10	23.7	47.8	7.0	L		47	1.6	ND		MRMW3S-W-30013
MW3S	18-48 18-48	4/20/11 10/4/11	32.1 26.0	47.8 47.8	6.2 7.0	L	40.0 37.0	33 49	1.2 1.8	ND		MRMW3S-W-30041 MRMW3S-W-30070
1111100	10 +0	10/-1/11	20.0	0.17	7.0		07.0		1.0	ND		
MW4S	17-47	10/21/03	46.4	47.8	Purae	d dry, sar	npled.	ND	ND	ND		MRMW04-W-16418
MW4S	17-47	6/4/04	43.2	47.8	10	gal	-	ND	ND	ND		MRMW4S-W-16470
MW4S	17-47	9/14/05	36.2	47.8	8.0	gal	-	ND	ND	ND		MRMW4S-W-19262
MW4S	17-47	3/21/06	44.6	47.7	6.0	gal	-	ND	ND	ND		MRMW4S-W-19993
MW4S	17-47	9/18/06	41.6	47.8	5.3	gal	-	ND	ND	ND		MRMW4S-W-22487
MW4S	17-47	3/22/07	38.7	47.8	6.0	gal	-	ND	ND	ND		MRMW4S-W-16562
MW4S	17-47	10/3/07	31.1	47.7	30	gal	-	0.5 J R ^d	ND	ND		MRMW4S-W-16586

	_			_			Pump	Cor	ncentration (µg/	L)	_	
Location	Screen Interval (ft BGL)	Sample Date	Depth to Water (ft BOTC)	Depth of well (ft BTOC)	Volume Purged	Purge Units	Intake Position (ft BGL)	Carbon Tetrachloride	Chloroform	Methylene Chloride	Comment	Sample
MW4S	17-47	1/11/08	_	_	-	_	-	ND	ND	ND		MOMW4S-W-011108
MW4S MW4S	17-47 17-47	4/14/08 10/20/08	26.3 36.7	47.9 47.8	2.5 8.0	L gal	-	ND ND	ND ND	ND ND		MRMW4S-W-23234 MRMW4S-W-27624
MW4S	17-47	4/23/09	41.5	47.8	5.0	L	44.7	ND	ND	ND		MRMW43-W-27656
MW4S	17-47	9/4/09	31.6	47.8	6.0	L	39.3	ND	ND	ND		MRMW4S-W-29946
MW4S	17-47	4/6/10	21.8	47.9	5.5	L	34.8	ND	ND	ND		MRMW4S-W-29986
MW4S MW4S	17-47 17-47	9/22/10 4/21/11	33.2 42.4	47.8 47.8	6.0 5.0	L	32.0 44.7	ND ND	ND ND	ND ND		MRMW4S-W-30014 MRMW4S-W-30042
MW4S	17-47	10/4/11	35.6	47.8	6.0	L	40.9	ND	ND	ND		MRMW4S-W-30071
MW5S	15-55	10/22/03	31.4	55.7	48	gal	-	5.8	ND	ND		MRMW05-W-16420
MW5S	15-55	6/2/04	26.3	55.7	> 57	gal	-	7.0	ND	ND		MRMW5S-W-16460
MW5S MW5S	15-55 15-55	9/13/05 3/22/06	22.7 28.6	54.2 54.5	75 50	gal gal	_	6.3 7.3	0.2 J 0.2 J	ND ND		MRMW5S-W-19260 MRMW5S-W-19996
MW5S MW5S	15-55	9/20/06	25.4	54.6	50 52	gal	_	6.4	0.2 J	ND		MRMW5S-W-19990 MRMW5S-W-22493
MW5S	15-55	3/22/07	25.1	54.6	58	gal	-	6.5	0.4 J	ND		MRMW5S-W-16569
MW5S	15-55	10/3/07	19.6	54.7	68	gal	-	4.0	0.3 J	ND		MRMW5S-W-16588
MW5S MW5S	15-55 15-55	4/14/08 4/23/08	11.2 11.3	54.6 54.6	6.0 6.5	L	_	ND ND	ND ND	ND ND	April monitoring. Confirm low carbon	MRMW5S-W-23235
	10 00			0.110	0.0	-					tetrachloride.	MRMW5S-W-23266
MW5S	15-55	5/1/08	-	-	3.7	L	20.0	ND	ND	ND	Top of screen.	MRMW5S-20-W-23272
MW5S MW5S	15-55	5/1/08	-	_	3.4	L	28.0 52.0	ND	ND ND	ND ND	Middle of screen.	MRMW5S-28-W-23273
MW5S MW5S	15-55 15-55	5/1/08 10/21/08	_ 22.5	_ 54.6	4.0 7.0	L	52.0 35.0	ND 1.7	ND	ND	Bottom of screen.	MRMW5S-52-W-23274 MRMW5S-W-27625
MW5S	15-55	4/24/09	22.1	54.6	5.5	Ē	38.4	ND	ND	ND		MRMW5S-W-27657
MW5S	15-55	9/3/09	17.6	54.6	5.5	L	36.3	ND	ND	ND		MRMW5S-W-29947
MW5S MW5S	15-55 15-55	4/7/10 9/22/10	8.3 19.3	54.5 55.0	5.5 6.5	L	35.0 35.0	ND ND	ND 9.4	ND ND		MRMW5S-W-29987 MRMW5S-W-30015
MW5S MW5S	15-55	4/20/11	24.4	54.6	7.0	L	36.0	1.3	ND 9.4	ND		MRMW5S-W-30043
MW5S	15-55	10/4/11	21.1	54.6	6.5	L	38.3	ND	ND	ND		MRMW5S-W-30072
MW6S	10-25	6/3/04	3.3	26.9	45	gal	_	ND	ND	ND		MRMW6S-W-16465
MW6S	10-25	9/14/05	4.7	26.9	43	gal	-	ND	ND	ND		MRMW6S-W-19263
MW6S MW6S	10-25 10-25	3/20/06 9/18/06	5.4 5.5	26.9 26.9	43 27	gal gal	_	ND ND	ND ND	ND ND		MRMW6S-W-19990 MRMW6S-W-22486
MW6S	10-25	3/21/07	5.4	26.9	30	gal	_	ND	ND	ND		MRMW6S-W-16486
MW6S	10-25	10/2/07	5.0	26.9	31	gal	-	ND	ND	ND		MRMW6S-W-16583
MW6S	10-25	4/15/08	5.2	26.9	2.5	L	- 47 E	ND	ND	ND		MRMW6S-W-23236
MW6S MW6S	10-25 10-25	10/20/08 4/24/09	5.7 6.2	26.9 26.9	5.0 12	L	17.5 17.5	ND ND	ND ND	ND ND		MRMW6S-W-27626 MRMW6S-W-27658
MW6S	10-25	9/4/09	5.9	26.9	5.4	L	17.5	ND	ND	ND		MRMW6S-W-29948
MW6S	10-25	4/6/10	6.2	26.9	8.0	L	17.5	ND	ND	ND		MRMW6S-W-29988
MW6S MW6S	10-25 10-25	9/22/10 4/20/11	5.5 6.5	26.9 24.9	8.8 8.0	L	17.5 17.5	ND ND	ND ND	ND ND		MRMW6S-W-30016 MRMW6S-W-30044
MW6S MW6S	10-25	4/20/11 10/4/11	6.5 6.5	24.9 26.9	8.0 6.0	L	17.5	ND ND	ND ND	ND ND		MRMW6S-W-30044 MRMW6S-W-30073
MW7S	20-45	6/3/04	26.7	47.0	40	gal	_	18	ND	ND		MRMW7S-W-16466
MW7S	20-45	9/12/05	17.6	46.9	55	gal	-	43	1.1	ND		MRMW7S-W-19258

	_						Pump	Cor	ncentration (µg/	L)	_	
Location	Screen Interval (ft BGL)	Sample Date	Depth to Water (ft BOTC)	Depth of well (ft BTOC)	Volume Purged	Purge Units	Intake Position (ft BGL)	Carbon Tetrachloride	Chloroform	Methylene Chloride	Comment	Sample
MW7S	20-45	3/22/06	22.5	47.0	48	gal	_	21	0.4 J	ND		MRMW7S-W-20000
MW7S	20-45	9/19/06	20.9	47.0	56	gal	-	38	0.7 J	ND		MRMW7S-W-22490
MW7S	20-45	3/20/07	18.0	47.0	50	gal	-	16	0.4 J	ND		MRMW7S-W-16481
MW7S	20-45	10/1/07	12.4	47.0	70	gal	-	8.1	0.2 J	ND		MRMW7S-W-16581
MW7S	20-45	4/14/08	7.7	47.0	1.8	L	-	10	0.3 J	ND		MRMW7S-W-23237
MW7S	20-45	4/23/08	7.8	47.0	11	L	_	8.3	0.2 J	ND		MRMW7S-W-23265
MW7S	20-45	10/20/08	17.2	47.0	6.3	L	32.5	7.9	ND	ND		MRMW7S-W-27627
MW7S MW7S	20-45 20-45	4/23/09 9/3/09	16.7 13.8	47.0 47.0	7.0 9.0	L	32.5 32.5	9.5 8.0	ND ND	ND ND		MRMW7S-W-27659 MRMW7S-W-29949
MW7S	20-45	9/3/09 4/6/10	6.4	47.0	9.0 5.4	L	32.5	15	0.4 J	ND		MRMW7S-W-29949 MRMW7S-W-29989
MW7S	20-45	9/23/10	14.2	45.0	6.0	L	32.5	6.6	ND	ND		MRMW7S-W-29989 MRMW7S-W-30017
MW7S	20-45	4/20/11	19.7	46.7	6.0	Ĺ	32.5	4.4	0.2 J	ND		MRMW7S-W-30045
MW7S	20-45	10/4/11	7.1	47.0	7.0	Ē	32.5	11	0.3 J	ND		MRMW7S-W-30074
MW7S	20-45	10/4/11	7.1	47.0	7.0	L	32.5	12	0.3 J	ND	Replicate.	MRMW7SDUP-W-30083
MW8S	10-25	6/3/04	3.7	26.8	45	gal	_	ND	ND	ND		MRMW8S-W-16464
MW8S	10-25	9/14/05	4.0	26.8	57	gal	_	0.9 J	ND	ND		MRMW8S-W-19265
MW8S	10-25	3/20/06	4.6	26.4	43	gal	-	0.6 J	ND	0.4 J B		MRMW8S-W-19991
MW8S	10-25	9/19/06	4.8	26.8	45	gal	-	1.3	ND	ND		MRMW8S-W-22492
MW8S	10-25	3/20/07	2.6	26.8	49	gal	-	0.6 J	ND	ND		MRMW8S-W-16483
MW8S	10-25	10/2/07	2.2	26.8	48	gal	-	0.8 J	ND	ND		MRMW8S-W-16584
MW8S	10-25	4/15/08	0.7	26.8	5.5	L	-	1.1	ND	ND		MRMW8S-W-23238
MW8S MW8S	10-25 10-25	10/20/08	3.6	26.8 26.8	8.0	L	17.5 17.5	1.3 ND	ND ND	ND ND		MRMW8S-W-27628 MRMW8S-W-27660
MW8S	10-25	4/23/09 9/3/09	2.3 2.9	26.8 26.8	6.0 8.5	L	17.5	ND 1.9	ND	ND		MRMW85-W-27660 MRMW8S-W-29950
MW8S	10-25	9/3/09 4/6/10	1.1	26.8	8.0	L	17.5	1.9	ND	ND		MRMW8S-W-29950 MRMW8S-W-29990
MW8S	10-25	9/22/10	2.5	26.8	9.0	I I	17.5	1.6	ND	ND		MRMW8S-W-30018
MW8S	10-25	4/20/11	2.7	26.8	9.0	Ē	17.5	0.2 J	ND	ND		MRMW8S-W-30046
MW8S	10-25	10/4/11	4.9	26.3	9.0	L	17.5	0.6 J	ND	ND		MRMW8S-W-30075
MW9S	38.83-53.83	3/22/06	20.2	58.6	20	gal	_	ND	ND	ND		MRMW9S-W-20004
MW9S	38.83-53.83	9/19/06	18.9	59.0	22	gal	-	ND	ND	ND		MRMW9S-W-22494
MW9S	38.83-53.83	3/20/07	16.7	59.0	22	gal	-	ND	ND	ND		MRMW9S-W-16480
MW9S	38.83-53.83	10/1/07	14.0	58.6	23	gal	-	ND	ND	ND		MRMW9S-W-16582
MW9S	38.83-53.83	4/14/08	16.6	58.6	2.3	L	-	0.8 J	ND	ND		MRMW9S-W-23239
MW9S	38.83-53.83	10/20/08	21.5	58.5	11	L	46.3	1.1	ND	ND		MRMW9S-W-27629
MW9S	38.83-53.83	4/23/09	21.9	58.5	5.5	L	46.3	1.0	ND ND	ND ND		MRMW9S-W-27661
MW9S MW9S	38.83-53.83 38.83-53.83	9/4/09 4/6/10	20.0 16.5	58.5 58.5	5.0 6.0	L	46.3 46.3	1.4 1.9	ND ND	ND ND		MRMW9S-W-29951 MRMW9S-W-29991
MW9S	38.83-53.83	9/22/10	21.2	58.8	6.0 7.0	L	46.3	1.9	ND	ND		MRMW9S-W-29991 MRMW9S-W-30019
MW9S	38.83-53.83	4/20/11	23.8	58.3	14	ī	46.3	0.9 J	ND	ND		MRMW9S-W-30047
MW9S	38.83-53.83	4/20/11	23.8	58.3	14	Ľ	46.3	1.1	ND	ND	Replicate.	MRMW9SDUP-W-30054
MW9S	38.83-53.83	10/4/11	22.4	58.5	8.0	L	46.3	0.9 J	ND	ND		MRMW9S-W-30076
MW10S	30-45	3/21/06	12.3	49.6	19	gal	_	ND	ND	ND		MRMW10S-W-19999
MW10S	30-45	9/18/06	11.1	49.6	20	gal	-	ND	ND	ND		MRMW108-W-22489
MW10S	30-45	3/21/07	10.8	49.6	20	gal	_	ND	ND	ND		MRMW10S-W-16485
MW10S	30-45	10/1/07	7.0	49.7	20	gal	-	ND	ND	ND		MRMW10S-W-16593

							Pump	Cor	ncentration (µg/	L)	_	
Location	Screen Interval (ft BGL)	Sample Date	Depth to Water (ft BOTC)	Depth of well (ft BTOC)	Volume Purged	Purge Units	Intake Position (ft BGL)	Carbon Tetrachloride	Chloroform	Methylene Chloride	Comment	Sample
MW10S	30-45	4/14/08	9.8	49.7	1.9	1	_	ND	ND	ND		MRMW10S-W-23240
MW10S	30-45 30-45	10/20/08	9.8 13.7	49.7	5.4	L	37.5	ND	ND	ND		MRMW103-W-23240 MRMW10S-W-27630
MW10S	30-45	4/23/09	13.6	45.0	7.5	Ē	37.5	ND	ND	ND		MRMW10S-W-27662
MW10S	30-45	9/3/09	12.0	49.7	7.5	L	37.5	ND	ND	ND		MRMW10S-W-29952
MW10S	30-45	4/6/10	7.5	49.7	9.0	L	37.5	ND	ND	ND		MRMW10S-W-29992
MW10S	30-45	9/22/10	11.7	49.7	11	L	37.5	ND	0.3 J	ND ND		MRMW10S-W-30020
MW10S MW10S	30-45 30-45	4/20/11 10/4/11	13.7 12.5	49.3 49.7	7.3 8.0	L	37.5 37.5	ND ND	0.2 J ND	ND ND		MRMW10S-W-30048 MRMW10S-W-30077
MW11S MW11S	53-68 53-68	3/22/06 9/19/06	35.2 36.0	72.5 73.1	20 20	gal	_	39 53	0.9 J 1.0	ND ND		MRMW11S-W-20001 MRMW11S-W-22491
MW11S	53-68 53-68	9/19/06 3/20/07	36.0 34.7	73.1	20 20	gal gal	_	37	0.8 J	ND		MRMW11S-W-22491 MRMW11S-W-16479
MW11S	53-68	10/1/07	31.6	73.0	20	gal	_	54	1.2	ND		MRMW11S-W-16594
MW11S	53-68	4/15/08	29.9	72.7	5.5	L	_	35	0.8 J	ND	April monitoring.	MRMW11S-W-23241
MW11S	53-68	4/22/08	30.2	72.7	7.2	L	-	42	0.9 J	ND	Confirm low carbon	
MW11S	53-68	10/20/08	37.1	72.7	9.0	L	60 F	42	0.9 J	ND	tetrachloride. Low flow.	MRMW11S-W-23261
MW11S	53-68	10/20/08	37.1	12.1	9.0		60.5	42	0.9 J	ND ND	Full purge.	MRMW11S-W-27631 MRMW11S-W-27651
MW11S	53-68	4/23/09	38.1	72.7	5.0	L	60.5	46	1.0	ND	i un purge.	MRMW11S-W-27663
MW11S	53-68	9/3/09	34.7	72.7	7.5	Ē	60.5	39	0.9 J	ND	Low flow.	MRMW11S-W-29953
MW11S	53-68	9/4/09	35.0	72.7	72	L	67.0	41	0.9 J	ND	Three well volumes.	MRMW11S-W-29973
MW11S	53-68	4/6/10	29.5	72.7	6.5	L	60.5	38	1.0	ND		MRMW11S-W-29993
MW11S	53-68	9/23/10	34.8	72.7	7.0	L	60.5	28	1.0	ND		MRMW11S-W-30021
MW11S	53-68	4/20/11 10/4/11	39.2 36.8	72.5 72.7	7.5 6.0	L	60.5 60.5	38 33	1.1	ND ND		MRMW11S-W-30049
MW11S	53-68	10/4/11	30.0	12.1	6.0	L	60.5	33	0.8 J	ND		MRMW11S-W-30078
Isch	-	2/19/04	-	-	Pump ^e	-	-	ND	ND	ND		MRJR-W-16502
lsch	-	9/14/05	-	-	Pump	-	-	ND	ND	ND		MRPRISCH-W-16513
lsch	-	3/23/06	-	-	20	gal	-	ND	ND	ND		MRISCH-W-19989
Isch	-	9/19/06	-	-	Pump	-	-	ND	ND	ND		MRISCH-W-16531
lsch	_	3/22/07 10/3/07	_	_	Pump Pump	_	_	ND ND	ND ND	ND ND		MRISCH-W-16564 MRISCH-W-16590
lsch Isch	_	4/15/08	_	_	Pump	_	_	0.4 J	ND	ND		MRISCH-W-10590 MRISCH-W-23242
lsch	_	4/22/08	_	_	Pump	_	_	ND	ND	ND		MRISCH-W-23262
lsch	-	10/21/08	_	-	Pump	-	-	ND	ND	ND		MRISCH-W-27632
Isch	-	4/22/09	-	-	Pump	-	-	ND	ND	ND		MRISCH-W-27664
Isch	-	9/2/09	-	-	Pump	-	-	ND	ND	ND		MRISCH-W-29954
lsch	-	4/7/10	-	-	Pump	-	-	ND	ND	ND		MRISCH-W-29994
lsch Isch	_	9/22/10 4/21/11	_	_	Pump Pump	_	_	ND ND	ND ND	ND ND		MRISCH-W-30022 MRISCH-W-30050
lsch	_	4/21/11	_	_	Pump	_	_	ND	ND	ND		MRISCH-W-30050 MRIsch-W-30079
Rillinger	-	6/4/04	-	-	Pump	-	-	ND	ND	ND		MRPRIVRIL-W-16471
Rillinger	-	9/14/05	-	-	Pump	-	-	2.6	0.1 J	ND		MRPRILL-W-16512
Rillinger Rillinger	_	3/19/06 9/19/06	_	_	Pump Pump	_	_	ND ND	ND ND	0.4 J B ND		MRRILINGER-W-19988 MRRILI-W-16530
Rillinger	_	9/19/06 3/29/07	_	_	Pump	_	_	1.3	1.1	ND		MRRILINGER-W-16561
Rillinger	_	10/3/07	_	_	Pump	_	_	13 ^f	0.4 J	ND		MRRILINGER-W-16591
3					·			-				

TABLE 3.2 (Cont.)
-------------	--------

							Pump	Cor	ncentration (µg/	L)	_	
Location	Screen Interval (ft BGL)	Sample Date	Depth to Water (ft BOTC)	Depth of well (ft BTOC)	Volume Purged	Purge Units	Intake Position (ft BGL)	Carbon Tetrachloride	Chloroform	Methylene Chloride	Comment	Sample
Rillinger	_	10/8/07	_	_	Pump	_	_	0.4 J	ND	ND		MRRILINGER-W-16592
Rillinger	-	1/11/08	-	-	Pump	_	-	6.2	0.5 J	ND		MORIL-W-11108
Rillinger	-	4/15/08	-	-	Pump	-	-	9.9	0.4 J	ND		MRRILINGER-W-23243
Rillinger	-	10/21/08	-	-	Pump	-	_	0.9 J	ND	ND		MRRILLINGER-W-27633
Rillinger	-	4/22/09	-	-	Pump	-	-	1.2	ND	ND		MRRILLINGER-W-27665
Rillinger	-	9/2/09	-	-	Pump	-	-	1.0	ND	ND		MRRILLINGER-W-29955
Rillinger	-	4/7/10	-	-	Pump	-	_	0.8 J	ND	ND		MRRILLINGER-W-29995
Rillinger	-	9/22/10	-	-	Pump	-	_	1.3	ND	ND		MRRILLINGER-W-30023
Rillinger	-	4/21/11	-	-	Pump	_	-	0.7 J	ND	ND		MRRILLINGER-W-30051
Rillinger	-	10/3/11	-	-	Pump	-	-	0.7 J	ND	ND		MRRillinger-W-30080
Stone	43 ^g	6/4/04	23.4	_	Purgeo	d dry.	_	10	ND	ND		MRPRIVSTON-W-16475
Stone	43	9/14/05	17.2	40.0		-	-	2.6	0.3 J	ND		MRPRSTON-W-16511
Stone	43	3/19/06	17.4	40.0	100	gal	-	14	0.8 J	0.4 J B		MRSTONE-W-19987
Stone	43	9/19/06	18.6	38.8	41	gal	-	2.1	ND	ND		MRSTONE-W-16529
Stone	43	3/22/07	20.6	38.8	56	gal	-	5.4	0.3 J	ND		MRSTONE-W-16560
Stone	43	10/3/07	14.6	38.6	72	gal	-	2.8	ND	ND		MRSTONE-W-16589
Stone	43	4/15/08	-	38.9	-	_	-	0.9 J	ND	ND		MRSTONE-W-23244
Stone	43	10/21/08	-	-	5.0	gal	-	3.0	ND	ND		MRSTONE-W-27634
Stone	43	4/23/09	-	-	5.0	gal	-	1.1	ND	ND		MRSTONE-W-27666
Stone	43	9/2/09	-	-	5.0	gal	-	0.9 J	ND	ND		MRSTONE-W-29956
Stone	43	4/7/10	-	-	5.0	gal	-	0.5 J	ND	ND		MRSTONE-W-29996
Stone	43	9/22/10	-	-	5.0	gal	-	0.6 J	1.8	ND		MRSTONE-W-30024
Stone	43	4/21/11	-	-	5.0	gal	-	1.8	0.9 J	ND		MRSTONE-W-30052
Stone	43	10/3/11	-	-	5.0	gal	-	1.5	ND	ND		MRStone-W-30081
TD12	27-67	4/22/08	-	-	-	_	-	ND	ND	ND	Grimm irrigation well.	MRTD12-W-23264
TD12	27-67	10/20/08	-	-	_	-	_	ND	ND	ND	Grimm irrigation well.	MRTD12-W-27635
TD12	27-67	4/23/09	-	-	_	-	_	ND	ND	ND	Tile drain into creek.	MRTD12-W-27667
TD12	27-67	9/3/09	-	-	_	-	_	ND	ND	ND	Overflow before catchment.	MRTD12-W-29957
TD12	27-67	4/6/10	-	-	_	-	_	ND	ND	ND		MRTD12-W-29997
TD12	27-67	9/22/10	-	-	-	-	-	ND	ND	ND		MRTD12-W-30025
TD12	27-67	4/20/11	-	-	_	-	_	ND	ND	ND		MRTD12-W-30053
TD12	27-67	10/3/11	-	-	-	-	-	ND	ND	ND		MRTD12-W-30082

^a ND, not detected at an instrument detection limit of 0.1 µg/L.

^b Qualifier J indicates an estimated concentration below the method quantitation limit of 1.0 µg/L.

^c Qualifier B indicates that the compound was present in the associated method blank.

^d Qualifier R indicates that the contaminant was present in the associated equipment rinsate. Resampling confirmed that the well was free of contamination.

^e The well's dedicated pump was used for sampling. The pump was allowed to run before the sample was collected.

^f Sample collected after recent reactivation of well. Well resampled on 10/8/07 and 1/11/08.

g Total depth

ocation	Interval (ft BGL)	Sample		t BTOC)		_	Intake	_			Dissolved			Carbon	
W/1S		Date	Water	Well	Volume Purged	Purge Units	Position (ft BGL)	Temperature (°C)	pН	Conductivity (µS/cm)	Oxygen (mg/L)	ORP (mV)	Iron II (mg/L)	Dioxide (mg/L)	Sample
	11-51	10/23/03	30.4	54.0	70	gal	_	14.6	7.14	933	_a	13	-	_	MRMW1S-W-16422
W1S	11-51	6/2/04	27.0	53.9	53	gal	-	14.4	7.16	970	-	-	-	-	MRMW1S-W-1646
W1S	11-51	9/13/05	24.2	53.9	57	gal	-	15.3	6.95	1174	7.17	200	0	55	MRMW1S-W-1925
W1S	11-51	3/22/06	29.0	54.0	48	gal	-	15.5	7.23	927	9.94	220	0.01	40	MRMW1S-W-2000
W1S	11-51	9/20/06	26.8	54.0	55	gal	-	15.7	7.12	973	7.52	-	0.03	40	MRMW1S-W-2249
W1S	11-51	3/21/07	25.8	54.0	55	gal	-	16.6	6.48	960	5.45	88	0	40	MRMW1S-W-1648
W1S	11-51	10/1/07	21.7	54.0	63	gal	-	16.0	6.80	886	6.79	128	0	30	MRMW1S-W-1659
W1S	11-51	4/14/08	16.2	54.0	5.5	L	-	13.9	7.09	1237	6.38	118	0.02	-	MRMW1S-W-2323
W1S	11-51	4/22/08	16.0	54.0	6.3	L	-	15.6	6.96	1230	6.10	133	-	-	MRMW1S-W-2325
W1S	11-51	5/1/08	-	-	3.2	L	22.0	17.1	7.11	801	3.34	104	-	-	MRMW1S-22-W-23
W1S	11-51	5/1/08	-	-	3.2 4.3	L	27.0	17.0	7.10	820	3.40	102	_	-	MRMW1S-27-W-23
W1S W1S	11-51 11-51	5/1/08 10/20/08	_ 25.8	_ 54.0	4.3 6.0	L I	48.0 31.0	16.3 14.0	7.00 6.84	1301 1265	3.03 5.40	118 103	0	-	MRMW1S-48-W-23 MRMW1S-W-2762
W1S	11-51	10/21/08	-	-	TWV ^b	-	-	14.8	7.02	978	-	-	0	_	MRMW1S-W-2764
W1S	11-51	4/24/09	24.4	54.0	5.0	L	39.2	14.0	7.02	986	8.93	75	0.04	-	MRMW1S-W-2765
W1S	11-51	9/3/09	19.0	54.0	8.0	L	35.0	16.0	6.94	1334	7.08	28	0.04	_	MRMW1S-W-2994
W1S	11-51	9/4/09	19.3	51.2	244	L	50.0	15.0	6.92	950	7.73	61	-	_	MRMW1S-W-2997
W1S	11-51	4/7/10	11.7	51.3	7.0	L	16.6	9.6	7.01	695	8.66	233	0	-	MRMW1ST-W-299
W1S	11-51	4/7/10	11.6	51.3	6.0	Ē	31.5	11.9	6.96	918	8.42	246	0	_	MRMW1SM-W-29
W1S	11-51	4/7/10	11.7	51.3	6.0	Ē	46.3	11.7	6.95	965	8.29	251	0.01	-	MRMW1SB-W-299
W1S	11-51	4/7/10	11.5	51.3	80	gal	49.0	14.0	7.18	687	8.86	211	0.03	-	MRMW1S3X-W-29
W1S	11-51	9/22/10	19.9	54.0	10	Ľ	31.0	17.9	7.01	1337	6.17	134	0.07	-	MRMW1S-W-3001
W1S	11-51	4/20/11	23.5	54.0	6.5	L	37.0	13.8	6.96	866	6.39	55	0	-	MRMW1S-W-3003
W1S	11-51	10/4/11	21.8	54.0	8.0	L	34.9	15.4	7.65	1166	5.72	98	0	-	MRMW1S-W-3006
W1S	11-51	10/12/11	22.1	54.0	6.0	L	36.6	16.3	7.24	1279	5.76	323	-	-	MRMW1S-W-3009
W1S	11-51	10/12/11	22.4	54.0	65	gal	49.0	16.7	7.36	905	6.18	270	-	-	MRMW1S3X-W-30
W1D	63-88	10/22/03	28.4	88.5	92	gal	_	14.9	6.87	2620	_	25	_	_	MRMW1D-W-1642
W1D	63-88	6/2/04	26.8	88.6	140	gal	-	13.9	6.87	2460	-	_	-	-	MRMW1D-W-1645
W1D	63-88	9/13/05	23.7	88.6	200	gal	-	15.5	6.56	2470	-	-	-	-	MRMW1D-W-1651
W1D	63-88	3/19/06	26.9	88.6	112	gal	-	12.9	6.95	2460	5.11	230	0	-	MRMW1D-W-1998
W1D	63-88	9/20/06	25.5	88.8	125	gal	-	12.5	6.93	2690	-	-	-	-	MRMW1D-W-1653
W1D	63-88	3/21/07	25.8	88.8	125	gal	-	15.3	6.39	2540	0.08	12	0.39	40	MRMW1D-W-1648
W1D	63-88	10/1/07	22.8	89.4	130	gal	-	16.3	6.60	2230	6.79	5	0.44	45	MRMW1D-W-1659
W1D	63-88	4/14/08	29.5	89.0	6.0	L		14.6	6.99	2637	0.50	32	0.73	-	MRMW1D-W-2323
W1D	63-88	10/20/08	30.4	89.0	7.0	L	75.5	13.4	6.83	2556	0.24	21	0.37	-	MRMW1D-W-2762
W1D	63-88	4/24/09	31.0	89.0	7.0	L	75.5	16.7	6.92	2419	0.37	22	0.28	-	MRMW1D-W-2765
W1D	63-88	9/3/09	27.1	89.0	6.5	L	75.5	16.9	7.00	2200	0.59	16	0.27	-	MRMW1D-W-2994
W1D	63-88	4/6/10	24.7	89.0	8.5	L	75.5	17.8	6.39	2274	0.15	33	0.01	-	MRMW1D-W-2998
W1D	63-88	9/22/10	27.9	89.0	9.0	L	75.5	17.6	7.01	2492	0.31	61	0.04	_	MRMW1D-W-3001
IW1D IW1D	63-88 63-88	4/20/11 10/4/11	30.2 29.1	89.0 89.0	5.5 6.5	L	75.5 75.5	13.5 14.9	6.98 7.66	1951 2011	0.33 0.17	-2 22	0.20 0.09	_	MRMW1D-W-3003 MRMW1D-W-3006
	40.50	10/00/00	40.0	E0 4	PDS ^c			46.0	6.00	075		200			
W2S	13-53	10/22/03	42.2	53.4		-	-	16.2	6.86	875	-	20	-	-	MRMW02-W-1641
W2S	13-53	6/2/04	37.4	53.3	31	gal	_	16.9	7.07	861	- 7 95	-	_	 65	MRMW2S-W-1645 MRMW2S-W-1926
W2S W2S	13-53 13-53	9/14/05 3/21/06	33.7 40.9	53.3 53.3	38 27	gal gal	_	15.2 13.0	6.94 7.07	801 863	7.85 9.40	142 262	_ 0.14	65 25	MRMW2S-W-1926 MRMW2S-W-1999

MW2S 13-53 3/22/07 35.8 53.3 35 gal - 15.2 6.40 790 5.82 69 0 30 M MW2S 13-53 10/3/07 31.2 53.4 44 gal - 16.8 6.97 703 6.70 269 0.01 30 M MW2S 13-53 10/21/08 23.6 53.4 2.2 L - 11.7 7.23 742 3.22 75 0 - M MW2S 13-53 10/21/08 33.7 53.5 5.0 L 33.0 13.4 7.08 742 3.22 75 0 - M MW2S 13-53 10/21/08 - - TWV - - - - - - - M M 0 - M M 0 - M M 0 - M M 0 - M M 0 - M M 0 - M M 0 1	Sample RMW2S-W-22488 RMW2S-W-16559 RMW2S-W-16587 RMW2S-W-23232 RMW2S-W-27622 RMW2S-W-27652 RMW2S-W-27654 RMW2S-W-29944 RMW2S-W-29944 RMW2S-W-29944 RMW2S-W-30040
MW2S 13-53 3/22/07 35.8 53.3 35 gal - 15.2 6.40 790 5.82 69 0 30 M MW2S 13-53 10/3/07 31.2 53.4 44 gal - 16.8 6.97 703 6.70 269 0.01 30 M MW2S 13-53 10/21/08 23.6 53.4 2.2 L - 11.7 7.23 742 3.22 75 0 - M MW2S 13-53 10/21/08 33.7 53.5 5.0 L 33.0 13.4 7.08 742 3.22 75 0 - M MW2S 13-53 10/21/08 - - TWV - - - - - - - M M 20 0 - M M 0 - M M 20 0 - M M 20 0 - M M 20 0 1 - M M 20 <td>RMW2S-W-16559 RMW2S-W-16587 RMW2S-W-23222 RMW2S-W-27622 RMW2S-W-27652 RMW2S-W-27654 RMW2S-W-29944 RMW2S-W-29984 RMW2S-W-30012</td>	RMW2S-W-16559 RMW2S-W-16587 RMW2S-W-23222 RMW2S-W-27622 RMW2S-W-27652 RMW2S-W-27654 RMW2S-W-29944 RMW2S-W-29984 RMW2S-W-30012
MW2S 13-53 10/3/07 31.2 53.4 44 gal - 16.8 6.97 703 6.70 269 0.01 30 M MW2S 13-53 4/15/08 23.6 53.4 2.2 L - 11.7 7.23 742 3.22 75 0 - M MW2S 13-53 10/21/08 33.7 53.5 5.0 L 33.0 13.4 7.08 745 8.55 104 0 - M MW2S 13-53 10/21/08 - - T - <t< td=""><td>RMW2S-W-16587 RMW2S-W-23232 RMW2S-W-27622 RMW2S-W-27652 RMW2S-W-27654 RMW2S-W-29944 RMW2S-W-29984 RMW2S-W-30012</td></t<>	RMW2S-W-16587 RMW2S-W-23232 RMW2S-W-27622 RMW2S-W-27652 RMW2S-W-27654 RMW2S-W-29944 RMW2S-W-29984 RMW2S-W-30012
MW2S 13-53 10/21/08 33.7 53.5 5.0 L 33.0 13.4 7.08 745 8.55 104 0 - M MW2S 13-53 10/21/08 - - TWV - MV N N 33.2 53.5 5.4 L 41.2 15.1 7.15 690 8.80 32 0.01 - M MW2S 13-53 4/20/11 36.0 53.5 8.0 L 44.5 13.4 6.91 615 7.07 103 0.05 - <td>RMW2S-W-27622 RMW2S-W-27652 RMW2S-W-27654 RMW2S-W-29944 RMW2S-W-29984 RMW2S-W-30012</td>	RMW2S-W-27622 RMW2S-W-27652 RMW2S-W-27654 RMW2S-W-29944 RMW2S-W-29984 RMW2S-W-30012
MW2S 13-53 4/23/09 33.2 53.5 6.5 L 43.4 15.2 6.97 755 9.19 26 0 - N MW2S 13-53 9/3/09 29.4 53.5 5.4 L 41.2 15.1 7.15 690 8.80 32 0.01 - N MW2S 13-53 4/6/10 18.6 52.4 6.5 L 36.0 17.1 6.95 681 6.85 37 0.12 - N MW2S 13-53 9/22/10 31.3 53.0 7.0 L 33.0 16.1 7.03 723 7.16 142 0 - N MW2S 13-53 4/20/11 36.0 53.5 8.0 L 44.5 13.4 6.91 615 7.07 103 0.05 - N MW2S 13-53 10/4/11 32.7 53.5 7.5 L 42.6 15.3 7.71 592 6.89 120 0.01 - N MW3S 18-48 <td< td=""><td>RMW2S-W-27654 RMW2S-W-29944 RMW2S-W-29984 RMW2S-W-30012</td></td<>	RMW2S-W-27654 RMW2S-W-29944 RMW2S-W-29984 RMW2S-W-30012
MW2S 13-53 9/3/09 29.4 53.5 5.4 L 41.2 15.1 7.15 690 8.80 32 0.01 - M MW2S 13-53 4/6/10 18.6 52.4 6.5 L 36.0 17.1 6.95 681 6.85 37 0.12 - M MW2S 13-53 9/22/10 31.3 53.0 7.0 L 33.0 16.1 7.03 723 7.16 142 0 - M MW2S 13-53 4/20/11 36.0 53.5 8.0 L 44.5 13.4 6.91 615 7.07 103 0.05 - M MW2S 13-53 10/4/11 32.7 53.5 7.5 L 42.6 15.3 7.71 592 6.89 120 0.01 - M MW3S 18-48 10/23/03 36.5 47.8 73 gal - 14.2 7.23 664 - - - - M MW3S 18-48 9/13	RMW2S-W-29944 RMW2S-W-29984 RMW2S-W-30012
MW2S 13-53 4/6/10 18.6 52.4 6.5 L 36.0 17.1 6.95 681 6.85 37 0.12 - M MW2S 13-53 9/22/10 31.3 53.0 7.0 L 33.0 16.1 7.03 723 7.16 142 0 - M MW2S 13-53 4/20/11 36.0 53.5 8.0 L 44.5 13.4 6.91 615 7.07 103 0.05 - M MW2S 13-53 10/4/11 32.7 53.5 7.5 L 42.6 15.3 7.11 592 6.89 120 0.01 - M MW3S 18-48 10/23/03 36.5 47.8 73 gal - 16.8 7.23 6655 - 6 - - - M MW3S 18-48 6/2/04 30.7 47.5 34 gal - 14.2 7.23 664 - - - - M M MW3S 18-48 <	RMW2S-W-29984 RMW2S-W-30012
MW2S 13-53 9/22/10 31.3 53.0 7.0 L 33.0 16.1 7.03 723 7.16 142 0 - M MW2S 13-53 4/20/11 36.0 53.5 8.0 L 44.5 13.4 6.91 615 7.07 103 0.05 - M MW2S 13-53 10/4/11 32.7 53.5 7.5 L 42.6 15.3 7.71 592 6.89 120 0.01 - M MW3S 18-48 10/23/03 36.5 47.8 73 gal - 14.2 7.23 664 - - - M MW3S 18-48 6/2/04 30.7 47.5 34 gal - 14.2 7.23 664 - - - M MW3S 18-48 9/13/05 25.6 47.6 50 gal - 14.6 7.13 663 8.82 223 0 100 M MW3S 18-48 3/23/06 35.6 47.7<	RMW2S-W-30012
MW2S 13-53 4/20/11 36.0 53.5 8.0 L 44.5 13.4 6.91 615 7.07 103 0.05 - N MW2S 13-53 10/4/11 32.7 53.5 7.5 L 42.6 15.3 7.71 592 6.89 120 0.01 - N MW3S 18-48 10/23/03 36.5 47.8 73 gal - 16.8 7.23 655 - 6 - - N MW3S 18-48 6/2/04 30.7 47.5 34 gal - 14.2 7.23 664 - - - N MW3S 18-48 9/13/05 25.6 47.6 50 gal - 14.6 7.13 663 8.82 223 0 100 N MW3S 18-48 3/23/06 35.6 47.7 28 gal - 8.9 7.16 662 6.74 269 0.08 25 M MW3S 18-48 3/22/07 26.2 <td></td>	
MW2S 13-53 10/4/11 32.7 53.5 7.5 L 42.6 15.3 7.71 592 6.89 120 0.01 - M MW3S 18-48 10/23/03 36.5 47.8 73 gal - 16.8 7.23 655 - 6 - - - M MW3S 18-48 6/2/04 30.7 47.5 34 gal - 14.2 7.23 664 - - - M MW3S 18-48 9/13/05 25.6 47.6 50 gal - 14.6 7.13 663 8.82 223 0 100 M MW3S 18-48 9/20/06 29.4 47.8 22 gal - 12.9 7.15 669 7.64 105 0 - M MW3S 18-48 9/20/06 29.4 47.8 22 gal - 15.0 6.44 578 5.90 261 0.17 30 M MW3S 18-48 3/22/07	
MW3S 18-48 10/23/03 36.5 47.8 73 gal - 16.8 7.23 655 - 6 - - N MW3S 18-48 6/2/04 30.7 47.5 34 gal - 14.2 7.23 664 - - - - N MW3S 18-48 9/13/05 25.6 47.6 50 gal - 14.6 7.13 663 8.82 223 0 100 M MW3S 18-48 3/23/06 35.6 47.7 28 gal - 8.9 7.16 662 6.74 269 0.08 25 M MW3S 18-48 3/22/06 29.4 47.8 22 gal - 12.9 7.15 669 7.64 105 0 - M MW3S 18-48 3/22/07 26.2 47.8 45 gal - 15.0 6.44 578 5.90 261 0.17 30 M MW3S 18-48 10/3/07	RMW2S-W-30040
MW3S 18-48 6/2/04 30.7 47.5 34 gal - 14.2 7.23 664 - - - - - - N MW3S 18-48 9/13/05 25.6 47.6 50 gal - 14.6 7.13 663 8.82 223 0 100 M MW3S 18-48 3/23/06 35.6 47.7 28 gal - 8.9 7.16 662 6.74 269 0.08 25 M MW3S 18-48 3/22/07 26.2 47.8 22 gal - 12.9 7.15 669 7.64 105 0 - M MW3S 18-48 3/22/07 26.2 47.8 45 gal - 15.0 6.44 578 5.90 261 0.17 30 M MW3S 18-48 10/3/07 22.7 47.9 50 gal - 15.3 6.97 594 0.38 282 0 20 M	NWW 20-W-30003
MW3S 18-48 6/2/04 30.7 47.5 34 gal - 14.2 7.23 664 - - - - - - N MW3S 18-48 9/13/05 25.6 47.6 50 gal - 14.6 7.13 663 8.82 223 0 100 M MW3S 18-48 3/23/06 35.6 47.7 28 gal - 8.9 7.16 662 6.74 269 0.08 25 M MW3S 18-48 3/22/07 26.2 47.8 22 gal - 12.9 7.15 669 7.64 105 0 - M MW3S 18-48 3/22/07 26.2 47.8 45 gal - 15.0 6.44 578 5.90 261 0.17 30 M MW3S 18-48 10/3/07 22.7 47.9 50 gal - 15.3 6.97 594 0.38 282 0 20 M	RMW03-W-16423
MW3S 18-48 3/23/06 35.6 47.7 28 gal - 8.9 7.16 662 6.74 269 0.08 25 M MW3S 18-48 9/20/06 29.4 47.8 22 gal - 12.9 7.15 669 7.64 105 0 - M MW3S 18-48 3/22/07 26.2 47.8 45 gal - 15.0 6.44 578 5.90 261 0.17 30 M MW3S 18-48 10/3/07 22.7 47.9 50 gal - 15.3 6.97 594 0.38 282 0 20 M	RMW3S-W-16462
MW3S 18-48 9/20/06 29.4 47.8 22 gal - 12.9 7.15 669 7.64 105 0 - M MW3S 18-48 3/22/07 26.2 47.8 45 gal - 15.0 6.44 578 5.90 261 0.17 30 M MW3S 18-48 10/3/07 22.7 47.9 50 gal - 15.3 6.97 594 0.38 282 0 20 M	RMW3S-W-19261
MW3S 18-48 3/22/07 26.2 47.8 45 gal – 15.0 6.44 578 5.90 261 0.17 30 M MW3S 18-48 10/3/07 22.7 47.9 50 gal – 15.3 6.97 594 0.38 282 0 20 M	RMW3S-W-19994
MW3S 18-48 10/3/07 22.7 47.9 50 gal – 15.3 6.97 594 0.38 282 0 20 M	RMW3S-W-22496
	RMW3S-W-16563
MW3S 18-48 4/14/08 17.0 47.8 3.3 L - 13.7 7.17 693 3.52 165 0 - M	RMW3S-W-16585
	RMW3S-W-23233
	RMW3S-W-23260
	RMW3S-26-W-23269
	RMW3S-38-W-23270
	RMW3S-45-W-23271 RMW3S-W-27623
	RMW3S-W-27650
	RMW3S-W-27655
	RMW3S-W-29945
	RMW3S-W-29972
	RMW3S-W-29985
MW3S 18-48 9/23/10 23.7 47.8 7.0 L 33.0 15.8 7.22 674 11.00 150 0.05 - M	RMW3S-W-30013
MW3S 18-48 4/20/11 32.1 47.8 6.2 L 40.0 13.3 7.11 514 6.64 61 0.02 - M	RMW3S-W-30041
MW3S 18-48 10/4/11 26.0 47.8 7.0 L 37.0 15.8 7.78 563 5.99 115 0 - M	RMW3S-W-30070
	RMW04-W-16418
The second se	RMW4S-W-16470
5	RMW4S-W-19262
	RMW4S-W-19993 RMW4S-W-22487
	RMW4S-W-22487 RMW4S-W-16562
	RMW4S-W-16586
\mathbf{J}	OMW4S-W-011108
	RMW4S-W-23234
	RMW4S-W-27624
	RMW4S-W-27656
MW4S 17-47 4/6/10 21.8 47.9 5.5 L 34.8 16.5 7.07 629 8.07 -1 0 - M	RMW4S-W-29946

	Screen	_	Depth (f	t BTOC)	_		Pump Intake				Dissolved			Carbon	
Location	Interval (ft BGL)	Sample Date	Water	Well	Volume Purged	Purge Units	Position (ft BGL)	Temperature (°C)	рН	Conductivity (µS/cm)	Oxygen (mg/L)	ORP (mV)	Iron II (mg/L)	Dioxide (mg/L)	Sample
MW4S MW4S MW4S	17-47 17-47 17-47	9/22/10 4/21/11 10/4/11	33.2 42.4 35.6	47.8 47.8 47.8	6.0 5.0 6.0	L L L	32.0 44.7 40.9	16.3 12.6 16.0	7.07 7.15 7.95	732 595 606	7.28 7.25 7.62	90 138 115	0 0 0	- - -	MRMW4S-W-30014 MRMW4S-W-30042 MRMW4S-W-30071
MW5S MW5S MW5S MW5S MW5S MW5S MW5S MW5S	$\begin{array}{c} 15\text{-}55\\ 15\text{-}58\\ 15\text{-}58\\$	10/22/03 6/2/04 9/13/05 3/22/06 9/20/06 3/22/07 10/3/07 4/14/08 4/23/08 5/1/08 5/1/08 5/1/08 10/21/08 4/24/09 9/3/09 4/7/10 9/22/10	31.4 26.3 22.7 28.6 25.4 25.1 19.6 11.2 11.3 - 22.5 22.1 17.6 8.3 19.3 24.4	55.7 55.7 54.2 54.6 54.6 54.6 54.6 54.6 54.6 54.6 54.6 54.6 54.6 54.6 54.6 54.6 54.5 55.7 54.6 54.5 55.0 54.6	48 > 57 75 50 52 58 68 6.0 6.5 3.7 3.4 4.0 7.0 5.5 5.5 5.5 5.5 6.5 7.0	gal gal gal gal gal L L L L L L L L L	- - - - 20.0 28.0 52.0 35.0 38.4 36.3 35.0 35.0 35.0 36.0	$15.3 \\ 14.3 \\ 16.0 \\ 13.9 \\ 13.9 \\ 15.5 \\ 16.5 \\ 14.1 \\ 14.9 \\ 15.2 \\ 15.1 \\ 15.1 \\ 15.1 \\ 15.2 \\ 15.2 \\ 16.5 \\ 12.6 \\ 16.4 \\ 14.6 \\ 14.6 \\ 14.6 \\ 14.6 \\ 14.6 \\ 14.6 \\ 14.3 \\ 14.4 \\ 14.4 \\ 14.3 \\ $	7.10 7.21 7.04 7.25 7.19 6.50 6.88 6.90 6.88 6.92 6.90 6.89 7.04 6.98 7.10 6.76 6.81 7.17	816 817 763 781 787 436 850 1008 1009 1014 997 989 818 817 873 844 891 617	- 13.90 4.52 5.82 3.98 1.87 3.73 3.27 2.99 2.38 2.06 5.54 6.68 3.07 4.46 1.69 5.34	6 228 234 73 159 268 143 184 126 124 128 180 77 23 149 112 89	- 0 0.06 0 0.08 0.04 0.02 - - - 0 0 0 0.02 0 0 0 0 0 0 0	- 60 35 35 30 25 - - - - - - - - - - - - - - - - - -	MRMW05-W-16420 MRMW5S-W-16460 MRMW5S-W-19260 MRMW5S-W-19996 MRMW5S-W-22493 MRMW5S-W-16569 MRMW5S-W-16588 MRMW5S-W-23266 MRMW5S-20-W-23272 MRMW5S-20-W-23272 MRMW5S-20-W-23274 MRMW5S-20-W-23274 MRMW5S-W-23274 MRMW5S-W-23274 MRMW5S-W-23274 MRMW5S-W-23274 MRMW5S-W-23274 MRMW5S-W-23274 MRMW5S-W-23274 MRMW5S-W-23274 MRMW5S-W-23274 MRMW5S-W-23274 MRMW5S-W-23274 MRMW5S-W-23274 MRMW5S-W-23274 MRMW5S-W-23274 MRMW5S-W-23274 MRMW5S-W-23274 MRMW5S-W-23274 MRMW5S-W-23274 MRMW5S-W-23274
MW5S MW6S MW6S MW6S MW6S MW6S MW6S MW6S MW6	15-55 10-25 10-25 10-25 10-25 10-25 10-25 10-25 10-25 10-25 10-25 10-25 10-25 10-25 10-25 10-25 10-25	10/4/11 6/3/04 9/14/05 3/20/06 9/18/06 3/21/07 10/2/07 4/15/08 10/20/08 4/24/09 9/4/09 4/6/10 9/22/10 4/20/11 10/4/11	$\begin{array}{c} 21.1\\ 3.3\\ 4.7\\ 5.4\\ 5.5\\ 5.4\\ 5.0\\ 5.2\\ 5.7\\ 6.2\\ 5.9\\ 6.2\\ 5.5\\ 6.5\\ 6.5\\ 6.5\end{array}$	54.6 26.9 26.9 26.9 26.9 26.9 26.9 26.9 26	6.5 45 43 27 30 31 2.5 5.0 12 5.4 8.0 8.8 8.0 6.0	L gal gal gal gal L L L L L L	38.3 - - - 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5	16.7 15.1 14.1 9.8 12.5 18.0 17.1 8.7 14.3 15.2 13.8 15.2 13.8 15.2 13.0 16.6	7.72 6.89 7.06 6.91 6.94 7.33 6.99 6.84 6.93 6.88 6.87 6.92 6.73 7.11	740 2410 2350 2260 2410 2450 2280 2485 2380 2270 2302 2141 2354 1867 2020	4.37 - 0.01 1.37 0.08 0.12 0.20 0.31 0.36 0.19 0.64 0.05 0.42 0.18 0.14	118 	0.03 - 0 0.38 0.35 0.78 0.19 0.41 0.28 0.63 0.32 0.21 0.24 0.09 0.34	_ 60 60 85 40 35 - - - - - - - - - - - - - - - - - -	MRMW6S-W-30072 MRMW6S-W-19263 MRMW6S-W-19290 MRMW6S-W-22486 MRMW6S-W-16486 MRMW6S-W-16583 MRMW6S-W-2626 MRMW6S-W-27626 MRMW6S-W-27626 MRMW6S-W-27626 MRMW6S-W-29948 MRMW6S-W-29948 MRMW6S-W-29948 MRMW6S-W-30016 MRMW6S-W-30044 MRMW6S-W-30073
MW7S MW7S MW7S MW7S MW7S MW7S MW7S MW7S	20-45 20-45 20-45 20-45 20-45 20-45 20-45 20-45 20-45 20-45 20-45	6/3/04 9/12/05 3/22/06 3/20/07 10/1/07 4/14/08 4/23/08 10/20/08	26.7 17.6 22.5 20.9 18.0 12.4 7.7 7.8 17.2	47.0 46.9 47.0 47.0 47.0 47.0 47.0 47.0 47.0 47.0	40 55 48 56 50 70 1.8 11 6.3	gal gal gal gal gal L L L	- - - - - - - - - - - - 32.5	13.8 15.0 15.2 13.2 14.6 15.6 13.4 14.0 14.9	7.19 7.26 7.32 7.15 6.43 6.99 7.21 7.00 7.02	763 760 740 764 750 725 811 822 802	- 8.35 5.52 7.37 5.31 7.76 2.50 7.41 6.38	240 268 114 95 269 276 191 87	- 0 0.03 0 0 0.01 0 - 0		MRMW7S-W-16466 MRMW7S-W-19258 MRMW7S-W-20000 MRMW7S-W-22490 MRMW7S-W-16481 MRMW7S-W-16581 MRMW7S-W-23265 MRMW7S-W-23265 MRMW7S-W-27627

Interval Sample Water Purged Units (TIB) Temperature Conductivity City Interval City Interval Sample MM75 20-45 4/2309 16.7 47.0 0.0 1 32.5 17.4 7.58 814 9.86 102 0.02 - MRMW75W-27859 MW75 20-45 492019 16.4 47.0 5.4 1.2 25.2 17.7 7.04 718 722 3.38 10 - MRMW75W-27859 MW75 20-45 492010 16.4 46.0 6.0 L 32.5 11.6 0.1 7.1 7.0 MRMW75W-27859 MW75 20-45 492011 19.1 46.0 6.0 L 32.5 11.2 7.01 67.0 10.7 MRMW75W-27859 MW75 20-45 49204 3.7 2.6 4.0 L 32.5 11.2 0.01 3.0 10.05 3.0 MRMW75W-27859 <td< th=""><th></th><th>Screen</th><th></th><th>Depth (f</th><th>t BTOC)</th><th>,.</th><th>_</th><th>Pump Intake</th><th></th><th></th><th></th><th>Dissolved</th><th></th><th></th><th>Carbon</th><th></th></td<>		Screen		Depth (f	t BTOC)	,.	_	Pump Intake				Dissolved			Carbon	
MM75 20-45 49/10 5.8 47.0 9.0 L 32.5 17.4 7.88 81.4 9.86 102 0.02 - MRMW75-W-28949 MW75 20-45 49/2310 14.2 45.0 6.0 L 32.5 16.0 6.31 77.2 8.39 201 0 - MRMW75-W-28949 MW75 20-45 42.011 17.7 46.7 0.0 L 32.5 13.0 7.0 569 7.91 128 0 - MRMW75-W-28949 MW75 20-45 42.01 7.2 94 - - - - - - MRMW5-W-1644 MW85 10-25 91/405 4.0 28.4 45 gal - 11.8 7.04 944 - - - MRMW5-W-1794 28.4 49 gal - 11.8 7.02 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 <td>Location</td> <td></td> <td></td> <td>Water</td> <td>Well</td> <td></td> <td></td> <td></td> <td></td> <td>pН</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Sample</td>	Location			Water	Well					pН						Sample
MM75 20-45 942/10 16.4 47.0 5.4 L 32.5 16.0 5.8 7.92 8.3 201 0 - MRMW75-W-2989 MW75 20-45 14/2011 19.7 46.7 6.0 L 32.5 16.0 5.81 7.72 6.39 201 0 - MRMW75-W-2098 MW75 20-45 10/411 7.1 46.7 6.0 L 32.5 16.2 7.18 67.4 8.17 205 0.01 - MRMW75-W-20907 MW85 10-25 91/40 40 28.8 45 gal - 11.8 7.09 930 0.58 284 0.13 50 MRW95-W-16634 MW85 10-25 91/06 4.8 28.8 4.5 gal - 11.2 7.74 8.93 0.02 2.5 MRW95-W-16634 MW85 10-25 10/20 2.2 8.8 6.5 L 7.75 1.10 6.58																
MM7S 20-45 42/310 14.2 45.0 6.0 L 32.5 16.0 6.91 772 8.39 201 0 - MRM7S-30045 MM7S 20-45 10/411 7.1 47.0 7.0 L 32.5 16.2 7.18 674 8.17 205 0.01 - MRM7S-30045 MM78 10.25 9.306 4.6 2.5 7.12 9.41 - - - - MRM7S-30045 MRM7S-300	-						-									
MMYZS 20-45 142011 19.7 44.7 6.0 L 32.5 16.2 7.00 598 7.11 128 0 - MRMVTS-W-3004 MWYS 10-25 6/304 3.7 26.8 45 gal - 12.8 7.12 941 - - - - MRMVTS-W-30074 MWSS 10-25 6/304 3.7 26.8 45 gal - 14.1 7.30 853 0.02 65 0 40 MRMWSS-W-16464 MWSS 10-25 9/14/05 40 22.8 43 gal - 110 7.62 1026 0.77 27 0.0 30 MRMWSS-W-16463 MWSS 10-25 10/20 9.3 660 0 0 - MRMWSS-W-16464 MWSS 10-25 10/20 0.3 680 0 - MRMWSS-W-16264 MWSS 10-25 10/20 0.3 680 0 - </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td>							-							-		
MW85 10-25 6/30-04 3.7 26.8 45 gal - 12.8 7.12 941 - MRW85-1025 0		20-45	4/20/11	19.7	46.7	6.0	L		13.0	7.00		7.91		0	-	
MWRS 10-25 9/1405 4.0 28.8 57 gal - 14.1 7.30 853 0.02 65 0 40 MRNWSS-W-19265 MWRS 10-25 9/1906 4.8 28.8 45 gal - 11.8 7.09 903 0.58 28.4 0.13 50 MRNWSS-W-22492 MWRS 10-25 10/207 2.2 28.8 49 gal - 11.0 6.52 102 0.07 7.6 0 0.0 2.7 MRWNSS-W-16643 MWRS 10-25 10/2000 3.6 28.8 8.0 L 17.5 14.0 6.91 1002 0.93 69 0 - MRWMSS-W-16644 MWRS 10-25 4/209 2.3 2.8.8 8.0 L 17.5 14.1 7.52 890 2.09 115 0 - MRWMSS-W-2660 MWRS 10-25 4/201 2.5 2.8.8 0.0 L	MW7S	20-45	10/4/11	7.1	47.0	7.0	L	32.5	16.2	7.18	674	8.17	205	0.01	-	MRMW7S-W-30074
MW8S 10-25 9/1405 4.0 28.8 57 gal - 14.1 7.30 853 0.02 65 0 40 MRMWSS-W-1225 MW8S 10-25 9/1906 4.8 28.8 45 gal - 11.8 7.09 903 0.58 244 0.13 50 MRMWSS-W-22492 MW8S 10-25 10/207 2.2 28.8 449 gal - 11.0 6.52 102 0.77 76 0 0.00 MRMWSS-W-16634 MW8S 10-25 10/200 3.6 26.8 8.0 L 17.5 14.0 6.81 1002 0.93 69 0 - MRWWSS-W-27628 MW8S 10-25 4/200 2.3 28.8 8.0 L 17.5 14.1 6.88 2.09 115 0 - MRWWSS-W-27628 MW8S 10-25 4/201 1.3 28.8 8.0 L 17.5 14.1 7.10 843 2.66 2.12 0 - MRWWSS-W-2768 MW	MW8S	10-25	6/3/04	3.7	26.8	45	gal	_	12.8	7.12	941	_	_	_	_	MRMW8S-W-16464
MW8S 10-25 9/19/06 4.8 26.8 45 gal - 11.0 6.52 10.26 0.77 6 0 30 MRMWSS-V-1463 MW8S 10-25 10/2/07 2.2 2.6.8 449 gal - 15.2 6.76 607 2.66 209 0.02 2.5 MRMWSS-V-1664 MW8S 10-25 10/2/07 2.2 2.6.8 8.0 L 17.5 14.0 6.91 1002 0.93 69 0 - MRMWSS-V-2242 MW8S 10-25 10/2/0/08 3.6 2.6.8 8.0 L 17.5 11.4 6.88 825 1.76 - MRMWSS-V-2763 MW8S 10-25 9/2/09 2.9 2.6.8 8.0 L 17.5 13.1 7.00 843 2.6.0 2.12 0 - MRMWSS-V-2760 MW8S 10-25 9/2/11 2.7 2.6.8 9.0 L 17.5 10.1 6.68 6.52 0.3 8.0 - MRMWSS-V-2760 MW8S 38.8								-								
MM9S 10-25 32007 2.6 28.8 49 gal - 11.0 6.52 1026 0.77 76 0 30 MRRW9S-W-16544 MM9S 10-25 10/207 2.2 28.8 5.5 L - 10.2 7.27 1067 1.58 170 0 - MRRMV9S-W-16544 MM8S 10-25 4/2309 2.3 28.8 6.0 L 17.5 11.4 6.89 1022 0 - MRRMV9S-W-27628 MM8S 10-25 4/2309 2.3 28.8 6.0 L 17.5 11.4 6.89 225 1.76 -35 0.02 - MRRMV9S-W-27680 MM8S 10-25 4/610 1.1 28.8 8.0 L 17.5 16.2 7.12 865 1.51 100 0.4 - MRRMV9S-W-30075 MM8S 10-25 4/201 1.2 28.8 9.0 L 17.5 10.1 6.88 652 0.3 9.8 0.4 - MRRMV9S-W-2004 MRMV9S-W-2004 MRMV9																
MWRS 10-25 10/207 2.2 2.8.8 4.8 opt - 15.2 6.76 607 2.66 209 0.02 2.5 MRRMVS-W-165844 MWRS 10-25 10/2008 3.6 2.8.8 8.0 L 17.5 14.4 6.81 1002 0.93 69 0 - MRRMVS-W-27283 MWRS 10-25 9/309 2.9 2.8.8 8.5 L 17.5 14.4 7.52 890 2.09 115 0 - MRRMVS-W-27628 MWRS 10-25 9/201 2.5 2.8.8 8.5 L 17.5 13.7 7.00 84.3 2.60 212 0 - MRRMVS-W-29900 MWRS 10-25 9/201 2.5 2.8.8 9.0 L 17.5 10.4 7.16 7.11 1.22 191 0.04 - MRRMVS-W-2044 MWRS 10-25 10/4/11 4.9 2.63 9.0 L 17.																
MMRS 10-25 4/1608 0.7 26.8 5.5 - - 10.2 7.27 1067 1.58 170 0 - MRWRS-W-23238 MMRS 10-25 4/2309 2.3 26.8 6.0 L 17.5 14.0 6.81 825 1.76 -35 0.02 - MRWRS-W-27628 MMRS 10-25 4/209 2.3 26.8 8.0 L 17.5 14.1 7.52 843 2.60 212 0 - MRWRS-W-2768 MMRS 10-25 4/20/11 2.7 26.8 9.0 L 17.5 16.2 7.12 865 15.1 100 0.04 - MRWRS-W-2990 MWRS 10-25 10/4/11 4.9 26.3 9.0 L 17.5 14.4 7.16 711 1.22 191 0.04 - MRWRS-W-30076 MWRS 38.83-53.83 9/200 2.8 8.6 2.0 gal -																
MWRS 10-25 10/2008 3.6 28.8 8.0 L 17.5 14.0 6.91 1002 0.93 69 0 - MRWRS-W-27628 MWRS 10-25 4/209 2.3 26.8 8.5 L 17.5 11.4 7.52 890 2.09 115 0 - MRWRS-W-27660 MWRS 10-25 4/201 2.5 26.8 9.0 L 17.5 16.2 7.12 865 1.51 100 0.04 - MRWRS-W-30046 MWRS 10-25 4/20/11 2.7 26.8 9.0 L 17.5 10.4 7.16 711 12.2 191 0.04 - MRWRS-W-30046 MWRS 10-25 10/4/11 4.9 26.3 9.0 L 17.5 14.4 7.16 711 12.2 191 0.04 - MRWRS-W-30046 MWRS 38.83-53.8 91906 16.9 50.0 2.2 gal - <td></td>																
MWBS 10-25 4/23/09 2.3 26.8 6.0 L 17.5 11.4 6.88 825 17.6 -35 0.02 - MRRW9S-W-27600 MWBS 10-25 4/6/10 1.1 26.8 8.0 L 17.5 14.1 7.52 890 2.09 115 0 - MRWM9S-W-29900 MWBS 10-25 4/20/11 2.7 2.8.8 9.0 L 17.5 16.2 7.12 865 1.51 100 0.04 - MRWM9S-W-29900 MWBS 10-25 4/20/11 2.7 2.8.8 9.0 L 17.5 14.4 7.16 7.11 1.22 191 0.04 - MRWM9S-W-2004 MW9S 38.83-58.33 9/9/06 18.9 59.0 2.2 gal - 13.0 7.08 707 0.10 113 0 55 MRW9S-W-2044 MW9S 38.83-58.33 3/0/0/0 16.0 56.6 2.3 gal																
MW8S 10-25 46/10 1.1 26.8 8.0 L 17.5 16.2 7.10 843 2.60 212 0 - MRW8S-W-3008 MW8S 10-25 4/20/11 2.7 26.8 9.0 L 17.5 10.1 6.88 652 0.3 98 0 - MRW8S-W-30018 MW8S 10-25 104/11 4.9 26.3 9.0 L 17.5 14.4 7.16 7.11 1.22 191 0.04 - MRW8S-W-30018 MW9S 38.83-53.83 3/22/06 20.2 58.6 20 gal - 13.0 7.08 707 0.10 113 0 55 MRW9S-W-20044 MW9S 38.83-53.83 3/20/07 16.7 59.0 22 gal - 15.5 7.05 664 5.50 191 0 30 MRW9S-W-2004 MW9S 38.83-53.83 10/2006 15.5 5.5 L 46.3 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																
MW8S 10-25 9/22/10 2.5 28.8 9.0 L 17.5 16.2 7.12 865 1.51 100 0.04 - MRW8S-W-30018 MW8S 10-25 10/4/11 4.9 26.3 9.0 L 17.5 10.4 7.16 711 1.22 191 0.04 - MRW8S-W-30075 MW9S 38.8353.83 3/2006 20.2 58.6 20 gal - 14.6 7.17 715 0.41 25 0 35 MRW9S-W-20004 MW3S 38.8353.83 9/19/06 18.9 59.0 22 gal - 13.0 7.08 707 0.10 113 0 55 MRW9S-W-2004 MW3S 38.8353.83 10/107 14.0 58.6 2.3 L - 15.6 7.05 664 5.50 191 0 30 MRW9S-W-2629 MW9S 38.8353.83 10/2008 21.5 58.5 1 46.3	MW8S	10-25	9/3/09	2.9	26.8	8.5	L	17.5	14.1	7.52	890	2.09	115	0	-	MRMW8S-W-29950
MW8S 10-25 4/20/11 2.7 26.8 9.0 L 17.5 10.4 7.16 7.11 1.22 191 0.04 - MRMW8S-W-30046 MW8S 10-25 10/4/11 4.9 26.3 9.0 L 17.5 14.4 7.16 711 1.22 191 0.04 - MRMW8S-W-30046 MW9S 38.83-53.83 3/22/06 20.2 58.6 20 gal - 14.6 7.17 715 0.41 25 0 35 MRMW9S-W-30046 MW9S 38.83-53.83 3/20/07 16.7 59.0 22 gal - 15.5 7.05 664 5.5 191 0 30 MRMW9S-W-2649 MW9S 38.83-53.83 10/10/0 14.0 86.6 2.3 L - 12.6 7.33 709 1.33 266 0.07 - MRMW9S-W-26761 MW9S 38.83-53.83 10/2/0.0 85.5 5.5 L 4	MW8S		4/6/10				-		13.7						-	MRMW8S-W-29990
MW8S 10-25 10/4/11 4.9 26.3 9.0 L 17.5 14.4 7.16 711 1.22 191 0.04 - MRMW8S-W-30075 MW9S 38.83-53.83 3/22/06 20.2 58.6 20 gal - 13.0 7.08 707 0.10 113 0 55 MRNW9S-W-22004 MW9S 38.83-53.83 3/20/07 16.7 59.0 22 gal - 14.2 6.39 714 0.21 40 0 20 MRW9S-W-22044 MW9S 38.83-53.83 10/107 14.0 58.6 23 gal - 15.5 7.05 664 5.50 191 0 30 MRW9S-W-2629 MW9S 38.83-53.83 10/20/08 21.5 58.5 1 L 46.3 16.0 7.17 669 5.99 -65 0.07 - MRMW9S-W-2629 MW9S 38.83-53.83 4/23/09 21.9 58.5 5.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td></t<>							-								-	
MW9S 38.83-53.83 3/22/06 20.2 58.6 20 gal - 14.6 7.17 715 0.41 25 0 35 MRMW9S-W-2004 MW9S 38.83-53.83 3/20/07 16.7 59.0 22 gal - 14.2 6.39 714 0.21 40 0 20 MRMW9S-W-22494 MW9S 38.33-53.83 10/107 14.0 56.6 23 gal - 15.5 7.05 664 5.00 191 0 30 MRMW9S-W-16480 MW9S 38.83-53.83 10/20/08 21.5 58.5 11 L 46.3 15.1 7.15 690 6.18 106 0 - MRMW9S-W-2629 MW9S 38.83-53.83 10/20/08 21.5 58.5 5.0 L 46.3 17.3 7.18 684 5.33 52 0.03 - MRMW9S-W-2691 MW9S 38.83-53.83 9/2/10 16.5 58.5 5.0 L 46.3 17.1 7.12 704 6.07 151 0 -														-		
MW9S 38.83-53.83 9/19/06 18.9 50.0 22 gal - 13.0 7.08 707 0.10 113 0 55 MRMW3S-W-22494 MW9S 38.83-53.83 3/20/07 16.7 59.0 22 gal - 14.2 6.39 714 0.21 40 0 20 MRMW3S-W-16682 MW9S 38.83-53.83 10/107 14.0 58.6 2.3 L - 12.6 7.33 709 1.93 266 0.07 - MRMW3S-W-7629 MW9S 38.83-53.83 10/2008 21.5 58.5 5.0 L 46.3 16.0 7.17 669 5.99 -65 0.07 - MRMW3S-W-27629 MW9S 38.83-53.83 4/2/309 20.0 58.5 5.0 L 46.3 17.3 7.18 669 5.99 -65 0.07 - MRMW3S-W-27629 MW9S 38.83-53.83 4/2/10 16.5 58.5 6.0	MW8S	10-25	10/4/11	4.9	26.3	9.0	L	17.5	14.4	7.16	/11	1.22	191	0.04	-	MRMW8S-W-30075
MW9S 38.83-53.83 3/20/07 16.7 59.0 22 gal - 14.2 6.39 714 0.21 40 0 20 MRMW9S-W-16480 MW9S 38.83-53.83 10/1/07 14.0 58.6 2.3 gal - 12.6 7.33 709 1.93 266 0.07 - MRMW9S-W-23239 MW9S 38.83-53.83 4/14/08 16.6 58.6 2.3 L - 12.6 7.33 709 1.93 266 0.07 - MRMW9S-W-23239 MW9S 38.83-53.83 4/23/09 21.9 58.5 5.5 L 46.3 16.0 7.17 669 5.99 -65 0.07 - MRMW9S-W-27629 MW9S 38.83-53.83 4/20/10 16.5 58.5 6.0 L 46.3 17.1 7.12 704 607 151 0 - MRMW9S-W-29951 MW9S 38.83-53.83 4/20/11 23.8 58.3 14 L 46.3 17.1 7.12 704 607 151 0 <td< td=""><td>MW9S</td><td>38.83-53.83</td><td>3/22/06</td><td>20.2</td><td>58.6</td><td>20</td><td>gal</td><td>_</td><td>14.6</td><td>7.17</td><td>715</td><td>0.41</td><td>25</td><td>0</td><td>35</td><td>MRMW9S-W-20004</td></td<>	MW9S	38.83-53.83	3/22/06	20.2	58.6	20	gal	_	14.6	7.17	715	0.41	25	0	35	MRMW9S-W-20004
MW9S 38.83-53.83 10/1/07 14.0 58.6 23 gal - 15.5 7.05 664 5.0 191 0 30 MRMW9S-W-16822 MW9S 38.83-53.83 4/14/08 16.6 58.6 2.3 L - 12.6 7.33 709 1.93 266 0.07 - MRMW9S-W-16522 MW9S 38.83-53.83 10/20/08 21.5 58.5 11 L 46.3 15.1 7.17 669 5.99 -65 0.07 - MRMW9S-W-27629 MW9S 38.83-53.83 4/2/09 21.9 58.5 5.0 L 46.3 17.3 7.18 684 5.30 -10 0.02 - MRMW9S-W-29951 MW9S 38.83-53.83 4/6/10 16.5 58.5 6.0 L 46.3 17.3 7.18 684 5.30 -10 0.02 - MRMW9S-W-29991 MW9S 38.83-53.83 4/2/11 23.8 58.3 14 L 46.3 13.6 7.07 569 5.42 111 0								-								
MW9S 38.83-53.83 4/14/08 16.6 58.6 2.3 L - 12.6 7.33 709 1.93 266 0.07 - MRMW9S-W-23239 MW9S 38.83-53.83 4/2/309 21.5 58.5 51 L 46.3 15.1 7.15 690 6.18 106 0 - MRMW9S-W-27629 MW9S 38.83-53.83 4/2/309 21.9 58.5 5.5 L 46.3 17.3 7.18 684 5.33 52 0.03 - MRMW9S-W-27661 MW9S 38.83-53.83 9/4/09 20.0 58.5 6.0 L 46.3 15.3 7.19 650 5.50 -10 0.02 - MRMW9S-W-29991 MW9S 38.83-53.83 9/2/10 21.2 53.8 7.0 L 46.3 13.6 7.07 569 5.42 111 0 - MRMW9S-W-29091 MW9S 38.83-53.83 10/4/11 22.4 58.5 8.0 L 46.3 13.6 7.07 569 5.42 111 0 <																
MW9S 38.83-53.83 10/20/08 21.5 58.5 11 L 46.3 15.1 7.15 690 6.18 106 0 - MRW9S-W-27629 MW9S 38.83-53.83 4/23/09 21.9 58.5 5.5 L 46.3 16.0 7.17 669 5.99 -65 0.07 - MRW9S-W-27629 MW9S 38.83-53.83 4/2/10 16.5 58.5 5.0 L 46.3 17.3 7.18 664 5.33 52 0.07 - MRMW9S-W-27629 MW9S 38.83-53.83 4/2/10 16.5 58.5 6.0 L 46.3 17.1 7.12 704 6.07 151 0 - MRMW9S-W-29991 MW9S 38.83-53.83 4/2/11 23.8 58.3 14 L 46.3 16.7 7.14 618 5.9 185 0.05 - MRMW9S-W-20019 MW9S 38.83-53.83 10/4/11 22.4 58.5 8.0 L 46.3 16.7 7.14 618 5.9 185 0.05							•						-	-		
MW9S 38.83-53.83 4/23/09 21.9 58.5 5.5 L 46.3 16.0 7.17 669 5.99 -65 0.07 - MRMW9S-W-27661 MW9S 38.83-53.83 9/4/09 20.0 58.5 5.0 L 46.3 17.3 7.18 664 5.33 52 0.03 - MRMW9S-W-29951 MW9S 38.83-53.83 9/2/10 21.2 53.8 7.0 L 46.3 17.1 7.12 704 6.07 151 0 - MRMW9S-W-30019 MW9S 38.83-53.83 9/2/10 21.2 53.8 7.0 L 46.3 15.6 7.71 618 5.9 185 0.05 - MRMW9S-W-30047 MW9S 38.83-53.83 10/4/11 22.4 58.5 8.0 L 46.3 16.7 7.14 618 5.9 185 0.05 - MRMW9S-W-30047 MW10S 30-45 3/21/06 12.3 49.6 19 gal - 14.3 7.17 701 0.04 24 0.08 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							-									
MW9S 38.83-53.83 4/6/10 16.5 58.5 6.0 L 46.3 15.3 7.19 650 5.50 -10 0.02 - MRMW9S-W-29991 MW9S 38.83-53.83 9/22/10 21.2 53.8 7.0 L 46.3 17.1 7.12 704 6.07 151 0 - MRMW9S-W-30019 MW9S 38.83-53.83 4/20/11 23.8 58.3 14 L 46.3 13.6 7.07 569 5.42 111 0 - MRMW9S-W-30047 MW9S 38.83-53.83 10/4/11 22.4 58.5 8.0 L 46.3 16.7 7.14 618 5.9 185 0.05 - MRMW9S-W-30076 MW10S 30-45 3/21/06 11.1 49.6 20 gal - 14.3 7.17 701 0.04 24 0.08 60 MRW10S-W-19999 MV10S 30-45 3/21/07 10.8 49.6 20							-							-		
MW9S 38.83-53.83 9/22/10 21.2 53.8 7.0 L 46.3 17.1 7.12 704 6.07 151 0 - MRMW9S-W-30019 MW9S 38.83-53.83 4/20/11 23.8 58.3 14 L 46.3 13.6 7.07 569 5.42 111 0 - MRMW9S-W-30047 MW9S 38.83-53.83 10/4/11 22.4 58.5 8.0 L 46.3 16.7 7.14 618 5.9 185 0.05 - MRMW9S-W-30076 MW10S 30-45 3/21/06 12.3 49.6 19 gal - 6.3 7.11 701 2.10 88 0.01 40 MRMV10S-W-19999 MW10S 30-45 9/18/06 11.1 49.6 20 gal - 14.5 6.51 720 0.88 11 0 30 MRMW10S-W-16485 MW10S 30-45 10/1/07 7.0 49.7 2.0 ga							L								-	
MW9S 38.83-53.83 4/20/11 23.8 58.3 14 L 46.3 13.6 7.07 569 5.42 111 0 - MRMW9S-W-30047 MW9S 38.83-53.83 10/4/11 22.4 58.5 8.0 L 46.3 16.7 7.14 618 5.9 185 0.05 - MRMW9S-W-30047 MW10S 30-45 3/21/06 12.3 49.6 19 gal - 6.3 7.11 701 2.10 88 0.01 40 MRMV10S-W-19999 MW10S 30-45 3/21/07 10.8 49.6 20 gal - 14.3 7.17 701 0.04 24 0.08 60 MRMV10S-W-22489 MW10S 30-45 10/1/07 7.0 49.7 20 gal - 16.3 6.97 664 0.35 248 0.04 35 MRMV10S-W-22489 MW10S 30-45 4/14/08 9.8 49.7 1.9 L<	MW9S	38.83-53.83	4/6/10	16.5	58.5	6.0	L	46.3	15.3	7.19		5.50		0.02	-	MRMW9S-W-29991
MW9S 38.83-53.83 10/4/11 22.4 58.5 8.0 L 46.3 16.7 7.14 618 5.9 185 0.05 - MRMW9S-W-30076 MW10S 30-45 3/21/06 12.3 49.6 19 gal - 6.3 7.11 701 2.10 88 0.01 40 MRMW10S-W-19999 MW10S 30-45 9/18/06 11.1 49.6 20 gal - 14.3 7.17 701 0.04 24 0.08 60 MRMW10S-W-22489 MW10S 30-45 3/21/07 10.8 49.6 20 gal - 14.5 6.57 720 0.88 11 0 30 MRMW10S-W-16485 MW10S 30-45 10/1/07 7.0 49.7 2.9 gal - 16.0 7.25 723 1.25 181 0 - MRMW10S-W-27630 MW10S 30-45 10/20/08 13.7 49.7 5.4 L							L								-	
MW10S 30-45 3/21/06 12.3 49.6 19 gal - 6.3 7.11 701 2.10 88 0.01 40 MRMW10S-W-19999 MW10S 30-45 9/18/06 11.1 49.6 20 gal - 14.3 7.17 701 0.04 24 0.08 60 MRMW10S-W-19999 MW10S 30-45 3/21/07 10.8 49.6 20 gal - 14.5 6.51 720 0.88 11 0 30 MRMW10S-W-22489 MW10S 30-45 10/1/07 7.0 49.7 20 gal - 16.3 6.97 664 0.35 248 0.04 35 MRMW10S-W-16593 MW10S 30-45 4/14/08 9.8 49.7 1.9 L - 16.0 7.25 723 1.25 181 0 - MRMW10S-W-26393 MW10S 30-45 4/14/08 9.8 49.7 1.9 L - 16.0 7.25 723 1.25 181 0 - MRMW10S-W-26393																
MW10S 30-45 9/18/06 11.1 49.6 20 gal - 14.3 7.17 701 0.04 24 0.08 60 MRMW10S-W-22489 MW10S 30-45 3/21/07 10.8 49.6 20 gal - 14.5 6.51 720 0.88 11 0 30 MRMW10S-W-22489 MW10S 30-45 10/1/07 7.0 49.7 20 gal - 16.3 6.97 664 0.35 248 0.04 35 MRMW10S-W-16485 MW10S 30-45 4/14/08 9.8 49.7 1.9 L - 16.0 7.25 723 1.25 181 0 - MRMW10S-W-22489 MW10S 30-45 4/14/08 9.8 49.7 1.9 L 37.5 14.3 7.03 710 1.02 56 0 - MRMW10S-W-27630 MW10S 30-45 4/23/09 13.6 45.0 7.5 L 37.5 15.1 7.05 668 1.78 -57 0.07 - MRMW10S-W-	MW9S	38.83-53.83	10/4/11	22.4	58.5	8.0	L	46.3	16.7	7.14	618	5.9	185	0.05	-	MRMW9S-W-30076
MW10S 30-45 3/21/07 10.8 49.6 20 gal - 14.5 6.51 720 0.88 11 0 30 MRMW10S-W-16485 MW10S 30-45 10/1/07 7.0 49.7 20 gal - 16.3 6.97 664 0.35 248 0.04 35 MRMW10S-W-16485 MW10S 30-45 4/14/08 9.8 49.7 1.9 L - 16.0 7.25 723 1.25 181 0 - MRMW10S-W-2630 MW10S 30-45 4/20/08 13.7 49.7 5.4 L 37.5 15.1 7.05 668 1.78 -57 0.07 - MRMW10S-W-27630 MW10S 30-45 4/23/09 13.6 45.0 7.5 L 37.5 15.1 7.05 668 1.78 -57 0.07 - MRMW10S-W-2962 MW10S 30-45 9/3/09 12.0 49.7 7.5 L 37.5 14.3 7.59 731 2.03 86 0.07 - MRMW10S	MW10S	30-45	3/21/06	12.3	49.6		gal	-	6.3		701	2.10	88	0.01		MRMW10S-W-19999
MW10S 30-45 10/1/07 7.0 49.7 20 gal - 16.3 6.97 664 0.35 248 0.04 35 MRMW10S-W-16593 MW10S 30-45 4/14/08 9.8 49.7 1.9 L - 16.0 7.25 723 1.25 181 0 - MRMW10S-W-23240 MW10S 30-45 10/20/08 13.7 49.7 5.4 L 37.5 14.3 7.03 710 1.02 56 0 - MRMW10S-W-27630 MW10S 30-45 4/23/09 13.6 45.0 7.5 L 37.5 15.1 7.05 668 1.78 -57 0.07 - MRMW10S-W-27630 MW10S 30-45 9/3/09 12.0 49.7 7.5 L 37.5 15.1 7.05 668 1.78 -57 0.07 - MRMW10S-W-27662 MW10S 30-45 9/3/09 12.0 49.7 9.0 L 37.5 16.1 7.06 649 2.91 221 0 - MRMW10			9/18/06	11.1	49.6		gal	-	14.3			0.04				MRMW10S-W-22489
MW10S 30-45 4/14/08 9.8 49.7 1.9 L - 16.0 7.25 723 1.25 181 0 - MRMW10S-W-23240 MW10S 30-45 10/20/08 13.7 49.7 5.4 L 37.5 14.3 7.03 710 1.02 56 0 - MRMW10S-W-23240 MW10S 30-45 4/23/09 13.6 45.0 7.5 L 37.5 15.1 7.05 668 1.78 -57 0.07 - MRMW10S-W-27662 MW10S 30-45 9/3/09 12.0 49.7 7.5 L 37.5 14.3 7.59 731 2.03 86 0.07 - MRMW10S-W-2952 MW10S 30-45 9/3/09 12.0 49.7 9.0 L 37.5 16.1 7.06 649 2.91 221 0 - MRMW10S-W-29922 MW10S 30-45 9/2/10 11.7 49.7 11 L 37.5 16.7 7.29 723 5.05 131 0 - MRMW10S-W-3																
MW10S 30-45 10/20/08 13.7 49.7 5.4 L 37.5 14.3 7.03 710 1.02 56 0 - MRMW10S-W-27630 MW10S 30-45 4/23/09 13.6 45.0 7.5 L 37.5 15.1 7.05 668 1.78 -57 0.07 - MRMW10S-W-27662 MW10S 30-45 9/3/09 12.0 49.7 7.5 L 37.5 14.3 7.59 731 2.03 86 0.07 - MRMW10S-W-29522 MW10S 30-45 4/6/10 7.5 49.7 9.0 L 37.5 16.1 7.06 649 2.91 221 0 - MRMW10S-W-29952 MW10S 30-45 9/22/10 11.7 49.7 11 L 37.5 16.1 7.69 723 5.05 131 0 - MRMW10S-W-299292 MW10S 30-45 4/20/11 13.7 49.3 7.3 L				-			•									
MW10S 30-45 4/23/09 13.6 45.0 7.5 L 37.5 15.1 7.05 668 1.78 -57 0.07 - MRMW10S-W-27662 MW10S 30-45 9/3/09 12.0 49.7 7.5 L 37.5 14.3 7.59 731 2.03 86 0.07 - MRMW10S-W-29522 MW10S 30-45 4/6/10 7.5 49.7 9.0 L 37.5 16.1 7.06 649 2.91 221 0 - MRMW10S-W-29922 MW10S 30-45 9/22/10 11.7 49.7 11 L 37.5 16.1 7.29 723 5.05 131 0 - MRMW10S-W-30020 MW10S 30-45 4/20/11 13.7 49.3 7.3 L 37.5 12.8 7.06 573 2.09 99 0.1 - MRMW10S-W-30048							-									
MW10S 30-45 9/3/09 12.0 49.7 7.5 L 37.5 14.3 7.59 731 2.03 86 0.07 - MRMW10S-W-29952 MW10S 30-45 4/6/10 7.5 49.7 9.0 L 37.5 16.1 7.06 649 2.91 221 0 - MRMW10S-W-29992 MW10S 30-45 9/22/10 11.7 49.7 11 L 37.5 16.7 7.29 723 5.05 131 0 - MRMW10S-W-30020 MW10S 30-45 4/20/11 13.7 49.3 7.3 L 37.5 12.8 7.06 573 2.09 99 0.1 - MRMW10S-W-30048							-							-		
MW10S 30-45 4/6/10 7.5 49.7 9.0 L 37.5 16.1 7.06 649 2.91 221 0 - MRMW10S-W-29992 MW10S 30-45 9/22/10 11.7 49.7 11 L 37.5 16.7 7.29 723 5.05 131 0 - MRMW10S-W-30020 MW10S 30-45 4/20/11 13.7 49.3 7.3 L 37.5 12.8 7.06 573 2.09 99 0.1 - MRMW10S-W-30048							_									
MW10S 30-45 9/22/10 11.7 49.7 11 L 37.5 16.7 7.29 723 5.05 131 0 - MRMW10S-W-30020 MW10S 30-45 4/20/11 13.7 49.3 7.3 L 37.5 12.8 7.06 573 2.09 99 0.1 - MRMW10S-W-30048																
MW10S 30-45 4/20/11 13.7 49.3 7.3 L 37.5 12.8 7.06 573 2.09 99 0.1 - MRMW10S-W-30048							L									
							-									
	MW10S	30-45	10/4/11	12.5	49.7		L		15.4	7.27	613	2.53	201	0.01	-	MRMW10S-W-30077

	Screen		Depth (f	t BTOC)		-	Pump Intake				Dissolved			Carbon	
Location	Interval (ft BGL)	Sample Date	Water	Well	Volume Purged	Purge Units	Position (ft BGL)	Temperature (°C)	pН	Conductivity (µS/cm)	Oxygen (mg/L)	ORP (mV)	Iron II (mg/L)	Dioxide (mg/L)	Sample
MW11S	53-68	3/22/06	35.2	72.5	20	gal	-	14.8	7.33	762	9.40	237	0.06	30	MRMW11S-W-20001
MW11S	53-68	9/19/06	36.0	73.1	20	gal	-	13.0	7.24	764	1.42	158	0.02	30	MRMW11S-W-22491
MW11S	53-68	3/20/07	34.7	73.1	20	gal	-	14.6	6.33	782	3.90	76	0	30	MRMW11S-W-16479
MW11S	53-68	10/1/07	31.6	73.0	20	gal	-	16.4	6.49	624	6.57	241	0.04	35	MRMW11S-W-16594
MW11S	53-68	4/15/08	29.9	72.7	5.5	L	-	13.9	7.30	785	6.14	152	0	-	MRMW11S-W-23241
MW11S	53-68	4/22/08	30.2	72.7	7.2	L	-	15.1	7.25	790	6.22	163	-	-	MRMW11S-W-23261
MW11S	53-68	10/20/08	37.1	72.7	9.0	L	60.5	14.3	7.16	756	8.95	104	0	-	MRMW11S-W-27631
MW11S	53-68	10/21/08	-	-	TWV	-	-	14.8	7.19	766	-	-	0	-	MRMW11S-W-27651
MW11S	53-68	4/23/09	38.1	72.7	5.0	L	60.5	16.5	7.19	722	9.03	-62	0.09	-	MRMW11S-W-27663
MW11S	53-68	9/3/09	34.7	72.7	7.5	L	60.5	13.9	7.63	777	9.35	102	0.05	-	MRMW11S-W-29953
MW11S	53-68	9/4/09	35.0	72.7	72	L	67.0	16.2	6.69	721	8.78	100	-	-	MRMW11S-W-29973
MW11S	53-68	4/6/10	29.5	72.7	6.5	L	60.5	15.0	7.14	700	7.20	-20	0	-	MRMW11S-W-29993
MW11S	53-68	9/23/10	34.8	72.7	7.0	L	60.5	15.7	7.40	756	12.62	179	0.33	-	MRMW11S-W-30021
MW11S	53-68	4/20/11	39.2	72.5	7.5	L	60.5	13.1	7.03	603	7.20	108	0	-	MRMW11S-W-30049
MW11S	53-68	10/4/11	36.8	72.7	6.0	L	60.5	16.1	7.26	647	7.56	202	0.03	-	MRMW11S-W-30078
la alt		2/19/04			Pump ^d										MRJR-W-16502
lsch	-		-	-		-	-	-	-	-	-	-	-	-	
lsch Isch	_	9/14/05 3/23/06	_	_	Pump 20	-	-	20.4 13.0	6.73 7.23	2300 9400	_	-	_	-	MRPRISCH-W-16513 MRISCH-W-19989
lsch	_	3/23/06 9/19/06	_	_	20 Pump	gal	_	13.0	7.23	9400	-	-	_	_	MRISCH-W-19989 MRISCH-W-16531
lsch	_	3/22/07	_	_	Pump	_	_	_	_	_	_	_	_		MRISCH-W-16564
lsch	_	10/3/07	_	_	Pump	_	_	_	_	-	-	_	_	_	MRISCH-W-16590
lsch	_	4/15/08	_	_	Pump	_	_	12.6	- 7.33	3160	_	_	0.28	_	MRISCH-W-23242
lsch	_	10/21/08	_	_	Pump	_	_	12.0	-	3100	_	_	0.20	_	MRISCH-W-27632
lsch	_	4/22/09	_	_	Pump	_	_	15.3	6.70	2389	_	_	0.04	_	MRISCH-W-27664
lsch	_	9/2/09	_	_	Pump	_	_	13.9	7.18	2600	_	_	-	_	MRISCH-W-29954
Isch	_	4/7/10	_	_	Pump	_	_	11.8	6.86	2326	_	_	0.05	_	MRISCH-W-29994
lsch	_	4/21/11	_	_	Pump	_	_	13.3	7.03	1949	_	_	0.35	_	MRISCH-W-30050
lsch	_	10/3/11	_	_	Pump	_	_	14.5	8.10	2011	_	_	1.61	_	MRIsch-W-30079
10011					. unp				00	2011					
Rillinger	_	6/4/04	_	_	Pump	_	_	15.9	6.99	2450	-	_	_	_	MRPRIVRIL-W-16471
Rillinger	-	9/14/05	-	-	Pump	-	-	-	-	-	-	-	-	-	MRPRILL-W-16512
Rillinger	-	3/19/06	_	-	Pump	-	-	11.9	7.05	2550	-	-	_	_	MRRILINGER-W-19988
Rillinger	-	9/19/06	_	-	Pump	-	-	-	-	-	-	-	_	_	MRRILI-W-16530
Rillinger	-	3/29/07	-	-	Pump	-	-	-	-	-	-	-	-	-	MRRILINGER-W-16561
Rillinger	-	10/3/07	-	-	Pump	-	-	-	-	-	-	-	-	-	MRRILINGER-W-16591
Rillinger	-	1/11/08	-	-	Pump	-	-	12.2	7.46	884	-	-	-	-	MORIL-W-11108
Rillinger	-	4/15/08	-	-	Pump	-	-	12.0	7.56	868	-	-	0	-	MRRILINGER-W-23243
Rillinger	-	10/21/08	-	-	Pump	-	-	-	-	-	-	-	-	-	MRRILLINGER-W-27633
Rillinger	-	4/22/09	-	-	Pump	-	-	14.5	7.14	2279	-	-	0.01	-	MRRILLINGER-W-27665
Rillinger	-	9/2/09	-	-	Pump	-	-	14.8	7.60	809	-	-	-	-	MRRILLINGER-W-29955
Rillinger	-	4/7/10	-	-	Pump	-	-	13.1	7.08	2287	-	-	-	-	MRRILLINGER-W-29995
Rillinger	-	9/22/10	-	-	Pump	-	-	14.9	7.04	2337	-	-	0.07	-	MRRILLINGER-W-30023
Rillinger	-	4/21/11	-	-	Pump	-	-	13.5	7.15	1851	-	-	-	-	MRRILLINGER-W-30051
Rillinger	-	10/3/11	-	-	Pump	-	-	14.4	7.37	1944	-	-	0	-	MRRillinger-W-30080
_															
Stone	43 ^e	6/4/04	23.4	_	PDS	-	-	17.1	7.35	682	-	-	-	-	MRPRIVSTON-W-16475
Stone	43	9/14/05	17.2	40.0	-	-	-	17.3	6.81	638	-	-	-	-	MRPRSTON-W-16511

	Screen		Depth (f	t BTOC)			Pump Intake				Dissolved			Carbon	
Location	Interval (ft BGL)	Sample Date	Water	Well	Volume Purged	Purge Units	Position (ft BGL)	Temperature (°C)	pН	Conductivity (µS/cm)	Oxygen (mg/L)	ORP (mV)	Iron II (mg/L)	Dioxide (mg/L)	Sample
Stone	43	3/19/06	17.4	40.0	100	gal	_	12.9	6.42	650	_	213	0	_	MRSTONE-W-19987
Stone	43	9/19/06	18.6	38.8	41	gal	_	16.7	7.12	639	-	_	_	_	MRSTONE-W-16529
Stone	43	3/22/07	20.6	38.8	56	gal	-	16.7	6.58	679	4.71	19	0.28	35	MRSTONE-W-16560
Stone	43	10/3/07	14.6	38.6	72	gal	-	16.1	6.97	564	7.07	225	0.07	25	MRSTONE-W-16589
Stone	43	4/15/08	-	38.9	-	_	-	11.3	7.45	557	_	-	0	_	MRSTONE-W-23244
Stone	43	10/21/08	-		5.0	gal	-	-	-	-	_	-	-	_	MRSTONE-W-27634
Stone	43	4/23/09	-	_	5.0	gal	-	13.9	7.12	588	_	-	-	_	MRSTONE-W-27666
Stone	43	9/2/09	-	_	5.0	gal	-	13.8	7.40	623	_	-	-	_	MRSTONE-W-29956
Stone	43	4/7/10	-	_	5.0	gal	-	10.9	6.83	468	-	-	-	-	MRSTONE-W-29996
Stone	43	9/22/10	-	_	5.0	gal	-	15.3	7.21	552	_	-	-	_	MRSTONE-W-30024
Stone	43	4/21/11	-	_	5.0	gal	-	12.5	7.52	455	-	-	-	-	MRSTONE-W-30052
Stone	43	10/3/11	-	-	5.0	gal	-	14.1	7.38	495	-	-	0.04	-	MRStone-W-30081
TD12	27-67	4/20/11	_	_	_	_	_	-	_	_	_	_	_	_	MRTD12-W-30053
TD12	27-67	10/3/11	-	-	-	-	-	14.2	7.46	2083	-	-	-	-	MRTD12-W-30082

^a Not measured.

^b TWV, three well volumes.

^c PDS, purged dry and then sampled.

^d The well's dedicated pump was used for sampling. The pump was allowed to run before the sample was collected.

e Total depth.

ABLE 3.4 Results of analyses at the AGEM Laboratory for volatile organic compounds in surface	3
vater and sediment samples collected in 2007-2011. ^a	

				Concentration (µg/L in water; µg/kg in sedimen			sediment)
Location	Sample	Sample Date	Medium	Carbon Tetrachloride	Chloroform	Methylene Chloride	Quantitation Limit
SM1	MRSM1-W-16572	3/22/07	Water	ND ^b	ND	ND	1
SM1	MRSM1-S-16573	3/22/07	Sediment	ND	ND	ND	10
SM1	MRSM1-W-16583	10/8/07	Water	ND	ND	ND	1
SM1	MRSM1-S-16584	10/8/07	Sediment	ND	ND	ND	10
SM1	MRSM1-W-23254	4/14/08	Water	ND	ND	ND	1
SM1	MRSM1-S-23254	4/14/08	Sediment	ND	ND	ND	10
SM1	MRSM1-W-27644	10/20/08	Water	ND	ND	ND	1
SM1	MRSM1-S-27644	10/20/08	Sediment	ND	ND	ND	10
SM1	MRSM1-W-27676	4/22/09	Water	ND	ND	ND	1
SM1	MRSM1-S-27676		Sediment	ND	ND	ND	10
SM1	MRSM1-W-29966		Water	ND	ND	ND	1
SM1	MRSM1-S-29966		Sediment	ND	ND	ND	10
SM1	MRSM1-W-29974		Water	ND	ND	ND	1
SM1	MRSM1-S-29974		Sediment	ND	ND	ND	10
SM1	MRSM1-W-30005	9/22/10		ND	ND	ND	1
SM1	MRSM1-S-30005		Sediment	ND	ND	ND	10
SM1	MRSM1-W-29974		Water	ND	ND	ND	1
SM1	MRSM1-S-29974		Sediment	ND	ND	ND	10
SM1	MRSM1-W-30062	10/3/11		ND	ND	ND	1
SM1	MRSM1-S-30062	10/3/11	Sediment	ND	ND	ND	10
SM2	MRSM2-W-16574	3/22/07		ND	ND	ND	1
SM2	MRSM2-S-16575		Sediment	ND	ND	ND	10
SM2	MRSM2-W-16585	10/8/07		ND	ND	ND	1
SM2	MRSM2-S-16586		Sediment	ND	ND	ND	10
SM2	MRSM2-W-23255	4/14/08		ND	ND	ND	1
SM2	MRSM2-S-23255		Sediment	ND	ND	ND	10
SM2 SM2	MRSM2-W-27645	10/20/08		ND	ND	ND	1
SM2 SM2	MRSM2-S-27645 MRSM2-W-27677	4/22/08	Sediment	ND ND	ND ND	ND ND	10 1
SM2 SM2	MRSM2-S-27677		Sediment	ND	ND	ND	10
SM2 SM2	MRSM2-S-27077 MRSM2-W-29967		Water	ND	ND	ND	1
SM2	MRSM2-S-29967		Sediment	ND	ND	ND	10
SM2	MRSM2-W-29975		Water	ND	ND	ND	1
SM2	MRSM2-S-29975		Sediment	ND	ND	ND	10
SM2	MRSM2-W-30006	9/22/10		ND	ND	ND	1
SM2	MRSM2-S-30006		Sediment	ND	ND	ND	10
SM2	MRSM2-W-29975		Water	ND	ND	ND	1
SM2	MRSM2-S-29975		Sediment	ND	ND	ND	10
SM2	MRSM2-W-30063	10/3/11		ND	ND	ND	1
SM2	MRSM2-S-30063		Sediment	ND	ND	ND	10
SM3	MRSM3-W-16576	3/22/07	Water	ND	ND	ND	1
SM3	MRSM3-S-16577		Sediment	ND	ND	ND	10
SM3	MRSM3-W-16587	10/8/07		ND	ND	ND	1
SM3	MRSM3-S-16588		Sediment	ND	ND	ND	10
SM3	MRSM3-W-23256	4/14/08		ND	ND	ND	1
SM3	MRSM3-S-23256		Sediment	ND	ND	ND	10
SM3	MRSM3-W-27646	10/20/08		ND	ND	ND	1
SM3	MRSM3-S-27646		Sediment	ND	ND	ND	10
SM3	MRSM3-W-27678	4/22/09	Water	ND	ND	ND	1
SM3	MRSM3-S-27678	4/22/09	Sediment	ND	ND	ND	10

				Concentrati	on (µg/L in wa	ater; µg/kg in	sediment)
Location	Sample	Sample Date	Medium	Carbon Tetrachloride	Chloroform	Methylene Chloride	Quantitation Limit
SM3	MRSM3-W-29968	9/2/09	Water	ND	ND	ND	1
SM3	MRSM3-S-29968		Sediment	ND	ND	ND	10
SM3	MRSM3-W-29976		Water	ND	ND	ND	1
SM3	MRSM3-S-29976	4/6/10	Sediment	ND	ND	ND	10
SM3	MRSM3-W-30007	9/22/10	Water	ND	ND	ND	1
SM3	MRSM3-S-30007	9/22/10	Sediment	ND	ND	ND	10
SM3	MRSM3-W-29976		Water	ND	ND	ND	1
SM3	MRSM3-S-29976		Sediment	ND	ND	ND	10
SM3	MRSM3-W-30064	10/3/11		ND	ND	ND	1
SM3	MRSM3-S-30064	10/3/11	Sediment	ND	ND	ND	10
SM4	MRSM4-W-16578	3/22/07		ND	ND	ND	1
SM4 SM4	MRSM4-S-16579 MRSM4-W-16589	3/22/07	Sediment	ND ND	ND ND	ND ND	10 1
SM4 SM4	MRSM4-W-16589 MRSM4-S-16590		Sediment	ND	ND	ND	10
SM4 SM4	MRSM4-8-10590 MRSM4-W-23257	4/14/08		ND	ND	ND	1
SM4	MRSM4-S-23257		Sediment	ND	ND	ND	10
SM4	MRSM4-W-27647	10/20/08		ND	ND	ND	1
SM4	MRSM4-S-27647		Sediment	ND	ND	ND	10
SM4	MRSM4-W-27679	4/22/09		ND	ND	ND	1
SM4	MRSM4-S-27679	4/22/09	Sediment	ND	ND	ND	10
SM4	MRSM4-W-29969	9/2/09	Water	ND	ND	ND	1
SM4	MRSM4-S-29969	9/2/09	Sediment	ND	ND	ND	10
SM4	MRSM4-W-29977		Water	ND	ND	ND	1
SM4	MRSM4-S-29977		Sediment	ND	ND	ND	10
SM4	MRSM4-W-30008	9/22/10		ND	ND	ND	1
SM4	MRSM4-S-30008		Sediment	ND	ND	ND	10
SM4	MRSM4-W-29977	4/6/10		ND			1
SM4 SM4	MRSM4-S-29977 MRSM4-W-30065	4/6/10	Sediment Water	ND ND	ND ND	ND ND	10 1
SM4 SM4	MRSM4-W-50065 MRSM4-S-30065		Sediment	ND	ND	ND	10
SMB	MRSMB-W-16570	3/22/07	Water	ND	ND	ND	1
SMB	MRSMB-S-16571		Sediment	ND	ND	ND	10
SMB	MRSMB-W-16581	10/8/07	Water	ND	ND	ND	1
SMB	MRSMB-S-16582		Sediment	ND	ND	ND	10
SMB	MRSMB-W-23258	4/14/08		ND	ND	ND	1
SMB	MRSMB-S-23258		Sediment	ND	ND	ND	10
SMB	MRSMB-W-27648	10/20/08		ND	ND	ND	1
SMB	MRSMB-S-27648		Sediment	ND	ND	ND	10
SMB	MRSMB-W-27680	4/22/09		ND		ND	1
SMB SMB	MRSMB-S-27680 MRSMB-W-29970		Sediment Water	ND ND	ND ND	ND ND	10 1
SMB	MRSMB-S-29970		Sediment	ND	ND	ND	10
SMB	MRSMB-W-29978		Water	ND	ND	ND	1
SMB	MRSMB-S-29978		Sediment	ND	ND	ND	10
SMB	MRSMB-W-30009	9/22/10		ND	ND	ND	1
SMB	MRSMB-S-30009		Sediment	ND	ND	ND	10
SMB	MRSMB-W-29978	4/6/10	Water	ND	ND	ND	1
SMB	MRSMB-S-29978	4/6/10	Sediment	ND	ND	ND	10
SMB	MRSMB-W-30066	10/3/11		ND	ND	ND	1
SMB	MRSMB-S-30066	10/3/11	Sediment	ND	ND	ND	10

				Concentration (µg/L in water; µg/kg in sediment)			
Location	Sample	Sample Date	Medium	Carbon Tetrachloride	Chloroform	Methylene Chloride	Quantitation Limit

^a Analyses conducted at the AGEM Laboratory by EPA Method 524.2 for surface water samples or by modified EPA Method 5030B/8260B for sediment samples.

^b ND, not detected at the instrument detection limit of 0.1 μg/L for surface water samples or 1.0 μg/kg for sediment samples.

				Concentrati	on (µg/kg)
Location	Sample	Sample Date	Туре	Carbon Tetrachloride	Chloroform
MR001 MR001 MR001 MR001	MR001-B-18959 MR001-L-18958 MR001-B-23173 MR001-B-23213			ND ^b ND ND ND	1.6 3.3 ND ND
MR001 MR001A	MR001-L-23212 MR001A-B-16622	7/26/07	Leaf Branch	ND ND	ND ND
MR001 MR001 MR001 MR001	MR001-B-16623 MR001-B-29924 MR001-B-31929 MR001-B-29963	8/27/09 7/27/10	Branch Branch Branch Branch	ND ND ND ND	ND ND ND ND
MR002 MR002 MR002	MR002-B-18961 MR002-L-18960 MR002-B-23174	10/14/06 10/14/06 4/2/07		ND ND ND	ND ND 1.5
MR002 MR002 MR002	MR002-B-23211 MR002-L-23210 MR002-B-16621		Leaf Branch	ND ND ND	ND 1.3 ND
MR002 MR002 MR002	MR002-B-29923 MR002-B-31928 MR002-B-29962	8/27/09 7/27/10 7/28/11	Branch Branch Branch	ND ND ND	ND ND 1.9
MR003 MR003 MR003 MR003	MR003-B-18963 MR003-L-18962 MR003-B-23175 MR003-B-23209	10/14/06 10/14/06 4/2/07 7/26/07	Leaf Branch	ND ND ND ND	1.5 1.8 ND ND
MR003 MR003 MR003 MR003 MR003	MR003-B-23209 MR003-L-23208 MR003-B-16620 MR003-B-29922 MR003-B-31927	7/26/07 7/24/08	Leaf Branch Branch	ND ND ND ND	0.8 ND ND ND ND
MR003 MR004	MR003-B-29961 MR004-B-18965	7/28/11	Branch	ND	ND 2.1
MR004 MR004 MR004 MR004 MR004	MR004-L-18964 MR004-B-23176 MR004-B-23205 MR004-L-23204 MR004-B-16619	10/14/06 4/2/07 7/26/07 7/26/07	Leaf Branch Branch	ND ND ND ND ND ND	ND ND ND ND ND ND
MR004 MR004 MR004 MR004	MR004-B-16619 MR004-B-29921 MR004-B-31926 MR004-B-29960	8/27/09 7/27/10	Branch Branch Branch Branch	ND ND ND ND	ND ND ND ND
MR005 MR005 MR005 MR005 MR005A MR005A MR005A	MR005-B-18967 MR005-L-18966 MR005-B-23177 MR005-B-23207 MR005-L-23206 MR005-B-16618 MR005A-B-29920 MR005A-B-31925	7/26/07 7/26/07 7/24/08 8/27/09	Leaf Branch Branch	ND ND ND ND ND ND ND	ND 1.2 ND 1.4 ND ND ND
MR005A	MR005A-B-29959		Branch	ND	ND

TABLE 3.5 Results of analyses at the AGEM Laboratory for carbon tetrachloride and chloroform in vegetation samples collected in 2006-2011.^a

				Concentration	on (µg/kg)
Location	Sample	Sample Date	Туре	Carbon Tetrachloride	Chloroform
MR006	MR006-B-18969	10/14/06	Branch	ND	3.8
MR006	MR006-L-18968	10/14/06		ND	ND
MR006	MR006-B-23161		Branch	ND	ND
MR006	MR006-B-23181		Branch	ND	ND
MR006	MR006-L-23180	7/26/07		ND	1.3
MR006 MR006	MR006-B-16625 MR006-B-29930		Branch Branch	ND ND	ND ND
MR006	MR006-B-29930 MR006-B-31931	7/27/10		ND	ND
MR006	MR006-B-29947		Branch	ND	ND
MR007	MR007-B-18971	10/14/06	Branch	ND	1.6
MR007	MR007-L-18970	10/14/06		ND	2.0
MR007	MR007-B-23162		Branch	ND	ND
MR007	MR007-B-23183		Branch	0.1	ND
MR007	MR007-L-23182	7/26/07		ND	1.3
MR007 MR007	MR007-B-16626		Branch	ND	ND
MR007 MR007	MR007-B-29932 MR007-B-31932		Branch Branch	0.7 ND	0.8 ND
MR007 MR007	MR007-B-29948		Branch	ND	ND
MR008	MR008-B-18973	10/14/06	Branch	ND	1.3
MR008	MR008-L-18972	10/14/06	Leaf	ND	2.5
MR008	MR008-B-23163	4/2/07	Branch	ND	0.8
MR008	MR008-B-23185		Branch	ND	ND
MR008	MR008-L-23184	7/26/07		ND	ND
MR008	MR008-B-16627	7/24/08		ND	ND
MR008	MR008-B-29933	8/27/09		ND	ND
MR008 MR008	MR008-B-31933 MR008-B-29950		Branch Branch	ND ND	ND ND
MR009	MR009-B-18975	10/14/06	Branch	ND	0.9
MR009	MR009-L-18974	10/14/06		ND	2.5
MR009	MR009-B-23165	4/2/07	Branch	ND	ND
MR009	MR009-B-23189	7/26/07	Branch	ND	ND
MR009	MR009-L-23188	7/26/07		ND	1.5
MR009	MR009-B-16629		Branch	ND	ND
MR009	MR009-B-29935	8/27/09		ND	ND
MR009	MR009-B-31935		Branch	ND	ND
MR009	MR009-B-29952	7/28/11	Branch	ND	ND
MR010	MR010-B-18977	10/14/06		ND	3.4
MR010	MR010-L-18976	10/14/06		ND	ND
MR010	MR010-B-23167		Branch	ND	ND
MR010	MR010-B-23193		Branch	ND ND	0.8
MR010 MR010	MR010-L-23192 MR010-B-16631	7/26/07	Lear Branch	0.14	1.4 1.4
MR010 MR010	MR010-B-10031 MR010-B-29936		Branch	0.14 ND	ND
MR010	MR010-B-29930		Branch	ND	ND
MR010	MR010-B-29953		Branch	ND	ND
MR011	MR011-B-18979	10/14/06		ND	2.2
MR011	MR011-L-18978	10/14/06		ND	2.6
MR011	MR011-B-23168	4/2/07	Branch	ND	ND

				Concentration	on (µg/kg)
Location	Sample	Sample Date	Туре	Carbon Tetrachloride	Chloroform
MR011	MR011-B-23195		Branch	ND	ND
MR011	MR011-L-23194	7/26/07		ND	1.7
MR011	MR011-B-16632		Branch	ND	ND
MR011 MR011	MR011-B-29937 MR011-B-31937		Branch Branch	ND ND	ND ND
MR011 MR011	MR011-B-29954	7/28/11		ND	ND
MR012	MR012-B-18981	10/14/06		ND	2.1
MR012	MR012-L-18980	10/14/06		ND	2.9
MR012	MR012-B-23169		Branch	ND	ND
MR012 MR012	MR012-B-23197 MR012-L-23196	7/26/07	Branch	ND ND	ND 1.4
MR012	MR012-B-16633		Branch	ND	ND
MR012	MR012-B-29938		Branch	ND	ND
MR012	MR012-B-31938	7/27/10	Branch	ND	ND
MR012	MR012-B-29955	7/28/11	Branch	ND	ND
MR013	MR013-B-18983	10/14/06		ND	ND
MR013	MR013-L-18982	10/14/06		ND	2.2
MR013 MR013	MR013-B-23160 MR013-B-23179		Branch Branch	ND ND	ND ND
MR013	MR013-L-23178	7/26/07		ND	ND
MR013	MR013-B-16624		Branch	ND	ND
MR013	MR013-B-29931		Branch	ND	ND
MR013	MR013-B-31930	7/27/10	Branch	ND	ND
MR013	MR013-B-29946	7/28/11	Branch	ND	ND
MR014	MR014-B-23164		Branch	ND	ND
MR014 MR014	MR014-B-23187 MR014-L-23186	7/26/07 7/26/07		0.3 ND	ND ND
MR014 MR014	MR014-E-23186 MR014-B-16628		Branch	ND	ND
MR014	MR014-B-29934		Branch	ND	ND
MR014	MR014-B-31934	7/27/10	Branch	ND	ND
MR014	MR014-B-29951	7/28/11	Branch	ND	ND
MR015	MR015-B-23166		Branch	ND	0.8
MR015	MR015-B-23191		Branch	ND	ND
MR015 MR015	MR015-L-23190 MR015-B-16630	7/26/07 7/24/08	Branch	ND ND	ND ND
MR016	MR016-B-23170	4/2/07	Branch	ND	1.1
MR016	MR016-B-23199		Branch	ND	ND
MR016	MR016-L-23198	7/26/07		ND	ND
MR016	MR016-B-16634		Branch	ND	ND
MR016	MR016-B-29939		Branch	ND	ND
MR016 MR016	MR016-B-31939 MR016-B-29956		Branch Branch	ND ND	ND ND
MR017	MR017-B-23171	4/2/07	Branch	ND	ND
MR017	MR017-B-23203		Branch	ND	ND
MR017	MR017-L-23202	7/26/07		ND	ND
MR017	MR017-B-16635		Branch	ND	ND
MR017	MR017-B-29940	8/27/09	Branch	0.1	ND

				Concentration	on (µg/kg)
Location	Sample	Sample Date	Туре	Carbon Tetrachloride	Chloroform
MR017 MR017	MR017-B-31940 MR017-B-29957	7/27/10 7/28/11	Branch Branch	ND ND	ND ND
MR018 MR018 MR018 MR018 MR018 MR018	MR018-B-23172 MR018-B-23201 MR018-L-23200 MR018-B-16636 MR018-B-29941 MR018-B-31941	7/26/07 7/26/07 7/24/08 8/27/09 7/27/10	Branch Branch Branch	ND ND ND 0.2 ND	ND ND 3.2 ND ND ND
MR018 MR019 MR019 MR019 MR019	MR018-B-29958 MR019-B-16637 MR019-B-29929 MR019-B-31924 MR019-B-29945	7/24/08 8/27/09 7/27/10	Branch Branch Branch Branch Branch	ND 0.1 ND ND ND	0.8 ND ND ND ND
MR020 MR020 MR020 MR020	MR020-B-20021 MR020-B-29928 MR020-B-31923 MR020-B-29982	8/27/09	Branch Branch Branch Branch	ND ND ND ND	ND ND ND ND
MR021 MR021 MR021 MR021	MR021-B-20022 MR021-B-29926 MR021-B-31920 MR021-B-29967	8/27/09 7/27/10	Branch Branch Branch Branch	ND ND ND ND	ND ND ND ND
MR022 MR023 MR023	MR022-B-20023 MR023-B-20024 MR023-B-29925	7/24/08	Branch Branch Branch	ND ND 0.2	ND ND ND
MR023 MR024 MR024 MR024	MR023-B-31921 MR024-B-20025 MR024-B-29927 MR024-B-31922	7/24/08 8/27/09	Branch Branch Branch Branch	ND ND ND ND	ND ND ND ND
MR024 MR024 MR025 MR025	MR024-B-31922 MR024-B-29981 MR025-B-31942 MR025-B-29968	7/28/11 7/28/10	Branch Branch Branch	ND ND ND	
MR026 MR026	MR026-B-31943 MR026-B-29969	7/28/11	Branch Branch	ND ND	ND ND
MR027 MR027 MR028 MR028	MR027-B-31944 MR027-B-29970 MR028-B-31945 MR028-B-20071	7/28/11	Branch Branch Branch Branch	ND ND ND	ND ND ND
MR028 MR029 MR029	MR028-B-29971 MR029-B-31946 MR029-B-29972	7/28/10	Branch Branch Branch	ND ND ND	ND ND ND

				Concentration	on (µg/kg)
Location	Sample	Sample Date	Туре	Carbon Tetrachloride	Chloroform
MR030	MR030-B-31947	7/28/10	Branch	ND	ND
MR030	MR030-B-29973	7/28/11	Branch	ND	ND
MR031	MR031-B-31948		Branch	0.7	ND
MR031	MR031-B-29974		Branch	ND	ND
MR032	MR032-B-31949		Branch	ND	ND
MR032	MR032-B-29975		Branch	ND	ND
MR033	MR033-B-31950		Branch	ND	ND
MR033	MR033-B-29976		Branch	ND	ND
MR034	MR034-B-31951	7/28/10	Branch	ND	ND
MR034	MR034-B-29977	7/28/11	Branch	ND	ND
MR035	MR035-B-31952		Branch	ND	ND
MR035	MR035-B-29979		Branch	ND	ND
MR036	MR036-B-31953	7/28/10	Branch	ND	ND
MR036	MR036-B-29980	7/28/11	Branch	ND	ND
MR037	MR037-B-31954		Branch	ND	ND
MR037	MR037-B-29978		Branch	0.2	ND
MR038	MR038-B-31955		Branch	ND	ND
MR038	MR038-B-29964		Branch	ND	ND
MR039	MR039-B-31956		Branch	ND	ND
MR039	MR039-B-29965		Branch	ND	ND
MR040	MR040-B-31957	7/28/10	Branch	ND	ND
MR040	MR040-B-29966	7/28/11	Branch	ND	ND
MR041	MR041-B-31958	7/28/10	Branch	2.2	ND
MR041	MR041-B-29985	7/28/11	Branch	ND	ND
MR042	MR042-B-31959		Branch	ND	ND
MR042	MR042-B-29986		Branch	ND	ND
MR043	MR043-B-31960		Branch	ND	ND
MR043	MR043-B-29983		Branch	0.2	1.0
MR044	MR044-B-31961		Branch	0.5	ND
MR044	MR044-B-29984		Branch	ND	ND

^a Analyses conducted at the AGEM Laboratory by modified EPA Method 5021 (headspace analysis on a gas chromatograph with electron capture detection).

 $^b~$ ND, not detected at the method reporting limit of 0.1 $\mu g/kg$ for carbon tetrachloride or 0.75 $\mu g/kg$ for chloroform.

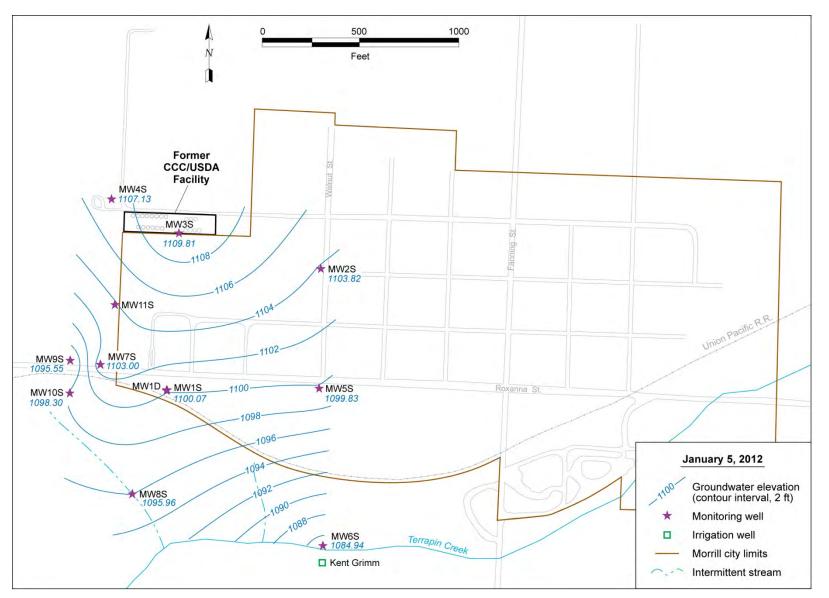


FIGURE 3.1 Potentiometric surface based on water levels measured manually on January 5, 2012.

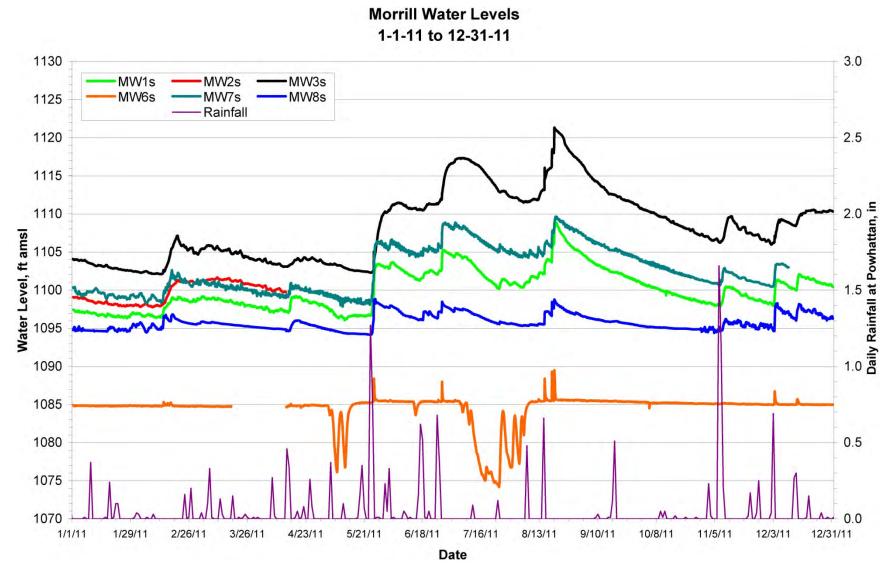


FIGURE 3.2 Hydrographs summarizing results of long-term water level monitoring from January 1, 2011, to December 31, 2011.

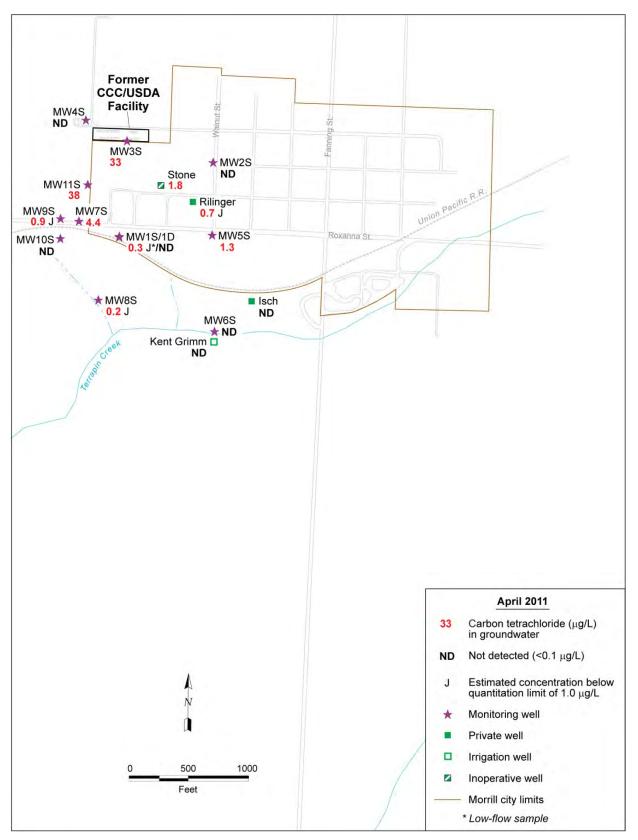


FIGURE 3.3a Carbon tetrachloride concentrations in groundwater, April 2011.

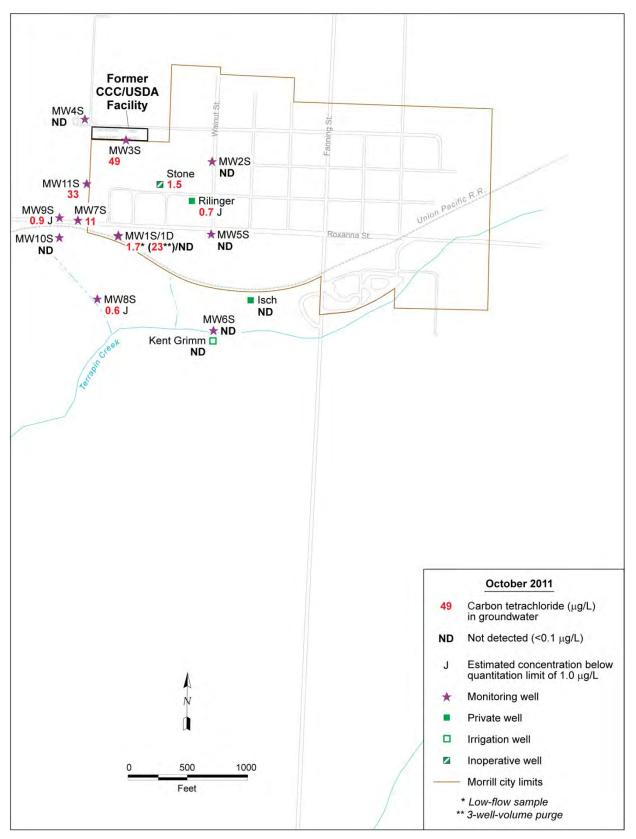


FIGURE 3.3b Carbon tetrachloride concentrations in groundwater, October 2011.

FIGURE 3.4a Carbon tetrachloride concentrations in groundwater, April 2010.

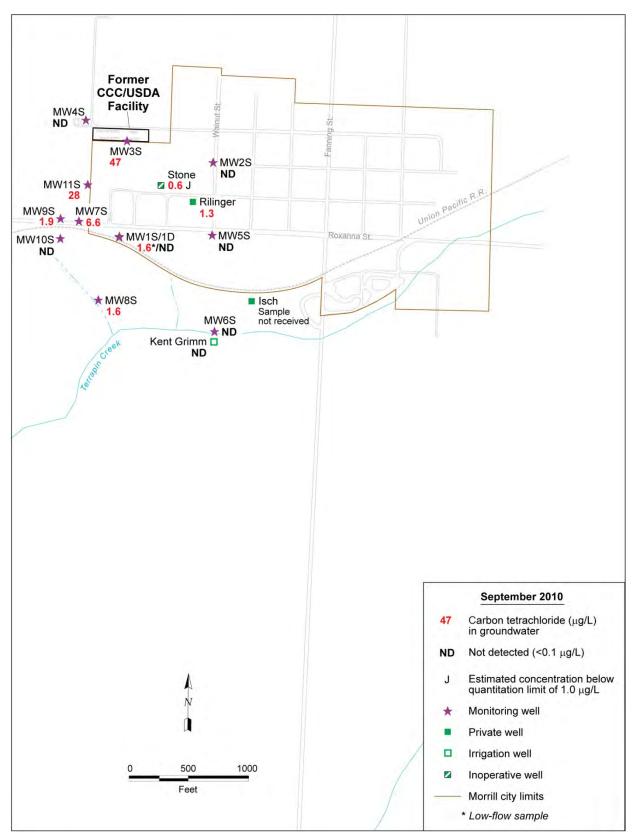


FIGURE 3.4b Carbon tetrachloride concentrations in groundwater, September 2010.

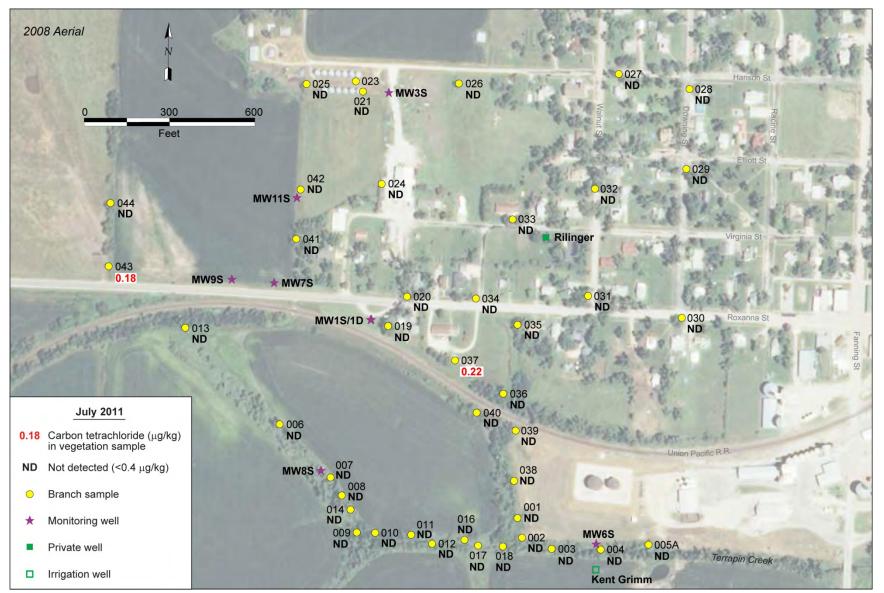


FIGURE 3.5 Carbon tetrachloride concentrations in vegetation, July 2011.

4 Conclusions and Recommendations

4.1 Conclusions

The findings of the April 2011 and October 2011 monitoring events at Morrill support the following conclusions:

- Groundwater flow during the 2011 review period (as in prior years) was predominantly to the south, from the vicinity of the former CCC/USDA facility toward Terrapin Creek. Automatic water level monitoring data suggest that spring precipitation and recharge represent the predominant factors affecting the local groundwater level patterns.
- No significant changes were observed in the concentration or distribution of carbon tetrachloride in groundwater during the spring and fall 2011 monitoring events versus the spring and fall 2010 monitoring events. In October 2011, a maximum carbon tetrachloride concentration of 49 μ g/L was identified in groundwater at well MW3S on the former CCC/USDA facility, with concentrations decreasing downgradient toward Terrapin Creek.
- Since 2004, the accumulated results of 15 sampling events have demonstrated a significant decline in the maximum detected concentration of carbon tetrachloride in groundwater. In 1995, the contaminant was detected at the former CCC/USDA facility at 390 μ g/L, while the current maximum levels are < 50 μ g/L. The residual contaminant plume extending from the former CCC/USDA facility southward toward Terrapin Creek is well-defined and slowly declining in concentration naturally.
- No carbon tetrachloride contamination was detected in 2011 in surface waters or shallow streambed sediments sampled at five locations along Terrapin Creek, downgradient from the former CCC/USDA facility. These results indicate that Terrapin Creek remains unaffected by the carbon tetrachloride plume.

- Since 2007, the accumulated results of 10 monitoring events for surface water and sediment in Terrapin Creek have demonstrated no impact to the sediment and surface waters of the creek by carbon tetrachloride and no imminent risk for further degradation of the creek.
- Terrapin Creek (tributary segment 308 to Walnut Creek) receives discharge from the Morrill wastewater treatment plant and several confined animal feeding operations regulated by the KDHE. The Walnut Creek watershed is designated by the KDHE as impaired by fecal coliform bacteria. Terrapin Creek is classified by the KDHE as not open to or accessible by the public for contact recreation and does not support the food procurement designated use (KDHE 2010b).
- In July 2011, trace concentrations of carbon tetrachloride were detected in vegetation samples collected from trees at 2 of the 42 sampled locations south (downgradient) of the former CCC/USDA facility.
- Sampling of indoor air in August 2010 to evaluate the potential for vapor intrusion into homes overlying and within 100 ft laterally of the identified carbon tetrachloride plume resulted in no detections of carbon tetrachloride. Low concentrations of chloroform, indicative of indoor air sources, were detected. Low radon levels were also detected. The results indicate no evidence of upward migration of vapors from the low-level carbon tetrachloride contamination in groundwater to indoor air.

4.2 Recommendations

4.2.1 Groundwater Monitoring Frequency

Figure 4.1 compares the carbon tetrachloride concentrations in groundwater samples collected in the monitoring network in October of 2003, 2007, and 2011. The results for these samples collected at 4-yr intervals demonstrate a stable areal distribution of carbon tetrachloride in groundwater and declining concentrations. Table 4.1 summarizes carbon tetrachloride concentrations in wells MW7S, MW8S, MW9S, and MW11S in fall sampling events in 2005-

2011. Concentrations in these wells were cited by the KDHE (2010a) as a concern supporting the KDHE's request for continued twice yearly monitoring. The annual results in the table indicate decreasing concentration trends at these wells.

On the basis of this analysis, the CCC/USDA recommends a change in groundwater monitoring frequency from twice yearly to once yearly, at the locations established under the approved monitoring plan (Argonne 2005b). Annual monitoring of the carbon tetrachloride plume will be adequate to track future changes and will be protective. The annual events will involve sampling of groundwater from the existing network of 12 monitoring wells and 3 private wells, as well as sampling of surface waters and streambed sediments at the 5 established locations along Terrapin Creek.

4.2.2 Vegetation Sampling Frequency

Vegetation sampling was originally initiated to track plume migration. Other ongoing monitoring efforts are currently fulfilling that function, and after five years of sampling there appears to be no threat to surface water. The groundwater flow direction has been well established. Additionally, there are monitoring wells adjacent to and upgradient of surface water to track any change in contaminant concentrations, and the sampling of surface water and sediment has demonstrated the absence of carbon tetrachloride contamination in surface water. Therefore, the CCC/USDA recommends the elimination of vegetation sampling.

4.2.3 Sampling Methods

Comparisons of the low-flow and three-well-volume purging methods indicate that lowflow sampling provides representative results at the Morrill monitoring wells except for MW1S, which is located in the heart of the plume and is screened over a 40-ft interval. Investigation of modified or alternative sampling methods will continue, so that representative samples for analysis can be reliably obtained from this well.

For the present, the CCC/USDA recommends continued sampling of well MW1S by the three-well-volume purging method and elimination of low-flow sampling for this one well. In addition, the CCC/USDA recommends deployment of passive diffusion bag sampler(s) in well

MW1S during the spring 2012 sampling event for comparison with the three-well-volume purging method.

	Carbon Tetrachloride (µg/L) at Indicated Well							
Fall of Year	MW7S	MW8S	MW9S	MW11S				
2005	1.1	0.9 J ^a	_	_				
2006	38	1.3	ND ^b	53				
2007	8.1	0.8 J	ND	54				
2008	7.9	1.3	1.1	42				
2009	8.0	1.9	1.4	39				
2010	6.6	1.6	1.9	28				
2011	11	0.6 J	1.1	33				

TABLE 4.1 Analytical results for carbon tetrachloride in groundwater samples collected at wells MW7S, MW8S, MW9S, and MW11S in September or October of years 2005-2011.

 $^a\,$ Qualifier J indicates an estimated concentration below the method quantitation limit of 1.0 $\mu g/L.$

^b ND, not detected at an instrument detection limit of 0.1 µg/L.

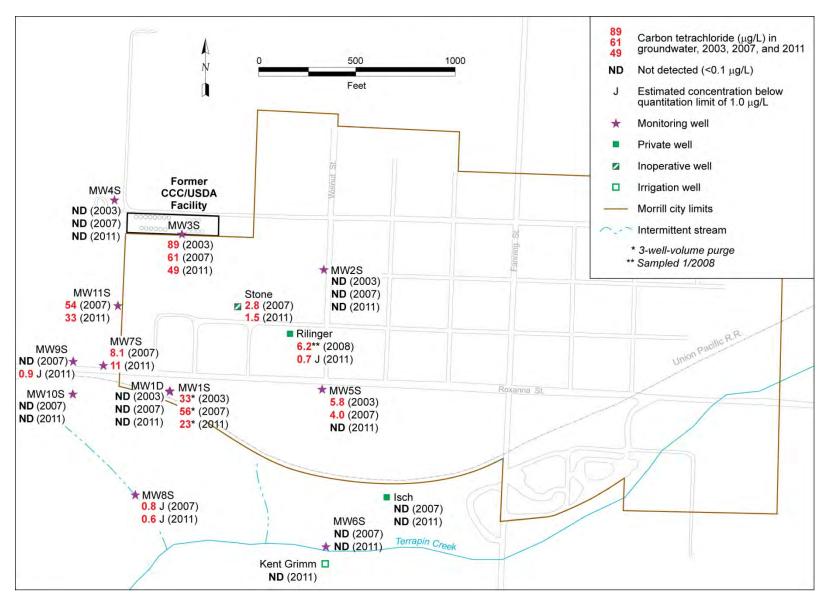


FIGURE 4.1 Carbon tetrachloride concentrations in groundwater in October of 2003, 2007, and 2011.

5 References

Alvarado, J.S., and C. Rose, 2004, "Static Headspace Analysis of Volatile Organic Compounds in Soil and Vegetation Samples for Site Characterization," *Talanta* 62:17-23.

Argonne, 2002, *Final Master Work Plan: Environmental Investigations at Former CCC/USDA Facilities in Kansas, 2002 Revision*, ANL/ER/TR-02/004, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, December.

Argonne, 2003, *Final Work Plan: Phase I Expedited Site Characterization, Morrill, Kansas,* ANL/ER/TR-03/001, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, September.

Argonne, 2004, *Final Phase I-Phase II Interim Report: Expedited Site Characterization, Morrill, Kansas*, ANL/ER/TR-04/001, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, December.

Argonne, 2005a, *Final Report, Monitoring Well Installation and Sampling, 2004, at Morrill, Kansas*, ANL/ER/TR-04/010, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, November.

Argonne, 2005b, *Final Work Plan: Groundwater Monitoring at Morrill, Kansas*, ANL/ER/TR-05/003, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, August.

Argonne, 2006, *September 2006 Monitoring Results for Morrill, Kansas*, ANL/EVS/AGEM/CHRON-1016, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, December.

Argonne, 2007a, Final Report: Groundwater Monitoring at Morrill, Kansas, in September 2005 and March 2006, with Expansion of the Monitoring Network in January 2006, ANL/EVS/AGEM/TR-06-09, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, June.

Argonne, 2007b, *March-April 2007 Monitoring Results for Morrill, Kansas,* ANL/EVS/AGEM/TR-07-06, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, by Argonne National Laboratory, Argonne, Illinois, May.

Argonne, 2008a, *October 2007 Monitoring Results for Morrill, Kansas*, ANL/EVS/AGEM/TR-08-02, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, March.

Argonne, 2008b, *April 2008 Monitoring Results for Morrill, Kansas*, ANL/EVS/AGEM/TR-08-15, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, July.

Argonne, 2009, *October 2008 Monitoring Results for Morrill, Kansas*, ANL/EVS/AGEM/TR-09-03, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, March.

Argonne, 2010, *Annual Report of Monitoring at Morrill, Kansas*, ANL/EVS/AGEM/TR-10-04, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, August.

Argonne, 2011, Annual Report of Monitoring at Morrill, Kansas, in 2010, ANL/EVS/AGEM/TR-11-06, prepared for the Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C., by Argonne National Laboratory, Argonne, Illinois, June.

EPA, 1995, Method 524.2: Measurement of Purgeable Organic Compounds in Water by Capillary Column Gas Chromatography/Mass Spectrometry, Revision 4.1, edited by J.W. Munch, National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio.

GeoCore, 1994a, Work Plan: Phase I Sampling and Site Visit: Brown County Groundwater Investigation, prepared for the Kansas Department of Health and Environment, Bureau of Environmental Remediation, Topeka, Kansas, by GeoCore Services, Inc., Salina, Kansas, April 12.

GeoCore, 1994b, *Well Survey Material: Brown County Groundwater Investigation: Morrill PWS Well #5 Site*, field notes made by GeoCore Services, Inc., Salina, Kansas, during Phase I sampling of private wells, May 19.

GeoCore, 1994c, *Work Plan: Phase II Drilling and Sampling: Brown County Groundwater Investigation*, prepared for the Kansas Department of Health and Environment, Bureau of Environmental Remediation, Topeka, Kansas, by GeoCore Services, Inc., Salina, Kansas, July 14.

GeoCore, 1994d, *Preliminary Report: Phase I Sampling: Brown County Groundwater Investigation*, prepared for the Kansas Department of Health and Environment, Bureau of Environmental Remediation, Topeka, Kansas, by GeoCore Services, Inc., Salina, Kansas, July 19.

GeoCore, 1996, *Environmental Site Investigation Report: Phase II Drilling and Sampling: Morrill Public Water Supply Well #5, Morrill, Kansas*, prepared for the Kansas Department of Health and Environment, Bureau of Environmental Remediation, Topeka, Kansas, by GeoCore Services, Inc., Salina, Kansas, February 29.

KDHE, 1989, Preliminary Assessment of the Morrill Public Water Supply Well #5, Morrill, Kansas (Site Identification Number: KS D981710288), Kansas Department of Health and Environment, Bureau of Environmental Remediation, Topeka, Kansas, June 6.

KDHE 2001, *Missouri Basin Total Maximum Daily Load: Waterbody: Walnut Creek: Water Quality Impairment: Fecal Coliform Bacteria*, Bureau of Water, Kansas Department of Health and Environment, Topeka, Kansas, August 28 (http://www.kdheks.gov/tmdl/mo/WalnutCrFCB.pdf).

KDHE, 2005, letter from C. Carey (Bureau of Environmental Remediation, Kansas Department of Health and Environment, Topeka, Kansas) to C. Roe (Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C.) regarding *Final Work Plan: Groundwater Monitoring at Morrill, Kansas*, October 31.

KDHE, 2007a, letter from C. Carey (Bureau of Environmental Remediation, Kansas Department of Health and Environment, Topeka, Kansas) to C. Roe (Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C.) regarding draft Morrill sampling report, January 5.

KDHE, 2007b, letter from C. Carey (Bureau of Environmental Remediation, Kansas Department of Health and Environment, Topeka, Kansas) to C. Roe (Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C.) regarding *March-April 2007 Monitoring Results for Morrill, Kansas*, August 1.

KDHE, 2008a, letter from E. McWilliams (Bureau of Environmental Remediation, Kansas Department of Health and Environment, Topeka, Kansas) to C. Roe (Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C.) regarding *April 2008 Monitoring Report for Morrill, Kansas*, August 6.

KDHE, 2008b, letter from C. Carey (Bureau of Environmental Remediation, Kansas Department of Health and Environment, Topeka, Kansas) to C. Roe (Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C.) regarding revisions to the Morrill sampling report for September 2005 and March 2006, February 6.

KDHE, 2010a, letter from M. Townsend (Bureau of Environmental Remediation, Kansas Department of Health and Environment, Topeka, Kansas) to C. Roe (Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C.) regarding *Annual Report of Monitoring at Morrill, Kansas, in 2009*, September 28.

KDHE, 2010b, *Kansas Surface Water Register*, Bureau of Environmental Field Services, Kansas Department of Health and Environment, Topeka, Kansas, December 15 (http://www.kdheks.gov/befs/download/Current_Kansas_Surface_Register.pdf).

KDHE, 2011, letter from M. Townsend (Bureau of Environmental Remediation, Kansas Department of Health and Environment, Topeka, Kansas) to C. Roe (Commodity Credit Corporation, U.S. Department of Agriculture, Washington, D.C.) regarding *Annual Report of Monitoring at Morrill, Kansas, in 2010*, July 28.

Puls, R.W., and Barcelona, M.J., 1996, "Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures," EPA/540/S-95/504, in *Ground Water Issue*, Superfund Technology Support Center for Ground Water, National Risk Management Research Laboratory, Ada, Oklahoma, April (www.epa.gov/tio/tsp/download/lwflw2a.pdf).

Yeskis, D., and B. Zavala, 2002, *Ground-Water Sampling Guidelines for Superfund and RCRA Project Managers: Ground Water Forum Issue Paper*, EPA 542-S-02-001, Technology Innovative Office, Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, D.C., May (http://www.epa.gov/tio/tsp/download/ gw_sampling_guide.pdf). Appendix A:

Sampling Activities at Morrill in 2011

Samı Date and		Sample	Medium ^a	Type ^a	Location	Depth (ft BGL)	Chain of Custody	Shipping Date	Sample Description
4/20/11 4/20/11		MRSM4-W-30036 MRSM4-S-30036	Water Sediment	SW Sed	SM4 SM4	-	4824 4823	4/20/11 4/20/11	Water sample from Terrapin Creek. Sediment sample from Terrapin Creek.
4/20/11		MRSM3-W-30035	Water	SW	SM3	_	4824	4/20/11	Water sample from Terrapin Creek.
4/20/11		MRSM3-S-30035	Sediment	Sed	SM3	_	4823	4/20/11	Sediment sample from Terrapin Creek.
4/20/11		MRSM2-W-30034	Water	SW	SM2	_	4824	4/20/11	Water sample from Terrapin Creek.
4/20/11		MRSM2-S-30034	Sediment	Sed	SM2 SM2	_	4823	4/20/11	Sediment sample from Terrapin Creek.
4/20/11		MRSM1-W-30033	Water	SW	SM2 SM1	_	4824	4/20/11	Water sample from Terrapin Creek.
4/20/11		MRSM1-S-30033	Sediment	Sed	SM1	_	4823	4/20/11	Sediment sample from Terrapin Creek.
4/20/11		MRSMB-W-30037	Water	SW	SMB	_	4824	4/20/11	Water sample from Terrapin Creek.
4/20/11		MRSMB-S-30037	Sediment	Sed	SMB	_	4823	4/20/11	Sediment sample from Terrapin Creek.
4/20/11		MRMW8S-W-30046	Water	MW	MW8S	10-25	4825	4/21/11	Depth to water = 2.73 ft. Depth of 4-in. well =
									26.82 ft. Sample collected by using low-flow bladder pump after purging of 9 L. Pump intake positioned at 17.5 ft.
4/20/11	11:38	MRMW1D-W-30039	Water	MW	MW1D	63-88	4824	4/20/11	Depth to water = 30.15 ft. Depth of 4-in. well = 89 ft. Sample collected by using low-flow bladder pump after purging of 5.5 L. Pump intake positioned at 75.5 ft.
4/20/11	12:34	MRMW10S-W-30048	Water	MW	MW10S	30-45	4825	4/21/11	Depth to water = 13.69 ft. Depth of 2-in. well = 49.32 ft. Sample collected by using low-flow bladder pump after purging of 7.25 L. Pump intake positioned at 37.5 ft.
4/20/11	12:36	MRMW1S-W-30038	Water	MW	MW1S	11-51	4824	4/20/11	Depth to water = 23.45 ft. Depth of 4-in. well = 54 ft. Sample collected by using low-flow bladder pump after purging of 6.5 L. Pump intake positioned at 37 ft.
4/20/11	13:22	MRQCTB-W-30060 ^b	Water	ТВ	QC	-	4824	4/20/11	Trip blank sent to the AGEM Laboratory for organic analysis with water samples listed on chain-of-custody form (COC) 4324.
4/20/11	13:39	MRMW6S-W-30044	Water	MW	MW6S	10-25	4825	4/21/11	Depth to water = 6.52 ft. Depth of 4-in. well = 24.88 ft. Sample collected by using low-flow bladder pump after purging of 8 L. Pump intake positioned at 17.5 ft.
4/20/11	14:32	MRMW3S-W-30041	Water	MW	MW3S	18-48	4825	4/21/11	Depth to water = 32.06 ft. Depth of 4-in. well = 47.8 ft. Sample collected by using low-flow bladder pump after purging of 6.2 L. Pump intake positioned at 40 ft.

TABLE A.1 (Cont.)

Sam Date and		Sample	Medium ^a	Type ^a	Location	Depth (ft BGL)	Chain of Custody	Shipping Date	Sample Description
4/20/11	15:06	MRMW11S-W-30049	Water	MW	MW11S	53-68	4825	4/21/11	Depth to water = 39.16 ft. Depth of 2-in. well = 72.54 ft. Sample collected by using low-flow bladder pump after purging of 7.5 L. Pump intake positioned at 60.5 ft.
4/20/11	15:45	MRQCIR-W-30056b	Water	RI	QC	-	4825	4/21/11	Rinsate of decontaminated sampling line after collection of sample MRMW11S-W-30049.
4/20/11	16:34	MRMW5S-W-30043	Water	MW	MW5S	15-55	4825	4/21/11	Depth to water = 24.43 ft. Depth of 4-in. well = 54.6 ft. Sample collected by using low-flow bladder pump after purging of 7 L. Pump intake positioned at 36 ft.
4/20/11	16:42	MRQCIR-W-30058b	Water	RI	QC	-	4825	4/21/11	Rinsate of decontaminated sampling line after collection of sample MRMW5S-W-30043.
4/20/11	17:25	MRMW9S-W-30047	Water	MW	MW9S	38.83- 53.83	4825	4/21/11	Depth to water = 23.76 ft. Depth of 2-in. well = 58.32 ft. Sample collected by using low-flow bladder pump after purging of 14 L. Pump intake positioned at 46.33 ft.
4/20/11	17:26	MRMW9SDUP-W-30054 ^b	Water	MW	MW9S	38.83- 53.83	4825	4/21/11	Replicate of sample MRMW9S-W-30047.
4/20/11	17:36	MRMW2S-W-30040	Water	MW	MW2S	13-53	4825	4/21/11	Depth to water = 36.00 ft. Depth of 4-in. well = 53.5 ft. Sample collected by using low-flow bladder pump after purging of 8 L. Pump intake positioned at 44.5 ft.
4/20/11	17:37	MRMW2SDUP-W-30055b	Water	MW	MW2S	13-53	4825	4/21/11	Replicate of sample MRMW2S-W-30040.
4/20/11	18:42	MRMW7S-W-30045	Water	MW	MW7S	20-45	4825	4/21/11	Depth to water = 19.69 ft. Depth of 4-in. well = 46.69 ft. Sample collected by using low-flow bladder pump after purging of 6 L. Pump intake positioned at 32.5 ft.
4/20/11	19:15	MRTD12-W-30053	Water	DW	TD12	27-67	4825	4/21/11	Water collected from Grimm well overflow before the catch pond.
4/21/11	9:40	MRSTONE-W-30052	Water	DW	Stone	43	4826	4/21/11	Purged 5 gal with bailer and then sampled.
4/21/11	9:56	MRRILLINGER-W-30051	Water	DW	Rillinger	-	4826	4/21/11	Allowed pump to run for 5 min and then collected a grab sample.
4/21/11	10:32	MRISCH-W-30050	Water	DW	lsch	-	4826	4/21/11	Allowed pump to run for 5 min. Co-op has been using well for last several days.
4/21/11	10:42	MRMW4S-W-30042	Water	MW	MW4S	17-47	4826	4/21/11	Depth to water = 42.39 ft. Depth of 4-in. well = 47.8 ft. Sample collected by using low-flow bladder pump after purging of 5 L. Pump intake positioned at 44.72 ft.

A-3

TABLE A.1 (Cont.)

Sam Date and		Sample	Medium ^a	Туре ^а	Location	Depth (ft BGL)	Chain of Custody	Shipping Date	Sample Description
4/21/11	11:02	MRDIH2O-W-30059 ^b	Water	FB	QC	-	4826	4/21/11	Blank of water used for equipment decontamination during April 2011 sampling.
4/21/11	11:05	MRQCTB-W-30061 ^b	Water	ТВ	QC	-	4826	4/21/11	Trip blank sent to the AGEM Laboratory for organic analysis with water samples listed on COCs 4825 and 4826.
4/21/11	11:15	MRQCIR-W-30057b	Water	RI	QC	-	4826	4/21/11	Rinsate of decontaminated sampling line after collection of sample MRMW4S-W-30042.
7/28/11	10:20	MR019-B-29945	Veg	Branch	MR019	_	6616	8/1/11	Silver maple, up 8 ft, 16 ft out.
7/28/11	10:25	MR013-B-29946	Veg	Branch	MR013	-	6616	8/1/11	Willow, 3 ft up, out 12 in. Heavy weeds. Soy on both sides of creek.
7/28/11		MR006-B-29947	Veg	Branch	MR006	-	6616	8/1/11	Up 6 ft, out 2 ft.
7/28/11		MR007-B-29948	Veg	Branch	MR007	—	6616	8/1/11	Up 4 ft.
7/28/11		MR008-B-29950	Veg	Branch	MR008	-	6616	8/1/11	Up 5 ft, sucker.
7/28/11		MR014-B-29951	Veg	Branch	MR014	-	6616	8/1/11	Up 4 ft, sucker.
7/28/11	-	MR009-B-29952	Veg	Branch	MR009	-	6616	8/1/11	Up 4 ft, sucker.
7/28/11	-	MR010-B-29953	Veg	Branch	MR010	-	6616	8/1/11	Up 6 ft, sucker.
7/28/11		MR011-B-29954	Veg	Branch	MR011	-	6616	8/1/11	Up 4 ft, sucker.
7/28/11		MR012-B-29955	Veg	Branch	MR012	-	6616	8/1/11	Over 16 ft up, hard to tell.
7/28/11		MR016-B-29956	Veg	Branch	MR016	-	6616	8/1/11	Up 4 ft, sucker.
7/28/11		MR017-B-29957	Veg	Branch	MR017	-	6616	8/1/11	Up 3 ft, sucker.
7/28/11		MR018-B-29958	Veg	Branch	MR018	-	6616	8/1/11	Up 6 ft, over 16 ft out.
7/28/11		MR005A-B-29959	Veg	Branch	MR005A	-	6616	8/1/11	Up 5 ft, sucker. Storm damage, broken tops. Near existing trash fire.
7/28/11	11:11	MR004-B-29960	Veg	Branch	MR004	-	6616	8/1/11	Willow, 5 ft up, sucker. Tree has bent/cracked top, down to ground.
7/28/11	11:12	MR003-B-29961	Veg	Branch	MR003	_	6620	8/1/11	Up 5 ft, sucker.
7/28/11	11:14	MR002-B-29962	Veg	Branch	MR002	_	6620	8/1/11	Up 5 ft, sucker.
7/28/11	11:17	MR001-B-29963	Veg	Branch	MR001	-	6620	8/1/11	Up 5 ft, sucker. Behind new large stockpile of trash to burn (wood shingles, tires, rotten grain, misc. building materials).
7/28/11	11:20	MR038-B-29964	Veg	Branch	MR038	_	6620	8/1/11	Up 4 ft, sucker.
7/28/11	11:22	MR039-B-29965	Veg	Branch	MR039	_	6620	8/1/11	Up 4 ft, sucker.
7/28/11	11:24	MR040-B-29966	Veg	Branch	MR040	_	6620	8/1/11	Up 5 ft, 5 ft out.
7/28/11	12:26	MR021-B-29967	Veg	Branch	MR021	_	6620	8/1/11	Up 4 ft, 4 ft out.
7/28/11	12:30	MR025-B-29968	Veg	Branch	MR025	_	6620	8/1/11	Up 4 ft, 6 ft out.
7/28/11	12:32	MR026-B-29969	Veg	Branch	MR026	-	6620	8/1/11	Up 5 ft, sucker.
7/28/11	-	MR027-B-29970	Veg	Branch	MR027	-	6620	8/1/11	Up 6 ft, sucker.
7/28/11	12:37	MR028-B-29971	Veg	Branch	MR028	-	6620	8/1/11	Up 6 ft, sucker.

TABLE A.1 (Cont.)

Sam Date and	•	Sample	Medium ^a	Type ^a	Location	Depth (ft BGL)	Chain of Custody	Shipping Date	Sample Description
7/28/11	12:39	MR029-B-29972	Veg	Branch	MR029	_	6620	8/1/11	Up 7 ft, sucker.
7/28/11	12:41	MR030-B-29973	Veg	Branch	MR030	_	6620	8/1/11	Up 6 ft, sucker.
7/28/11	12:44	MR031-B-29974	Veg	Branch	MR031	_	6620	8/1/11	Up 7 ft, 3 ft out.
7/28/11	12:47	MR032-B-29975	Veg	Branch	MR032	_	6620	8/1/11	Up 7 ft, sucker.
7/28/11	12:49	MR033-B-29976	Veg	Branch	MR033	_	6621	8/1/11	Up 7 ft, 2 ft out.
7/28/11	12:51	MR034-B-29977	Veg	Branch	MR034	_	6621	8/1/11	Up 6 ft, sucker.
7/28/11	12:56	MR037-B-29978	Veg	Branch	MR037	_	6621	8/1/11	Up 4 ft, 3 ft out.
7/28/11	12:58	MR035-B-29979	Veg	Branch	MR035	_	6621	8/1/11	Up 6 ft, sucker.
7/28/11	13:02	MR036-B-29980	Veg	Branch	MR036	_	6621	8/1/11	Up 8 ft, 4 ft out.
7/28/11	13:03	MR024-B-29981	Veg	Branch	MR024	_	6621	8/1/11	Up 4 ft, 2 ft out.
7/28/11	13:07	MR020-B-29982	Veg	Branch	MR020	_	6621	8/1/11	Up 7 ft, 2 ft out.
7/28/11	13:10	MR043-B-29983	Veg	Branch	MR043	_	6621	8/1/11	Up 3 ft, 2 ft out.
7/28/11	13:12	MR044-B-29984	Veg	Branch	MR044	_	6621	8/1/11	Up 6 ft, 3 ft out.
7/28/11	13:15	MR041-B-29985	Veg	Branch	MR041	_	6621	8/1/11	Up 4 ft, sucker.
7/28/11	13:17	MR042-B-29986	Veg	Branch	MR042	_	6621	8/1/11	Up 3 ft.
10/3/11	14:08	MRSM4-W-30065	Water	Ν	SM4	_	3188	10/4/11	Water sample from Terrapin Creek.
10/3/11	14:09	MRSM4-S-30065	Sediment	Ν	SM4	_	3187	10/4/11	Sediment sample from Terrapin Creek.
10/3/11	14:20	MRSM3-W-30064	Water	Ν	SM3	_	3188	10/4/11	Water sample from Terrapin Creek.
10/3/11	14:21	MRSM3-S-30064	Sediment	Ν	SM3	_	3187	10/4/11	Sediment sample from Terrapin Creek.
10/3/11	14:30	MRSM2-W-30063	Water	Ν	SM2	_	3188	10/4/11	Water sample from Terrapin Creek.
10/3/11	14:31	MRSM2-S-30063	Sediment	Ν	SM2	_	3187	10/4/11	Sediment sample from Terrapin Creek.
10/3/11	14:40	MRSM1-W-30062	Water	Ν	SM1	_	3188	10/4/11	Water sample from Terrapin Creek.
10/3/11	14:41	MRSM1-S-30062	Sediment	Ν	SM1	-	3187	10/4/11	Sediment sample from Terrapin Creek.
10/3/11	14:50	MRSMB-W-30066	Water	N	SMB	_	3188	10/4/11	Water sample from Terrapin Creek.
10/3/11	14:51	MRSMB-S-30066	Sediment	Ν	SMB	_	3187	10/4/11	Sediment sample from Terrapin Creek.
10/3/11	14:58	MRTD12-W-30082	Water	DW	TD12	27-67	3188	10/4/11	Collected from Grimm well overflow before the catch pond.
10/3/11	15:14	MRStone-W-30081	Water	DW	Stone	_	3188	10/4/11	Bailed 5 gal before sampling.
10/3/11	15:24	MRRillinger-W-30080	Water	DW	Rillinger	-	3188	10/4/11	Allowed pump to run for 5 min before collecting a grab sample.
10/3/11	16:14	MRIsch-W-30079	Water	DW	lsch	-	3188	10/4/11	Allowed pump to run for 5 min before collecting a grab sample. Co-op has not used well in a few weeks.
10/4/11	9:16	MRMW1D-W-30068	Water	MW	MW1D	63-88	3190	10/4/11	Depth to water = 29.06 ft. Depth of 4-in. well = 89 ft. Sample collected by using low-flow bladder pump after purging of 6.5 L. Pump intake positioned at 75.5 ft.
10/4/11	9:17	MRMW1DDUP-W-30084 ^b	Water	MW	MW1D	63-88	3190	10/4/11	Replicate of sample MRMW1D-W-30068.

A-5

TABLE A.1 (Cont.)

Sam Date and		Sample	Medium ^a	Type ^a	Location	Depth (ft BGL)	Chain of Custody	Shipping Date	Sample Description
10/4/11	9:17	MRMW8S-W-30075	Water	MW	MW8S	10-25	3188	10/4/11	Depth to water = 4.91 ft. Depth of 4-in. well = 26.8 ft. Sample collected by using low-flow bladder pump after purging of 9 L. Pump intake positioned at 17.5 ft.
10/4/11	10:20	MRMW10S-W-30077	Water	MW	MW10S	30-45	3188	10/4/11	Depth to water = 12.54 ft. Depth of 2-in. well = 49.32 ft. Sample collected by using low-flow bladder pump after purging of 8 L. Pump intake positioned at 37.5 ft.
10/4/11	10:24	MRMW1S-W-30067	Water	MW	MW1S	11-51	3190	10/4/11	Depth to water = 21.80 ft. Depth of 4-in. well = 54 ft. Sample collected by using low-flow bladder pump after purging of 8 L. Pump intake positioned at 34.90 ft.
10/4/11	10:35	MRQCIR-W-30086 ^b	Water	RI	QC	-	3190	10/4/11	Rinsate of decontaminated sampling line after collection of sample MRMW1S-W-30067.
10/4/11	11:21	MRMW11S-W-30078	Water	MW	MW11S	53-68	3188	10/4/11	Depth to water = 36.83 ft. Depth of 2-in. well = 72.7 ft. Sample collected by using low-flow bladder pump after purging of 6 L. Pump intake positioned at 60.5 ft.
10/4/11	11:28	MRMW2S-W-30069	Water	MW	MW2S	13-53	3190	10/4/11	Depth to water = 32.73 ft. Depth of 4-in. well = 53.5 ft. Sample collected by using low-flow bladder pump after purging of 7.5 L. Pump intake positioned at 42.6 ft.
10/4/11	12:22	MRMW3S-W-30070	Water	MW	MW3S	18-48	3190	10/4/11	Depth to water = 25.95 ft. Depth of 4-in. well = 47.8 ft. Sample collected by using low-flow bladder pump after purging of 7 L. Pump intake positioned at 37 ft.
10/4/11	12:32	MRMW7S-W-30074	Water	MW	MW7S	20-45	3188	10/4/11	Depth to water = 7.11 ft. Depth of 4-in. well = 47 ft. Sample collected by using low-flow bladder pump after purging of 6 L. Pump intake positioned at 32.5 ft.
10/4/11	12:33	MRMW7SDUP-W-30083b	Water	MW	MW7S	20-45	3190	10/4/11	Replicate of sample MRMW7S-W-30074.
10/4/11		MRQCIR-W-30085 ^b	Water	RI	QC	_	3188	10/4/11	Rinsate of decontaminated sampling line after collection of sample MRMW7S-W-30074 and replicate MRMW7SDUP-W-30083.
10/4/11	13:00	MRQCTB-W-30089 ^b	Water	ТВ	QC	-	3188	10/4/11	Trip blank sent to the AGEM Laboratory for VOCs analysis with water samples listed on COC 3188.

A-6

TABLE A.1 (Cont.)

Samp Date and		Sample	Medium ^a	Type ^a	Location	Depth (ft BGL)	Chain of Custody	Shipping Date	Sample Description
10/4/11	13:26	MRMW4S-W-30071	Water	MW	MW4S	17-47	3190	10/4/11	Depth to water = 35.60 ft. Depth of 4-in. well = 47.8 ft. Sample collected by using low-flow bladder pump after purging of 5 L. Pump intake positioned at 40.9 ft.
10/4/11	14:22	MRMW9S-W-30076	Water	MW	MW9S	38.83- 53.83	3190	10/4/11	Depth to water = 22.35 ft. Depth of 2-in. well = 58.5 ft. Sample collected by using low-flow bladder pump after purging of 8 L. Pump intake positioned at 46.33 ft.
10/4/11	14:50	MRQCIR-W-30087 ^b	Water	RI	QC	-	3190	10/4/11	Rinsate of decontaminated sampling line after collection of sample MRMW9S-W-30076.
10/4/11	15:30	MRDIH2O-W-30088 ^b	Water	FB	QC	-	3190	10/4/11	Field blank of water used for equipment decontamination during September 2011 monitoring.
10/4/11	15:30	MRQCTB-W-30090 ^b	Water	ТВ	QC	-	3190	10/4/11	Trip blank sent to the AGEM Laboratory for VOCs analysis with water samples listed on COC 3190.
10/4/11	15:31	MRMW6S-W-30073	Water	MW	MW6S	10-25	3190	10/4/11	Depth to water = 6.49 ft. Depth of 4-in. well = 26.9 ft. Sample collected by using low-flow bladder pump after purging of 6 L. Pump intake positioned at 17.5 ft.
10/4/11	17:18	MRMW5S-W-30072	Water	MW	MW5S	15-55	3190	10/4/11	Depth to water = 21.10 ft. Depth of 4-in. well = 54.6 ft. Sample collected by using low-flow bladder pump after purging of 6.5 L. Pump intake positioned at 38.25 ft.
10/12/11	14:34	MRMW1S-W-30091	Water	MW	MW1S	11-51	2772	10/12/11	Grab sample for sampling method comparison. Depth to water = 22.14 ft. Depth of 4-in. well = 54 ft. Sample collected by using low-flow bladder pump after purging of 6 L. Pump intake positioned at 36.5 ft.
10/12/11	15:23	MRMW1S3X-W-30092	Water	MW	MW1S	11-51	2772	10/12/11	Sample collected after purging of three well volumes. Pump intake at 49 ft.
10/12/11	17:50	MRQCTB-W-30093 ^b	Water	ТВ	QC	-	2772	10/12/11	Trip blank sent to the AGEM Laboratory for VOCs analysis with water samples listed on COC 2772.

TABLE A.1 (Cont.)									
Sample Date and Time	Sample	Medium ^a	Type ^a	Location	Depth (ft BGL)	Chain of Custody	Shipping Date	Sample Description	

^a Medium and sample type abbreviations: DW, domestic well; MW, monitoring well; RI, equipment rinsate; sed, sediment; SW, surface water; TB, trip blank; veg, vegetation.

^b Quality control sample.

Appendix B:

Results from the AGEM Laboratory for Dual Analyses of Samples Collected at Morrill in 2011 and for Quality Control Samples

			Cor	(L)	
Sample Date	Sample	Туре	Carbon Tetrachloride	Chloroform	Methylene Chloride
4/20/2011	MRQCTB-W-30060	Trip blank	ND ^a	ND	ND
4/20/2011	MRQCIR-W-30056	Equipment rinsate	ND	ND	ND
4/20/2011	MRQCIR-W-30058	Equipment rinsate	ND	ND	ND
4/21/2011	MRDIH2O-W-30059	Field blank	ND	ND	ND
4/21/2011	MRQCTB-W-30061	Trip blank	ND	ND	ND
4/21/2011	MRQCIR-W-30057	Equipment rinsate	ND	ND	ND
10/4/2011	MRQCIR-W-30086	Equipment rinsate	ND	ND	ND
10/4/2011	MRQCIR-W-30085	Equipment rinsate	ND	ND	ND
10/4/2011	MRQCTB-W-30089	Trip blank	ND	ND	ND
10/4/2011	MRQCIR-W-30087	Equipment rinsate	ND	ND	ND
10/4/2011	MRDIH2O-W-30088	Field blank	ND	ND	ND
10/4/2011	MRQCTB-W-30090	Trip blank	ND	ND	ND
10/12/2011	MRQCTB-W-30093	Trip blank	ND	ND	ND

TABLE B.1 Analytical results from the AGEM Laboratory for quality control samples collected to monitor sample collection and handling activities in 2011.

^a ND, contaminant not detected at an instrument detection limit of 0.1 μ g/L.

						Concentration (µg/kg in soil; µg/L in water)			
Sample Date	Location	Sample	Analysis Type	Depth (ft BGL)	Sample Medium	Carbon Tetrachloride	Chloroform	Methylene Chloride	
4/20/2011	SM3	MRSM3-S-30035	Primary sample	-	Sediment	ND ^a	ND	ND	
4/20/2011	SM3	MRSM3-S-30035DUP	Duplicate analysis		Sediment	ND	ND	ND	
4/20/2011	MW1S	MRMW1S-W-30038	Primary sample	11-51	Water	0.3 J ^b	ND	ND	
4/20/2011	MW1S	MRMW1S-W-30038DUP	Duplicate analysis	11-51	Water	0.3 J	ND	ND	
4/20/2011	MW3S	MRMW3S-W-30041	Primary sample	18-48	Water	33	1.2	ND	
4/20/2011	MW3S	MRMW3S-W-30041DUP	Duplicate analysis	18-48	Water	29	1.1	ND	
4/20/2011	MW9S	MRMW9S-W-30047	Primary sample	38.83-53.83	Water	0.9 J	ND	ND	
4/20/2011	MW9S	MRMW9SDUP-W-30054	Replicate sample	38.83-53.83	Water	1.1	ND	ND	
4/20/2011	MW2S	MRMW2S-W-30040	Primary sample	13-53	Water	ND	ND	ND	
4/20/2011	MW2S	MRMW2SDUP-W-30055	Replicate sample	13-53	Water	ND	ND	ND	
10/3/2011	SM4	MRSM4-S-30065	Primary sample		Sediment	ND	ND	ND	
10/3/2011	SM4	MRSM4-S-30065DUP	Duplicate analysis		Sediment	ND	ND	ND	
10/4/2011	MW1D	MRMW1D-W-30068	Primary sample	63-88	Water	ND	ND	ND	
10/4/2011	MW1D	MRMW1DDUP-W-30084	Replicate sample	63-88	Water	ND	ND	ND	
10/4/2011	MW3S	MRMW3S-W-30070	Primary sample	18-48	Water	49	1.8	ND	
10/4/2011	MW3S	MRMW3S-W-30070DUP	Duplicate analysis	18-48	Water	48	1.8	ND	
10/4/2011	MW7S	MRMW7S-W-30074	Primary sample	20-45	Water	11	0.3	ND	
10/4/2011	MW7S	MRMW7S-W-30074DUP	Duplicate analysis	20-45	Water	11	0.3	ND	
10/4/2011	MW7S	MRMW7SDUP-W-30083	Replicate sample	20-45	Water	12	0.3	ND	
10/4/2011	MW9S	MRMW9S-W-30076	Primary sample	38.83-53.83	Water	0.9 J	ND	ND	
10/4/2011	MW9S	MRMW9S-W-30076DUP	Duplicate analysis	38.83-53.83	Water	0.8 J	ND	ND	
10/12/2011	MW1S	MRMW1S3X-W-30092	Primary sample	11-51	Water	23	1.2	ND	
10/12/2011	MW1S	MRMW1S3X-W-30092DUP	Duplicate analysis	11-51	Water	25	1.4	ND	

TABLE B.2 Analytical results from the AGEM Laboratory for dual analyses of samples collected in 2011.

^a ND, contaminant not detected at an instrument detection limit of 0.1 µg/L for water analyses or 1.0 µg/kg for soil analyses.

^b Qualifier J indicates an estimated concentration below the purge-and-trap method quantitation limit of 1.0 µg/L.

				Concentration (µg/L)							
		•		AG	EM Laborator	у	-	TestAmerica			
Location	Sample	Screen Interval (ft BGL)	nterval Sample	Carbon Tetrachloride	Chloroform	Methylene Chloride	Carbon Tetrachloride	Chloroform	Methylene Chloride		
April 201	1 sampling event										
MW1D MW6S MW4S Rillinger QC	MRMW1D-W-30039 MRMW6S-W-30044 MRMW4S-W-30042 MRRILLINGER-W-30051 MRQCTB-W-30061	63-88 10-25 17-47 _ _	4/20/11 4/20/11 4/21/11 4/21/11 4/21/11	ND ^a ND ND 0.7 J ND	ND ND ND ND ND	ND ND ND ND ND	0.022 J ^b B ^c 0.035 J B 0.15 J B 0.39 J B 0.023 J B	ND ND ND ND	ND ND ND ND		
October 2	2011 sampling event										
SM2 MW2S MW4S MW11S QC	MRSW2-W-30063 MRMW2S-W-30069 MRMW4S-W-30071 MRMW11S-W-30078 MRQCTB-W-30090	_ 13-53 17-47 53-68 _	10/3/11 10/4/11 10/4/11 10/4/11 10/4/11	ND ND ND 33 ND	ND ND ND 0.8 J ND	ND ND ND ND ND	0.045 J B 0.043 J B 0.11 J B 35 0.016 J B	ND ND ND 0.85 ND	ND ND ND ND		

TABLE B.3 Analytical results from the AGEM Laboratory and TestAmerica for samples collected in 2011 and submitted for verification analysis.

^a ND, not detected at instrument detection limit of 0.1 µg/L for analyses by the AGEM Laboratory or 0.01 µg/L for analyses by TestAmerica.

^b Qualifier J indicates an estimated concentration below the method quantitation limit of 1.0 μg/L for analyses by the AGEM Laboratatory or 0.5 μg/L for analyses by TestAmerica.

^c Qualifier B indicates the presence of the contaminant in associated laboratory method blanks and/or trip blanks.

Supplement 1:

Waste Characterization Data

ce Analvtica www.pacelabs.con

November 11, 2011

Mr. Travis Kamler TCW Construction Inc 141 M Street Lincoln, NE 68508

RE: Project: KS/MO Waste Water Pace Project No.: 60109211

Dear Mr. Kamler:

Enclosed are the analytical results for sample(s) received by the laboratory on November 01, 2011. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Sudy Sipson

Trudy Gipson

trudy.gipson@pacelabs.com Project Manager

Enclosures

cc: Mr. David Surgnier

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 1 of 26

ace Analytical www.pacelabs.com

CERTIFICATIONS

Project:

KS/MO Waste Water 60109211

Pace Project No.: 60

Kansas Certification IDs 9608 Loiret Boulevard, Lenexa, KS 66219 A2LA Certification #: 2456.01 Arkansas Certification #: 05-008-0 Illinois Certification #: 001191 Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116

Louisiana Certification #: 03055 Nevada Certification #: KS000212008A Oklahoma Certification #: 9205/9935 Texas Certification #: T104704407-08-TX Utah Certification #: 9135995665

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 2 of 26

ace Analytical www.pacelabs.com

SAMPLE SUMMARY

Project:KS/MO Waste WaterPace Project No.:60109211

Sample ID	Matrix	Date Collected	Date Received
AGPURGE-W-10111	Water	10/31/11 09:00	11/01/11 09:20
BAPURGE-W-10112	Water	10/31/11 12:55	11/01/11 09:20
CNPURGE-W-10113	Water	10/31/11 14:02	11/01/11 09:20
EUPURGE-W-10114	Water	10/31/11 15:52	11/01/11 09:20
HAPURGE-W-10115	Water	10/31/11 12:27	11/01/11 09:20
MRPURGE-W-10116	Water	10/31/11 14:42	11/01/11 09:20
SVPURGE-W-10117	Water	10/31/11 18:30	11/01/11 09:20
	AGPURGE-W-10111 BAPURGE-W-10112 CNPURGE-W-10113 EUPURGE-W-10114 HAPURGE-W-10115 MRPURGE-W-10116	AGPURGE-W-10111WaterBAPURGE-W-10112WaterCNPURGE-W-10113WaterEUPURGE-W-10114WaterHAPURGE-W-10115WaterMRPURGE-W-10116Water	AGPURGE-W-10111 Water 10/31/11 09:00 BAPURGE-W-10112 Water 10/31/11 12:55 CNPURGE-W-10113 Water 10/31/11 14:02 EUPURGE-W-10114 Water 10/31/11 15:52 HAPURGE-W-10115 Water 10/31/11 12:27 MRPURGE-W-10116 Water 10/31/11 14:42

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 3 of 26

Face Analytical www.pacelabs.com

SAMPLE ANALYTE COUNT

Project:	KS/MO Waste Water
Pace Project No.:	60109211

Lab ID	Sample ID		Method	Analysts	Analytes Reported
60109211001	AGPURGE-W-10111		EPA 504.1	NAW	1
			EPA 5030B/8260	HMW	70
			EPA 353.2	AJM	1
60109211002	BAPURGE-W-10112		EPA 504.1	NAW	1
			EPA 5030B/8260	HMW	70
			EPA 353.2	AJM	1
60109211003	CNPURGE-W-10113		EPA 504.1	NAW	1
			EPA 5030B/8260	HMW	70
			EPA 353.2	AJM	1
60109211004	EUPURGE-W-10114		EPA 504.1	NAW	1
			EPA 5030B/8260	HMW	70
(*)		4	EPA 353.2	AJM	1
60109211005	HAPURGE-W-10115		EPA 504.1	NAW	1
		1.4	EPA 5030B/8260	HMW	70
			EPA 353.2	AJM	1
60109211006	MRPURGE-W-10116		EPA 504.1	NAW	1
			EPA 5030B/8260	HMW	70
			EPA 353.2	AJM	1
60109211007	SVPURGE-W-10117		EPA 504.1	NAW	1
	-4		EPA 5030B/8260	HMW	70
			EPA 353.2	AJM	1

REPORT OF LABORATORY ANALYSIS

Page 4 of 26

ace Analytical www.pacelabs.com

.

Pace Analytical Services, Inc. 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

•

ANALYTICAL RESULTS

Sample: AGPURGE-W-10111	Lab ID: 6010	9211001	Collected: 10/31/	11 09:00	Received: 11	/01/11 09:20	Vatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
504 GCS EDB and DBCP	Analytical Metho	od: EPA 50	04.1 Preparation Me	thod: EF	PA 504.1			
1,2-Dibromoethane (EDB)	ND ug/	L	0.028	1	11/07/11 00:00	11/08/11 00:52	106-93-4	
8260 MSV	Analytical Metho	od: EPA 50)30B/8260					
Acetone	ND ug/	L	10.0	1		11/04/11 20:18		
Benzene	ND ug/	L	1.0	1		11/04/11 20:18		
Bromobenzene	ND ug/	L	1.0	1		11/04/11 20:18		
Bromochloromethane	ND ug/	L	1.0	1		11/04/11 20:18	74-97-5	
Bromodichloromethane	ND ug/	L	1.0	1		11/04/11 20:18	75-27-4	
Bromoform	ND ug/	L	1.0	1		11/04/11 20:18	75-25-2	
Bromomethane	ND ug/	L	1.0	1		11/04/11 20:18	74-83-9	
2-Butanone (MEK)	ND ug/		10.0	1		11/04/11 20:18	78-93-3	
n-Butylbenzene	ND ug/		1.0	1		11/04/11 20:18	104-51-8	
sec-Butylbenzene	ND ug/		1.0	1 -		11/04/11 20:18	135-98-8	
tert-Butylbenzene	ND ug/		1.0	1		11/04/11 20:18	98-06-6	
Carbon disulfide	ND ug/		5.0	1		11/04/11 20:18	75-15-0	
Carbon tetrachloride	21.8 ug/		1.0	1		11/04/11 20:18	56-23-5	
Chlorobenzene	ND ug/		1.0			11/04/11 20:18		-
Chloroethane	ND ug/		1.0			11/04/11 20:18	75-00-3	
Chloroform	1.6 ug/		1.0			11/04/11 20:18		
Chloromethane	ND ug/		1.0	1		11/04/11 20:18		
2-Chlorotoluene	ND ug/		1.0	1		11/04/11 20:18		
	ND ug/		1.0			11/04/11 20:18		
4-Chlorotoluene	-		2.5			11/04/11 20:18		
1,2-Dibromo-3-chloropropane	ND ug/		1.0			11/04/11 20:18		
Dibromochloromethane	ND ug/		1.0			11/04/11 20:18		
1,2-Dibromoethane (EDB)	ND ug/		1.0			11/04/11 20:18		
Dibromomethane	ND ug/		1.0			11/04/11 20:18		
1,2-Dichlorobenzene	ND ug/					11/04/11 20:18		
1,3-Dichlorobenzene	ND ug/		1.0 1.0			11/04/11 20:18		
1,4-Dichlorobenzene	ND ug/					11/04/11 20:18		
Dichlorodifluoromethane	ND ug/		1.0					
1,1-Dichloroethane	ND ug/		1.0			11/04/11 20:18		
1,2-Dichloroethane	ND ug/		1.0			11/04/11 20:18		
1,2-Dichloroethene (Total)	ND ug/		1.0			11/04/11 20:18		
1,1-Dichloroethene	ND ug/		1.0			11/04/11 20:18		
cis-1,2-Dichloroethene	ND ug/		1.0			11/04/11 20:18		
trans-1,2-Dichloroethene	ND ug		1.0			11/04/11 20:10		
1,2-Dichloropropane	ND ug	/L	1.0			11/04/11 20:1		
1,3-Dichloropropane	ND ug	/L	1.0			11/04/11 20:18		
2,2-Dichloropropane	ND ug	/L	1.0			11/04/11 20:10		
1,1-Dichloropropene	ND ug		1.0			11/04/11 20:1		
cis-1,3-Dichloropropene	ND ug	/L	1.0				B 10061-01-5	
trans-1,3-Dichloropropene	ND ug	/L	1.0	1			8 10061-02-6	
Ethylbenzene	ND ug	/L	1.0	1		11/04/11 20:1		
Hexachloro-1,3-butadiene	ND ug	/L	1.0	1		11/04/11 20:1	8 87-68-3	
2-Hexanone	ND ug		10.0	1		11/04/11 20:1	8 591-78-6	
Isopropylbenzene (Cumene)	ND ug		1.0	1		11/04/11 20:1	8 98-82-8	
p-isopropyitoluene	ND ug		1.0	1		11/04/11 20:1	8 99-87-6	

Date: 11/11/2011 11:15 AM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 5 of 26

ace Analytical www.pacelabs.com

ANALYTICAL RESULTS

Project: KS/MO Waste Water

Pace Project No.: 60109211

Sample: AGPURGE-W-10111	Lab ID: 60109211001	Collected: 10/31/	Collected: 10/31/11 09:00		1/01/11 09:20	Matrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical Method: EPA 5	030B/8260					
Methylene chloride	ND ug/L	1.0	1		11/04/11 20:18		
4-Methyl-2-pentanone (MIBK)	ND ug/L	10.0	1		11/04/11 20:18		
Methyl-tert-butyl ether	ND ug/L	1.0	1		11/04/11 20:18		
Naphthalene	ND ug/L	10.0	1		11/04/11 20:18		
n-Propylbenzene	ND ug/L	1.0	1		11/04/11 20:18		
Styrene	ND ug/L	1.0	1		11/04/11 20:18		
1,1,1,2-Tetrachloroethane	ND ug/L	1.0	1		11/04/11 20:18		
1,1,2,2-Tetrachloroethane	ND ug/L	1.0	1		11/04/11 20:18	3 79-34-5	
Tetrachloroelhene	ND ug/L	1.0	1		11/04/11 20:18	3 127-18-4	
Toluene	ND ug/L	1.0	1		11/04/11 20:18		
1,2,3-Trichlorobenzene	ND ug/L	1.0	1		11/04/11 20:18	8 87-61-6	
1,2,4-Trichlorobenzene	ND ug/L	1.0	1		11/04/11 20:18	3 120-82-1	
1,1,1-Trichloroethane	ND ug/L	1.0	1		11/04/11 20:18	3 71-55-6	
1,1,2-Trichloroethane	ND ug/L	1.0	1		11/04/11 20:18	3 79-00-5	
Trichloroethene	ND ug/L	1.0	1		11/04/11 20:18	8 79-01-6	
Trichlorofluoromethane	ND ug/L	1.0	1		11/04/11 20:1	8 75-69-4	
1,2,3-Trichloropropane	ND ug/L	2.5	1		11/04/11 20:1	3 96-18-4	
1,2,4-Trimethylbenzene	ND ug/L	1.0	1		11/04/11 20:1	8 95-63-6	
1,3,5-Trimethylbenzene	ND ug/L	1.0	1		11/04/11 20:1	8 108-67-8	
Vinyl chloride	ND ug/L	1.0	1		11/04/11 20:1	8 75-0 1- 4	
Xylene (Total)	ND ug/L	3.0	1		11/04/11 20:1	8 1330-20-7	
4-Bromofluorobenzene (S)	104 %	87-113	1		11/04/11 20:1	8 460-00-4	
Dibromofluoromethane (S)	103 %	86-112	1	100	11/04/11 20:1	8 1868-53-7	
1,2-Dichloroethane-d4 (S)	109 %	82-119	1		11/04/11 20:1	8 17060-07-0	
Toluene-d8 (S)	103 %	90-110	1		11/04/11 20:1	8 2037-26-5	
Preservation pH	7.0	0.10	1		11/04/11 20:1	8	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Method: EPA	353.2					
Nitrogen, Nitrate	14.6 mg/L	0.50	1		11/02/11 08:4	8	

Date: 11/11/2011 11:15 AM

REPORT OF LABORATORY ANALYSIS

Page 6 of 26

ace Analytical www.pacelabs.com

ANALYTICAL RESULTS

Project: KS/MO Waste Water

Pace Project No.: 60109211

Sample: BAPURGE-W-10112	Lab ID: 6010921100	2 Collected: 10/31/	11 12:55	Received: 11	/01/11 09:20 N	latrix: Water	
Parameters	Results Units	s Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
504 GCS EDB and DBCP	Analytical Method: EPA	504.1 Preparation Me	thod: El	PA 504.1			
1,2-Dibromoethane (EDB)	ND ug/L	0.029	1	11/07/11 00:00	11/08/11 01:04	106-93-4	
8260 MSV	Analytical Method: EPA	5030B/8260					
Acetone	ND ug/L	10.0	1		11/04/11 20:35		
Benzene	ND ug/L	1.0	1		11/04/11 20:35		
Bromobenzene	ND ug/L	1.0	1		11/04/11 20:35		
Bromochloromethane	ND ug/L	1.0	1		11/04/11 20:35		
Bromodichloromethane	ND ug/L	1.0	1		11/04/11 20:35		
Bromoform	ND ug/L	1.0			11/04/11 20:35		
Bromomethane	ND ug/L	1.0	1		11/04/11 20:35		
2-Butanone (MEK)	ND ug/L	10.0	1		11/04/11 20:35		
n-Butylbenzene	ND ug/L	1.0	1		11/04/11 20:35		
sec-Butylbenzene	ND ug/L	1.0	1		11/04/11 20:35		
tert-Butylbenzene	ND ug/L	1.0	1		11/04/11 20:35		
Carbon disulfide	ND ug/L	5.0	1		11/04/11 20:35		
Carbon tetrachloride	1.1 ug/L	1.0	1		11/04/11 20:35		
Chlorobenzene	ND ug/L	1.0	1		11/04/11 20:35	108-90-7	
Chloroethane	ND ug/L	1.0	1		11/04/11 20:35	75-00-3	
Chloroform	ND ug/L	1.0	1		11/04/11 20:35	67-66-3	
Chloromethane	ND ug/L	1.0	1		11/04/11 20:35	74-87-3	
2-Chlorotoluene	ND ug/L	1.0	1		11/04/11 20:35	95-49-8	
4-Chlorotoluene	ND ug/L	1.0	1		11/04/11 20:35	106-43-4	
1.2-Dibromo-3-chloropropane	ND ug/L	2.5	1		11/04/11 20:35	96-12-8	
Dibromochloromethane	ND ug/L	1.0	1		11/04/11 20:35	124-48-1	
1,2-Dibromoethane (EDB)	ND ug/L	1.0	1		11/04/11 20:35	106-93-4	
Dibromomethane	ND ug/L	1.0			11/04/11 20:35	74-95-3	
1,2-Dichlorobenzene	ND ug/L	1.0			11/04/11 20:35		
	ND ug/L	1.0			11/04/11 20:35		
1,3-Dichlorobenzene	ND ug/L	1.0			11/04/11 20:35		
1,4-Dichlorobenzene	ND ug/L	1.0			11/04/11 20:35		
Dichlorodifluoromethane	ND ug/L	1.0			11/04/11 20:35		
1,1-Dichloroethane	ND ug/L	1.0			11/04/11 20:35		
1,2-Dichloroethane	ND ug/L	1.0			11/04/11 20:35		
1,2-Dichloroethene (Total)	ND ug/L	1.0			11/04/11 20:35		
1,1-Dichloroethene	-	1.0			11/04/11 20:35		
cis-1,2-Dichloroethene	ND ug/L	1.0			11/04/11 20:3		
trans-1,2-Dichloroethene	ND ug/L	1.0			11/04/11 20:3		
1,2-Dichloropropane	ND ug/L	1.0			11/04/11 20:3		
1,3-Dichloropropane	ND ug/L	1.0			11/04/11 20:3		
2,2-Dichloropropane	ND ug/L				11/04/11 20:3		
1,1-Dichloropropene	ND ug/L	1.0				5 10061-01-5	
cis-1,3-Dichloropropene	ND ug/L					5 10061-01-5	
trans-1,3-Dichloropropene	ND ug/L	1.0			11/04/11 20:3		
Ethylbenzene	ND ug/L	1.0					
Hexachloro-1,3-butadiene	ND ug/L	1.0			11/04/11 20:3		
2-Hexanone	ND ug/L	10.0			11/04/11 20:3		
Isopropylbenzene (Cumene)	ND ug/L	1.1			11/04/11 20:3		
p-Isopropyltoluene	ND ug/L	1.0	0 1		11/04/11 20:3	5 99-87-6	

Dale: 11/11/2011 11:15 AM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 7 of 26

ace Analytical www.pacelabs.com

ANALYTICAL RESULTS

Project: KS/MO Waste Water

Pace Project No.: 60109211

Sample: BAPURGE-W-10112	Lab ID: 60109211002	Collected: 10/31/11 12:	55 Received: 11/01/11 09:20 Matrix: Water
Parameters	Results Units	Report Limit DF	Prepared Analyzed CAS No. Qu
8260 MSV	Analytical Method: EPA 50	030B/8260	
Methylene chloride	ND ug/L	1.0 1	11/04/11 20:35 75-09-2
4-Methyl-2-pentanone (MIBK)	ND ug/L	10.0 1	11/04/11 20:35 108-10-1
Methyl-tert-bulyl ether	ND ug/L	1.0 1	11/04/11 20:35 1634-04-4
Naphthalene	ND ug/L	10.0 1	11/04/11 20:35 91-20-3
n-Propylbenzene	ND ug/L	1.0 1	11/04/11 20:35 103-65-1
Styrene	ND ug/L	. 1.0 1	11/04/11 20:35 100-42-5
1.1.1.2-Tetrachloroethane	ND ug/L	1.0 1	11/04/11 20:35 630-20-6
1,1,2,2-Tetrachloroethane	ND ug/L	1.0 1	11/04/11 20:35 79-34-5
Tetrachloroethene	ND ug/L	1.0 1	11/04/11 20:35 127-18-4
Toluene	ND ug/L	1.0 1	11/04/11 20:35 108-88-3
1,2,3-Trichlorobenzene	ND ug/L	1.0 1	11/04/11 20:35 87-61-6
1,2,4-Trichlorobenzene	ND ug/L	1.0 1	11/04/11 20:35 120-82-1
1,1,1-Trichloroethane	ND ug/L	1.0 1	11/04/11 20:35 71-55-6
1,1,2-Trichloroethane	ND ug/L	1.0 1	11/04/11 20:35 79-00-5
Trichloroethene	ND ug/L	1.0 1	11/04/11 20:35 79-01-6
Trichlorofluoromethane	ND ug/L	1.0 1	11/04/11 20:35 75-69-4
1,2,3-Trichloropropane	ND ug/L	2.5 1	11/04/11 20:35 96-18-4
1,2,4-Trimelhylbenzene	ND ug/L	1.0 1	11/04/11 20:35 95-63-6
1,3,5-Trimethylbenzene	ND ug/L	1.0 1	11/04/11 20:35 108-67-8
Vinyl chloride	ND ug/L	1.0 1	11/04/11 20:35 75-01-4
Xylene (Total)	ND ug/L	3.0 1	11/04/11 20:35 1330-20-7
4-Bromofluorobenzene (S)	102 %	87-113 1	11/04/11 20:35 460-00-4
Dibromofluoromethane (S)	98 %	86-112 1	11/04/11 20:35 1868-53-7
1,2-Dichloroethane-d4 (S)	101 %	82-119 1	11/04/11 20:35 17060-07-0
Toluene-d8 (S)	95 %	90-110 1	11/04/11 20:35 2037-26-5
Preservation pH	7.0	0.10 1	11/04/11 20:35
353.2 Nitrogen, NO2/NO3 unpres	Analytical Method: EPA 3	53.2	
Nitrogen, Nitrate	6.1 mg/L	0.20 1	11/02/11 09:17

Date: 11/11/2011 11:15 AM

REPORT OF LABORATORY ANALYSIS

Page 8 of 26

Pace Analytical www.pecelabs.com

ANALYTICAL RESULTS

Sample: CNPURGE-W-10113	Lab ID: 60109	211003	Collected: 10/31/1	1 14:02	Received: 11	/01/11 09:20	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
504 GCS EDB and DBCP	Analytical Method	d: EPA 504.	1 Preparation Met	hod: EP	A 504.1		4	
1,2-Dibromoethane (EDB)	ND ug/L		0.028	1	11/07/11 00:00	11/08/11 01:17	106-93-4	
8260 MSV	Analytical Method	d: EPA 5030)B/8260		4			
Acetone	ND ug/L		10.0	1		11/04/11 20:51		
Benzene	ND ug/L		1.0	1		11/04/11 20:51	71-43-2	
Bromobenzene	ND ug/L		1.0	1		11/04/11 20:51		
Bromochloromethane	ND ug/L		1.0	1		11/04/11 20:51	74-97-5	
Bromodichloromethane	ND ug/L		1.0	1		11/04/11 20:51	75-27-4	
Bromoform	ND ug/L		1.0	1		11/04/11 20:51	75-25-2	
Bromomethane	ND ug/L		1.0	1		11/04/11 20:51	74-83-9	
2-Butanone (MEK)	ND ug/L		10.0	1		11/04/11 20:51	78-93-3	
n-Butylbenzene	ND ug/L		1.0	1		11/04/11 20:5	104-51-8	
sec-Butylbenzene	ND ug/L		1.0	1		11/04/11 20:51		
tert-Butylbenzene	ND ug/L		1.0	1		11/04/11 20:5	98-06-6	
Carbon disulfide	ND ug/L		5.0	1		11/04/11 20:5		
	1.3 ug/L		1.0	1		11/04/11 20:5		
Carbon telrachloride	ND ug/L		1.0	1		11/04/11 20:5		
Chlorobenzene	0		1.0	1		11/04/11 20:5		
Chloroethane	ND ug/L			1		11/04/11 20:5		
Chloroform	ND ug/L		1.0		241	11/04/11 20:5		
Chloromethane	ND ug/L		1.0	1				
2-Chlorotoluene	ND ug/L		1.0	1		11/04/11 20:5		
4-Chlorotoluene	ND ug/L		1.0	1		11/04/11 20:5		
1,2-Dibromo-3-chloropropane	ND ug/L		2.5	1		11/04/11 20:5		
Dibromochloromethane	ND ug/L		1.0	1		11/04/11 20:5		
1,2-Dibromoethane (EDB)	ND ug/L		1.0	1		11/04/11 20:5		
Dibromomethane	ND ug/L		1.0	1		11/04/11 20:5		
1,2-Dichlorobenzene	ND ug/L		1.0	1		11/04/11 20:5	1 95-50-1	
1,3-Dichlorobenzene	ND ug/L		1.0	1		11/04/11 20:5	1 541-73-1	
1,4-Dichlorobenzene	ND ug/L		1.0	1		11/04/11 20:5	1 106-46-7	
Dichlorodifluoromethane	ND ug/L		1.0	1		11/04/11 20:5	1 75-71-8	
1,1-Dichloroethane	ND ug/L		1.0	1		11/04/11 20:5	1 75-34-3	
1,2-Dichloroethane	ND ug/L		1.0	1		11/04/11 20:5	1 107-06-2	
1,2-Dichloroethene (Total)	ND ug/L		1.0	1		11/04/11 20:5	1 540-59-0	
1,1-Dichloroethene	ND ug/L		1.0	1		11/04/11 20:5	1 75-35-4	
cis-1,2-Dichloroethene	ND ug/L		1.0	1		11/04/11 20:5	1 156-59-2	
trans-1,2-Dichloroethene	ND ug/L		1.0	1		11/04/11 20:5		
1,2-Dichloropropane	ND ug/L		1.0	1		11/04/11 20:5		
	ND ug/L		1.0	1		11/04/11 20:5		
1,3-Dichloropropane	-		1.0	1		11/04/11 20:5		
2,2-Dichloropropane	ND ug/L		1.0	1		11/04/11 20:5		
1,1-Dichloropropene	ND ug/L					11/04/11 20:5		
cis-1,3-Dichloropropene	ND ug/L		1.0	1				
trans-1,3-Dichloropropene	ND ug/L		1.0	1		11/04/11 20:5		
Ethylbenzene	ND ug/L		1.0	1		11/04/11 20:5		
Hexachloro-1,3-butadiene	ND ug/L		1.0	1		11/04/11 20:5		
2-Hexanone	ND ug/L	-	10.0	1		11/04/11 20:5		
Isopropylbenzene (Cumene)	ND ug/L	-	1.0	1		11/04/11 20:5		
p-isopropyltoluene	ND ug/L	_	1.0	1		11/04/11 20:5	1 99-87-6	

Date: 11/11/2011 11:15 AM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 9 of 26

ace Analytical www.pacelabs.com

ANALYTICAL RESULTS

Project: KS/MO Waste Water

Pace Project No.: 60109211

Sample: CNPURGE-W-10113	Lab ID: 60109211003	Collected: 10/31/1	1 14:02	Received: 1	1/01/11 09:20	Matrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
3260 MSV	Analytical Method: EPA 50	30B/8260					
Methylene chloride	ND ug/L	1.0	1		11/04/11 20:51		
I-Methyl-2-pentanone (MIBK)	ND ug/L	10.0	1		11/04/11 20:51		
Methyl-tert-butyl ether	ND ug/L	1.0	1		11/04/11 20:51		
Naphthalene	ND ug/L	10.0	1		11/04/11 20:51		
-Propylbenzene	ND ug/L	1.0	1		11/04/11 20:51		
Styrene	ND ug/L	1.0	1		11/04/11 20:51		
1,1,1,2-Tetrachloroethane	ND ug/L	1.0	1		11/04/11 20:51		
1,1,2,2-Tetrachloroethane	ND ug/L	1.0	1		11/04/11 20:51		
fetrachloroethene	ND ug/L	1.0	1		11/04/11 20:51		
Toluene	ND ug/L	1.0	1		11/04/11 20:51	108-88-3	
1.2.3-Trichlorobenzene	ND ug/L	1.0	1		11/04/11 20:51		
1,2,4-Trichlorobenzene	ND ug/L	1.0	1		11/04/11 20:51	120-82-1	
1,1,1-Trichloroethane	ND ug/L	1.0	1		11/04/11 20:51	1 71-55-6	
1,1,2-Trichloroethane	ND ug/L	1.0	1		11/04/11 20:51	1 79-00-5	
Trichloroethene	ND ug/L	1.0	1		11/04/11 20:51	1 79-01-6	
Frichlorofluoromethane	ND ug/L	1.0	1		11/04/11 20:51	1 75-69-4	
1,2,3-Trichloropropane	ND ug/L	2.5	1		11/04/11 20:5	1 96-18-4	
1,2,4-Trimethylbenzene	ND ug/L	1.0	1		11/04/11 20:5	95-63-6	
1,3,5-Trimethylbenzene	ND ug/L	1.0	1		11/04/11 20:5	1 108-67-8	
Vinyl chloride	ND ug/L	1.0	1		11/04/11 20:5	1 75-01-4	
Xylene (Total)	ND ug/L	3.0	1	141	11/04/11 20:5	1 1330-20-7	
4-Bromofluorobenzene (S)	107 %	87-113	1		11/04/11 20:5	1 460-00-4	
Dibromofluoromethane (S)	110 %	86-112	1		11/04/11 20:5	1 1868-53-7	
1,2-Dichloroethane-d4 (S)	114 %	82-119	1		11/04/11 20:5	1 17060-07-0	
Toluene-d8 (S)	108 %	90-110	1		11/04/11 20:5	1 2037-26-5	
Preservation pH	7.0	0.10	1		11/04/11 20:5	1	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Method: EPA 3	53.2					
Nitrogen, Nitrate	4.4 mg/L	0.10	1		11/02/11 09:0	6	

Date: 11/11/2011 11:15 AM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.. Page 10 of 26

Pace Analytical www.pacelabs.com

ANALYTICAL RESULTS

ample: EUPURGE-W-10114	Lab ID: 60109	9211004	Collected:	10/31/11	15:52	Received: 11	/01/11 09:20	Matrix: Water	
Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qua
04 GCS EDB and DBCP	Analytical Metho	od: EPA 50)4.1 Prepara	tion Meth	nod: EP	A 504.1		÷	
,2-Dibromoelhane (EDB)	ND ug/L	-		0.029	1	11/07/11 00:00	11/08/11 01:30	106-93-4	
260 MSV	Analytical Metho	od: EPA 50	030B/8260						
cetone	ND ug/L	-		10.0	1		11/04/11 21:07		
enzene	ND ug/L	-		1.0	1		11/04/11 21:07		
Bromobenzene	ND ug/l	-		1.0	1		11/04/11 21:07		
Iromochloromethane	ND ug/l	-	- 1	1.0	1		11/04/11 21:07		
romodichloromethane	ND ug/l	-		1.0	1		11/04/11 21:07		
Bromoform	ND ug/l	_		1.0	1		11/04/11 21:07		
Bromomethane	ND ug/l	-		1.0	1		11/04/11 21:07	74-83-9	
-Butanone (MEK)	ND ug/l	-		10.0	1		11/04/11 21:07	78-93-3	
-Butylbenzene	ND ug/l			1.0	1		11/04/11 21:07	104-51-8	
ec-Butylbenzene	ND ug/l			1.0	1		11/04/11 21:07	135-98-8	
ert-Butylbenzene	ND ug/l			1.0	1		11/04/11 21:07	98-06-6	
Carbon disulfide	ND ug/l			5.0	1		11/04/11 21:07	75-15-0	
Carbon tetrachloride	ND ug/			1.0	1		11/04/11 21:07	56-23-5	
	ND ug/			1.0	1		11/04/11 21:07		
Chlorobenzene	ND ug/			1.0	1		11/04/11 21:07		
Chloroethane	ND ug/			1.0	1		11/04/11 21:07		
Chloroform				1.0	1		11/04/11 21:07		
Chloromethane	ND ug/			1.0	1		11/04/11 21:07		
2-Chlorotoluene	ND ug/			1.0	1		11/04/11 21:07		
l-Chlorotoluene	ND ug/						11/04/11 21:07		
,2-Dibromo-3-chloropropane	ND ug/			2.5	1		11/04/11 21:07		
Dibromochloromethane	ND ug/			1.0	1				
I,2-Dibromoethane (EDB)	ND ug/			1.0	1		11/04/11 21:07		
Dibromomethane	ND ug/	L		1.0	1		11/04/11 21:0		
2-Dichlorobenzene	ND ug/	L		1.0	1		11/04/11 21:0		
,3-Dichlorobenzene	ND ug/	L		1.0	1		11/04/11 21:0		
,4-Dichlorobenzene	ND ug/	Ł		1.0	1		11/04/11 21:0		
Dichlorodifluoromethane	ND ug/	L		1.0	1		11/04/11 21:0		
I,1-Dichloroelhane	ND ug/	L		1.0	1		11/04/11 21:0		
,2-Dichloroethane	ND ug/	Ľ		1.0	1		11/04/11 21:0		
,2-Dichloroethene (Total)	ND ug/	Ľ		1.0	1		11/04/11 21:0		
1,1-Dichloroethene	ND ug/	Ľ		1.0	1		11/04/11 21:0	7 75-35-4	
cis-1,2-Dichloroethene	ND ug/	۲L		1.0	1		11/04/11 21:0		
rans-1,2-Dichloroethene	ND ug/			1.0	1		11/04/11 21:0	7 156-60-5	
1,2-Dichloropropane	ND ug/			1.0	1		11/04/11 21:0	7 78-87-5	
1,3-Dichloropropane	ND ug/			1.0	1		11/04/11 21:0	7 142-28-9	
2,2-Dichloropropane	ND ug/			1.0	1		11/04/11 21:0	7 594-20-7	
1,1-Dichloropropene	ND ug/			1.0	1		11/04/11 21:0	7 563-58-6	
cis-1,3-Dichloropropene	ND ug/			1.0	1	-		7 10061-01-5	
	ND ug/			1.0	1			7 10061-02-6	
rans-1,3-Dichloropropene	ND ug/			1.0	1		11/04/11 21:0		
Ethylbenzene	•			1.0	1		11/04/11 21:0		
Hexachloro-1,3-butadiene	ND ug/				1		11/04/11 21:0		
2-Hexanone	ND ug			10.0 1.0	1		11/04/11 21:0		
sopropylbenzene (Cumene)	ND ug/								

Date: 11/11/2011 11:15 AM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 11 of 26

ace Analytical www.pacelabs.com

ANALYTICAL RESULTS

Project: KS/MO Waste Water

Pace Project No.: 60109211

Sample: EUPURGE-W-10114	Lab ID: 60109211004	Collected: 10/31/11	15:52	Received: 1	11/01/11 09:20 N	Aatrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical Method: EPA	5030B/8260					
Methylene chloride	ND ug/L	1.0	1		11/04/11 21:07		
4-Methyl-2-pentanone (MIBK)	ND ug/L	10.0	1		11/04/11 21:07	108-10-1	
Methyl-tert-butyl ether	ND ug/L	1.0	1		11/04/11 21:07		
Naphthalene	ND ug/L	10.0	1		11/04/11 21:07		
n-Propylbenzene	ND ug/L	1.0	1		11/04/11 21:07		
Styrene	ND ug/L	1.0	1		11/04/11 21:07		
1,1,1,2-Tetrachloroethane	ND ug/L	1.0	1		11/04/11 21:07	630-20-6	
1,1,2,2-Telrachloroethane	ND ug/L	1.0	1		11/04/11 21:07	79-34-5	
Tetrachloroethene	ND ug/L	1.0	1		11/04/11 21:07	127-18-4	
Toluene	ND ug/L	1.0	1		11/04/11 21:07	108-88-3	
1,2,3-Trichlorobenzene	ND ug/L	1.0	1		11/04/11 21:07	87-61-6	
1,2,4-Trichlorobenzene	ND ug/L	1.0	1		11/04/11 21:07	120-82-1	
1,1,1-Trichloroethane	ND ug/L	1.0	1		11/04/11 21:07	71-55-6	
1,1,2-Trichloroethane	ND ug/L	1.0	1		11/04/11 21:07	79-00-5	
Trichloroethene	ND ug/L	1.0	1		11/04/11 21:07	79-01-6	
Trichlorofluoromethane	ND ug/L	1.0	1		11/04/11 21:07	75-69-4	
1,2,3-Trichloropropane	ND ug/L	2.5	1		11/04/11 21:07	96-18-4	
1,2,4-Trimethylbenzene	ND ug/L	1.0	1		11/04/11 21:07	95-63-6	
1,3,5-Trimethylbenzene	ND ug/L	1.0	1		11/04/11 21:07	108-67-8	
Vinyl chloride	ND ug/L	1.0	1		11/04/11 21:07	75-01-4	
Xylene (Total)	ND ug/L	3.0	1		11/04/11 21:07	1330-20-7	
4-Bromofluorobenzene (S)	106 %	87-113	1		11/04/11 21:07	460-00-4	
Dibromofluoromethane (S)	108 %	86-112	-1		11/04/11 21:07	1868-53-7	
1,2-Dichloroethane-d4 (S)	113 %	82-119	1		11/04/11 21:07	17060-07-0	
Toluene-d8 (S)	105 %	90-110	1		11/04/11 21:07	2037-26-5	
Preservation pH	7.0	0.10	1		11/04/11 21:07		
353.2 Nitrogen, NO2/NO3 unpres	Analytical Method: EPA	353.2					
Nitrogen, Nitrate	10.6 mg/L	0.50	1		11/02/11 09:21		

Date: 11/11/2011 11:15 AM

REPORT OF LABORATORY ANALYSIS

Page 12 of 26

ace Analytical www.pacelabs.com

ANALYTICAL RESULTS

Project:	KS/MO Waste Water

.

Pace Project No.: 60109211

Sample: HAPURGE-W-10115	Lab ID: 60109211005	Collected: 10/31/1	1 12:27	Received: 11	/01/11 09:20 M	latrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
504 GCS EDB and DBCP	Analytical Method: EPA 50	4.1 Preparation Met	hod: EF	PA 504.1			
1,2-Dibromoethane (EDB)	ND ug/L	0.028	1	11/07/11 00:00	11/08/11 01:43	106-93-4	
8260 MSV	Analytical Method: EPA 50	30B/8260					
Acetone	ND ug/L	10.0	1		11/04/11 21:24		
Benzene	ND ug/L	1.0	1		11/04/11 21:24		
Bromobenzene	ND ug/L	1.0	1		11/04/11 21:24		
Bromochloromethane	ND ug/L	1.0	1		11/04/11 21:24		
Bromodichloromethane	ND ug/L	1.0	1		11/04/11 21:24		
Bromoform	ND ug/L	1.0	1		11/04/11 21:24		
Bromomethane	ND ug/L	1.0	1		11/04/11 21:24		
2-Butanone (MEK)	ND ug/L	10.0	1		11/04/11 21:24		
n-Butylbenzene	ND ug/L	1.0	1		11/04/11 21:24		
sec-Butylbenzene	ND ug/L	1.0	1		11/04/11 21:24		
tert-Butylbenzene	ND ug/L	1.0	1		11/04/11 21:24		
Carbon disulfide	ND ug/L	5.0	1		11/04/11 21:24		
Carbon tetrachloride	6.1 ug/L	1.0	1		11/04/11 21:24		
Chlorobenzene	ND ug/L	1.0	1		11/04/11 21:24		
Chloroethane	ND ug/L	1.0	1		11/04/11 21:24		
Chloroform	ND ug/L	1.0	1		11/04/11 21:24		
Chloromethane	ND ug/L	1.0	1		11/04/11 21:24		
2-Chlorotoluene	ND ug/L	1.0	1		11/04/11 21:24		
4-Chlorotoluene	ND ug/L	1.0	1		11/04/11 21:24		
1,2-Dibromo-3-chloropropane	ND ug/L	2.5	1		11/04/11 21:24	96-12-8	
Dibromochloromelhane	ND ug/L	1.0	1		11/04/11 21:24	124-48-1	
1,2-Dibromoethane (EDB)	ND ug/L	1.0	1		11/04/11 21:24	106-93-4	
Dibromomethane	ND ug/L	1.0	1		11/04/11 21:24	74-95-3	
1,2-Dichlorobenzene	ND ug/L	1.0	1		11/04/11 21:24	95-50 - 1	
1,3-Dichlorobenzene	ND ug/L	1.0	1		11/04/11 21:24	541-73-1	
1,4-Dichlorobenzene	ND ug/L	1.0	1		11/04/11 21:24	106-46-7	
Dichlorodifluoromethane	ND ug/L	1.0	1		11/04/11 21:24		
1,1-Dichloroethane	ND ug/L	1.0	1		11/04/11 21:24	75-34-3	
1,2-Dichloroethane	ND ug/L	1.0	1		11/04/11 21:24	107-06-2	
1,2-Dichloroethene (Total)	ND ug/L	1.0	1		11/04/11 21:24	540-59 - 0	
1,1-Dichloroethene	ND ug/L	1.0	1		11/04/11 21:24	75-35-4	
cis-1,2-Dichloroethene	ND ug/L	1.0	1		11/04/11 21:24		
trans-1,2-Dichloroethene	ND ug/L	1.0	1		11/04/11 21:24	156-60 - 5	
1,2-Dichloropropane	ND ug/L	1.0	1		11/04/11 21:24	78-87-5	
1,3-Dichloropropane	ND ug/L	1.0	1		11/04/11 21:24	142-28-9	
2,2-Dichloropropane	ND ug/L	1.0	1		11/04/11 21:24	594-20-7	
1,1-Dichloropropene	ND ug/L	1.0	1		11/04/11 21:24		
cis-1,3-Dichloropropene	ND ug/L	1.0	1		11/04/11 21:24	10061-01 - 5	
trans-1,3-Dichloropropene	ND ug/L	1.0	1		11/04/11 21:24	10061-02-6	
Elhylbenzene	ND ug/L	1.0	1		11/04/11 21:24	100-41-4	
Hexachloro-1,3-butadiene	ND ug/L	1.0	1		11/04/11 21:24	87-68-3	
2-Hexanone	ND ug/L	10.0	1		11/04/11 21:24	591-78-6	
Isopropylbenzene (Cumene)	ND ug/L	1.0	1		11/04/11 21:24		
p-Isopropyltoluene	ND ug/L	1.0	1		11/04/11 21:24	99-87-6	

Date: 11/11/2011 11:15 AM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

٢

Page 13 of 26

ace Analytical www.pacelabs.com

ANALYTICAL RESULTS

Project: KS/MO Waste Water

Pace Project No.: 60109211

Sample: HAPURGE-W-10115	Lab ID: 60109211005	Collected: 10/31/1	1 12:27	Received: 11/01/11 09:20 M	latrix: Water
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No. Qu
8260 MSV	Analytical Method: EPA	5030B/8260			
Methylene chloride	ND ug/L	1.0	1	11/04/11 21:24	
4-Methyl-2-pentanone (MIBK)	ND ug/L	10.0	1	11/04/11 21:24	
Methyl-tert-butyl ether	ND ug/L	1.0	1	11/04/11 21:24	
Naphthalene	ND ug/L	10.0	1	11/04/11 21:24	
n-Propylbenzene	ND ug/L	1.0	1	11/04/11 21:24	
Styrene	ND ug/L	1.0	1	11/04/11 21:24	
1,1,1,2-Tetrachloroethane	ND ug/L	1.0	1	11/04/11 21:24	
1,1,2,2-Tetrachloroethane	ND ug/L	1.0	1	11/04/11 21:24	
Tetrachloroethene	ND ug/L	1.0	1	11/04/11 21:24	127-18-4
Toluene	ND ug/L	1.0	1	11/04/11 21:24	108-88-3
1.2.3-Trichlorobenzene	ND ug/L	1.0	1	11/04/11 21:24	87-61-6
1,2,4-Trichlorobenzene	ND ug/L	1.0	1	11/04/11 21:24	120-82-1
1,1,1-Trichloroethane	ND ug/L	1.0	1	11/04/11 21:24	71-55-6
1,1,2-Trichloroethane	ND ug/L	1.0	1	11/04/11 21:24	79-00-5
Trichloroethene	ND ug/L	1.0	1	11/04/11 21:24	79-01-6
Trichlorofluoromethane	ND ug/L	1.0	1	11/04/11 21:24	75-69-4
1,2,3-Trichloropropane	ND ug/L	2.5	1	11/04/11 21:24	96-18-4
1.2.4-Trimethylbenzene	ND ug/L	1.0	1	11/04/11 21:24	95-63-6
1,3,5-Trimethylbenzene	ND ug/L	1.0	1	11/04/11 21:24	108-67-8
Vinyl chloride	ND ug/L	1.0	1	11/04/11 21:24	75-01-4
Xylene (Total)	ND ug/L	3.0	1	11/04/11 21:24	1330-20-7
4-Bromofluorobenzene (S)	106 %	87-113	1	11/04/11 21:24	460-00-4
Dibromofluoromethane (S)	103 %	86-112	1	11/04/11 21:24	1868-53-7
1,2-Dichloroethane-d4 (S)	106 %	82-119	1	11/04/11 21:24	17060-07-0
Toluene-d8 (S)	100 %	90-110	1	11/04/11 21:24	2037-26-5
Preservation pH	7.0	0.10	1	11/04/11 21:24	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Method: EPA	353.2			
Nitrogen, Nitrate	5.7 mg/L	0.20	1	11/02/11 09:16	

Date: 11/11/2011 11:15 AM

REPORT OF LABORATORY ANALYSIS

Page 14 of 26

ace Analytical "

ANALYTICAL RESULTS

Project: KS/MO Waste Water

Pace Project No.:	60109211
-------------------	----------

Parameters	Results	Units	Report Limit		Prepared	A b d		
504 GCS EDB and DBCP		orne		DF	Prepared	Analyzed	CAS No.	Qual
	Analytical Meth	nod: EPA 50	04.1 Preparation Met	hod: El	PA 504.1			
1,2-Dibromoethane (EDB)	ND ug	/L	0.029	1	11/07/11 00:00	11/08/11 01:55	106-93-4	
3260 MSV	Analytical Meth	iod: EPA 50)30B/8260					
Acetone	ND ug	/L	10.0	1		11/04/11 21:40		
Benzene	ND ug	/L	1.0	1		11/04/11 21:40	71-43-2	
Bromobenzene	ND ug	/L	1.0	1		11/04/11 21:40	108-86-1	
Bromochloromethane	ND ug	/L	1.0	1		11/04/11 21:40		
Bromodichloromethane	ND ug	/L	1.0	1		11/04/11 21:40	75-27-4	
Bromoform	ND ug	/L	1.0	1		11/04/11 21:40	75-25-2	
Bromomethane	ND ug	/L	1.0	1		11/04/11 21:40	74-83-9	1.1
2-Butanone (MEK)	ND ug	/L	10.0	1		11/04/11 21:40	78-93-3	
n-Butylbenzene	ND ug		1.0	1		11/04/11 21:40	104-51-8	
sec-Butylbenzene	ND ug		1.0	1		11/04/11 21:40	135-98-8	
tert-Butylbenzene	ND ug		1.0	1		11/04/11 21:40	98-06-6	
Carbon disulfide	ND ug		5.0	1		11/04/11 21:40	75-15-0	
Carbon tetrachloride	3.4 ug		1.0	1		11/04/11 21:40	56-23-5	
Chlorobenzene	ND ug		1.0	1		11/04/11 21:40		
Chloroethane	ND ug		1.0	1		11/04/11 21:40		
	ND ug		1.0	1		11/04/11 21:40		
Chloroform	ND ug		1.0	1		11/04/11 21:40		
Chloromethane	ND ug		1.0	1		11/04/11 21:40		
2-Chlorotoluene	-		1.0	1		11/04/11 21:40		
4-Chlorotoluene	ND ug		2.5	1		11/04/11 21:40		
1,2-Dibromo-3-chloropropane	ND ug		2.5	1		11/04/11 21:40		
Dibromochloromethane	ND ug					11/04/11 21:40		
1,2-Dibromoethane (EDB)	ND ug		1.0	1				
Dibromomethane	ND ug		1.0	1		11/04/11 21:40		
1,2-Dichlorobenzene	ND ug		1.0	1		11/04/11 21:40		
1,3-Dichlorobenzene	ND ug		1.0	1		11/04/11 21:40		
1,4-Dichlorobenzene	ND uş		1.0	1		11/04/11 21:40		
Dichlorodifluoromethane	ND ug		1.0	1		11/04/11 21:40		
1,1-Dichloroethane	ND ug		1.0	1		11/04/11 21:40		
1,2-Dichloroethane	ND ug	J∕L	1.0	1		11/04/11 21:40		
1,2-Dichloroethene (Total)	ND uç	J/L	1.0	1		11/04/11 21:40		
1,1-Dichloroethene	ND ug	J/L	1.0	1		11/04/11 21:40		
cis-1,2-Dichloroethene	ND ug	g/L	1.0	1		11/04/11 21:40		
trans-1,2-Dichloroethene	ND uç	g/L	1.0	1		11/04/11 21:40		
1,2-Dichloropropane	ND ug	g/L	1.0	1		11/04/11 21:40		
1,3-Dichloropropane	ND ug	g/L	1.0	1		11/04/11 21:40	14 2- 28-9	
2,2-Dichloropropane	ND ug	g/L	1.0	1		11/04/11 21:40	594-20-7	
1,1-Dichloropropene	ND ug		1.0	1		11/04/11 21:40	563-58-6	
cis-1,3-Dichloropropene	ND ug		1,0	1		11/04/11 21:40	10061-01-5	
trans-1,3-Dichloropropene	ND ug	-	1.0	1		11/04/11 21:40	10061-02-6	
Ethylbenzene	ND ug	-	1.0	1		11/04/11 21:40		
Hexachloro-1,3-butadiene	ND u	-	1.0	1		11/04/11 21:40		
2-Hexanone	ND u	-	10.0	1		11/04/11 21:40		
Isopropylbenzene (Cumene)	ND u	-	1.0	1		11/04/11 21:40		
p-lsopropyltoluene	ND ug		1.0	1		11/04/11 21:40		

Date: 11/11/2011 11:15 AM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 15 of 26

ace Analytical www.pacelabs.com

ANALYTICAL RESULTS

Project: KS/MO Waste Water

Pace Project No.: 60109211

Sample: MRPURGE-W-10116	Lab ID: 60109211006	Collected: 10/31/11	14:42	Received: 11/01/11 09:20 Matri	ix: Water
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No. Qual
8260 MSV	Analytical Method: EPA	5030B/8260			
Methylene chloride	ND ug/L	1.0	1	11/04/11 21:40 75	
4-Methyl-2-pentanone (MIBK)	ND ug/L	10.0	1		08-10-1
Methyl-tert-butyl ether	ND ug/L	1.0	1	11/04/11 21:40 16	
Naphthalene	ND ug/L	10.0	1	11/04/11 21:40 91	
n-Propylbenzene	ND ug/L	1.0	1		03-65-1
Styrene	ND ug/L	1.0	1		00-42-5
1,1,1,2-Tetrachloroethane	ND ug/L	1.0	1	11/04/11 21:40 63	
1,1,2,2-Tetrachloroethane	ND ug/L	1.0	1	11/04/11 21:40 79	
Tetrachloroethene	ND ug/L	1.0	1	11/04/11 21:40 12	27-18-4
Toluene	ND ug/L	1.0	1	11/04/11 21:40 10	08-88-3
1,2,3-Trichlorobenzene	ND ug/L	1.0	1	11/04/11 21:40 87	7-61-6
1,2,4-Trichlorobenzene	ND ug/L	1.0	1	11/04/11 21:40 12	20-82-1
1,1,1-Trichloroethane	ND ug/L	1.0	1	11/04/11 21:40 71	1-55-6
1,1,2-Trichloroethane	ND ug/L	1.0	1	11/04/11 21:40 79	9-00-5
Trichloroethene	ND ug/L	1.0	1	11/04/11 21:40 79	9-01-6
Trichlorofluoromethane	ND ug/L	1.0	1	11/04/11 21:40 7	5-69-4
1,2,3-Trichloropropane	ND ug/L	2.5	1	11/04/11 21:40 96	6-18-4
1,2,4-Trimethylbenzene	ND ug/L	. 1.0	1	11/04/11 21:40 9	5-63 -6
1,3,5-Trimethylbenzene	ND ug/L	1.0	1	11/04/11 21:40 10	08-67-8
Vinyl chloride	ND ug/L	1.0	1	11/04/11 21:40 7	5-01-4
Xylene (Total)	ND ug/L	3.0	1	11/04/11 21:40 1	330-20-7
4-Bromofluorobenzene (S)	105 %	87-113	1	11/04/11 21:40 4	60-00-4
Dibromofluoromethane (S)	108 %	86-112	1	11/04/11 21:40 1	868-53-7
1,2-Dichloroethane-d4 (S)	114 %	82-119	1	11/04/11 21:40 1	7060- 07-0
Toluene-d8 (S)	109 %	90-110	1	11/04/11 21:40 2	037-26-5
Preservation pH	7.0	0.10	1	11/04/11 21:40	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Method: EPA	353.2			
Nitrogen, Nitrate	13.8 mg/L	0.50	1	11/02/11 09:20	

Date: 11/11/2011 11:15 AM

REPORT OF LABORATORY ANALYSIS

Page 16 of 26

ace Analytical www.pacelabs.com

ANALYTICAL RESULTS

Sample: SVPURGE-W-10117	Lab ID: 60109211007	Collected: 10/31/	11 18:30	Received: 11	/01/11 09:20	Matrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
504 GCS EDB and DBCP	Analytical Method: EPA	504.1 Preparation Me	thod: EF	A 504.1			
1,2-Dibromoethane (EDB)	ND ug/L	0.029	1	11/07/11 00:00	11/08/11 02:09	106-93-4	
8260 MSV	Analytical Method: EPA	5030B/8260					
Acetone	ND ug/L	10.0	1		11/04/11 21:56		
Benzene	ND ug/L	1.0	1		11/04/11 21:56		
Bromobenzene	ND ug/L	1.0	1		11/04/11 21:56		
Bromochloromethane	ND ug/L	1.0	1		11/04/11 21:56		
Bromodichloromethane	ND ug/L	1.0	1		11/04/11 21:56		
Bromoform	ND ug/L	1.0	1		11/04/11 21:56	3 75-25-2	
Bromomethane	ND ug/L	1.0	1		11/04/11 21:56	3 74-83-9	
2-Butanone (MEK)	ND ug/L	10.0	1		11/04/11 21:56	3 78-93-3	
n-Butylbenzene	ND ug/L	1.0	1		11/04/11 21:56	6 104-51-8	
sec-Butylbenzene	ND ug/L	1.0	1		11/04/11 21:56	6 135-98-8	
tert-Butylbenzene	ND ug/L	1.0	1		11/04/11 21:56	5 98-06-6	
Carbon disulfide	ND ug/L	5.0	1		11/04/11 21:56		
Carbon tetrachloride	6.9 ug/L	1.0	1		11/04/11 21:50		
	ND ug/L	1.0	1		11/04/11 21:50		
Chlorobenzene		1.0	1		11/04/11 21:50		
Chloroethane	ND ug/L	1.0	1		11/04/11 21:56		
Chloroform	3.3 ug/L	1.0	1		11/04/11 21:50		
Chloromethane	ND ug/L		1		11/04/11 21:50		
2-Chlorotoluene	ND ug/L	1.0			11/04/11 21:50		
4-Chlorotoluene	ND ug/L	1.0	1				
1,2-Dibromo-3-chloropropane	ND ug/L	2.5	1		11/04/11 21:50		
Dibromochloromethane	ND ug/L	1.0	1		11/04/11 21:50		
1,2-Dibromoethane (EDB)	ND ug/L	1.0	1		11/04/11 21:50		
Dibromomethane	ND ug/L	1.0	1		11/04/11 21:5		
1,2-Dichlorobenzene	ND ug/L	1.0	1		11/04/11 21:5		
1,3-Dichlorobenzene	ND ug/L	1.0	1		11/04/11 21:5		
1,4-Dichlorobenzene	ND ug/L	1.0	1		11/04/11 21:5		
Dichlorodifluoromethane	ND ug/L	1.0	1		11/04/11 21:5	6 75-71-8	
1,1-Dichloroethane	ND ug/L	1.0	1		11/04/11 21:5	6 75-34-3	
1,2-Dichloroethane	ND ug/L	1.0	1		11/04/11 21:5	6 107-06-2	
1,2-Dichloroethene (Total)	ND ug/L	1.0	1		11/04/11 21:5	6 540-59-0	
1,1-Dichloroethene	ND ug/L	1.0	1		11/04/11 21:5	6 75-35-4	
cis-1,2-Dichloroethene	ND ug/L	1.0	1		11/04/11 21:5	6 156-59-2	
trans-1,2-Dichloroethene	ND ug/L	1.0	1		11/04/11 21:5	6 156-60-5	
	ND ug/L	1.0			11/04/11 21:5		
1,2-Dichloropropane	ND ug/L	1.0			11/04/11 21:5	6 142-28-9	
1,3-Dichloropropane	ND ug/L	1.0			11/04/11 21:5		
2,2-Dichloropropane	-	1.0			11/04/11 21:5		
1,1-Dichloropropene	ND ug/L	1.0				6 10061-01-5	
cis-1,3-Dichloropropene	ND ug/L					6 10061-01-0	
trans-1,3-Dichloropropene	ND ug/L	1.0					
Ethylbenzene	ND ug/L	1.0			11/04/11 21:5		
Hexachloro-1,3-butadiene	ND ug/L	1.0			11/04/11 21:5		
2-Hexanone	ND ug/L	10.0			11/04/11 21:5		
Isopropylbenzene (Cumene)	ND ug/L	1.0) 1		11/04/11 21:5		
p-Isopropyltoluene	ND ug/L	. 1.0	1		11/04/11 21:5	6 99-87-6	

Date: 11/11/2011 11:15 AM

14

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 17 of 26

ace Analytical www.pacelabs.com

ANALYTICAL RESULTS

Project: KS/MO Waste Water

Pace Project No.: 60109211

Sample: SVPURGE-W-10117	Lab ID: 60109211007	Collected: 10/31/11	18:30	Received: 11/01/11 09:20	Matrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qual
8260 MSV	Analytical Method: EPA 50	30B/8260				
Methylene chloride	ND ug/L	1.0	1	11/04/11 21:		
4-Methyl-2-pentanone (MIBK)	ND ug/L	10.0	1	11/04/11 21 :		
Methyl-tert-butyl ether	ND ug/L	1.0	1	11/04/11 21:		
Naphthalene	ND ug/L	10.0	1	11/04/11 21:		
n-Propylbenzene	ND ug/L	1.0	1	11/04/11 21:	56 103-65-1	
Styrene	ND ug/L	1.0	1	11/04/11 21:		
1,1,1,2-Tetrachloroethane	ND ug/L	1.0	1		56 630-20-6	
1,1,2,2-Tetrachloroethane	ND ug/L	1.0	1	11/04/11 21:	56 79-34-5	
Tetrachloroethene	ND ug/L	1.0	1	11/04/11 21:	56 127-18-4	
Toluene	ND ug/L	1.0	1	11/04/11 21:	56 108-88-3	
1,2,3-Trichlorobenzene	ND ug/L	1.0	1	11/04/11 21:	56 87-61-6	
1,2,4-Trichlorobenzene	ND ug/L	1.0	1	11/04/11 21:	56 120-82-1	
1,1,1-Trichloroethane	ND ug/L	1.0	1	11/04/11 21:	56 71-55-6	
1,1,2-Trichloroethane	ND ug/L	1.0	1	11/04/11 21:	56 79-00-5	
Trichloroethene	ND ug/L	1.0	1	11/04/11 21:	56 79-01-6	
Trichlorofluoromethane	ND ug/L	1.0	1	11/04/11 21:	56 75-69-4	
1,2,3-Trichloropropane	ND ug/L	2.5	1	11/04/11 21:	56 96-18-4	
1,2,4-Trimethylbenzene	ND ug/L	1.0	1	11/04/11 21:	56 95-63-6	
1,3,5-Trimethylbenzene	ND ug/L	1.0	1	11/04/11 21:	56 108-67-8	
Vinyl chloride	ND ug/L	1.0	1	11/04/11 21:	56 75-01-4	
Xylene (Total)	ND ug/L	3.0	1	11/04/11 21:	56 1330-20-7	
4-Bromofluorobenzene (S)	90 %	87-113	1	11/04/11 21:	56 460-00-4	
Dibromofluoromethane (S)	106 %	86-112	1	11/04/11 21:	56 1868-53-7	
1,2-Dichloroethane-d4 (S)	111 %	82-119	1	11/04/11 21:	56 17060-07-0	
Toluene-d8 (S)	110 %	90-110	1	11/04/11 21:	56 2037-26-5	
Preservation pH	7.0	0.10	1	11/04/11 21:	56	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Method: EPA 3	53.2				
Nitrogen, Nitrate	0.41 mg/L	0.10	1	11/02/11 09:	11	

Date: 11/11/2011 11:15 AM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 18 of 26

ace Analytical www.pscelabs.com

QUALITY CONTROL DATA

Project:	KS/MO Waste Water									
Pace Project No.:	60109211									
QC Batch:	OEXT/31027	Analysi	s Method:	E	PA 504.1					
QC Batch Method:	EPA 504.1	Analysi	s Descriptio	n: G	CS 504 E	DB DBC	P			
Associated Lab Sam	ples: 60109211001, 60109211002	, 601092110	03, 601092	11004, 60	01092110	05, 6010	9211006, 6	0109211007	7	
METHOD BLANK:	906554	M	atrix: Water	r						
Associated Lab Sam	ples: 60109211001, 60109211002	, 601092110	03, 601092	11004, 60	01092110	05, 6010	9211006, 6	0109211007	7	
		Blank		porting						
Paran	neter Units	Result	L	imit	Ana	lyzed	Qualif	iers		
1,2-Dibromoethane	(EDB) ug/L		ND	0.030	11/07/	11 20:35				
1,2-Dibromoethane	(EDB) ug/L		ND	0.030	11/07/	11 20:35				
	(EDB) ug/L		3	0.030	11/07/ [,]	11 20:35				
		Spike	3		LCS	11 20:35 LCSD	% Rec		Мах	
	ITROL SAMPLE & LCSD: 906555	Spike Conc.	90	6556	LCS	_	% Rec Limits	RPD	Max RPD	Qualifiers

Date: 11/11/2011 11:15 AM

REPORT OF LABORATORY ANALYSIS

Page 19 of 26

ace Analytical www.pacelabs.com

QUALITY CONTROL DATA

EPA 5030B/8260

8260 MSV Water 7 day

Project:	KS/MO Waste Water
Pace Project No.:	60109211

QC Batch: MSV/41422 QC Batch Method: EPA 5030B/8260 Analysis Method: Analysis Description:

Associated Lab Samples: 60109211001, 60109211002, 60109211003, 60109211004, 60109211005, 60109211006, 60109211007

		-
METHOD BLANK:	905182	

Matrix: Water

Associated Lab Samples:	60109211001, 60109211002,	60109211003,	60109211004, 60109211005, 60109211006, 60109211007
		Blank	Reporting

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND	1.0	11/04/11 17:52	
1,1,1-Trichloroethane	ug/L	ND	1.0	11/04/11 17:52	
1,1,2,2-Tetrachloroethane	ug/L	ND	1.0	11/04/11 17:52	
1,1,2-Trichloroethane	ug/L	ND	1.0	11/04/11 17:52	
1,1-Dichloroethane	ug/L	ND	1.0	11/04/11 17:52	
1.1-Dichloroethene	ug/L	ND	1.0	11/04/11 17:52	
1,1-Dichloropropene	ug/L	ND	1.0	11/04/11 17:52	
1,2,3-Trichlorobenzene	ug/L	ND	1.0	11/04/11 17:52	
1,2,3-Trichloropropane	ug/L	ND	2.5	11/04/11 17:52	
1,2,4-Trichlorobenzene	ug/L	ND	1.0	11/04/11 17:52	
1,2,4-Trimethylbenzene	ug/L	ND	1.0	11/04/11 17:52	
1,2-Dibromo-3-chloropropane	ug/L	ND	2.5	11/04/11 17:52	
1,2-Dibromoethane (EDB)	ug/L	ND	1.0	11/04/11 17:52	
1,2-Dichlorobenzene	ug/L	ND	1.0	11/04/11 17:52	
1,2-Dichloroethane	ug/L	ND	1.0	11/04/11 17:52	
1,2-Dichloroethene (Total)	ug/L	ND	1.0	11/04/11 17:52	
1,2-Dichloropropane	ug/L	ND	1.0	11/04/11 17:52	
1,3,5-Trimethylbenzene	ug/L	ND	1.0	11/04/11 17:52	
1,3-Dichlorobenzene	ug/L	ND	1.0	11/04/11 17:52	
1,3-Dichloropropane	ug/L	ND	1.0	11/04/11 17:52	
1,4-Dichlorobenzene	ug/L	ND	1.0	11/04/11 17:52	
2,2-Dichloropropane	ug/L	ND	1.0	11/04/11 17:52	
2-Butanone (MEK)	ug/L	ND	10.0	11/04/11 17:52	
2-Chlorotoluene	ug/L	ND	1.0	11/04/11 17:52	
2-Hexanone	ug/L	ND	10.0	11/04/11 17:52	
4-Chlorotoluene	ug/L	ND	1.0	11/04/11 17:52	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	10.0	11/04/11 17:52	
Acetone	ug/L	ND	10.0	11/04/11 17:52	
Benzene	ug/L	ND	1.0	11/04/11 17:52	
Bromobenzene	ug/L	ND	1.0	11/04/11 17:52	
Bromochloromethane	ug/L	ND	1.0	11/04/11 17:52	
Bromodichloromethane	ug/L	ND	1.0	11/04/11 17:52	
Bromoform	ug/L	ND	1.0	11/04/11 17:52	
Bromomethane	ug/L	ND	1.0	11/04/11 17:52	
Carbon disulfide	ug/L	ND	5.0	11/04/11 17:52	
Carbon tetrachloride	ug/L	ND	1.0	11/04/11 17:52	
Chlorobenzene	ug/L	ND	1.0	11/04/11 17:52	
Chloroethane	ug/L	ND	1.0	11/04/11 17:52	
Chloroform	ug/L	ND	1.0	11/04/11 17:52	
Chloromethane	ug/L	ND	1.0	11/04/11 17:52	
cis-1,2-Dichloroethene	ug/L	ND	1.0	11/04/11 17:52	
cis-1,3-Dichloropropene	ug/L	ND	1.0	11/04/11 17:52	
Dibromochloromelhane	ug/L	ND	1.0	11/04/11 17:52	

Date: 11/11/2011 11:15 AM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.. Page 20 of 26

QUALITY CONTROL DATA

Project: KS/MO Waste Water Pace Project No.: 60109211

 METHOD BLANK:
 905182
 Matrix:
 Water

 Associated Lab Samples:
 60109211001, 60109211002, 60109211003, 60109211004, 60109211005, 60109211006, 60109211007
 Blank
 Reporting

Parameter	Units	Result	Limit	Analyzed	Qualifiers
Dibromomethane	ug/L	ND	1.0	11/04/11 17:52	
Dichlorodifluoromethane	ug/L	ND	1.0	11/04/11 17:52	
Ethylbenzene	ug/L.	ND	1.0	11/04/11 17:52	
Hexachloro-1,3-butadiene	ug/L	ND	1.0	11/04/11 17:52	
Isopropylbenzene (Cumene)	ug/L	ND	1.0	11/04/11 17:52	
Methyl-tert-butyl ether	ug/L	ND	1.0	11/04/11 17:52	
Methylene chloride	ug/L	ND	1.0	11/04/11 17:52	
n-Butylbenzene	ug/L	ND	1.0	11/04/11 17:52	
n-Propylbenzene	ug/L	ND	1.0	11/04/11 17:52	
Naphthalene	ug/L	ND	10.0	11/04/11 17:52	
p-Isopropyltoluene	ug/L	ND	1.0	11/04/11 17:52	
sec-Butylbenzene	ug/L	ND	1.0	11/04/11 17:52	
Styrene	ug/L	ND	1.0	11/04/11 17:52	
tert-Butylbenzene	ug/L	ND	1.0	11/04/11 17:52	
Tetrachloroethene	ug/L	ND	1.0	11/04/11 17:52	
Тоluene	ug/L	ND	1.0	11/04/11 17:52	
trans-1,2-Dichloroethene	ug/L	ND	1.0	11/04/11 17:52	
trans-1,3-Dichloropropene	ug/L	ND	1.0	11/04/11 17:52	
Trichloroethene	ug/L	ND	1.0	11/04/11 17:52	
Trichlorofluoromethane	ug/L	ND	1.0	11/04/11 17:52	
Vinyl chloride	ug/L	ND	1.0	11/04/11 17:52	
Xylene (Total)	ug/L	ND	3.0	11/04/11 17:52	
1,2-Dichloroethane-d4 (S)	%	107	82-119	11/04/11 17:52	
4-Bromofluorobenzene (S)	%	97	87-113	11/04/11 17:52	
Dibromofluoromethane (S)	%	105	86-112	11/04/11 17:52	
Toluene-d8 (S)	%	103	90-110	11/04/11 17:52	

LABORATORY CONTROL SAMPLE:	905183			e		
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	20	17.3	86	81-121	
1,1,1-Trichloroethane	ug/L	20	17.6	88	82-119	
1,1,2,2-Tetrachloroethane	ug/L	20	18.1	91	78-124	
1,1,2-Trichloroethane	ug/L	20	20.3	102	79-121	
1,1-Dichloroethane	ug/L	20	18.3	91	73-119	
1,1-Dichloroethene	ug/L	20	17.7	89	75-120	
1,1-Dichloropropene	ug/L	20	18.5	93	79-123	
1,2,3-Trichlorobenzene	ug/L	20	17.8	89	73-122	
1,2,3-Trichloropropane	ug/L	20	18.1	91	77-124	
1,2,4-Trichlorobenzene	ug/L	20	17.4	87	75-120	
1,2,4-Trimethylbenzene	ug/L	20	18.7	94	77-120	
1,2-Dibromo-3-chloropropane	ug/L	20	16.7	84	69-125	
1,2-Dibromoethane (EDB)	ug/L	20	18.8	94	85-121	
1,2-Dichlorobenzene	ug/L	20	19.2	96	82-115	
1.2-Dichloroethane	ug/L	20	19.3	96	77-125	

Date: 11/11/2011 11:15 AM

REPORT OF LABORATORY ANALYSIS

Page 21 of 26

ice Analytical www.pacelabs.com

٠

QUALITY CONTROL DATA

Project: KS/MO Waste Water Pace Project No.: 60109211

LABORATORY CONTROL SAMPLE: 905183

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifier
1,2-Dichloroethene (Total)	ug/L	40	40.0	100	79-120	
1,2-Dichloropropane	ug/L	20	18.8	94	83-119	
1,3,5-Trimethylbenzene	ug/L	20	18.1	91	79-121	
1,3-Dichlorobenzene	ug/L	20	17.7	88	79-117	
1,3-Dichloropropane	ug/L	20	19.2	96	78-116	
1,4-Dichlorobenzene	ug/L	20	18.7	94	83-115	
2,2-Dichloropropane	ug/L	20	16.3	82	66-123	
2-Butanone (MEK)	ug/L	100	101	101	43-165	
2-Chlorotoluene	ug/L	20	18.6	93	81-117	
2-Hexanone	ug/L	100	98.3	98	47-159	
4-Chlorotoluene	ug/L	20	18.8	94	84-116	
4-Methyl-2-pentanone (MIBK)	ug/L	100	90.7	91	71-129	
Acetone	ug/L	100	111	111	18-192	
Benzene	ug/L	20	19.5	97	82-117	
Bromobenzene	ug/L	20	18.5	92	83-116	
Bromochloromelhane	ug/L	20	18.9	94	79-121	
Bromodichloromethane	ug/L	20	18.5	92	79-114	
	ug/L	20	17.8	89	78-121	
Bromoform	-	20	20.6	103	36-146	
Bromomethane	ug/L	20	20.6	103	75-138	
Carbon disulfide	ug/L	20	20.6 19.3	96	80-123	
Carbon tetrachloride	ug/L			90 91	83-121	
Chlorobenzene	ug/L	20	18.2	91	42-166	
Chloroethane	ug/L	20	19.6			
Chloroform	ug/L	20	20.1	100	82-116	
Chloromethane	ug/L	20	17.7	88	32-127	
cis-1,2-Dichloroethene	ug/L	20	18.2	91	80-119	
cis-1,3-Dichloropropene	ug/L	20	17.0	85	76-119	
Dibromochloromethane	ug/L	20	17.9	89	81-123	
Dibromomethane	ug/L	20	19.2	96	79-123	
Dichlorodifluoromethane	ug/L	20	15.2	76	10-163	
Ethylbenzene	ug/L	20	17.7	88	79-121	
Hexachloro-1,3-butadiene	ug/L	20	18.5	92	78-125	
isopropylbenzene (Cumene)	ug/L	20	18.7	93	80-120	
Methyl-terl-butyl ether	ug/L	20	18.1	91	78-119	
Methylene chloride	ug/L	20	19.6	98	75-118	
n-Butylbenzene	ug/L	20	18.2	91	80-126	
n-Propylbenzene	ug/L	20	18.3	91	83-116	
Naphthalene	ug/L	20	16.8	84	66-133	
p-lsopropyltoluene	ug/L	20	17.9	89	77-120	
sec-Butylbenzene	ug/L	20	17.8	89	81-120	
Styrene	ug/L	20	18.8	94	84-115	
tert-Butylbenzene	ug/L	20	18.0	90	80-117	
Tetrachloroethene	ug/L	20	19.8	99	80-124	
Toluene	ug/L	20	19.1	95	80-120	
trans-1.2-Dichloroethene	ug/L	20	21.8	109	79-120	
trans-1,3-Dichloropropene	ug/L	20	18.5	92	76-118	
Trichloroethene	ug/L	20	17.5	88	76-122	
Trichlorofluoromethane	ug/L	20	19.0	95	72-120	

Date: 11/11/2011 11:15 AM

REPORT OF LABORATORY ANALYSIS

Page 22 of 26

ace Analytical www.pacelabs.com

QUALITY CONTROL DATA

Project: KS/MO Waste Water Pace Project No.: 60109211

LABORATORY CONTROL SAMPLE: 905183

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualiflers
Vinyl chloride	ug/L	20	17.5	88	57-163	
Xylene (Total)	ug/L	60	53.9	90	75-120	
1,2-Dichloroethane-d4 (S)	%			103	82-119	
4-Bromofluorobenzene (S)	%			104	87-113	
Dibromofluoromethane (S)	%			101	86-112	
Toluene-d8 (S)	%			99	90-110	

Date: 11/11/2011 11:15 AM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 23 of 26

ace Analytical

QUALITY CONTROL DATA

Project: KS/MO Waste V Pace Project No.: 60109211	Water						
QC Batch: WETA/18128		Analysis Method	l: E	EPA 353.2			
QC Batch Method: EPA 353.2		Analysis Descrip	otion: 3	53.2 Nitrate + Ni	trite, Unpres.		
Associated Lab Samples: 601092	11001						
METHOD BLANK: 903260		Matrix: Wa	ater				
Associated Lab Samples: 601092	11001						
Parameter	Units	Blank F Result	Reporting Limit	Analyzed	Qualifier	rs	
Nitrogen, Nitrate	mg/L	ND	0.10	11/02/11 08:3	9	-	
LABORATORY CONTROL SAMPLE	: 903261						R.o.
Parameter	Units	Spike LC Conc. Res		LCS % Rec	% Rec Limits	Qualifiers	
Nitrogen, Nitrate	mg/L	1.6	1.6	97	90-110		
MATRIX SPIKE SAMPLE:	903262						
		60109214001	Spike -	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Nitrogen, Nitrate	mg/L	ND	1.6	1.5	93	90-110	
MATRIX SPIKE SAMPLE:	903263						
		60109214002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Nitrogen, Nitrate	mg/L	ND	1.6	1.6	102	90-110	
SAMPLE DUPLICATE: 903264							
		60109214008	Dup		Max		
Parameter	Units	Result	Result	RPD	RPD	Qualifiers	

Nitrogen, Nitrate mg/L ND ND

Date: 11/11/2011 11:15 AM

REPORT OF LABORATORY ANALYSIS

1

Page 24 of 26

15

ace Analytical www.pacelabs.com

QUALITY CONTROL DATA

, , oje oli	KS/MO Waste Wa 60109211	ater						
QC Batch:	WETA/18129	+	Analysis Meth	hod:	EPA 353.2			
QC Batch Method:	EPA 353.2		Analysis Des	cription:	353.2 Nitrate + N	itrite, Unpres.		
Associated Lab Sam	ples: 60109211	1002, 60109211003	, 60109211004, 60	0109211005, 6	0109211006, 60	109211007		
METHOD BLANK:	903266		Matrix:	Water			-	
Associated Lab Sam	ples: 60109211	002, 60109211003	8, 60109211004, 60 Blank	0109211005, 6 Reporting	60109211006, 60	109211007		
Param	ieter	Units	Result	Llmit	Analyzed	Qualif	iers	
Nitrogen, Nitrate		mg/L	ND	0.1	0 11/02/11 09:0)3		
			9					
LABORATORY CON	ITROL SAMPLE:	903267						
Davar		Units		LCS Result	LCS % Rec	% Rec Limits	Qualifiers	
Param	leter						Quantero	
Nitrogen, Nitrate		mg/L	1.6	1.6	98	90-110		
MATRIX SPIKE SAM	NPLE:	903268						
			60109211007	Spike	MS	MS	% Rec	
Param	neter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Nitrogen, Nitrate		mg/L	0.4	41 1.6	1.9	ę	95 90-110	
SAMPLE DUPLICAT	TE: 903269						1	
Param	neter	Units	60109238001 Result	Dup Result	RPD	Max RPD	Qualifiers	
Nitrogen, Nitrate		mg/L	6,8	6	.8	0	15	

Date: 11/11/2011 11:15 AM

REPORT OF LABORATORY ANALYSIS

Page 25 of 26

'ace Analytica www.pacelabs.com

QUALIFIERS

Project: KS/MO Waste Water Pace Project No.: 60109211

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

BATCH QUALIFIERS

Batch: MSV/41422

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

Date: 11/11/2011 11:15 AM

REPORT OF LABORATORY ANALYSIS

Page 26 of 26

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

62 Soo as l art all 62 (BP3N) 21/2014 2 (DUAT) Pace Project No./ Lab I.D. Samples Intact (N/Y) DRINKING WATER オ 2 SAMPLE CONDITIONS 34694 H 100109211 (N/J) OTHER slooD balea2 フ Custody å, ∞ Received on Received on 1_ -X GROUND WATER H Residual Chlorine (Y/V) 2 KS/mo D. n qmat 4 Page: **REGULATORY AGENCY** RCRA Requested Analysis Filtered (Y/N) TIME arb DATE Signed 10-31-2011 Site Location STATE: NPDES DATE H/Id UST Construction ACCEPTED BY / AFFILIATION 402 HDA LANC 201 200 Gipson I teaT sizylenA TN /A Kamler Other Dellar Methanol Travis Kamler よって Na2S203 n n n n 3 Preservatives r 3 Iredy HOBN Allention: Travis HCI nvoice Information: ^CONH Company Name: Reference: Paca Project 7 Mariager: Paca Profile #: 18:45 POS²H Section C TIME Unpreserved n n n 3 m 3 m ace Quole Address! 5 5 5 6 5 h 5 # OF CONTAINERS 09 08:34 IE-01 SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: 14:02 60 10-31 15:52 60 12:55 60 10.31 12:2760 0.34 9:00 (2) SAMPLE TEMP AT COLLECTION 11-16-01 m241 DATE TIME Vater COMPOSITE END/GRAB 10-31 prodigy. net DATE COLLECTED RELINQUISHED BY / AFFILIATION roject Name: KS/MO Ucste 5 TIME COMPOSITE START WW C 4-19 tom Ram 3.18 WW C 4-20 W C 9-28 DATE W/C6-13 P-8 2 MM Surgnier @ Section B Required Project Information: J (G=GRAB C=COMP) SAMPLE TYPE urchase Order No.2 3 MATRIX CODE (see valid codes to left) Project Number ORIGINAL Matrix Codes MATRIX / CODE Drinking Water Water waste Water during Thealer @ tencorstration can drums holding parge water Product Soll/Solid Oil Wipe Air Tissue Other All samples collected from 10/13 10112 EUBURGE-W-10114 10115 MRP4RGE-W-1011G SUPURGE-W-10117 101 Con Struction 68508 ADDITIONAL COMMENTS Street at sites sampled (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE AGPURGE - W-CNP4RGE - W-HAPURGE-W-BAPURGE - W-Pace Analytical 2011 Year SAMPLE ID Fax: Required Client Information Section A Required Client Information: equested Due Date/TAT: 402 416 7255 N L L ς Company 141 Lincola Section D the Address: 10 5 3 4 5 9 ~ 00 თ ÷ 2 # WEL -

"mportant Note: By signing this form you are accepting Pace's NET 30 day payment lerms and agreeing to late charges of 1.5% per month for any involves not paid within 30 days

SIGNATURE of SAMPLER.

F-ALL-Q-020rev.07, 15-May-2007

Sa	mple Conditi	n Upon Receipt	
Pace Analytical [*] Client Name	: TCW	Canst.	Project # 60169211
	e Shipping Label U	ed? 🗋 Yes 🖄	Proj. Name: 119
Custody Seal on Cooler/Box Present: 🖉 Yes	∐ No Se	Is intact: 🔀 Yes	No L
Packing Material: Subble Wrap Bubble Thermometer Used:	Bags Foam	[None]Dther → Blue None [Samples on ice, cooling process has begun
Cooler Temperature: 4.2 Temperature should be above freezing to 6°C		Comments:	Date and Initials of person examining contents:/025
Chain of Custody present:		/A 1.	
Chain of Custody filled out:	Vares ONo D	A 2.	
Chain of Custody relinquished:	Yes DNo D	A 3.	
Sampler name & signature on COC:	PYes DNo D		
Samples arrived within holding time:	- Constant of the second	A 5.	
Samples arrived within holding time.		A 6. NO3	1
Rush Turn Around Time requested:	a.9.	/A 7.	
Sufficient volume;		/A 8.	
Correct containers used:		/A 9.	
	27es 🗆 No 🗇	1.12	
-Pace containers used:		A 10.	
Containers intact:	4	A 11.	
Unpreserved 5035A soils frozen w/in 48hrs?			
Filtered volume received for dissolved tests	Bres ONO D		
Sample labels match COC:	Water	A 13.	
-Includes date/time/ID/analyses Matrix:			
All containers needing preservation have been checked. All containers needing preservation are found to be in compliance with EPA recommendation.	□Yes □No y2 □Yes □No 92		
Exceptions: VOA, coliform, TOC, O&G, WI-DRO (water), Phenolics	y29Yes □No	Initial when completed Aver	Lot # of added preservative
Trip Blank present:	□Yes ØNO □	/A 15.	
Pace Trip Blank lot # (if purchased):			the state of the s
Headspace in VOA vials (>6mm):	□Yes 河No □	/A 16.	÷1
Project sampled in USDA Regulated Area:	□Yes □No ·Ø	/A 17. List State:	h
Client Notification/ Resolution: Copy Person Contacted: Comments/ Resolution:	y COC to Client?	Y / (N) e/Time:	Field Data Required? Y / N

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

F-KS-C-003-Rev.05, 19February2010

12/19/2011 11:37AM

AGEM OI L

CITY OF SABETHA Ca36 - Travis 805 MAIN PO BOX 187 SABETHA KS 66534 785-284-2158 Receipt No: 2.015320 Dec 19, 2011

TCW Const.

×.

i.

WASTEWATER FUND-MISC Purged Water 502-00.000-4632 MISCELLANEDUS INCOME	50,00
Total:	50,00
Cash Total Applied:	50,00 50,00
Change Tendered:	.00

Supplement 2:

Sample Documentation from TestAmerica Laboratories, Inc., for Groundwater Verification Samples

ANALYTICAL REPORT

Job Number: 200-4827-1 SDG Number: 200-4827

Job Description: Morrill (200-4827)

Contract Number: EP-W-09-044

For: Argonne National Laboratory 9700 South Cass Avenue Building 203 Office B-149 Argonne, IL 60439

Attention: Mr. Clyde Dennis

Kil

Approved for release Kirk F Young Project Manager I 4/22/2011 5:33 PM

Ç

Kirk F Young Project Manager I kirk.young@testamericainc.com 04/27/2011

The test results in this report relate only to sample(s) as received by the laboratory. These test results were derived under a quality system that adheres to the requirements of NELAC. Pursuant to NELAC, this report may not be produced in full without written approval from the laboratory

TestAmerica Laboratories, Inc. TestAmerica Burlington 30 Community Drive, Suite 11, South Burlington, VT 05403 Tel (802) 660-1990 Fax (802) 660-1919 www.testamericainc.com

04/27/2011

Table of Contents

Cover Title Page	1
Report Narrative	4
Case Narrative	4
Qualifier Definition	6
External Chain of Custody	7
Internal Chain of Custody	8
Shipping Documentation	10
Airbills (if Applicable)	11
Sample Receipt and Log In Check List	12
Methodology Review	14
QC Summary - SOM01.2 Volatiles-Trace	15
QC Summary - SOM01.2 Volatiles-Trace	15
Deuterated Monitoring Compound Summary	15
Method Blank	17
GC/MS Instrument Performance Check	18
Internal Standard Area and RT Summary	20
Sample Data - SOM01.2 Volatiles-Trace	21
Sample Data - SOM01.2 Volatiles-Trace	21
MRMW1D-W-30039	21
MRMW4S-W-30042	24
MRMW6S-W-30044	27
MRQCTB-W-30061	30
MRRILLINGER-W-30051	33
Standards - SOM01.2 Volatiles-Trace	36
Standards - SOM01.2 Volatiles-Trace	36
Initial Calibration Data	36

Table of Contents

CCV Data, including closing CCV	39
Raw Qc Data - SOM01.2 Volatiles-Trace	45
Raw Qc Data - SOM01.2 Volatiles-Trace	45
Raw Qc Data - SOM01.2 Volatiles-Trace	45
Blank Data	45

CASE NARRATIVE

Client: Argonne National Laboratory

Project: Morrill (200-4827)

Report Number: 200-4827-1

Enclosed is the data set for the referenced project work. With the exceptions noted as flags or footnotes, standard analytical protocols were followed in performing the analytical work and the applied control limits were met.

Calculations were performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

Receipt

The samples were received on 04/22/2011. Documentation of the condition of the samples at the time of their receipt and any exception to the laboratory's Sample Acceptance Policy is documented in the Sample Handling section of this submittal. The samples, as received, were not acid preserved. On that basis, the laboratory did provide for the analytical work to be performed within seven days of sample collection.

SOM01.2 Volatile Organics (Trace Level Water)

A storage blank was prepared for volatile organics analysis, and stored in association with the storage of the samples. That storage blank, identified as VHBLK01, was carried through the holding period with the samples, and analyzed.

Each sample was analyzed without a dilution. Each of the analyses associated with the sample set exhibited an acceptable internal standard performance. There was an acceptable recovery of each deuterated monitoring compound (DMC) in the analysis of the method blank associated with the analytical work, and in the analysis of the storage blank associated with the sample set. The analysis of the samples in this sample set did meet the technical acceptance criteria specific to DMC recoveries, although not all DMC recoveries were within the control range in each analysis. The technical acceptance criteria does provide for the recovery of up to three DMCs to fall outside of the control range in the analysis of field samples. Matrix spike and matrix spike duplicate analyses were not performed on samples in this sample set. Trace concentrations of chloromethane, acetone, carbon disulfide, methylene chloride, trichloroethene, toluene. 1,2,4-trichlorobenzene, and 1,2,3-trichlorobenzene were identified in the analysis of the method blank associated with the analytical work. The concentration of each compound in that analysis was below the established reporting limit, and the analysis did meet the technical acceptance criteria for a compliant method blank analysis. Trace concentrations of acetone and carbon disulfide were identified in the analysis of the storage blank associated with the sample set. The concentration of each compound in that analysis was below the established reporting limit, and the analysis did meet the technical acceptance criteria for a compliant storage blank analysis. Present in the method blank and storage blank analyses was a non-target constituent that represents a compound that is related to the DMC formulation. The fact that the presence of this compound is not within the laboratory's control is at issue. The derived results for that compound have been qualified with an "X" qualifier to reflect the source of the contamination.

The responses for each of the target analytes met the relative standard deviation criterion in the initial calibration. The response for each target analyte met the percent difference criterion in the opening/continuing calibration check acquisition. The response for each target analyte met the 50.0 percent difference criterion in the closing calibration check acquisition.

The primary quantitation mass for methylcyclohexane that is specified in the Statement of Work is mass 83. The laboratory did identify a contribution to mass 83 from 1,2-dichloropropane- d_6 , one of the deuterated monitoring compounds (DMCs). The laboratory did change the primary quantitation mass assignment to mass 55 for the quantification of methylcyclohexane.

Manual integration was employed in deriving certain of the analytical results. The values that have been derived from manual integration are qualified on the quantitation reports. Extracted ion current profiles for each manual integration are included in the data package, and further documented at the end of this submittal.

DATA REPORTING QUALIFIERS

Client: Argonne National Laboratory

Job Number: 200-4827-1 Sdg Number: 200-4827

Lab Section	Qualifier	Description
GC/MS VOA		
	U	Analyzed for but not detected.
	J	Indicates an Estimated Value for TICs
	J	Indicates an estimated value.
	X	See case narrative notes for explanation of the 'X' flag
	¥.	Surrogate exceeds the control limit
	В	The analyte was found in an associated blank, as well as in the sample.
	Ν	This flag indicates the presumptive evidence of a compound.

RECEIVING LAB:	ater .	+ America	ARC	SONNE NA	ARGONNE NATIONAL LABORATORY CHAIN OF CUISTONY DECODD*	RATORY	Shipping Container No.	iner No.
PROJECT/SITE:	1	1.		D NICH	ANALVOIC		ANL Field Contact (Name &	Temporary P
SAMPLER(S) (Signature)	ignature)		Number		ANALYSIS		Dave Swighter	804
DATE OF COLLECTION	CTION	SAMPLE ID NUMBER(S)	of con- tainers	200				REMARKS
April 201	1102	MRMW1D-W-30039	3	3			2 X 40ml	
pr:1 20 ;2	1100	MRMW6S-W-30044	8	2				
April 21 .	1100	MRMW45 - W- 3004.	10	14				
	1100			2				
pr:1 21,0	2011	MRQCTB - W - 30061	R	3			20400	it for voc
1			4	7	-		/	1
			1					
1								
	1			10				
1	1				2	/		
-	1				/			
			~					
Helinquished by (Signature)	ignature)	Time Rec	eived by (Signature)	jnature)	Relinquished by (Signature)	y (Signature)	Date	Time Received by (Signature)
	1	CH:11 11-17-1	cc/r/	4/22/11 1030				
Relinquished by (Signature)	ignature)	Date Time Rec	eived for Laboratory by	soratory by	Date	Time	Remarks	-
z		FOR LAB USE ONLY		*A samp	*A sample is under custodv if:	tv if:		
Cu Cu	stody seal	Custody seal was intact when shipment received.	The madelline	1. It is in	1. It is in your possession; or,	or,		
Sa	mple cont.	Sample containers were intact when received.		2. It is in	your view, after h	vaving been in	2. It is in your view, after having been in your possession; or,	٩٢,
	ipment wa	Shipment was at required temperature when received	ived.	3. It was	3. It was in your possession and you locked it up; or,	on and you loo	sked it up; or,	
RS S	mple labe			4. It is in	4. It is in a designated secure area.	ure area.		
Argonne	e National	Argonne National Laboratory. Applied Geosciences &	Environman	tal Mat Gro	in Environmental	I Bocosch Di	Vicion 0700 Con	Environmental Mot. Group. Environmental Research Division 9700 S. Case Avenue America II 60430

			and the second se						
FLOH- 00Z :ni-gol	ちなく	Method: S	SOM EN.	2-Vol	10				
Client: Arcon	Arrane when he have	LAB IDs:	241-482	1-5	10 20	200-U527	7-5	7	
>							100		and the second sec
Samples assoc	Samples associated with this Log-in were placed into	re placed into st	storage on	1/22/4	k	373	NA N	M	
Storage Location:		e takelt	to	Specify sto	te) storage local	(Time*) tion (refrigerate	(Uete) (Time*) Sample Custodian Signature Specify storage location (refrigerator, freezer ID or lab location) for original sample containers	Sample Custodian Signature on) for original sample containe.	mature milainers
Storage Condition:	tion: Refrigeration	Frozen	i	Ambient	1				
Sample Type	e Lab ID(s)	Transfer	Transfer	Pur	Purpose of Transfer	hofer	Relinculshad	Doceiturd	Channel and
Original Prep	ed ¹	Date -	Time ²	Prep	Analysis	Storage	By:	By:	Prepared Sample
7	4627-1-5	4 4	0130	7			1 TH	The ,	Cineer
7		4/25/~	0 200			7	2 11	L AL	three
2	11	4 25/11	04 01		1		1 A		Sinnon A
1	11	4125 hi	0(10)			7	T WL		
-									1.1.1
						.*:			

04/27/2011

TestAmerica

Log-in: $Z(0 - \sqrt{C2} - 1)$ Method: Client: Arcwre Wrh. his Log-in were placed into Samples associated with this Log-in were placed into Storage Location: Von $AAAAAAAA$ Storage Condition: Refrigeration Frozer Internal Transfer Information Sample Type Lab 10(s) Date Original Prepared $\sqrt{2}$ $\sqrt{13}$ $\sqrt{12}$ $\sqrt{13}$ $\sqrt{12}$			7-10 112/11	10				
Client: Arcande Publicand Laus Samples associated with this Log-in were p Storage Location: VOATAGE Storage Location: VOATAGE Storage Condition: Neefigeration aternal Transfer Information Sample Type Lab ID(s) Original Prepared ¹ 4827 - 6 // 1			1 23					
Samples associated with this Log-in were p Storage Location: Vontrole Storage Condition: Refrigeration Internal Transfer Information Sample Type Lab ID(s) Original Prepared 4/27-6			12				0	
d with			22			100	1	
	Ý.	Transfer Time2	(Dar	-	323	JAN &	li	
		Transfer Time ² M 322	Specify s	e) storage local	(Time ²) tion (refrigerato	(Date) (Time ²) Sample Custodian Signature Specify storage location (refrigerator, freezer ID or lab location) for original sample containers	Sample Custodian Signature	nature Intainers
Mile Type Lab (D(s)) Original Prepared ¹ V \neg V ''		Iransfer Time ² 必えン	Ambient					
Prepared ¹	2 2 2 4	Time ² W 3,0	Purt	Purpose of Transfer	nsfer	Relingulshed	Received	Storage Location
<pre></pre>	2 2 2 4	08 7.0	Prep	Analysis	Storage	By:	By:	Prepared Sample
> > > > > > > > > > > > > > > > > > > >	4/25/11 4/25/11 4/25/11		7			14 -	TIA	Sarcen
= < _ /	4 25 m	1050			7	- Al-	P L	Stree
2		0401		7		1 A	C RI	Awe Lize
		10501			1	5 1	111 1	
					2		20	abouts
						and the second		
						-		
		T						

TestAmerica

Shipping and Receiving Documents

		fede	X.COM 1800 GoFe	edEx 1800 463 3339		8		
FedEx Retrieval Copy	Wide * a mail for using the second Pack ages up to 150 lbs 05 Feel 5X, Standard Overmight 06 Feel 5, Free 2, Particular Second 2, Pack ages up to 150 lbs 05 Wine Second 2, Pack ages up to 150 lbs Pack ages up to 150 lbs Pack ages up to 150 lbs 05 Wine Second 2, Pack ages up to 150 lbs Pack ages up to 150 lbs Pack ages up to 150 lbs 20 Pack Explores Sever Pack ages up to 150 lbs Pack ages up to 150 lbs 20 Pack Explores Sever Pack ages up to 150 lbs Pack ages up to 150 lbs	Freds. (Der Fringer Society IA. Seen an American Society IA. Ford Society American A. Ford Society and A.	Folds 02 Feder Pakes and Pakes 03 Feder 04 Feder 01 00 000000 Federations of the Box 04 Federation 01 000000 Federations Special Handling and Delivery Signature Options SATURDAY DELIVERY	10 Brits Signature 10 Brits Signature and the screen account	Rentined and Man Construction Market and All Third Party 4 Constitution 5 Cash/Check			••
0200	Aa Express Package Service 01 7 84 Express Package Service separation of the service of the service separation of the service of the service of the service separation of the service of the	70 feuße (Day Freight Managementen viewenden viewenden Managementen viewenden viewenden Managementen viewenden Bud states daring viewenden Bud states daring viewenden Federation viewenden Fed	06 Podex 02 Fodex Part Emekopet Contractioners 6 Special Handling and Delivery 03 SATURDAY DELIVERY	No Suprature Required 10 Burget Sign excession of a monitorial 10 Burget Sign excession of a monitorial 10 Burget Sign Does this shipment contain dangerous goods? 0 Burget Sign Mood 1 Signer Scharter for the sign Burget Sign Mood 1 Signer Scharter for the signer	7 Payment Bill to: Series 10 Series 11 Series 11 Series 12 Recipient Total Pacinges Total Pacinges	"Qual standary of termes" in Statistical (environment of the cale of the fact One Dave 2010 - Part (1920) - 0.154 - 2010 fracts - PUNNTED IM U.S.A.		
5 9648 1723	13520	E	4.1 680 120 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	VabblesVV.0.094 ArbitesV0.0.094 ArbitesV0.0.004 ArbitesV0.004 ArbitesV0.0.004 ArbitesV0.004 ArbitesV0.004 Arbi	C 6123 4 7 48			
2E78 warn	Sendar's FedEx Sendar's Fill () L () L () L () Account Number 1 () () () () () () () () () () () () ()	P J e	Q . 5 . 5			8735 9648 1723	i	ч т
Fed 로켓. US Airbi	Date Date Serider's T. c. 5 Name	Address, C.C.C.H.	2 Your Internal Billing Reference 3 To Rectifients 2.4 None	Company Company Althress Pre-summer GPG Jung-of PD 26 roles Pre-summer GPG Jung-of PD 26 roles Pre-summer and Pre-summer and Pre-sum Understand				
1	Warring	4 1'800'463'3333		moo,xebet _{bade}	of 50			04/:

27/2011

9

١

Login Sample Receipt Checklist

Client: Argonne National Laboratory

Login Number: 4827 List Number: 1 Creator: Marion, Greg T

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	True	NO SEAL NUMBERS
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded;	True	2.9 °C, IR GUN ID 96/CF=0
COC is present.	Тгие	
COC is filled out in ink and legible.	Тгле	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	Sample volumes received unpreserved.
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	6
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	Тгие	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	N/A	
Residual Chlorine Checked.	N/A	Check done at department level as required.

Job Number: 200-4827-1 SDG Number: 200-4827

List Source: TestAmerica Burlington

05/05/10 rev 2.0

Sample Login Acknowledgement

Job 200-4827-1

Client Job Description	on: Morrill (200-4827)	Report 1	To: /	Argonne Nationa	al Laboratory	
Purchase Order #:	8E-00302			Jorge Alvarado		
Work Order #:	8E-00302			700 South Cas	s Avenue	
Project Manager:	Kirk F Young			Building 203		
Job Due Date:	5/6/2011		-	Office B-149 Argonne, IL 604	39	
Job TAT:	14 Days		,			
Max Deliverable Leve	el: IV	BIII To:	A	Argonne Nationa	al Laboratory	
			A	Accounts Payab	le	
Earliest Deliverable I	Due: 5/6/2011		g E	Chief Financial ()700 S. Cass Av Building 201 Argonne, IL 6043	ve.	
Login 200-4827						
Sample Receipt:	4/22/2011 10:30:00 AM	Number of Coolers:	1			
Method of Delivery:	FedEx Priority Overnight	Cooler Temperature(s)) (C°): 2	2.9;		
Lab Sample #	Client Sample ID	Date Sampled	Matrix	<		
Method	Method Description / Work Location			Rpt Basis	Dry / Wet **	
200-4827-1	MRMW1D-W-30039	4/20/2011 12:00:00 AM	Water			
SOM01.2_Vol_Tr	SOM01.2 Trace Volatile Organics / In-Lab			Total	Wet	
200-4827-2	MRMW6S-W-30044	4/20/2011 12:00:00 AM	Water			
SOM01.2_Vol_Tr	SOM01.2 Trace Volatile Organics / In-Lab			Total	Wet	
200-4827-3	MRMW4S-W-30042	4/21/2011 12:00:00 AM	Water			
SOM01.2_Vol_Tr	SOM01;2 Trace Volatile Organics / In-Lab			Total	Wet	
200-4827-4	IRRILLINGER-W-30051	4/21/2011 12:00:00 AM	Water			
SOM01.2_Vol_Tr	SOM01.2 Trace Volatile Organics / In-Lab			Total	Wet	
200-4827-5	ARQCTB-W-30061	4/21/2011 12:00:00 AM	Water			
SOM01.2_Vol_Tr	SOM01.2 Trace Volatile Organics / In-Lab			Total	Wet	
200-4827-6	/HBLK01	4/22/2011 12:45:00 PM	Water			
SOM01.2_Vol_Tr	SOM01.2 Trace Volatile Organics / In-Lab			Total	Wet	

METHODOLOGY SUMMARY

Laboratory: TestAmerica Laboratories

Project No:

Location: South Burlington, Vermont

SDG No: 200-4827

VOA

Volatile Organics Trace - USEPA CLP SOM01.2

2A - FORM II VOA-1 WATER VOLATILE DEUTERATED MONITORING COMPOUND RECOVERY

Lab Name: TESTAMERICA BURLINGTON Contract: 8E-00302

Lab Code: STLV Case No.: MORRIL Mod. Ref No.: SDG No.: 200-4827

Level: (TRACE or LOW) TRACE

	EPA SAMPLE NO.	VDMC1 (VCL) #	VDMC2 (CLA) #	VDMC3 (DCE) #	VDMC4 (BUT) #	VDMC5 (CLF) #	VDMC6 (DCA) #	VDMC7 (BEN) #
1	VBLKJZ	90	90	75	105	102	114	102
2	MRMW1D-W-30039	85	84	69	153	99	109	97
3	MRMW6S-W-30044	79	81.	66	153	92	107	91
4	MRMW4S-W-30042	79	82	69	150	96	107	93
5	MRRILLINGER-W- 30051	81	82	67	166 *	95	109	93
6	MRQCTB-W-30061	80	79	68	156 *	91	103	91
7	VHBLK01	76	79	66	85	90	100	91

			QC LIMITS
VDMC1	(VCI)	= Vinyl Chloride-d3	(65-131)
VDMC2	(CLA)	= Chloroethane-d5	(71-131)
VDMC3	(DCE)	= 1,1-Dichloroethene-d2	(55-104)
VDMC4	(BUT)	= 2-Butanone-d5	(49-155)
VDMC5	(CLF)	= Chloroform-d	(78-121)
VDMC6	(DCA)	= 1,2-Dichloroethane-d4	(78-129)
VDMC7	(BEN)	= Benzene-d6	(77-124)

Column to be used to flag recovery values

* Values outside of contract required QC limits

2B - FORM II VOA-2 WATER VOLATILE DEUTERATED MONITORING COMPOUND RECOVERY

Lab Name: TESTAMERICA BURLINGTON

Contract: 8E-00302

Lab Code: STLV Case No.: MORRIL Mod. Ref No.: SDG No.: 200-4827

Level: (TRACE or LOW) TRACE

EPA SAMPLE NO.	VDMC8 (DPA) #	VDMC9 (TOL) #	VDMC10 (TDP) #	VDMC11 (HEX) #	VDMC12 (TCA) #	VDMC13 (DCZ) #	OTHER	TOT OUT
VBLKJZ	92	106	110	111	104	114	Comment of the second se	0
MRMW1D-W-30039	87	101	109	182 *	104	108		1
MRMW6S-W-30044	85	95	103	173 *	100	100		1
MRMW4S-W-30042	84	96	103	171 *	98	106		1
MRRILLINGER-W- 30051	85	96	107	184 *	99	105		2
MRQCTB-W-30061	82	95	99	178 *	93	101	108	2
VHBLK01	81	96	100	98	91	100		0

			QC LIMITS
VDMC8	(DPA) =	≓ 1,2-Dichloropropane-d6	(79-124)
VDMC9	(TOL) =	Toluene-d8	(77-121)
VDMC10	(TDP) =	<pre>trans-1,3-Dichloropropene-d4</pre>	(73-121)
VDMC11	(HEX) =	= 2-Hexanone-d5	(28-135)
VDMC12	(TCA) =	1,1,2,2-Tetrachloroethane-d2	(73-125)
VDMC13	(DCZ) 🖛	1,2-Dichlorobenzene-d4	(80-131)

Column to be used to flag recovery values

* Values outside of contract required QC limits

Report 1,4-Dioxane-d8 for Low-Medium VOA analysis only

Page 1 of 1

4A - FORM IV VOA VOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

VBLKJZ

 Lab Name:
 TESTAMERICA BURLINGTON
 Contract:
 8E-00302

 Lab Code:
 STLV
 Case No.:
 MORRIL Mod. Ref No.:
 SDG No.:
 200-4827

 Lab File ID:
 JCUH03.D
 Lab Sample ID:
 MB 200-16989/3

 Instrument ID:
 J.i

 Matrix:
 (SOIL/SED/WATER)
 Water
 Date Analyzed:
 04/25/2011

 Level:
 (TRACE or LOW/MED)
 TRACE
 Time Analyzed:
 1013

 GC Column:
 DB-624
 ID:
 0.20
 (mm)
 Heated Purge:
 (Y/N)
 N

 EPA
 LAB
 LAB
 TIME

 SAMPLE NO.
 SAMPLE ID
 FILE ID
 ANALYZED

	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	MRMW1D-W-300 39	200-4827-1	JCUH04.D	1052
02	MRMW6S-W-300 44	200-4827-2	JCUH05.D	1117
)3	MRMW4S-W-300 42	200-4827-3	JCUH06.D	1142
)4	MRRILLINGER- W-30051	200-4827-4	JCUH07.D	1207
)5	MRQCTB-W-300 61	200-4827-5	JCUH08.D	1233
6	VHBLK01	200-4827-6	JCUH09.D	1258

COMMENTS:

5A - FORM V VOA VOLATILE ORGANICS INSTRUMENT PERFORMANCE CHECK BROMOFILUOROBENZENE (BFB)

EPA SAMPLE NO.

BFBJR

Lab Name:	TESTAM	ERICA BUI	RLING	FON			Con	tract:	8E-	00302		
Lab Code:	STLV	Case	No.:	MORRIL	Mod.	Ref	No.:			SDG	No.:	200-4827
Lab File	Id: JCU	01,D					BFB	Inject	ion	Date	03	/24/2011
Instrument	t Id: J	.i					BFB	Inject	ion	Time	13:	24
GC Column	: DB-624	1	ID:	0.20	(mm)						

m/e ION ABUNDANCE CRITERIA		% RELATIVE ABUNDANCE				
50	15.0 - 40.0% of mass 95	17.7				
75	30.0 - 80.0% of mass 95	52.9				
95	Base peak, 100% relative abundance	100				
96	5.0 - 9.0% of mass 95	7.3				
173	Less than 2.0% of mass 174	0.4 (0.5)1				
174	50.0 - 120% of mass 95	81.4				
175	5.0 - 9.0% of mass 174	7.0 (8.6)1				
176	95.0 - 101% of mass 174	81.7 (100)1				
177	5.0 - 9.0% of mass 176	4.6 (5.7)2				

1 - Value is %mass 174 2 - Value is %mass 176

	EPA SAMPLE NO.	LAB SAMFLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
01	VSTD0.5JR	IC 200-15618/3	JCU03.D	03/24/2011	1409
02	VSTD001JR	IC 200-1561874	JCU04.D	03/24/2011	1433
03	VSTD005JR	ICIS 200-15618/5	JCU05.D	03/24/2011	1459
04	VSTD010JR	IC 200-15618/6	JCU06.D	03/24/2011	1524
05	VSTD020JR	IC 200-15618/7	JCU07.D	03/24/2011	1549

5A - FORM V VOA VOLATILE ORGANICS INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

EPA SAMPLE NO.

BFBJZ

DIDU

Lab	Name:	TESTAMERICA BURLINGTON						Cont	tract:	8E-	E-00302		
Lab	Code:	STLV	Case N	10.:	MORRIL	Mod,	Ref	No.;			SDG N	10.:	200-4827
Lab	File I	d: JCUH01						BFB	Inject:	ion	Date:	04	/25/2011
Inst	rument	Id: J.i						BFB	Injecti	ion	Timer	09	28
GC (column:	DB-624		ID:	0,20		(mm)						

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50	15.0 - 40.0% of mass 95	16.6
75	30.0 - 80.0% of mass 95	44.6
95	Base peak, 100% relative abundance	100
96	5.0 - 9.0% of mass 95	6.9
173	Less than 2,0% of mass 174	0.3 (0.4)1
174	50.0 - 120% of mass 95	92.3
175	5.0 - 9.0% of mass 174	7.5 (8.1))
176	95.0 - 101% of mass 174	89.1 (96.6)1
177	5.0 - 9.0% of mass 176	6.4 (7.1)2

1 -	Value	js	§mass	174		2		Value	is	8mass	176
-----	-------	----	-------	-----	--	---	--	-------	----	-------	-----

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
11	VSTD005JZ	CCVIS 200-16989/2	JCUH02,D	04/25/2011	0948
2	VBLKJZ	MB 200-16989/3	JCUH03.D	04/25/2011	1013
3	MRMW1D-W-3 0039	200-4827-1	JCUH04.D	04/25/2011	1052
4	MRMW6S-W-3 0044	200-4827-2	JCUH05.D	04/25/2011	1117
5	MRMW4S-W-3 0042	200-4827-3	JCUH06.D	04/25/2011	1142
5	MRRILLINGE R-W-30051	200-4827-4	JCUH07.D	04/25/2011	1207
7	MRQCTB-W-3 0061	200-4827-5	JCUH08.D	04/25/2011	1233
3	VHBLK01	200-4827-6	JCUH09.D	04/25/2011	1258
9	VSTD005ZJ	CCVC 200-16989/14	JCUH14.D	04/25/2011	1507

8A - FORM VIII VOA VOLATILE INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name:	TESTAMER	ICA BURLINGTON	Contract: 8E-0	00302		
Lab Code:	STLV	Case No.: MORRIL	Mod. Ref No.:	SDG No.:	200-482	27
GC Column:	DB-624	ID: 0,20	(mm) Init, Calib. Date(s	5): 03/	24/2011	03/24/2011
EPA Sample	No. (VSTD	#####): VSTD005JZ	Date Analyzed:	04/25/	2011	
Lab File I	D (Standa	rd); JCUH02.D	Time Analyzed:	0948		
Instrument	ID: J.i		Heated Purge:	(Y/N) N	5	
	-		- Housed Farger			

	IS1 (CBZ) AREA #	RT #	IS2 (DFB) AREA #	RT #	IS3 (DCB) AREA #	RT #
12 HOUR STD	866768	8.93	1088686	5.58	411838	11.76
UPPER LIMIT	1213475	9.26	1524160	5.91	576573	12.09
LOWER LIMIT	520061	8,60	653212	5.25	247103	11.43
EPA SAMPLE NO.						
VBLKJZ	739387	8.93	913933	5.58	343521	11.76
MRMW1D-W-30039	726089	8.93	909273	5.57	334524	11.76
MRMW65-W-30044	737867	8.93	901714	5.58	345727	11.76
MRMW4S-W-30042	742937	8.93	921794	5.58	336699	11.76
MRRILLINGER-W- 30051	682204	8,93	849803	5.58	315755	11.76
MRQCTB-W-30061	728788	8.93	895799	5.58	338760	11.76
VHBLK01	713914	8.93	909313	5,58	334563	11.76

IS1 (CBZ) = Chlorobenzene-d5
IS2 (DFB) = 1,4-Difluorobenzene
IS3 (DCB) = 1,4-Dichlorobenzene-d4

AREA UPPER LIMIT = 140% (Trace Volatiles) of internal standard area AREA LOWER LIMIT = 60% (Trace Volatiles) of internal standard area RT UPPER LIMIT = + 0.33 (Trace Volatiles) minutes of internal standard RT RT LOWER LIMIT = - 0.33 (Trace Volatiles) minutes of internal standard RT

Column used to flag values outside contract required QC limits with an asterisk.

Page 1 of 1

SOM01.2 (4/2007) 04/27/2011

Page 20 of 50

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

MRMW1D-W-30039

Lab Name: TESTAMERICA BURI	LINGTON	Contract:	8E-00302		
Lab Code: STLV Case N	o.: MORRIL Mod.	Ref No.:	SDG No.: 200-4827		
Matrix: (SOIL/SED/WATER)	Water	Lab Sample	ID: 200-4827-1		
Sample wt/vol: 25.0	(g/mL) mL	Lab File ID	: JCUH04.D		
Level: (TRACE/LOW/MED) TF	RACE	Date Receiv	ed: - 04/22/2011		
% Moisture: not dec.		Date Analyz	ed: 04/25/2011		
GC Column: DB-624	ID: 0.20 (m	m) Dilution Fa	ctor: 1.0		
Soil Extract Volume:	(ບ)	L) Soil Aliquo	t Volume: (uL)		
Purge Volume: 25.0	lm)	L)			

CAS NO,	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
75-71-8	Dichlorodifluoromethane	0.50	υ
74-87-3	Chloromethane	0.50	U
75-01-4	Vinyl chloride	0.50	U
74-83-9	Bromomethane	0.50	U
75-00-3	Chloroethane	0.50	U
75-69-4	Trichlorofluoromethane	0.50	U
75-35-4	1,1-Dichloroethene	0.50	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	Û
67-64-1	Acetone	0.60	JB
75-15-0	Carbon disulfide	0.16	JB
79-20-9	Methyl acetate	0.50	U
75-09-2	Methylene Chloride	0.50	U
156-60-5	trans-1,2-Dichloroethene	0.039	J
1634-04-4	Methyl tert-butyl ether	0.50	U
75-34-3	1,1-Dichloroethane	0.50	U
156-59-2	cis-1,2-Dichloroethene	0.50	U
78-93-3	2-Butanone	5.0	O
74-97-5	Bromochloromethane	0.50	U
67-66-3	Chloroform	0.50	U
71-55-6	1,1,1-Trichloroethane	0.50	U
110-82-7	Cyclohexane	0.50	U
56-23-5	Carbon tetrachloride	0.022	J
71-43-2	Benzene	0.50	U
107-06-2	1,2-Dichloroethane	0.50	U

Report 1,4-Dioxane for Low-Medium VOA analysis only

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

MRMW1D-W-30039

Lab Name: TESTAMERICA BURL	INGTON	_	Contract: 8E-0	8E-00302		
Lab Code: STLV Case No	D.: MORRIL MO	od. Ref No	• 1 S	DG No.: 200-4827		
Matrix: (SOIL/SED/WATER)	Water		Lab Sample ID:	200-4827-1		
Sample wt/vol: 25.0	(g/mL) mL	_	Lab File ID: J	CUH04.U		
Level: (TRACE/LOW/MED) TR	ACE	_	Date Received:	04/22/2011		
<pre>% Moisture: not dec,</pre>		2	Date Analyzed:	04/25/2011		
GC Column: DB-624	ID: 0.20	(mm)	Dilution Factor	: 1.0		
Soil Extract Volume:	استرجارت ورويات والمرتجع والمترك	(uL)	Soil Aliquot Vo	lume: (uL)		
Purge Volume: 25.0		(mL)				

CAS NO. COMPOUND		CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
79-01-6	Trichloroethene	0.50	U
108-87-2	Methylcyclohexane	0.50	U
78-87-5	1,2-Dichloropropane	0.50	υ
75-27-4	Bromodichloromethane	0.50	U
10061-01-5	cis-1,3-Dichloropropene	0.50	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	0.021	JB
10061-02-6	trans-1,3-Dichloropropene	0.50	U
79-00-5	1,1,2-Trichloroethane	0.50	U
127-18-4	Tetrachloroethene	0.50	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	0,50	U
106-93-4	1,2-Dibromoethane	0.50	U
108-90-7	Chlorobenzene	0.50	U
100-41-4	Ethylbenzene	0.013	J
95-47-6	o-Xylene	0.50	U
179601-23-1	m,p-Xylene	0.052	J
100-42-5	Styrene	0.50	U
75-25-2	Bromoform	0.50	U
98-82-8	Isopropylbenzene	0.50	U
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U
541-73-1	1,3-Dichlorobenzene	0.50	U
106-46-7	1,4-Dichlorobenzene	0.50	υ
95-50-1	1,2-Dichlorobenzene	0.50	U
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	υ
120-82-1	1,2,4-Trichlorobenzene	0.50	U
87-61-6	1,2,3-Trichlorobenzene	0.50	U

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

MRMW1D-W-30039

Lab Name: TESTAME	RICA BURLINGTON	Contract: 81	S-00302
Lab Code: STLV	Case No.: MORRIL Mod. Ref No	0.:	SDG No.: 200-4827
Matrix: (SOIL/SED/	WATER) Water	Lab Sample I	D: 200-4827-1
Sample wt/vol: 25	5.0 (g/mL) mL	Lab File ID;	JCUH04.D
Level: (TRACE or L	OW/MED) TRACE	Date Receive	d: 04/22/2011
% Moisture: not de	C.	Date Analyze	d: 04/25/2011
GC Column: DB-624	ID: 0.20 (mm)	Dilution Fac	tor: 1.0
Soil Extract Volum	ne; (uL)	Soil Aliquot	Volume: (uL)
CONCENTRATION UNIT	S:(ug/L or ug/kg) ug/L	Purge Volume	: 25.0 (mL)
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.
Un	known	6.90	3.3 B X J

	52-2020 01152-0227-020702				· #4-
01		Unknown	6.90	3.3	вхЈ
02	541-05-9	Cyclotrisiloxane, hexamethyl-	7.85	1.4	BJN
03		Unknown siloxane derivative	10.69	1.6	ВJ
04	E966796 1	Total Alkanes	N/A		

1 EPA-designated Registry Number.

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

MRMW45-W-30042

Lab Name:	TESTAMERICA BUR	LINGTON		Contract: 8E-0	00302
Lab Code:	STLV Case 1	No.: MORRIL Ma	od. Ref No		SDG No.: 200-4827
Matrix: (SC	DIL/SED/WATER)	Water		Lab Sample ID:	200-4827-3
Sample wt/v	701: <u>25.0</u>	(g/mL) mL		Lab File ID:	JCUH06.D
Level: (TRA	ACE/LOW/MED) T	RACE	2	Date Received:	04/22/2011
% Moisture:	not dec.	We Heathering		Date Analyzed:	04/25/2011
GC Column:	DB-624	ID: 0,20	(mm)	Dilution Facto	r: 1.0
Soil Extrac	t Volume:		(uL)	Soil Aliquot Vo	olume: (uL)
Purge Volum	ie: 25.0		(ml.)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
75-71-8	Dichlorodifluoromethane	0.50	U
74-87-3	Chloromethane	0.50	U
75-01-4	Vinyl chloride	0.50	υ
74-83-9	Bromomethane	0.50	U
75-00-3	Chloroethane	0.50	U
75-69-4	Trichlorofluoromethane	0.50	U
75-35-4	1,1-Dichloroethene	0.50	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	U
67-64-1	Acetone	1.1	JB
75-15-0	Carbon disulfide	0.083	JB
79-20-9	Methyl acetate	0.50	U
75-09-2	Methylene Chloride	0.50	U
156-60-5	trans-1,2-Dichloroethene	0.50	U
1.634-04-4	Methyl tert-butyl ether	0.50	U
75-34-3	1,1-Dichloroethane	0.50	Ŭ
156-59-2	cis-1,2-Dichloroethene	0.50	U
78-93-3	2-Butanone	5.0	υ
74-97-5	Bromochleromethane	0.50	U
67-66-3	Chloroform	0.50	υ
71-55-6	1,1,1-Trichloroethane	0.50	U
110-82-7	Cyclohexane	0.50	U
56-23-5	Carbon tetrachloride	0.15	J
71-43-2	Benzene	0.50	U
107-06-2	1,2-Dichloroethane	0.50	U

Report 1,4-Dioxane for Low-Medium VOA analysis only

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EFA SAMPLE NO.

MRMW4S-W-30042

Lab Name: TESTA	MERICA BUR	LINGTON	Ş			Cont	ract: 8E	-00302	
Lab Code: STLV	Case N	No.: M	ORRIL	Mod.	Ref	No.:		SDG No.:	200-4827
Matrix: (SOIL/SE	ED/WATER)	Water				Lab	Sample II	200-482	27-3
Sample wt/vol:	25.0	(g/mL)	mL			Lab	File ID:	JCUH06.D	
Level: (TRACE/LC	W/MED) TI	RACE				Daie	Received	04/22/2	2011
<pre>% Moisture: not</pre>	dec.			_		Date	Analyzed	04/25/2	2011
GC Column: DB-6	24	ID:	0.20	(1011	1)	Dilu	tion Fact	or: 1.0	
Soil Extract Vol	ume 🏗			(uL	.)	Soil	Aliquot:	Volume;	(uL)
Purge Volume: 2	.0		_	(ml.	.)				

CAS NO. COMPOUND		CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q	
79-01-6	Trichloroethene	0.50	U	
108-87-2	Methylcyclohexane	0.50	U	
78-87-5	1,2-Dichloropropane	0.50	υ	
75-27-4	Bromodichloromethane	0.50	U	
10061-01-5	cis-1,3-Dichloropropene	0.50	U	
108-10-1	4-Methyl-2-pentanone	5.0	U	
108-88-3	Toluene	0.029	JВ	
10061-02-6	trans-1,3-Dichloropropene	0.50	Ū	
79-00-5	1,1,2-Trichloroethane	0.50	U	
127-18-4	Tetrachloroethene	0.50	ប	
591-78-6	2-Hexanone	5.0	U	
124-48-1	Dibromochloromethane	0.50		
106-93-4	1,2-Dibromoethane	0.50		
108-90-7	Chlorobenzene	0.50	U	
100-41-4	Ethylbenzene	0.0081	J	
95-47-6	o-Xylene	0.50	U	
179601-23-1	m,p-Xylene	0.033	J	
100-42-5	Styrene	0,50	U	
75-25-2	Bromoform	0.50	U	
98-82-8	Isopropylbenzene	0.50	U	
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U	
541-73-1	1,3-Dichlorobenzene	0.50	[]	
106-46-7	1,4-Dichlorobenzene	0.50	U	
95-50-1	1,2-Dichlorobenzene	0.50	IJ	
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U	
120-82-1	1,2,4-Trichlorobenzene	0.50	U	
87-61-6	1,2,3-Trichlorobenzene	0.50	U	

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

MRMW4S-W-30042

Lab Name: TEST	AMERICA BURLINGTON	Contract:	8E-0030	12	
Lab Code: STLV	Case No.: MORRIL Mod.	Ref No.:	SDG	No.: 200-4	827
Matrix: (SOIL/S	ED/WATER) Water	Lab Sampl	e ID: 20	00-4827-3	
Sample wt/vol:	25.0 (g/mL) mL	Lab File	ID: JCUR	106.D	
Level: (TRACE o		Date Rece	ived: 04	4/22/2011	
% Moisture: not	dec.	Date Anal	yzed: 04	1/25/2011	
GC Column: DB-	624 ID3: 0.20 (n	m) Dilution	Factor:	1.0	
Soil Extract Vo	lume: (u	L) Soil Aliq	uot Volum	ne:	(uL)
CONCENTRATION U	NITS: (ug/L or ug/kg) ug/L	Purge Vol	ume: 25.	0	(mL)
CAS NUMBER	COMPOUND NAME		RT E	ST. CONC.	Q
	Unknown		6.90	3.3	вхл
E9667961	Total Alkanes	N/A			

01 02

¹EPA-designated Registry Number.

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

MRMW65-W-30044

Lab Name;	TESTAMERICA BU	RLINGTON		Contract: 8E-0	00302
Lab Code:	STLV Case	No.: MORRIL M	iod. Ref	No.4	SDG No.; 200-4827
Matrix: (S	OIL/SED/WATER)	Water	_	Lab Sample ID:	200-4827-2
Sample wt/	vol: 25.0	(g/mL) mL		Lab File ID:	JCUH05.D
Level: (TR	ACE/LOW/MED)	TRACE		Date Received:	04/22/2011
% Moisture	: not dec.		_	Date Analyzed:	04/25/2011
GC Column;	DB-624	ID: 0.20	(mm)	Dilution Facto:	r: 1.0
Soil Extra	ct Volume:		(uL)	Soil Aliquot Vo	olume; (uL)
Purge Volu	me: 25.0		(mL)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
75-71-8	Dichlorodifluoromethane	0.50	U
74-87-3	Chloromethane	0.50	υ
75-01-4	Vinyl chloride	0.50	U
74-83-9	Bromomethane	0.50	U
75-00-3	Chloroethane	0.50	U
75-69-4	Trichlorofluoromethane	0.50	U
75-35-4	1,1-Dichloroethene	0.50	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	U
67-64-1	Acetone	1.1	JB
75-15-0	Carbon disulfide	0.098	JB
79-20-9	Methyl acetate	0.50	U
75-09-2	Methylene Chloride	0.50	U
156-60-5	trans-1,2-Dichloroethene	0.50	U
1634-04-4	Methyl tert-butyl ether	0.50	Ũ
75-34-3	1,1-Dichloroethane	0.50	U
156-59-2	cis-1,2-Dichloroethene	0.50	σ
78-93-3	2-Butanone	5.0	U
74-97-5	Bromochloromethane	0.50	U
67-66-3	Chloroform	0.50	U
71-55-6	1,1,1-Trichloroethane	0.50	U
110-82-7	Cyclohexane	0.50	U
56-23-5	Carbon tetrachloride	0.035	J
71-43-2	Benzene	0.50	U
107-06-2	1,2-Dichloroethane	0.50	U

Report 1,4-Dioxane for Low-Medium VOA analysis only

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

MRMW6S-W-30044

Lab Name:	TESTAMERICA B	URLINGTON		Contract: 8E	-00302
Lab Code:	STLV Case	e No.: MORRIL M	lod. Ref N	0,:	SDG No.: 200-4827
Matrix: (S	OIL/SED/WATER)	Water	_	Lab Sample II	D: 200-4827-2
Sample wt/	vol: 25.0	(g/mL) mL	ap my m	Lab File ID:	JCUH05.D
Level: (TR	ACE/LOW/MED)	TRACE		Date Received	d: 04/22/2011
% Moisture	: not dec.			Date Analyzed	1: 04/25/2011
GC Column:	DB-624	ID: 0,20	(nun)	Dilution Fact	or: 1.0
Soil Extra	ct Volume:		(uJ.)	Soil Aliquot	Volume: (uL)
Purge Volu	me: 25.0		(mL)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L		
79-01-6	Trichloroethene	0.50	U	
108-87-2	Methylcyclohexane	0.50	U	
78-87-5	1,2-Dichloropropane	0.50	U	
75-27-4	Bromodichloromethane	0.50	U	
10061-01-5	cis-1,3-Dichloropropene	0.50	υ	
108-10-1	4-Methyl-2-pentanone	5.0	U	
108-88-3	Toluene	0.019	JB	
10061-02-6	trans-1,3-Dichloropropene	0.50	U	
79-00-5	1,1,2-Trichloroethane	0,50	U	
127-18-4	Tetrachloroethene	0.50	U	
591-78-6	2-Hexanone	5.0	υ	
124-48-1	Dibromochloromethane	0.50	U	
106-93-4	1,2-Dibromoethane	0.50	υ	
108-90-7	Chlorobenzene	0.50	U	
100-41-4	Ethylbenzene	0.022	J	
95-47-6	o-Xylene	0.50	Ŭ	
179601-23-1	m,p-Xylene	0.064	J	
1,00-42-5	Styrene	0.50	U	
75-25-2	Bromoform	0.50	U	
98-82-8	Isopropylbenzene	0.50	U	
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U	
541-73-1	1,3-Dichlorobenzene	0.50	Ũ	
106-46-7	1,4-Dichlorobenzene	0.50	U	
95-50-1	1,2-Dichlorobenzene	0,50	Ü	
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U	
120-82-1	1,2,4-Trichlorobenzene	0.50	U	
87-61-6	1,2,3-Trichlorobenzene	0.50	υ	

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

MRMW6S-W-30044

Lab Name: TES	FAMERICA BURLINGTON	Contract: 8E-	-00302	
Lab Code: STL	Case No.: MORRIL Mod. Ref N	No.:	SDG No.: 200-4	827
Matrix: (SOIL/	SED/WATER) Water	Lab Sample ID	200-4827-2	
Sample wt/vol:	25.0 (g/mL) mL	Lab File ID:	JCUH05.D	
Level: (TRACE		Date Received:	04/22/2011	
% Moisture: no	t dec:	Date Analyzed:	04/25/2011	
GC Column: DB-	-624 ID: 0,20 (mm)	Dilution Facto	or: 1.0	
Soil Extract Ve	olume: (uL)	Soil Aliquot V	Volume :	(uL)
CONCENTRATION (UNITS: (ug/L or ug/kg) ug/L	Purge Volume:	25.0	(mL)
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
	Unknown	6.90	3.3	ВХЈ
E9667961	Total Alkanes	N/A		

1EPA-designated Registry Number.

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

MRQCTB-W-30061

Lab Name: TESTAMERICA BURLINGTON	1-2 - 1 Seat 2000000	Contract: 8E-00	302
Lab Code: STLV Case No.: MORR:	IL Mod. Ref 1	No,: SD	OG No.: 200-4827
Matrix: (SOIL/SED/WATER) Water		Lab Sample ID:	200-4827-5
Sample wt/vol: 25.0 (g/mL) m	L	Lab File ID: JC	CUH08.D
Level: (TRACE/LOW/MED) TRACE		Date Received:	04/22/2011
% Moisture: not dec.		Date Analyzed:	04/25/2011
GC Column: DB-624 ID: 0.	20 (mm)	Dilution Factor:	1.0
Soil Extract Volume:	(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 25.0	(mL)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
75-71-8	Dichlorodifluoromethane	0.50	U
74-87-3	Chloromethane	0.50	U
75-01-4	Vinyl chloride	0.50	U
74-83-9	Bromomethane	0.50	U
75-00-3	Chloroethane	0.50	U
75-69-4	Trichlorofluoromethane	0.50	U
75-35-4	1,1-Dichloroethene	0.50	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	U
67-64-1	Acetone	4.0	JB
75-15-0	Carbon dísulfide	0.083	JВ
79-20-9	Methyl acetate	0.50	U
75-09-2	Methylene Chloride	0.50	U
156-60-5	trans-1,2-Dichloroethene	0.50	U
1634-04-4	Methyl tert-butyl ether	0.50	υ
75-34-3	1,1-Dichloroethane	0.50	U
156-59-2	cis-1,2-Dichloroethene	0.50	U
78-93-3	2-Butanone	5.0	U
74-97-5	Bromochloromethane	0.50	U
67-66-3	Chloroform	0.50	U
71-55-6	1,1,1-Trichloroethane	0.50	U
110-82-7	Cyclobexane	0.50	U
56-23-5	Carbon tetrachloride	0,023	J
71-43-2	Benzene	0.025	J
107-06-2	1,2-Dichloroethane	0.50	U

Report 1,4-Dioxane for Low-Medium VOA analysis only

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

MRQCTB-W-30061

Lab Name:	TESTAMERICA BU	RLINGTON)		Contract: 8E-0	0302
Lab Code;	STLV Case	No.: MO	ORRIL	Mod. Ref	Novi S	DG No.: 200-4827
Matrix: (So	OIL/SED/WATER)	Water			Lab Sample ID:	200-4827-5
Sample wt/	vol: 25.0	(g/mL)	mL		Lab File ID: J	CUH08.D
Level: (TR)	ACE/LOW/MED)	TRACE			Date Received:	04/22/2011
% Moisture:	: not dec.				Date Analyzed:	04/25/2011
GC Column:	DB-624	ID:	0.20	(ram)	Dilution Factor	: 1.0
Soil Extrac	ct Volume:		م آرا فضب الله	(uL)	Soil Aliquot Vo	lume: (uL)
Purge Volum	ne: 25.0			(mL)		

CAS NO,	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
79-01-6	Trichloroethene	0.50	U
108-87-2	Methylcyclohexane	0.50	U
78-87-5	1,2-Dichloropropane	0,50	U
75-27-4	Bromodichloromethane	0.50	U
10061-01-5	cis-1,3-Dichloropropene	0.50	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	0.51	B
10061-02-6	trans-1, 3-Dichloropropene	0.50	U
79-00-5	1,1,2-Trichloroethane	0.50	U
1.27-18-4	Tetrachloroethene	0.50	U
591-78-6	2-Hexanone	5.0	υ
124-48-1	Dibromochloromethane	0,50	U
106-93-4	1,2-Dibromoethane	0.50	U
108-90-7	Chlorobenzene	0.50	U
100-41-4	Ethylbenzene	0.055	J
95-47-6	o-Xylene	0.11	J
179601-23-1	m,p-Xylene	0.22	J
100-42-5	Styrene	0.50	U
75-25-2	Bromoform	0.50	U
98-82-8	Isopropylbenzene	0.50	U
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U
541-73-1	1,3-Dichlorobenzene	0.50	U
106-46-7	1,4-Dichlorobenzene	0.50	U
95-50-1	1,2-Dichlorobenzene	0.50	U
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U
120-82-1	1,2,4-Trichlorobenzene	0.50	U
87-61-6	1,2,3-Trichlorobenzene	0.50	U

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

MRQCTB-W-30061

Lab Name: TES	TAMERICA BURLI			CONCL	act: 8E-(10302	_	
Lab Code: STL	V Case No.	: MORRIL	Mod. Ref N	0.1	:	SDG No.:	200-4	827
Matrix: (SOIL/	SED/WATER) W	ater	_	Lab S	ample ID:	200-482	7-5	den i den
Sample wt/vol:	25.0 (g/mL) mL		Lab F	ile ID:	JCUH08.D		
Level: (TRACE	or LOW/MED)	FRACE		Date	Received:	04/22/2	011	
& Moisture: no	t dec.			Date .	Analyzed:	04/25/2	011	
GC Column: DB-	- 624	ID: 0.20	(mm)	Dilut	ion Factor	1.0		
Soil Extract V	olume:		(uL)	Soil 2	Aliquot Vo	olume:		(uI
CONCENTRATION	UNITS: (ug/L or	ug/kg)	ug/L	Purge	Volume:	25.0		(mī
CAS NUMBER		COMPOUND N	AME		RT	EST. CC	DNC.	Q
	Unknown				6.90		3.0	ВХЈ
E9667961	Total Alkane	9			N/A		40	J

¹EPA-designated Registry Number.

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

MRRILLINGER-W-300

Lab Name: TESTAMERICA BU	JRLINGTON		Contract: 8E-0	0302
Lab Code: STLV Case	No.: MORRIL M	od. Ref	No.: S	DG No.: 200-4827
Matrix: (SOIL/SED/WATER)	Water	_	Lab Sample ID:	200-4827-4
Sample wt/vol: 25.0	(g/mL) mL		Lab File ID: J	CUH07.D
Level: (TRACE/LOW/MED)	TRACE		Date Received:	04/22/2011
<pre>% Moisture: not dec.</pre>			Date Analyzed:	04/25/2011
GC Column: DB-624	ID: 0.20	(mm)	Dilution Factor	: 1.0
Soil Extract Volume;		(uL)	Soil Aliquot Vo	lume: (uL)
Purge Volume: 25.0		(mL)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
75-71-8	Dichlorodifluoromethane	0.50	U
74-87-3	Chloromethane	0.50	U
75-01-4	Vinyl chloride	0.50	U
74-83-9	Bromomethane	0.50	UI.
75-00-3	Chloroethane	0.50	U
75-69-4	Trichlorofluoromethane	0.50	U
75-35-4	1,1-Dichloroethene	0.50	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0,50	U
67-64-1	Acetone	1.2	JB
75-15-0	Carbon disulfide	0.078	JB
79-20-9	Methyl acetate	0.50	U
75-09-2	Methylene Chloride	0.50	U
156-60-5	trans-1,2-Dichloroethene	0.50	U
1634-04-4	Methyl tert-butyl ether	0.50	U
75-34-3	1,1-Dichloroethane	0.50	U
156-59-2	cis-1,2-Dichloroethene	0.50	U
78-93-3	2-Butanone	5.0	0
74-97-5	Bromochloromethane	0.50	U
67-66-3	Chloroform	0.50	U
71-55-6	1,1,1-Trichloroethane	0.50	U
110-82-7	Cyclohexane	0.50	U
56-23-5	Carbon tetrachloride	0.39	J
71-43-2	Benzene	0.50	U
107-06-2	1,2-Dichloroethane	0.50	U

Report 1,4-Dioxane for Low-Medium VOA analysis only

' 1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

MRRILLINGER-W-300

Lab Name: TESTAMERICA E	URLINGTO	N			Contr	act: 8E	-00302	
Lab Code: STLV Cas	e No.: M	ORRIL	Mod.	Ref	No.:		SDG No.	: 200-4827
Matrix: (SOIL/SED/WATER)	Water				Lab S	ample ID	: 200-	4827-4
Sample wt/vol: 25.0	(g/mL) mL			Lab F	ile ID:	JCUH07.	D
Level: (TRACE/LOW/MED)	TRACE				Date	Received	: 04/22	2/2011
% Moisture: not dec.					Date	Analyzed	: 04/25	5/2011
GC Column: DB-624	ID:	0.20	(mi	m)	Dilut	ion Fact	or: 1.0	0
Soil Extract Volume:			(u)	L)	Soil .	Aliquot	Volumeș	(uL)
Purge Volume: 25.0			(ml	L)				

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
79-01-6	Trichloroethene	0.50	U
108-87-2	Methylcyclohexane	0.50	U
78-87-5	1,2-Dichloropropane	0.50	U
75-27-4	Bromodichloromethane	0.50	U
10061-01-5	cis-1,3-Dichloropropene	0.50	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	0.50	U
10061-02-6	trans-1,3-Dichloropropene	0.50	U
79-00-5	1,1,2-Trichloroethane	0.50	U
127-18-4	Tetrachloroethene	0.50	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	0.50	U
106-93-4	1,2-Dibromoethane	0.50	υ
108-90-7	Chlorobenzene	0.50	U
100-41-4	Ethylbenzene	0.50	U
95-47-6	o-Xylene	0.50	U
179601-23-1	m,p-Xylene	0.036	J
100-42-5	Styrene	0.50	U
75-25-2	Bromoform	0.50	U
98-82-8	Isopropylbenzene	0.50	U
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U
541-73-1	1,3-Dichlorobenzene	0.50	U
106-46-7	1,4-Dichlorobenzene	0.50	U
95-50-1	1,2-Dichlorobenzene	0.50	U
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	υ
120-82-1	1,2,4-Trichlorobenzene	0.50	Ü
87-61-6	1,2,3-Trichlorobenzene	0.50	U

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

MRRILLINGER-W-300

Lab Namea: TEST.	AMERICA BURLIN	IGTON	_		Con	tract:	8E-	00302		
Lab Code: STLV	Case No.	: MORRIL	Mod.	Ref No			_	SDG No.:	200-4	827
Matrix: (SOIL/S	ED/WATER) Wa	ter			Lab	Sample	ID:	200-48	27-4	
Sample wt/vol:	25.0 (9	(/mL) mL			Lab	File I	D:	JCUH07.D		
Level: (TRACE o	r LOW/MED)	RACE			Date	e Recei	ved:	04/22/2	2011	_
% Moisture: not	dec.				Date	e Analy	zed:	04/25/2	2011	
GC Column: DB-	624	ID: 0.20	(m	m)	Dilu	ution F	acto	r: 1.0		
Soil Extract Vo	lume:		(u)	L)	Soi	l Aliqu	ot V	olume:		(uL
CONCENTRATION U	NITS: (ug/L or	ug/kg)	ug/L		Purg	je Volu	me:	25.0		(mL
CAS NUMBER	1,	COMPOUND	NAME			R	P	EST. C	ONC.	Q
01	Unknown					6	.90		3.2	вхј
02 E9667961	Total Alkanes	3				N/A		1		

1EPA-designated Registry Number.

6A - FORM VI VOA-1 VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Code: STLV Case No	d. Ref N	0.:	2	SDG No.: 200-4827			
Instrument ID: J.i	And a state of the	Calibra	tion Date	(s): (3/24/2011	03/24/2011	
Heated Purge: (Y/N) N		Calibra	tion Time	- (s): 1	408	1549	
		-	CTON TINC		.100	T017	
Purge Volume: 25.0		(mL)					
GC Column: DB-624	ID: 0.20	(mm)	Length:	25	(m)		
LAB FILE ID:	RRF0.5 = J	CU03.D		RRF 1	.0 = JCU0	4.D	
RRF5.0 = JCU05.D	RRF10 = J	CU06.D		RRF 2	= JCU0	7.D	
COMPOUND	RRF0.5	RRF1.0	RRF5.0	RRF10	RRF20	RRF	%RSD
Dichlorodifluoromethane	0.544	0.601	0,553	0.532	0.488	0.544	7.4
Chloromethane	0.438	0.442	0.422	0.410	0.366		7.4
Vinyl chloride	0.429	0.440	0.423	0.405	the second se	0.412	7.5
Bromomethane	0.233	0.236	0.233	0,204		0.217	11.2
Chloroethane	0.222	0.244	0.222	0.213	0.190	0.218	8.
Trichlorofluoromethane	0.644	0.635	0.621	0.602	0.549	0.610	6.2
1,1-Dichloroethene	0.286	0.304	0.308	0.285	0.255	0.288	7.3
1,1,2-Trichloro- 1,2,2-trifluoroethane	0.345	0.374	0.349	0.334	0.301	0.341	7.8
Acetone	0.018	0.015	0.015	0.016	0.014	0.016	10.8
Carbon disulfide	0.991	0,897	0.906	0.850	0.813	0.891	7.5
Methyl acetate	0.041	0.052	0.045	0.046	0.044	0.046	9.0
Methylene Chloride	0.277	0.265	0.272	0.261	0.246	0.264	4.5
trans-1,2-Dichloroethene	0.336	0.336	0.349	0,338	0.315	0.335	3.7
Methyl tert-butyl ether	0.361	0.385	0.390	0.394	0.382	0.382	3.3
1,1-Dichloroethane	0.577	0.568	0.566	0.558	0.520	0.558	3.9
cis-1,2-Dichloroethene	0.306	0.331	0.326	0.325	0.307	0.319	3.6
2-Butanone	0.020	0.025	0.026	0.026	0,026	0.024	11.2
Bromochloromethane	0.107	0,109	0.108	0.104	0.101	0.106	2.8
Chloroform	0.528	0.560	0.559	0.537		0.539	4.0
1,1,1-Trichloroethane	0.679	0.694	0.719	0.682	0,674	0.689	2.6
Cyclohexane	0.603	0.630	0.720	0.698	a second s	0.670	7.5
Carbon tetrachloride	0.610	0.622	0.658	0.634		0.631	2.8
Benzene	1.466	1.610	1.649	1.624		1.592	4.5
1,2-Dichloroethane	0.210	0,221	0,217	0.226	0.208	0.216	3.7
Trichloroethene	0.384	0.414	0.421	0.408		0.407	3.4
Methylcyclohexane	0.464	0.484	0.516	0.519	0.515	0.500	4.9

Report 1,4-Dioxane for Low-Medium VOA analysis only

۶

6B - FORM VI VOA-2 VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Code: STLV Case No.	l. Ref No.:			SDG No.: 200-4827			
Instrument ID: J.i		Calibra	tion Date	(s); (3/24/2011	03/24/	2011
Heated Purge: (Y/N) N		Calibration		-	408	1549	
			CION LINC			1015	
Purge Volume: 25.0		(mL)					
GC Column: DB-624	ID: 0.20	(mm)	Length:	25	(m)		
LAB FILE ID:	RRF0.5 = J	CU03.D		RREI	.0 = JCU0	4.D	
RRF5.0 = JCU05.D	RRF10 = J	CU06.D		RRF2	20 - JCU0	7.D	
COMPOUND	RRF0.5	RRF1.0	RRF5.0	RRF10	RRF20	RRF	%RSD
1,2-Dichloropropane	0.311	0.297	0.328	0,313	0.308	0.311	3.5
Bromodichloromethane	0.380	0.377	0.389	0.382	0.376	0.381	1.3
cis-1,3-Dichloropropene	0.396	0.377	0.465	0.457	0.460	0.431	9.6
4-Methyl-2-pentanone	0.060	0.070	0.079	0.079	0.079	0.073	11.4
Toluene	1.553	1.602	1.797	1.747	1.684	1.677	6.0
trans-1,3-Dichloropropene	0.271	0.277	0.331	0.328	0.324	0.306	9.6
1,1,2-Trichloroethane	0.138	0.168	0.170	0.159	0.157	0.158	8.0
Tetrachloroethene	0.348	0.346	0.376	0.362	0.352	0.357	3.5
2-Hexanone	0.034	0.041	0.054	0.053		0.047	19.1
Dibromochloromethane	0.203	0.209	0.221	0.223	0.222	0.216	4.2
1,2-Dibromoethane	0.122	0.143	0.143	0.147		0,140	7,3
Chlorobenzene	0.996	1.039	1.018	1.004		1.008	2.1
Ethylbenzene	1.586	1.771	1.977	1.974		1.856	9.4
o-Xylene	0.596	0,606	0.702	0.705		0.663	8.5
m,p-Xylene	0.579	0.651	0.782	0.774		0.713	13.0
Styrene	0.706	0.892	1.074	1.093	and the second s	0.969	17.4
Bromoform	0.232	0.195	0.213	0.201		0.211	6.7
Isöpropylbenzene	1.462	1.631	2.003	2.029	and the second sec	1.828	14.4
1,1,2,2-Tetrachloroethane	0,131	0.153	0.146	0.144		0.144	5.4
1,3-Dichlorobenzene	1.461	1.504	1.618	1.535		1.528	3.8
1,4-Dichlorobenzene	1.511	1.553	1.598	1.527	1	1.542	2.3
1,2-Dichlorobenzene	1.169	1.252	1.285	1.245		1.240	3.5
1,2-Dibromo-3-Chloropropane	0.044	0.042	0.037	0.043		0.042	6.2
1,2,4-Trichlorobenzene	0.604	0.690	0.758	0.740	in the second	0.712	9.5

6C - FORM VI VOA-3 VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: TESTAMERICA BURLIN	Contract: 8E-00302						
Lab Code: STLV Case No.: MORRIL Mod			013	S	DG No.: 2	200-4827	
Instrument ID: J.i		Calibration Date(s)		(s): 0	3/24/2011	03/24/2011	
Heated Purge: (Y/N) N		Calibration Time(s):		(s): 1	408	1549	
Purge Volume: 25.0		(mL)					
GC Column: DB-624	ID: 0.20	(mm)	Length:	25	(m)		
LAB FILE TD:	RRF0.5 = J	CU03.D		RRF1	.0 = JCU0	4.D	
RRF5.0 = JCU05.D RRF10 = J0				RRF2	0 ⇒ JCU0	7,D	
COMPOUND	RRF0.5	RRF1.0	RRF5.0	RRF10	RRF20	RRF	\$RSD
Vinyl Chloride-d3	0.390	0.401	0.373	0.356	0.320	0.368	8.7
Chloroethane-d5	0.310	0.310	0.285	0.263	0.228	0.279	12.5
1,1-Dichloroethene-d2	0.600	0.671	0.636	0.611	0.555	0.615	7.0
2-Butanone-d5	0.025	0.025	0.026	0,027	0.026	0.026	4.1
Chloroform-d	0.587	0.591	0.583	0.565	0.535	0.572	4.0
1,2-Dichloroethane-d4	0.183	0.182	0.183	0.182	0.172	0.180	2.7
Benzene-d6	1.411	1.574	1.642	1.613	1.586	1.565	5.8
1,2-Dichloropropane-d6	0.419	0.358	0.427	0.419	0.359	0.396	8.8
Toluene-d8	1.263	1.374	1.546	1,505	1.445	1.427	7.8
trans-1,3-Dichloropropene-d4	0.238	0,255	0.297	0.300	0.296	0.277	10.3
2-Hexanone-d5	0.018	0,023	0.029	0.030	0.030	0.026	20.3
1, 1, 2, 2-Tetrachloroethane-d2	0.140	0.151	0.154	0.151	0.147	0.149	3.7
1,2-Dichlorobenzene-d4	0.772	0.792	0.822	0.775	0.779	0.788	2.6

Report 1,4-Dioxane-d8 for Low-Medium VOA analysis only

7A - FORM VII VOA-1 VOLATILE CONTINUING CALIBRATION DATA

Lab Name: TES	TAMERICA BURI	LINGTON	Contract: 8E-00302					
Lab Code: STL	V Case N	o.: MORRIL M	od. Ref No.:		00-4827			
Instrument ID:	J.i		Calibration Date:	04/25/2011	Time: 0948			
Lab File Id;	JCUH02.D		Init. Calib. Date(s):	03/24/2011	03/24/2011			
EPA Sample No.	(VSTD####):	VSTD005JZ	Init. Calib. Time(s): 1408	1549			
Heated Purge:	(Y/N) <u>N</u>	GC Column:	DB-624 ID: 0.20 (mm) Length: 2	5 (m)			
Purge Volume:	25.0		(mL)					

COMPOUND	RRF	RRF5.0	MIN RRF	%D	MAX %D
Dichlorodifluoromethane	0.544	0.479	0.010	-12.0	40.0
Chloromethane	0.416	0.327	0.010	-21,4	40.0
Vinyl chloride	0.412	0.349	0.010	-15.3	30.0
Bromomethane	0.217	0.192	0.100	-11.8	30.0
Chloroethane	0.218	0.192	0.010	-12.0	40.0
Trichlorofluoromethane	0.610	0.598	0.010	-2.0	40.0
1,1-Dichloroethene	0,288	0.291	0.100	1.2	30.0
1,1,2-Trichloro-1,2,2-trifluoroethane	0.341	0.340	0.010	-0.2	40.0
Acetone	0.016	0.016	0.010	0.1	40.0
Carbon disulfide	0.891	0.913	0.010	2.5	40.0
Methyl acetate	0.046	0.046	0.010	0.7	40.0
Methylene Chloride	0.264	0.274	0.010	3.6	40.0
trans-1,2-Dichloroethene	0.335	0.361	0.010	7.7	40.0
Methyl tert-butyl ether	0,382	0.411	0.010	7.6	40.0
1,1-Dichloroethane	0.558	0.556	0.200	-0,4	30.0
cis-1,2-Dichloroethene	0.319	0.347	0.010	8.9	40.0
2-Butanone	0.024	0.025	0.010	4.2	40.0
Bromochloromethane	0.106	0.121	0.050	14.8	30.0
Chloroform	0.539	0.567	0.200	5.2	30.0
1,1,1-Trichloroethane	0.689	0.753	0.100	9.2	30.0
Cyclohexane	0.670	0.702	0.010	4.8	40.0
Carbon tetrachloride	0.631	0.724	0.100	14.8	30,0
Benzene	1.592	1.677	0.400	5.3	30.0
1,2-Dichloroethane	0.216	0.237	0.100	9.3	30.0
Trichloroethene	0.407	0.455	0.300	11.6	30.0
Methylcyclohexane	0.500	0.526	0.010	5.4	40.0

Report 1,4-Dioxane for Low/Medium VOA analysis only

7B - FORM VII VOA-2 VOLATILE CONTINUING CALIBRATION DATA

Lab Name:	TESTAMERICA BUF	LINGTON	Contract: 8E	8E-00302			
Lab Code:	STLV Case	No.: MORRIL M	od. Ref No.:	SDG No.: 2	00-4827		
Instrument	ID: J.i		Calibration Date:	04/25/2011	Time: 0948		
Lab File Io	d: JCUH02,D		Init. Calib. Date(s):	03/24/2011	03/24/2011		
EPA Sample	No. (VSTD####):	VSTD005JZ	Init. Calib. Time(s): 1408	1549		
Heated Purg	ge: (Y/N) N	GC Column:	DB-624 ID: 0.20 (mm) Length: 2	5 (m)		
Purge Volum	ne: 25.0		(mL)				

COMPOUND	RRF	RRF5.0	MIN RRF	%D	MAX %D
1,2-Dichloropropane	0.311	0.325	0.010	4.3	40.0
Bromodichloromethane	0.381	0.420	0.200	10.4	30.0
cis-1,3-Dichloropropene	0.431	0.496	0.200	15.1	30.0
4-Methyl-2-pentanone	0.073	0.077	0.010	5.5	40.0
Toluene	1.677	1.885	0.400	12.4	30.0
trans-1,3-Dichloropropene	0.306	0.349	0.100	14.1	30.0
1,1,2-Trichloroethane	0.158	0.178	0.100	12.8	30.0
Tetrachloroethene	0.357	0.418	0.100	17.1	30.0
2-Hexanone	0.047	0.051	0.010	8.7	40.0
Dibromochloromethane	0.216	0.250	0.100	16.0	30.0
1,2-Dibromoethane	0.140	0.164	0.010	17.6	40.0
Chlorobenzene	1.008	1.119	0.500	10.9	30.0
Ethylbenzene	1.856	2.076	0.100	11.9	30.0
o-Xylene	0.663	0.763	0.300	15.1	30.0
m,p-Xylene	0.713	0.826	0.300	15.9	30.0
Styrene	0.969	1.156	0.300	19.4	30.0
Bromoform	0.211	0.246	0.050	16.6	30.0
Isopropylbenzene	1.828	2.153	0.010	17.8	40.0
1,1,2,2-Tetrachloroethane	0.144	0.156	0.100	8.6	30.0
1,3-Dichlorobenzene	1.528	1.791	0.400	17.2	30.0
1,4-Dichlorobenzene	1.542	1,747	0.400	13.3	30.0
1,2-Dichlorobenzene	1.240	1.405	0.400	13.4	30.0
1,2-Dibromo-3-Chloropropane	0.042	0.044	0.010	5.8	40.0
1,2,4-Trichlorobenzene	0.712	0.830	0.200	16.5	30.0
1,2,3-Trichlorobenzene	0.518	0.560	0.200	8.1	30.0

7C - FORM VII VOA-3 VOLATILE CONTINUING CALIBRATION DATA

Lab Name:	TESTAMERI	CA BURLING	TON		Contract:	8E-0030	12	
Lab Code:	STLV	Case No.:	MORRIL	Mod. Ref No	. t	SDG	No.: 20	00-4827
Instrument	ID: J.i			Calib	ration Date	e: 04/2	25/2011	Time: 0948
Lab File Id	1: JCUH02	. D		Init. Ca	lib. Date(s): 03/2	24/2011	03/24/2011
EPA Sample	No. (VSTD#	###):: <u>V</u> S	TD005JZ	Init.	Calib. Tim	ne(s):	1408	1549
Heated Purg	je: (Y/N)	N G	C Column:	DB-624	ID: 0.20 ((mm) Lei	ngth: 2!	5 (m)
Purge Volum	ne: 25.0			(mL)				

COMPOUND	RRF	RRF5.0	MIN RRF	₹D	MAX %D
Vinyl Chloride-d3	0.368	0,301	0.010	-18.3	30.0
Chloroethane-d5	0.279	0.236	0.010	-15.4	40.0
1,1-Dichloroethene-d2	0.615	0.577	0.010	-6.1	30.0
2-Butanone-d5	0.026	0.025	0.010	-2.0	40.0
Chloroform-d	0.572	0.590	0.010	3.1	30.0
1,2-Dichloroethane-d4	0.180	0.195	0.010	8.3	30.0
Benzene-d6	1.565	1.602	0.010	2.4	30.0
1,2-Dichloropropane-d6	0.396	0.412	0.010	3.9	40,0
Toluene-d8	1.427	1.546	0.010	8.4	30.0
trans-1,3-Dichloropropene-d4	0.277	0.313	0.010	13.0	30.0
2-Hexanone-d5	0.026	0.028	0.010	9.0	40.0
1,1,2,2-Tetrachloroethane-d2	0.149	0.154	0.010	3.5	30.0
1,2-Dichlorobenzene-d4	0.788	0.840	0.010	6.5	30.0

Report 1,4-Dioxane-d8 for Low/Medium VOA analysis only

7A - FORM VII VOA-1 VOLATILE CONTINUING CALIBRATION DATA

Lab Name:	TESTAMERICA BU	RLINGTON	Contract: 8	8E-00302		
Lab Code:	STLV Case	No.: MORRIL N	Nod. Ref No.:	SDG No.: 2	200-4827	
Instrument	ID: J.i		Calibration Date:	04/25/2011	Time: 1507	
Lab File I	1: JCUH14.D		Init. Calib. Date(s)	: 03/24/2011	03/24/2011	
EPA Sample	No. (VSTD####):	VSTD005ZJ	Init. Calib. Time	(s): 1408	1549	
Heated Pure	ge: (Y/N) N	GC Column:	DB-624 ID: 0.20 (m	m) Length: 2	25 (m)	
Purge Volu	ne: 25.0		(mL)			

COMPOUND	RRF	RRF <u>5.0</u>	MIN RRF	%D	MAX %D
Dichlorodifluoromethane	0.544	0.489	0.010	-10.0	50.0
Chloromethane	0.416	0.315	0.010	-24.2	50.0
Vinyl chloride	0.412	0.347	0.010	-15.7	50.0
Bromomethane	0.217	0.189	0.010	-13.1	50.0
Chloroethane	0.218	0.191	0.010	-12.6	50.0
Trichlorofluoromethane	0.610	0.639	0.010	4.6	50.0
1,1-Dichloroethene	0.288	0.297	0.010	3.0	50.0
1,1,2-Trichloro-1,2,2-trifluoroethane	0.341	0.352	0.010	3.4	50.0
Acetone	0.016	0.016	0.010	1.5	50.0
Carbon disulfide	0.891	0.882	0.010	-1.1	50.0
Methyl acetate	0.046	0.046	0.010	0.6	50.0
Methylene Chloride	0.264	0,283	0.010	7.1	50.0
trans-1,2-Dichloroethene	0.335	0.364	0.010	8.6	50.0
Methyl tert-butyl ether	0.382	0.433	0.010	13.4	50.0
1,1-Dichloroethane	0.558	0.552	0.010	-1.0	50.0
cis-1,2-Dichloroethene	0.319	0.353	0.010	10.7	50.0
2-Butanone	0.024	0.026	0.010	6.7	50.0
Bromochloromethane	0.106	0.123	0.010	16.6	50.0
Chloroform	0.539	0.597	0.010	10.7	50.0
1,1,1-Trichloroethane	0.689	0.767	0.010	11.2	50.0
Cyclohexane	0,670	0.670	0.010	0.0	50.0
Carbon tetrachloride	0.631	0,731	0.010	15.8	50.0
Benzene	1.592	1.671	0.010	4.9	50.0
1,2-Dichloroethane	0.216	0.249	0.010	14.9	50.0
Trichloroethene	0.407	0.456	0.010	12.1	50.0
Methylcyclohexane	0.500	0.512	0.010	2.5	50.0

Report 1,4-Dioxane for Low/Medium VOA analysis only

7B - FORM VII VOA-2 VOLATILE CONTINUING CALIBRATION DATA

Lab Name:	TESTAMERICA	BURLINGTON	Contract: 8	8E-00302		
Lab Code:	STLV Ca	se No.: MORRIL	lod. Ref No.;	SDG No.: 2	200-4827	
Instrument	ID: J.i		Calibration Date:	04/25/2011	Time: 1507	
Lab File Io	d: JCUH14.D		Init. Calib. Date(s)	03/24/2011	03/24/2011	
EPA Sample	No, (VSTD###	#): VSTD005ZJ	Init. Calib, Time	(s): 1408	1549	
Heated Pure	ge: (Y/N) N	GC Column:	DB-624 ID: 0.20 (m	m) Length: 2	25 (m)	
Purge Volum	me: 25.0		(mL)			

COMPOUND	RRF	RRF5.0	MIN RRF	۶D	MAX %D
1,2-Dichloropropane	0.311	0.309	0.010	-0.9	50.0
Bromodichloromethane	0.381	0.432	0.010	13,4	50.0
cis-1,3-Dichloropropene	0.431	0.493	0.010	14.4	50.0
4-Methyl-2-pentanone	0.073	0.080	0.010	9.7	50.0
Toluene	1.677	1.863	0.010	11.1	50.0
trans-1,3-Dichloropropene	0.306	0.371	0.010	21.2	50.0
1,1,2-Trichloroethane	0.158	0.185	0.010	16.7	50.0
Tetrachloroethene	0.357	0.404	0.010	13.1	50.0
2-Hexanone	0.047	0.053	0.010	12.1	50.0
Dibromochloromethane	0.216	0.273	0.010	26.5	50.0
1,2-Dibromoethane	0.140	0.167	0.010	19.7	50.0
Chlorobenzene	1.008	1.139	0.010	13.0	50.0
Ethylbenzene	1.856	2.074	0.010	11.8	50.0
o-Xylene	0.663	0.775	0.010	16.9	50.0
m,p-Xylene	0.713	0.830	0.010	16.4	50.0
Styrene	0.969	1.187	0.010	22.5	50.0
Bromoform	0.211	0.261	0.010	23.4	50.0
Isopropylbenzene	1.828	2.117	0.010	15.8	50.0
1,1,2,2-Tetrachloroethane	0.144	0.160	0.010	11.8	50.0
1,3-Dichlorobenzene	1.528	1.755	0.010	14.9	50.0
1,4-Dichlorobenzene	1.542	1.764	0.010	14.4	50.0
1,2-Dichlorobenzene	1.240	1.455	0.010	17.4	50.0
1,2-Dibromo-3-Chloropropane	0.042	0.053	0.010	26.3	50.0
1,2,4-Trichlorobenzene	0.712	0.869	0.010	22.0	50.0
1,2,3-Trichlorobenzene	0.518	0.620	0.010	19.7	50.0

7C - FORM VII VOA-3 VOLATILE CONTINUING CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302
	od. Ref No.: SDG No.: 200-4827
Instrument ID; J.i	Calibration Date: 04/25/2011 Time: 1507
Lab File Id: JCUH14.D	Init. Calib. Date(s): 03/24/2011 03/24/2011
EPA Sample No.(VSTD####): VSTD005ZJ	Init. Calib. Time(s): 1408 1549
Heated Purge: (Y/N) N GC Column:	DB-624 ID: 0.20 (mm) Length: 25 (m)
Purge Volume: 25.0	(mL)

COMPOUND	RRF	RRF5.0	MIN RRF	۶D	MAX SD
Vinyl Chloride-d3	0.368	0.302	0.010	-18.0	50.0
Chloroethane-d5	0.279	0.233	0.010	-16.4	50.0
1,1-Dichloroethene-d2	0.615	0.586	0.010	-4.7	50.0
2-Butanone-d5	0.026	0.025	0.010	-3.0	50,0
Chloroform-d	0.572	0.609	0.010	6.4	50.0
1,2-Dichloroethane-d4	0.180	0.203	0.010	12.5	50.0
Benzene-d6	1.565	1.588	0.010	1.5	50.0
1,2-Dichloropropane-d6	0.396	0.418	0.010	5.4	50.0
Toluene-d8	1.427	1.570	0.010	10.1	50.0
trans-1,3-Dichloropropene-d4	0.277	0.315	0.010	13.6	50,0
2-Hexanone-d5	0.026	0.030	0.010	16.2	50.0
1,1,2,2-Tetrachloroethane-d2	0.149	0.162	0.010	9,1	50.0
1,2-Dichlorobenzene-d4	0.788	0.881	0.010	11.8	50.0

Report 1,4-Dioxane-d8 for Low/Medium VOA analysis only

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

VBLKJZ

Lab Name:	TESTAMERICA BU	RLINGTON	Į		Contract:	8E-00302	
Lab Code:	STLV Case	No.: MO	ORRIL	Mod. Ref	No.:	SDG No.	.: 200-4827
Matrix: (S	OIL/SED/WATER)	Water			Lab Sample	ID: MB 20	00-16989/3
Sample wt/	vol: 25.0	(g/mL)	щL		Lab File I	D: JCUH03.	. ם
Level: (TR	ACE/LOW/MED)	TRACE			Date Recei	ved:	
<pre>% Moisture</pre>	: not dec.				Date Analy	zed: 04/25	5/2011
GC Column:	DB-624	ID:	0.20	(mm)	Dilution F	actor: 1.0	0
Soil Extra	ct Volume:			(uL)	Soil Alique	ot Volume:	(uL)
Purge Volu	me: 25.0			(mL)			

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
75-71-8	Dichlorodifluoromethane	0.50	U
74-87-3	Chloromethane	0.047	J
75-01-4	Vinyl chloride	0.50	U
74-83-9	Bromomethane	0.50	U
75-00-3	Chloroethane	0.50	0
75-69-4	Trichlorofluoromethane	0.50	U
75-35-4	1,1-Dichloroethene	0.50	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	U
67-64-1	Acetone	1.6	J
75-15-0	Carbon disulfide	0.20	J
79-20-9	Methyl acetate	0.50	Ü
75-09-2	Methylene Chloride	0.047	J
156-60-5	trans-1,2-Dichloroethene	0.50	U
1634-04-4	Methyl tert-butyl ether	0,50	U
75-34-3	1,1-Dichloroethane	0.50	U
156-59-2	cis-1,2-Dichloroethene	0.50	U
78-93-3	2-Butanone	5.0	U
74-97-5	Bromochloromethane	0.50	U
67-66-3	Chloroform	0.50	U
71-55-6	1,1,1-Trichloroethane	0.50	U
110-82-7	Cyclohexane	0.50	U
56-23-5	Carbon tetrachloride	0.50	U
71-43-2	Benzene	0.50	υ
107-06-2	1,2-Dichloroethane	0.50	U

Report 1,4-Dioxane for Low-Medium VOA analysis only

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET EPA SAMPLE NO.

VBLKJZ

Lab Name:	TESTAMERICA BU	JRLINGTON	ļ		Contract:	8E-00302
Lab Code:	STLV Case	No.: M	ORRIL	Mod. Ref	No.:	SDG No.; 200-4827
Matrix: (S	OIL/SED/WATER)	Water			Lab Sample	ID: MB 200-16989/3
Sample wt/	vol: 25.0	(g/mL)	mL		Lab File II	D: JCUH03.D
Level: (TR	ACE/LOW/MED)	TRACE			Date Receiv	ved:
% Moisture	: not dec.				Date Analy:	zed: 04/25/2011
GC Column:	DB-624	ID:	0.20	(mm)	Dilution Fa	actor: 1.0
Soil Extra	ct Volume:			(uL)	Soil Alique	ot Volume: (uL)
Purge Volu	me: 25.0	and allow a strength		(mL)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
79-01-6	Trichloroethene	0.049	J
108-87-2	Methylcyclohexane	0.50	U
78-87-5	1,2-Dichloropropane	0.50	U
75-27-4	Bromodichloromethane	0.50	U
10061-01-5	cis-1,3-Dichloropropene	0.50	U
108-10-1	4-Methy1-2-pentanone	5,0	U
108-89-3	Toluene	0.013	J
10061-02-6	trans-1, 3-Dichloropropene	0.50	U
79-00-5	1,1,2-Trichloroethane	0.50	U
127-18-4	Tetrachloroethene	0.50	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	0.50	U
106-93-4	1,2-Dibromoethane	0.50	U
108-90-7	Chlorobenzene	0.50	U
100-41-4	Ethylbenzene	0.50	U
95-47-6	o-Xylene	0.50	1)
179601-23-1	m,p-Xylene	0.50	U
100-42-5	Styrene	0.50	U
75-25-2	Bromoform	0.50	U
98-82-8	Isopropylbenzene	0.50	U
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U
541-73-1	1,3-Dichlorobenzene	0.50	U
106-46-7	1,4-Dichlorobenzene	0.50	D
95-50-1	1,2-Dichlorobenzene	0.50	U
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U
120-82-1	1,2,4-Trichlorobenzene	0.083	J
87-61-6	1,2,3-Trichlorobenzene	0.15	J

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

VBLKJZ

Lab Name: TESTAMERICA BUR	LINGTON	_	Contract: 88	5-00302	
Lab Code: STLV Case N	O.: MORRIL M	od. Ref N	0.1	SDG No.: 200	-4827
Matrix: (SOIL/SED/WATER)	Water	_	Lab Sample I	D: MB 200-1696	9/3
Sample wt/vol: 25.0	(g/mL) mL	_	Lab File ID:	JCUH03.D	
Level: (TRACE or LOW/MED)	TRACE	2	Date Received	d:	
<pre>% Moisture: not dec;</pre>			Date Analyze	1: 04/25/2011	
GC Column: DB-624	ID: 0.20	(mm)	Dilution Fact	tor: 1.0	
Soil Extract Volume:		(uL)	Soil Aliquot	Volume:	(uL)
CONCENTRATION UNITS: (ug/L	or ug/kg) ug	₫/L	Purge Volume:	25.0	(mL)
CAS NUMBER	COMPOUND NA	ME	RT	EST. CONC.	Q

	CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
ſ		Unknown	4.13	2.8	J
T		Unknown	6.90	3.5	ХJ
	541-05-9	Cyclotrisiloxane, hexamethyl-	7.85	1.8	JN
T		Unknown siloxane derivative	10.69	1.9	J
ſ		Unknown	12.88	0.50	J
E	E9667961	Total Alkanes	N/A		

¹EPA-designated Registry Number,

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

VHBLK01

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302
Lab Code; STLV Case No.: MORRIL I	Mod. Ref No.: 5DG No.: 200-4827
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: 200-4827-6
Sample wt/vol: 25.0 (g/mL) mL	Lab File ID: JCUH09.D
Level: (TRACE/LOW/MED) TRACE	Date Received:
% Moisture: not dec.	Date Analyzed: 04/25/2011
GC Column: DB-624 ID: 0.20	(mm) Dilution Factor: 1.0
Soil Extract Volume:	(uL) Soil Aliquot Volume:(uL)
Purge Volume: 25.0	(mL)

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
75-71-8	Dichlorodifluoromethane	0.50	U
74-87-3	Chloromethane	0.50	U
75-01-4	Vinyl chloride	0,50	U
74-83-9	Bromomethane	0.50	U
75-00-3	Chloroethane	0.50	U
75-69-4	Trichlorofluoromethane	0.50	U
75-35-4	1,1-Dichloroethene	0.50	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	U
67-64-1	Acetone	0.66	JB
75-15-0	Carbon disulfide	0.075	JB
79-20-9	Methyl acetate	0.50	U
75-09-2	Methylene Chloride	0.50	υ
156-60-5	trans-1,2-Dichloroethene	0.50	U
1634-04-4	Methyl tert-butyl ether	0.50	U
75-34-3	1,1-Dichloroethane	0.50	U
156-59-2	cis-1,2-Dichloroethene	0.50	U
78-93-3	2-Butanone	5.0	U
74-97-5	Bromochloromethane	0.50	U
67-66-3	Chloroform	0.50	U
7155-6	1,1,1-Trichloroethane	0.50	Į,I
110-82-7	Cyclohexane	0.50	U
56-23-5	Carbon tetrachloride	0.50	U
71-43-2	Benzene	0.50	U
107-06-2	1,2-Dichloroethane	0.50	U

Report 1,4-Dioxane for Low-Medium VOA analysis only

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

VHBLK01

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302
Lab Code: STLV Case No.: MORRIL	Mod. Ref No.: \$DG No.: 200-4827
Matrix: (SOIL/SED/WATER) Water	Lab Sample ID: 200-4827-6
Sample wt/vol: 25.0 (g/mL) mL	Lab File ID: JCUH09.D
Level: (TRACE/LOW/MED) TRACE	Date Received:
% Moisture: not dec.	Date Analyzed: 04/25/2011
GC Column: DB-624 ID: 0,20	(mm) Dilution Factor: 1.0
Soil Extract Volume:	(uL) Soil Aliquot Volume: (uL)
Purge Volume: 25.0	(mL)

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
79-01-6	Trichloroethene	0.50	U
108-87-2	Methylcyclohexane	0.50	U
78-87-5	1,2-Dichloropropane	0.50	U
75-27-4	Bromodichloromethane	0.50	U
10061-01-5	cis-1,3-Dichloropropene	0.50	υ
108-10-1	4-Methyl-2-pentanone	5.0	U
109-88-3	Toluene	0.50	U
10061-02-6	trans-1,3-Dichloropropene	0.50	U
79-00-5	1,1,2-Trichloroethane	0:50	U
127-18-4	Tetrachloroethene	0.50	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	0.50	U
106-93-4	1,2-Dibromoethane	0.50	U
108-90-7	Chlorobenzene	0.50	U
100-41-4	Ethylbenzene	0.50	U
95-47-6	o-Xylene	0.50	U
179601-23-1	m,p-Xylene	0.50	U
100-42-5	Styrene	0.50	U
75-25-2	Bromoförm	0.50	U
98-82-8	Isopropylbenzene	0.50	0
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U
541-73-1	1,3-Dichlorobenzene	0.50	U
106-46-7	1,4-Dichlorobenzene	0.50	U
95-50-1	1,2-Dichlorobenzene	0.50	U
96~12~8	1,2-Dibromo-3-Chloropropane	0.50	U
120-82-1	1,2,4-Trichlorobenzene	0.50	υ
87-61-6	1,2,3-Trichlorobenzene	0.50	U

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

VHBLK01

Lab Name: TES	TAMERICA BUI	GINGTON .	(gapped and the second second	Contr	act: 85-	00302		
Lab Code: STL	/ Case	No.: MORE	L Mod. Re	f No.:		SDG No.:	200-4	827
Matrix: (SOIL/	SED/WATER)	Water		Lab S	ample ID:	200-482	27-6	
Sample wt/vol:	25.0	(g/mL) mi	G	Lab F	ile ID:	JCUH09.D		
Level: (TRACE	or LOW/MED)	TRACE		Date	Received:			
% Moisture: no	t dec.			Date .	Analyzed:	04/25/2	011	
GC Column: DB	624	ID: 0.3	20 (mm)	Dilut	ion Facto	r: 1.0		
Soil Extract V	olume:		(uL)	Soil .	Aliquot V	olume:		(uL)
CONCENTRATION	JNITS: (ug/L	or ug/kg)	ug/L	Purge	Volume:	25.0		(mL)
CAS NUMBER	L	COMPOUN	D NAME		RT	EST. CO	DNC.	Q
	Unknown				6.90		3.0	BXJ
E9667961	Total Alka	ines			N/A			

01

1EPA-designated Registry Number.

ANALYTICAL REPORT

Job Number: 200-7357-1 SDG Number: 200-7357 Job Description: Morrill (200-7357) Contract Number: 1E-30401

For: Argonne National Laboratory 9700 South Cass Avenue Building 203 Office B-149 Argonne, IL 60439

Attention: Mr. Clyde Dennis

Kill.

Approved for release. Kirk F Young Project Manager I 10/12/2011 11:10 AM

Kirk F Young Project Manager I kirk.young@testamericainc.com 10/12/2011

The test results in this report relate only to sample(s) as received by the laboratory. These test results were derived under a quality system that adheres to the requirements of NELAC. Pursuant to NELAC, this report may not be produced in full without written approval from the laboratory

TestAmerica Laboratories, Inc. TestAmerica Burlington 30 Community Drive, Suite 11, South Burlington, VT 05403 Tel (802) 660-1990 Fax (802) 660-1919 <u>www.testamericainc.com</u>

10/12/2011

Table of Contents

Cover Title Page	1
Report Narrative	4
Case Narrative	4
Qualifier Definition	6
External Chain of Custody	7
Internal Chain of Custody	8
Shipping Documentation	10
Airbills (if Applicable)	11
Sample Receipt and Log In Check List	12
Methodology Review	14
QC Summary - SOM01.2 Volatiles-Trace	15
QC Summary - SOM01.2 Volatiles-Trace	15
Deuterated Monitoring Compound Summary	15
Method Blank	17
GC/MS Instrument Performance Check	18
Internal Standard Area and RT Summary	20
Sample Data - SOM01.2 Volatiles-Trace	21
Sample Data - SOM01.2 Volatiles-Trace	21
MRMW11S-W-30078	21
MRMW2S-W-30069	27
MRMW4S-W-30071	30
MRQCTB-W-30090	33
MRSM2-W-30063	36
Standards - SOM01.2 Volatiles-Trace	39
Standards - SOM01.2 Volatiles-Trace	39
Initial Calibration Data	39

Table of Contents

CCV Data, including closing CCV	42
Raw Qc Data - SOM01.2 Volatiles-Trace	48
Raw Qc Data - SOM01.2 Volatiles-Trace	48
Raw Qc Data - SOM01.2 Volatiles-Trace	48
Blank Data	48

CASE NARRATIVE

Client: Argonne National Laboratory

Project: Morrill (200-7357)

Report Number: 200-7357-1

Enclosed is the data set for the referenced project work. With the exceptions noted as flags or footnotes, standard analytical protocols were followed in performing the analytical work and the applied control limits were met.

Calculations were performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

Receipt

The samples were received on 10/05/2011. Documentation of the condition of the samples at the time of their receipt and any exception to the laboratory's Sample Acceptance Policy is documented in the Shipping and Receiving section of this submittal. The samples, as received, were not acid preserved. On that basis, the laboratory did provide for the analytical work to be performed within seven days of sample collection.

SOM01.2 Volatile Organics (Trace Level Water)

A storage blank was prepared for volatile organics analysis, and stored in association with the storage of the samples. That storage blank, identified as VHBLK01, was carried through the holding period with the samples, and analyzed.

Each sample in the sample set was analyzed without a dilution. An additional, dilution analysis was performed on sample MRMW11S-W-3007 in order to provide quantification within the range of calibrated instrument response. Both sets of results for the analysis of sample MRMW11S-W-3007 are included in this submittal.

Each of the analyses associated with the sample set exhibited an acceptable internal standard performance. There was an acceptable recovery of each deuterated monitoring compound (DMC) in the analysis of the method blank associated with the analytical work, and in the analysis of the storage blank associated with the sample set. The analysis of the samples in this sample set did meet the technical acceptance criteria specific to DMC recoveries, although not all DMC recoveries were within the control range in each analysis. The technical acceptance criteria does provide for the recovery of up to three DMCs to fall outside of the control range in the analysis of field samples. Matrix spike and matrix spike duplicate analyses were not performed on samples in this sample set. Trace concentrations of bromomethane, acetone, carbon disulfide, methylene chloride, carbon tetrachloride, toluene, m,p-xylene, 1,3-dichlorobenzene, 1,2,4-trichlorobenzene, and 1,2,3-trichlorobenzene were identified in the analysis of the method blank associated with the analytical work. The concentration of each analyte in that analysis was below the established reporting limit, and the analysis did meet the technical acceptance criteria for a compliant method blank analysis. Trace concentrations of carbon disulfide and carbon tetrachloride were identified in the analysis of the storage blank associated with the sample set. The concentration of each analyte in that analysis was below the established reporting limit, and the analysis did meet the

technical acceptance criteria for a compliant storage blank analysis. Trace concentrations of carbon disulfide, carbon tetrachloride, and toluene were identified in the analysis of the instrument blank associated with the analytical work. The concentration of each analyte in that analysis was below the established reporting limit, and the analysis did meet the technical acceptance criteria for a compliant instrument blank analysis. Present in the method blank, instrument blank, and storage blank analyses was a non-target constituent that represents a compound that is related to the DMC formulation. The fact that the presence of this compound is not within the laboratory's control is at issue. The derived results for that compound have been qualified with an "X" qualifier to reflect the source of the contamination.

The responses for each of the target analytes met the relative standard deviation criterion in the initial calibration. The response for each target analyte met the percent difference criterion in the opening/continuing calibration check acquisition. The response for each target analyte met the 50.0 percent difference criterion in the closing calibration check acquisition.

The primary quantitation mass for methylcyclohexane that is specified in the Statement of Work is mass 83. The laboratory did identify a contribution to mass 83 from 1,2-dichloropropane- d_6 , one of the deuterated monitoring compounds (DMCs). The laboratory did change the primary quantitation mass assignment to mass 55 for the quantification of methylcyclohexane.

Manual integration was employed in deriving certain of the analytical results. The values that have been derived from manual integration are qualified on the quantitation reports. Extracted ion current profiles for each manual integration are included in the data package, and further documented at the end of this submittal.

DATA REPORTING QUALIFIERS

Client: Argonne National Laboratory

Job Number: 200-7357-1 Sdg Number: 200-7357

Lab Section	Qualifier	Description
GC/MS VOA		
	U	Analyzed for but not detected.
	E	Compound concentration exceeds the upper level of the calibration range of the instrument for that specific analysis.
	J	Indicates an Estimated Value for TICs
	J	Indicates an estimated value.
	D	Sample was analyzed at a higher dilution factor.
	х	See case narrative notes for explanation of the 'X' flag
	te.	Surrogate exceeds the control limit
	В	The analyte was found in an associated blank, as well as in the sample.

55+ An						UNI ISHING CONTRALLER INC.		
(Signature)	154	5	AIN OF CU	CHAIN OF CUSTODY RECORD*	SD*	Shipping Info:		
(Sig	KS			ANALYSIS		ANL Field Co	Id Contact (Name	ANL Field Contact (Name & Temporary Phone):
1 101 1 101 1 101 1 10 10 10 10 10 10 10	they me	Number						
DATE OF COLLECTION SAN	SAMPLE ID NUMBER(S)	S) con- tainers (01		-Annan		REN	REMARKS
Dr+3.2011 MRSH	MRSH2 - W - 30063	cł	2			2 8 40	Jw	C. UDC.
Oct 4, 2011 MRHW2	5-1	6 02	5					
1 1 MR MU	-W-SH0	21 2	1			1		1
1	-M-2110	78 2	- R			1		
04 4 2011 MRQI	CTB - W - 3009	0	3			ZXHONL	1 tor	DOC
P		T						
a Ge		Ī						
7								
0								
5								
Relinquished by (Signature) Date	te Time	Received by (Signature)		Relinquished by (Signature)	Signature)	Date	Time	Received by (Signature)
01	10-4-11 12:00							
Relinquished by (Signature) Date	te Time	Received for Labor	aboratory by	Date	Time	Remarks		
	- Provincial Activity	ES S		10 5 11	1020			
	FOR LAB USE ONLY		*A sample i	*A sample is under custody if:				
Custody seal was intact when shipment received.	ict when shipment rec	eived.	1. It is in yo	1. It is in your possession; or,				
 Sample containers were intact when received. 	ere intact when receive	эd.	2. It is in yo	2. It is in your view, after having been in your possession; or,	ing been in y	our possession	; or,	
Shipment was at required temperature when received	ired temperature wher	n received.	3. It was in	3. It was in your possession and you locked it up; or,	and you lock	ted it up; or,		
V Sample labels, Tags and COC agree.	ind COC agree.		4. It is in a c	4. It is in a designated secure area.	e area.			
Argonne National Laboratory, Applied Geosciences	ory. Applied Geoscienc		Mat. Group.	Environmental B	esearch Div	Sion 9700 S C	ass Avenue	& Environmental Met. Group. Environmental Research Division. 9700. S. Cass Avenue. Aronomie. 11.60430

0/12/2011

3189

TestAmerica Burlington INTERNAL CHAIN OF CUSTODY LOG (ICOC)

Client: ARGLAB LAB Client: ARGLAB Samples associated with this log-in were placed into		:Doulaw	INA Z'INNOO	Vol 1					
amples associated wi		LAB IDs:	200-7357-1 THRU	1 THRU 5					
IN DATA DATA DATA DATA DATA	the for is more about	ad into ctors	20 02	10/EPON1	1535		NRA-		
	na unstant mere piac		in ada one	(Date)	(Time ²)		Sample Custodian Signature	Ire	
Storage Location: V(VOA FRIDGE A, SHELF 6	E G		Specify stora	ge location (n	efrigerator,	freezer ID or lab location)	Specify storage location (refrigerator, freezer ID or lab location) for original sample containers	ers
	Refrigeration Action Action	C Frozen		D Ambient	nt.	and the second se		相対部務は予定の一部務が必要	and the second
Sample Type	Lab ID(s)	Transfer	Transfer	Purpo	Purpose of Transfer	fer	Relinquished	Received	Storage Location
Ortginal Prepared ¹		Date	Time ²	Prep	Analysis	Storage	By:	By:	Prepared Sample ¹
	7357 1-5	10 01	0530	7			11	AN	Screen
7	Ц	10/2/01	0640	Constraint and the second s		7	J H	2 PC	Storeote
7	u.	10/7/11	0800		7		- M-	Tu s	Anchusic
.7	LL LL	m 1/21	oblo			7	2	ト	(Jeres,
								. >	
	10 P.								
				-					
				and the second se					1
		100							1
		_							

BRFSR012:07.09.10:2 TestAmerica

/12/2011

Log In #: 200-7357 Method: SOM Client: ARGLAB LAB IDS: 200- Samples associated with this log-in were placed into storage on Storage Location: VOA FRIDGE A, SHELF 6 Storage Location: WOA FRIDGE A, SHELF 6 Storage Location: WOA FRIDGE A, SHELF 6 Storage Location: Setrigeration D Frozen Internal Transfer Information Lab ID(s) Transfer 1 Tra	-In were placed in: BEA, SHELF 6 atton		0 10110	E)					
Client: ARGLAB Samples associated with this log Storage Location: <u>VOA FRIDC</u> Storage Condition: <u>® Refrigen</u> Internal Transfer Information Sample Type La	-In were placed in SE A, SHELF 6 atton D		SUMUL: VOI	VOI IL					
Samples associated with this log Storage Location: VOA FRIDC Storage Condition: & Refrigen Internal Transfer Information Sample Type La	-In were placed In SE A, SHELF 6 atton	LAB IDs: 2	200-7357-6						
Samples associated with this log Storage Location: <u>VOA FRIDC</u> Storage Condition: <u>& Refrigen</u> Internal Transfer Information Sample Type La	-In were placed In BE A, SHELF 6 atton []						r Abl		
VOA FRI & Refrig	SHELF 6	to storage	00	10/5/2011	1536	,a	Pic C		
VOA FRI	SHELF 6			(Date)	(Time ²)	S	Sample Chatedian Signature	ą.	
⊛ Refrig mation			-,	Specify store	ige location (re	afrigerator, f	reezer ID or lab location) f	Specify storage location (refrigerator, freezer ID or lab location) for original sample containers	2
		Frozen		D Ambient	nt				
	保留のないの		にないいの現代行	前田町の	「「「「「「「「」」」」」	会校の行き	"深於保護部部一百升	第一一の記録を見た語作品	and the second second second second
Original Branarad ¹	Lab ID(s)	Transfer	Transfer	Purp	~	er	Relinquished	Racelved	Storage Location
		ndia		der	Analysis	Storage	By:	By:	Prepared Sample
7357	- (1116/01	cap		7		74	5	Analus,S
=		10/1/11	Ofio			7	7.10	710 7	Basi
									20101
Ige									
16				4					
	ř.								
	1								
					T				
		1							

BRFSR012:07.09.10:2 TestAmerica

2/2011

Shipping and Receiving Documents

Fed Exx. NEW Package Express US Airbill FodEn Tracking Number 8757 9218 1280 0200 fem FedEx Retrieval Col Express Package Service . To must locations 1 From Packages up to 1501. Sickages over 150 lbs., vie the Feels Express Freight US Au 2 Sender's FedEx Account Number 4 18 A 4 22 3 NOTE: Service order has shanged. Please select carefully, Date Next Business Day 1984 - 44 wj2or3Business Bayes 12.55 E Le FedEx First Overnight 1 11 . Sec. NEW FedEx 2Day A.M. Sender's E in 1.3 06 49 Phon Nama ne fodin soon MATANIA SA STATIST FedEx Priority Overnight her base to smark of 1/128 years and an even on 1/2000 years to 50004000 Cel in sectors Ajzi Val FodEx 20ay interferent dament "Acceler Manne after Acceler million ar mend 24 (20a) Charge a salesse 18.6.11 01 🕅 03 Company f. FedEx Standard Overnight het schere Aterust Sancter Benery 201 er schere 11. A ... 1 FedEx Express Saver 2 . COL -20 05 Address Real months Carl." Seturnity Debuggy Will available Could Place S. B. Secon 4 - 6.1 5 Packaging *Declared value list \$500. ree 1 ... State 03 FedEx Box 04 FedEx 01 Or 06 FedEx Envelope* 02 FedEx Pak* 2 Your Internal Billing Reference A 17 7 4 11 6 Special Handling and Delivery Signature Options 3 To 1.96 1. Sec. M Sec. 101 Recipient's Name 15 03 SATURDAY DELIVERY Phone 10 Direct Signature Someone at recipient's address may ston for definery. For applies. Induect Signature ALL ST. No Signature Required Package may be left without chaming a signature for detivery. Company HOLD Weekday Fails tocator advess RECURED NOT evaluat Fails Fea Gamages a dal venes a Does this shipment contain dangerous goods? 11.000 A plapest 01, - Doe box must be checked, ddreas a er P.O. 27 tan HOLD Saturday No 04. Yes No 04. Support Declaration Shiping Declaration 06. Dry Ico Dry Ico Dry Ico 31 Dangerous goods in cluding shy reticautor be shoped in Fritta packaging or placed in a Fritta Apress Drop Bert. Cargo Aircraft Only Address Use this fire for the WOLD leave on address or for each attent of your shipping address Payment Bill to: 7 20 -1 +h 1300 Obtain recip. ; Acct. No. 6. State 710 dEx Acct. No. or Cradit Card No. below 3 Third Party 4 Credit Card 5 Cash/C Recipient ha sifetun 2: 10.700 a state of the same that Total Packages Total Weight 675 ity is finited to \$100 piness you for two at charments. Sor the correct Fellin Service Guide for details. 9218 1280 Rev. Dam 11/10 + Part #183136 + @1994-2010 FedEx + PRINTED IN U.S A. SMT 4 10/12/2011 Page 11 of 56

Login Sample Receipt Checklist

Client: Argonne National Laboratory

Login Number: 7357 List Number: 1 Creator: Holt, Jamie

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	True	NO CUSTODY SEAL NUMBERS
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	2.6°C, IR GUN ID 96, CF 0
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	False	Both vials for one sample not labled. Sample ID assigned by elimination process.
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	Sample volumes were received unpreserved.
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vlals do not have headspace or bubble is <6mm (1/4") in diameter.	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 200-7357-1 SDG Number: 200-7357

List Source: TestAmerica Burlington

05/05/10 rev 2.0

Sample Login Acknowledgement

Job 200-7357-1

Client Job Description:	Morrill (200-7357)	Report	To:	Argonne Nationa	al Laboratory	
Purchase Order #:	1E-30401			Jorge Alvarado		
Work Order #:	1E-30401			9700 South Cas	s Avenue	
Project Manager:	Kirk F Young			Building 203 Office B-149		
Job Due Date:	10/19/2011			Argonne, IL 604	39	
Job TAT:	14 Days			3		
Max Deliverable Level:	IV	Bill To:		Argonne Nationa	al Laboratory	
				Accounts Payab	le	
Earliest Deliverable Due:	10/19/2011		e E	Chief Financial (9700 S. Cass Av Building 201 Argonne, IL 604	/e.	
Login 200-7357						
Sample Receipt:	10/5/2011 10:20:00 AM	Number of Coolers:		1		
Method of Delivery:	FedEx Priority Overnight	Cooler Temperature(s) (C°): 2	2.6;		
Lab Sample # Client	Sample ID	Date Sampled	Matri	x		
Method M	ethod Description / Work Location			Rpt Basis	Dry / Wet **	
200-7357-1 MRSM	2-W-30063	10/3/2011 12:00:00 AM	Water	r i i		
SOM01.2_Vol_Tr S	OM01.2 Trace Volatile Organics / In-Lab			Total	Wet	
200-7357-2 MRMV	2S-W-30069	10/4/2011 12:00:00 AM	Water	r		
SOM01.2_Vol_Tr S	OM01.2 Trace Volatile Organics / In-Lab			Total	Wet	
200-7357-3 MRMW	/4S-W-30071	10/4/2011 12:00:00 AM	Water	C State of the		
SOM01.2_Vol_Tr S	OM01.2 Trace Volatile Organics / In-Lab			Total	Wet	
200-7357-4 MRMW	/11S-W-30078	10/4/2011 12:00:00 AM	Water			
SOM01.2_Vol_Tr S	OM01.2 Trace Volatile Organics / In-Lab			Total	Wet	
200-7357-5 MRQC	TB-W-30090	10/4/2011 12:00:00 AM	Water	r i i i		
SOM01.2_Vol_Tr Se	OM01.2 Trace Volatile Organics / In-Lab			Total	Wet	
200-7357-6 VHBL	(01	10/5/2011 3:30:00 PM	Water			
SOM01.2_Vol_Tr S	OM01.2 Trace Volatile Organics / In-Lab			Total	Wet	

METHODOLOGY SUMMARY

Laboratory: TestAmerica Laboratories

Project No:

Location: South Burlington, Vermont

SDG No: 200-7357

VOA

Volatile Organics Trace - USEPA CLP SOM01.2

2A - FORM II VOA-1 WATER VOLATILE DEUTERATED MONITORING COMPOUND RECOVERY

	Lab Name: TESTA	MERICA BURL	INGTON	-5.	Contract:	8E~00302		
	Lab Code: STLV Level: (TRACE or	Case No LOW) TRA	<u></u>	Mod. Ref N	10	SDG N	o.: 200-73	57
	EPA SAMPLE NO.	VDMC1 (VCL) #	VDMC2 (CLA) #	VDMC3 (DCE) #	VDMC4 (BUT) #	VDMC5 (CLF) #	VDMC6 (DCA) #	VDMC7 (BEN) #
01	VBLKDJ	100	99	74	94	95	96	104
02	MROCTB-W-30090	89	88	69	74	85	86	96
03	MRSM2-W-30063	88	90	70	157 *	87	88	96
04	MRMW2S-W-30069	85	87	68	157 *	85	86	93
05	MRMW4S-W-30071	94	96	76	190 *	94	94	103
06	MRMW11S-W-3007 8	92	94	73	185 *	92	92	101
07	MRMW11S-W-3007 8DL	90	91	71	150	87	86	97
08	VHBLK01	92	94	73	90	91	94	98

				OC LIMITS
				~
VDMC1	(VCL)	=	Vinyl Chloride-d3	(65-131)
VDMC2	(CLA)	=	Chloroethane-d5	(71-131)
VDMC3	(DCE)	=	1,1-Dichloroethene-d2	(55-104)
VDMC4	(BUT)	=	2-Butanone-d5	(49-155)
VDMC5	(CLF)	=	Chloroform-d	(78-121)
VDMC6	(DCA)	-	1,2-Dichloroethane-d4	(78-129)
VDMC7	(BEN)	=	Benzene-d6	(77-124)

Column to be used to flag recovery values

* Values outside of contract required QC limits

2B - FORM II VOA-2 WATER VOLATILE DEUTERATED MONITORING COMPOUND RECOVERY

Contract: 8E-00302 Lab Name: TESTAMERICA BURLINGTON Lab Code: STLV Case No.: MORRIL Mod. Ref No.: SDG No.: 200-7357 Level: (TRACE or LOW) TRACE VDMC10 VDMC11 VDMC12 VDMC13 OTHER TOT VDMC9 VDMC9 EPA OUT (TDP) # (HEX) # (TCA) # (DCZ) # SAMPLE NO. (DPA) # (TOL) # VBLKDJ 0 102 99 99 89 111 105 01 77 94 0 87 - 80 MRQCTB-W-30090 93 92 02 2 77 98 94 88 187 * 03 MRSM2-W-30063 92 2 178 * 77 98 04 MRMW2S-W-30069 91 91 85 2 05 MRMW45-W-30071 100 100 96 227 * 85 107 06 MRMW11S-W-3007 96 97 95 217 * 83 106 2 8 07 MRMW11S-W-3007 93 95 87 179 * 75 99 1 8DL 93 103 0

92

84

97

96

			QC LIMITS
VDMC8	(DPA)	🛲 1,2-Dichloropropane-d6	(79-124)
VDMC9	(TOL)	≓ Toluene-d8	(77-121)
VDMC10	(TDP)	= trans-1,3-Dichloropropene-d4	(73-121)
VDMC11	(HEX)	= 2-Hexanone-d5	(28-135)
VDMC12	(TCA)	= 1,1,2,2-Tetrachloroethane-d2	(73-125)
VDMC13	(DCZ)	= 1,2-Dichlorobenzene-d4	(80-131)

Column to be used to flag recovery values * Values outside of contract required QC limits

Report 1,4-Dioxane-d8 for Low-Medium VOA analysis only

Page 1 of 1

VHBLK01

80

4A - FORM IV VOA VOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

VBLKDJ

Lab Name	I TESTAMERICA	BURLINGTÓN		Contract:	8E-C	0302	, <u></u> _,
Lab Code	sTLV Cas	e No.: MORRIL	Mod. Ref N	io.:		BDG No.:	200-7357
Lab File	ID: DHTA03.D			Lab Sample	ID:	MB 200-	26380/3
Instrume	nt ID: D.i						
Matrix:	(SOIL/SED/WATER			Date Analy	zed:	10/07/2	2011
Level: (TRACE or LOW/ME	D) TRACE		Time Analy	zed:	0754	
GC Colum	n: DB-624	ID: 0.20	(mm)	Heated Pur	ge:	(Y/N) N	
	EPA	LAI		LAB		TIME	
	SAMPLE NO.	SAMPLI	E ID	FILE I	D	ANALYZI	ED
01	MRQCTB-W-300	200-7357-5		DHTA04.D		0835	

	SAMPLE NO.	SAMPLE ID	LIDE ID	ANALIZED
1	MRQCTB-W-300 90	200-7357-5	DHTA04.D	0835
2	MRSM2-W-3006 3	200-7357-1	DHTA05.D	0859
3	MRMW2S-W-300 69	200-7357-2	DHTA06.D	0924
	MRMW4S-W-300 71	200-7357-3	DHTA07.D	0949
>	MRMW11S-W-30 078	200-7357-4	DHTA08.D	1014
5	VIBLKDM	VIBLK 200-26380/9	DHTA09.D	1038
7	MRMW11S-W-30 078DL	200-7357-4	DHTA10.D	1115
8	VHBLK01	200-7357-6	DHTA11.D	1140

COMMENTS:

λ.

SOM01.2 (4/2007) 10/12/2011

5A - FORM V VOA VOLATILE ORGANICS INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

EPA SAMPLE NO,

BFBDI

Lab Name:	TESTAMERI	CA BUR	LINGT	ON	a summet		Cont	tract: 81	-00302		
Lab Code:	STLV	Case N	No.:	MORRIL	Mod.	Ref	No.:		SDG	No.:	200-7357
Lab File I	d: DHT01.	D					BFB	Injectio	n Date:	10	/06/2011
Instrument	Id: D.i				-		BFB	Injectio	n Time:	11	58
GC Column:	DB-624		ID:	0.20	(mm)					

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50	15.0 - 40.0% of mass 95	20.3
75	30.0 - 80.0% of mass 95	50.7
95	Base peak, 100% relative abundance	100
96	5.0 - 9.0% of mass 95	6.7
173	Less than 2.0% of mass 174	0.9 (1.0)1
174	50.0 - 120% of mass 95	86.5
175	5.0 - 9.0% of mass 174	6.1 (7.1)1
176	95.0 - 101% of mass 174	84.1 (97.2)1
177	5.0 - 9.0% of mass 176	5.8 (6.9)2

1 - Value is %mass 174 2 - Value is %mass 176

ł	EPA SAMPLE NO.;	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	VSTD0.5DI	IC 200-26335/5	DHT05.D	10/06/2011	1331
e l	VSTD001DI	IC 200-26335/6	DHT06.D	10/06/2011	1356
1	VSTD005DI	ICIS 200-26335/7	DHT07.D	10/06/2011	1421
	VSTD010DI	IC 200-26335/8	DHT08.D	10/06/2011	1446
d	VSTD020DI	IC 200-26335/9	DHT09.D	10/06/2011	1511

5A - FORM V VOA ' VOLATILE ORGANICS INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

EPA SAMPLE NO.

BFBDJ

Lab Name:	TESTAMERI	CA BURLING	TON			Cont	tract: 8	BE-00302		
Lab Code:	STLV	Case No.:	MORRIL	Mod.	Ref	No.:		SDG	No.:	200-7357
Lab File]	d: DHTA01	. D				BFB	Injecti	on Date	10	/07/2011
Instrument	Id: D.i		0			BFB	Injecti	on Time:	07	15
GC Column:	DB-624	ID:	0.20	(mm)					

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50	15.0 - 40.0% of mass 95	20.0
75	30.0 - 80.0% of mass 95	52.1
95	Base peak, 100% relative abundance	100
96	5.0 - 9.0% of mass 95	7.0
173	Less than 2.0% of mass 174	0.8 (1.0)1
174	50.0 - 120% of mass 95	87.0
175	5.0 - 9.0% of mass 174	6.2 (7,1)1
176	95.0 - 101% of mass 174	84.0 (96.6)1
177	5.0 - 9.0% of mass 176	5.6 (6.7)2

2 - Value is %mass 176 1 - Value is %mass 174

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
3	and a second				
	VSTD005DJ	CCVIS 200-26380/2	DHTA02.D	10/07/2011	0730
2	VBLKDJ	MB 200-26380/3	DHTA03.D	10/07/2011	0754
3	MRQCTB-W-3 0090	200-7357-5	DHTA04.D	10/07/2011	0835
	MRSM2-W-30 063	200-7357-1	DHTA05.D	10/07/2011	0859
5	MRMW25-W-3 0069	200-7357-2	DHTA06.D	10/07/2011	0924
5	MRMW4S-W-3 0071	200-7357-3	DHTA07.D	10/07/2011	0919
,	MRMW11S-W- 30078	200-7357-4	DHTA08.D	10/07/2011	1014
3	VIBLKDM	VIBLK 200-26380/9	DHTA09.D	10/07/2011	1038
}	MRMW11S-W- 30078DL	200-7357-4	DHTA10.D	10/07/2011	1115
	VHBLK01	200-7357-6	DHTA11.D	10/07/2011	1140
	VSTD005JD	CCVC 200-26380/25	DHTA25.D	10/07/2011	1844

8A - FORM VIII VOA VOLATILE INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name:	TESTAMERI	ICA BURLI	NGTON		Contract: 8E-00302					
Lab Code:	STLV Case No.: MORRIL Mo				od. Ref No.;			SDG No.: 200-7357		
GC Column:	DB-624		ID: 0.2	.0 (mm)	Init. Calib.	Date(s)	: 10	/06/2011	10/06/2011	
EPA Sample	No. (VSTD	#####):	VSTD005D	J	Date Ana	lyzed:	10/07,	/2011		
Lab File I	D (Standa)	rd): DH	TA02.D		Time Ana	lyzed:	0730			
Instrument	ID: D.i				Heated P	urge: ()	(/N)	N		
-		1 + 22	(000) T		TOO (DED)	1	702	(DCB)		

		IS1 (CBZ) AREA #	RT #	IS2 (DFB) AREA #	RT #	IS3 (DCB) AREA #	RT #
	12 HOUR STD	223812	8.70	248339	5.34	122650	11.53
	UPPER LIMIT	313337	9.03	347675	5.67	171710	11.86
	LOWER LIMIT	134287	8.37	149003	5.01	73590	11.20
	EPA SAMPLE NO.	111					10
01	VBLKDJ	209353	8.70	239111	5.34	93064	11.53
02	MRQCTB-W-30090	216231	8.70	250061	5.34	97684	11.53
03	MRSM2-W-30063	225673	8.70	254856	5.34	97077	11.53
04	MRMW2S-W-30069	229479	8.70	258445	5.34	100373	11.53
05	MRMW4S-W-30071	216416	8.70	244940	5.34	94014	11.53
06	MRMW11S-W-3007 8	224553	8,70	253967	5.34	96206	11.53
07	VIBLKDM	230899	8.70	260154	5.34	99477	11.53
80	MRMW115-W-3007 8DL	216655	8.70	248053	5.34	91727	11.53
09	VHBLK01	211281	8.70	235530	5.34	93390	11.53

IS1 (CBZ) = Chlorobenzene-d5 IS2 (DFB) = 1,4-Difluorobenzene

IS3 (DCB) = 1,4-Dichlorobenzene-d4

1011

AREA UPPER LIMIT = 140% (Trace Volatiles) of internal standard area AREA LOWER LIMIT = 60% (Trace Volatiles) of internal standard area RT UPPER LIMIT = + 0.33 (Trace Volatiles) minutes of internal standard RT RT LOWER LIMIT = - 0.33 (Trace Volatiles) minutes of internal standard RT

Column used to flag values outside contract required QC limits with an asterisk.

Page 1 of 1

SOM01.2 (4/2007) 10/12/2011

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

MRMW115-W-30078

Lab Name: TESTAMERICA BU		RLINGT	LINGTON			Contract:	8E-	8E-00302		
Lab Code:	STLV Case	No.:	MORRIL	Mod.	Ref	No.;		SDG No.:	200-7357	
Matrix: (S	OIL/SED/WATER)	Wate	r			Lab Sample	e ID:	200-735	7-4	
Sample wt/	vol: 25.0	(g/m	L) mL			Lab File 1	ID:	DHTA08.D		
Level: (TR	ACE/LOW/MED)	TRACE	_			Date Rece	ived:	10/05/2	011	
% Moisture	: not dec.					Date Analy	yzed:	10/07/2	011	
GC Column:	DB-624	IE	0.20	(nu	n)	Dilution I	Facto	r: 1.0		
Soil Extra	ct Volume:			(u]	L)	Soil Aliqu	uot V	olume	(uL)	
Purge Volu	me: 25.0			(m]	L)					

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
75-71-8	Dichlorodifluoromethane	0.50	U
74-87-3	Chloromethane	0.50	U
75-01-4	Vinyl chloride	0.50	U
74-83-9	Bromomethane	0.50	U
75-00-3	Chloroethane	0.50	U
75-69-4	Trichlorofluoromethane	0.50	U
75-35-4	1,1-Dichloroethene	0.50	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	Ü
67-64-1.	Acetone	1.1	JB
75-15-0	Carbon disulfide	0.038	JB
79-20-9	Methyl acetate	0.50	U
75-09-2	Methylene Chloride	0.50	U
156-60-5	trans-1,2-Dichloroethene	0.50	U
1634-04-4	Methyl tert-butyl ether	0.50	U
75-34-3	1,1-Dichloroethane	0.50	U
156-59-2	cis-1,2-Dichloroethene	0.50	U
78-93-3	2-Butanone	5.0	U
74-97-5	Bromochloromethane	0.50	U
67-66-3	Chloroform	0.85	
71-55-6	1,1,1-Trichloroethane	0.50	U
110-82-7	Cyclohexane	0.50	U
56-23-5	Carbon tetrachloride	38	ЕВ
71-43-2	Benzene	0.50	U
107-06-2	1,2-Dichloroethane	0.50	U

Report 1,4-Dioxane for Low-Medium VOA analysis only

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

MRMW115-W-30078

(uL)

Lab Name: TESTAMERICA BURLINGTO	N	Contract: 8E-00)302
Lab Code: STLV Case No.: M	ORRIL Mod. Re	f No.: SI	DG No.: 200-7357
Matrix: (SOIL/SED/WATER) Water		Lab Sample ID:	200-7357-4
Sample wt/vol: 25.0 (g/mL) mL	Lab File ID: DH	HTA08.D
Level: (TRACE/LOW/MED) TRACE		Date Received:	10/05/2011
% Moisture: not dec.		Date Analyzed:	10/07/2011
GC Column: DB-624 ID:	0.20 (mm)	Dilution Factor:	: 1.0
Soil Extract Volume:	(uL)	Soil Aliquot Vol	lumes
Purge Volume: 25.0	(mL)		

108-87-2 Methylcyclohexane 0.50 0 78-87-5 1,2-Dichloropropane 0.50 0 75-27-4 Bromodichloromethane 0.50 0 10061-01-5 cis-1,3-Dichloropropene 0.50 0 108-80-3 Toluene 0.024 J 0 108-80-3 Toluene 0.50 0 108-80-3 Toluene 0.024 J 0 108-80-3 Toluene 0.024 J 0 108-80-3 Toluene 0.024 J 0 108-80-3 Toluene 0.50 0 107-00-5 1,1,2-Trichloroethane 0.50 0 127-18-4 Tetrachloroethane 0.50 0 124-48-1 Dibromochloromethane 0.50 0 106-93-4 1,2-Dibromoethane 0.50 0 108-90-7 Chlorobenzene 0.50 0 108-90-7 Chlorobenzene 0.50 0 100-42-5 Styrene 0.50 </th <th>CAS NO.</th> <th>COMPOUND</th> <th>CONCENTRATION UNITS: (ug/L or ug/kg) ug/L</th> <th colspan="2">Q</th>	CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q		
78-87-5 1, 2-Dichloropropané 0.50 U 75-27-4 Bromodichloromethane 0.50 U 10061-01-5 cis-1, 3-Dichloropropene 0.50 U 108-10-1 4-Methyl-2-pentanone 5.0 U 108-8-3 Toluene 0.024 J B 10061-02-6 trans-1, 3-Dichloropropene 0.50 U 1079-00-5 1, 1, 2-Trichloroethane 0.50 U 127-18-4 Tetrachloroethene 0.50 U 127-18-4 Dibromochloromethane 0.50 U 127-18-4 Dibromochloromethane 0.50 U 106-93-4 1, 2-Dibromoethane 0.50 U 106-93-4 1, 2-Dibromoethane 0.50 U 106-93-4 1, 2-Dibromoethane 0.50 U 108-90-7 Chlorobenzene 0.50 U 108-91-23-1 m, p-Xylene 0.50 U 1095-47-6 0-Xylene 0.50 U 179601-23-1 m, p-Xylene 0.50 U 100-42-5 Styrene 0.50 U	79-01-6	Trichloroethene	0.50	U		
Bromodichloromethane 0.50 U 10061-01-5 cis-1, 3-Dichloropropene 0.50 U 108-10-1 4-Methyl-2-pentanone 5.0 U 108-88-3 Toluene 0.024 J B 10061-02-6 trans-1, 3-Dichloropropene 0.50 U 127-18-4 Tetrachloroethane 0.50 U 124-48-1 Dibromochloromethane 0.50 U 106-93-4 1,2-Dibromoethane 0.50 U 106-93-4 1,2-Dibromoethane 0.50 U 106-93-4 1,2-Dibromoethane 0.50 U 106-94-7 Chlorobenzene 0.50 U 100-41-4 Ethylbenzene 0.50 U 1095-47-6 o-Xylene 0.50 U	108-87-2	Methylcyclohexane	0.50	U		
10061-01-5 cis-1, 3-Dichloropropene 0.50 U 108-10-1 4-Methyl-2-pentanone 5.0 U 108-88-3 Toluene 0.024 J B 10061-02-6 trans-1, 3-Dichloropropene 0.50 U 79-00-5 1, 1, 2-Trichloroethane 0.50 U 127-18-4 Tetrachloroethane 0.50 U 127-18-4 Tetrachloroethane 0.50 U 127-18-4 Tetrachloroethane 0.50 U 124-48-1 Dibromochloromethane 0.50 U 106-93-4 1, 2-Dibromoethane 0.50 U 106-93-4 1, 2-Dibromoethane 0.50 U 106-93-4 1, 2-Dibromoethane 0.50 U 106-94-7 Chlorobenzene 0.50 U 100-41-4 Ethylbenzene 0.50 U 100-42-5 Styrene 0.50 U 179601-23-1 m, p-Xylene 0.50 U 10-42-5 Styrene 0.50 U	78-87-5	1,2-Dichloropropanë	0.50	U		
108-10-1 4-Methyl-2-pentanone 5.0 U 108-88-3 Toluene 0.024 J B 10061-02-6 trans-1,3-Dichloropropene 0.50 U 79-00-5 1,1,2-Trichloroethane 0.50 U 127-18-4 Tetrachloroethane 0.50 U 124-48-1 Dibromochloromethane 0.50 U 106-93-4 1,2-Dibromoethane 0.50 U 108-90-7 Chlorobenzene 0.50 U 100-41-4 Ethylbenzene 0.50 U 100-41-5 Styrene 0.50 U 100-42-5 Styrene 0.50 U 175-25-2 Bromoform 0.50 U 98-82-8 1,3-Dichlorobenzene 0.50 U	75-27-4	Bromodichloromethane	0.50	U		
108-88-3 Toluene 0.024 J B 10061-02-6 trans-1,3-Dichloropropene 0.50 U 79-00-5 1,1,2-Trichloroethane 0.50 U 127-18-4 Tetrachloroethane 0.50 U 591-78-6 2-Hexanone 0.50 U 124-48-1 Dibromochloromethane 0.50 U 106-93-4 1,2-Dibromoethane 0.50 U 106-93-4 1,2-Dibromoethane 0.50 U 106-93-4 1,2-Dibromoethane 0.50 U 106-93-4 1,2-Dibromoethane 0.50 U 100-41-4 Ethylbenzene 0.50 U 100-41-4 Ethylbenzene 0.50 U 100-42-5 Styrene 0.50 U 75-25-2 Bromoform 0.50 U 98-82-8 Isopropylbenzene 0.50 U 79-34-5 1,1,2,2-Tetrachloroethane 0.50 U 541-73-1 1,3-Dichlorobenzene 0.50 U <tr< td=""><td>10061-01-5</td><td>cis-1,3-Dichloropropene</td><td>0.50</td><td>U</td></tr<>	10061-01-5	cis-1,3-Dichloropropene	0.50	U		
No.0000 trans-1,3-Dichloropropene 0.50 U 10061-02-6 trans-1,3-Dichloropropene 0.50 U 127-18-4 Tetrachloroethane 0.50 U 591-78-6 2-Hexanone 0.50 U 124-48-1 Dibromochloromethane 0.50 U 106-93-4 1,2-Dibromoethane 0.50 U 106-90-7 Chlorobenzene 0.50 U 100-41-4 Ethylbenzene 0.50 U 100-42-5 Styrene 0.50 U 106-46-7 1,1,2,2-Tetrachloroethane 0.50 U 106-46-7 1,4-Dich	108-10-1	4-Methyl-2-pentanone	5.0	U		
79-00-5 1,1,2-Trichloroethane 0.50 U 127-18-4 Tetrachloroethane 0.50 U 591-78-6 2-Hexanone 0.50 U 124-48-1 Dibromochloromethane 0.50 U 106-93-4 1,2-Dibromoethane 0.50 U 106-93-4 1,2-Dibromoethane 0.50 U 108-90-7 Chlorobenzene 0.50 U 100-41-4 Ethylbenzene 0.50 U 95-47-6 o-Xylene 0.50 U 100-42-5 Styrene 0.0082 J B 100-42-5 Styrene 0.50 U 98-82-8 Isopropylbenzene 0.50 U 99-82-8 Isopropylbenzene 0.50 U 106-46-7 1,1,2,2-Tetrachloroethane 0.50 U 106-46-7 1,4-Dichlorobenzene 0.50 U 106-46-7 1,4-Dichlorobenzene 0.50 U 95-50-1 1,2-Dichlorobenzene 0.50 U 95-50-1 1,2-Dichlorobenzene 0.50 U 96-12-8	108-88-3	Toluene	0.024	JB		
127-18-4 Tetrachloroethene 0.50 U 5591-78-6 2-Hexanone 5.0 U 124-48-1 Dibromochloromethane 0.50 U 106-93-4 1,2-Dibromoethane 0.50 U 106-93-4 1,2-Dibromoethane 0.50 U 106-93-4 1,2-Dibromoethane 0.50 U 108-90-7 Chlorobenzene 0.50 U 100-41-4 Ethylbenzene 0.50 U 95-47-6 o-Xylene 0.500 U 1079601-23-1 m,p-Xylene 0.0082 J B 100-42-5 Styrene 0.500 U 98-82-8 Isopropylbenzene 0.500 U 99-82-8 Isopropylbenzene 0.500 U 99-34-5 1,1,2,2-Tetrachloroethane 0.500 U 106-46-7 1,4-Dichlorobenzene 0.500 U 106-46-7 1,2-Dichlorobenzene 0.500 U 99-550-1 1,2-Dichlorobenzene 0.500 U	10061-02-6	trans-1,3-Dichloropropene	0.50	U		
591-78-6 2-Hexanone 5.0 U 124-48-1 Dibromochloromethane 0.50 U 106-93-4 1,2-Dibromoethane 0.50 U 108-90-7 Chlorobenzene 0.50 U 100-41-4 Ethylbenzene 0.50 U 95-47-6 o-Xylene 0.50 U 1079601-23-1 m, p-Xylene 0.0082 J B 100-42-5 Styrene 0.50 U 98-82-8 Isopropylbenzene 0.50 U 99-82-8 Isopropylbenzene 0.50 U 99-82-8 Isopropylbenzene 0.50 U 99-82-7 1,1,2,2-Tetrachloroethane 0.50 U 99-82-8 Isopropylbenzene 0.50 U 99-82-7 1,1,2,2-Tetrachloroethane 0.50 U 99-82-8 Isopropylbenzene 0.50 U 99-82-9 1,2,2-Dichlorobenzene 0.50 U 90-12-8 1,2-Dichlorobenzene 0.50 U	79-00-5	1,1,2-Trichloroethane	0.50	U		
124-48-1 Dibromochloromethane 0.50 U 106-93-4 1,2-Dibromoethane 0.50 U 108-90-7 Chlorobenzene 0.50 U 100-41-4 Ethylbenzene 0.50 U 95-47-6 o-Xylene 0.50 U 100-42-5 Styrene 0.0082 J B 100-42-5 Styrene 0.50 U 100-42-5 Styrene 0.50 U 98-82-8 Isopropylbenzene 0.50 U 99-82-8 Isopropylbenzene 0.50 U 106-46-7 1, 1, 2, 2-Tetrachloroethane 0.50 U 106-46-7 1, 4-Dichlorobenzene 0.50 U 106-46-7 1, 2-Dichlorobenzene 0.50 U 99-50-1 1, 2-Dichlorobenzene 0.50 U 96-12-8 1, 2-Dibromo-3-Chloropropane 0.50 U 120-82-1 1, 2, 4-Trichlorobenzene 0.50 U	127-18-4	Tetrachloroethene	0.50	U		
106-93-4 1,2-Dibromoethane 0.50 U 108-90-7 Chlorobenzene 0.50 U 100-41-4 Éthylbenzene 0.50 U 95-47-6 o-Xylene 0.50 U 100-42-1 m, p-Xylene 0.50 U 100-42-5 Styrene 0.0082 J B 100-42-5 Styrene 0.50 U 98-82-8 Isopropylbenzene 0.50 U 99-82-8 Isopropylbenzene 0.50 U 106-46-7 1, 1, 2, 2-Tetrachloroethane 0.50 U 106-46-7 1, 4-Dichlorobenzene 0.50 U 106-46-7 1, 2-Dichlorobenzene 0.50 U 99-50-1 1, 2-Dichlorobenzene 0.50 U 96-12-8 1, 2-Dibromo-3-Chloropropane 0.50 U 120-82-1 1, 2, 4-Trichlorobenzene 0.50 U	591-78-6	2-Hexanone	5.0			
108-90-7 Chlorobenzene 0.50 U 100-41-4 Éthylbenzene 0.50 U 95-47-6 o-Xylene 0.50 U 179601-23-1 m,p-Xylene 0.0082 J B 100-42-5 Styrene 0.50 U 95-82-8 Isopropylbenzene 0.50 U 98-82-8 Isopropylbenzene 0.50 U 98-82-8 Isopropylbenzene 0.50 U 99-82-8 Isopropylbenzene 0.50 U 99-82-9 I,2.2-Tetrachloroethane 0.50 U 106-46-7 1,1.2.2-Tetrachlorobenzene 0.50 U 106-46-7 1,2-Dichlorobenzene 0.50 U 96-12-8 1,2-Dibromo-3-Chloropropane 0.50 U <tr< td=""><td>124-48-1</td><td>Dibromochloromethane</td><td>0.50</td><td>U</td></tr<>	124-48-1	Dibromochloromethane	0.50	U		
IO0-41-4 Ethylbenzene 0.50 U 95-47-6 o-Xylene 0.50 U 179601-23-1 m,p-Xylene 0.0082 J B 100-42-5 Styrene 0.50 U 100-42-5 Styrene 0.50 U 98-82-8 Isopropylbenzene 0.50 U 99-34-5 1, 1, 2, 2-Tetrachloroethane 0.50 U 541-73-1 1, 3-Dichlorobenzene 0.50 U 106-46-7 1, 4-Dichlorobenzene 0.50 U 99-550-1 1, 2-Dichlorobenzene 0.50 U 96-12-8 1, 2-Dichlorobenzene 0.50 U 120-82-1 1, 2, 4-Trichlorobenzene 0.50 U	106-93-4	1,2-Dibromoethane	0.50	U		
Operation Operation <t< td=""><td>108-90-7</td><td>Chlorobenzene</td><td>0.50</td><td>U</td></t<>	108-90-7	Chlorobenzene	0.50	U		
179601-23-1 m, p-Xylene 0.0082 J B 100-42-5 Styrene 0.50 U 75-25-2 Bromoform 0.50 U 98-82-8 Isopropylbenzene 0.50 U 79-34-5 1,1,2,2-Tetrachloroethane 0.50 U 541-73-1 1,3-Dichlorobenzene 0.50 U 106-46-7 1,4-Dichlorobenzene 0.50 U 95-50-1 1,2-Dichlorobenzene 0.50 U 96-12-8 1,2-Dibromo-3-Chloropropane 0.50 U 120-82-1 1,2,4-Trichlorobenzene 0.50 U	100-41-4	Ethylbenzene	0.50	U		
100-42-5 Styrene 0.50 U 75-25-2 Bromoform 0.50 U 98-82-8 Isopropylbenzene 0.50 U 77-34-5 1,1,2,2-Tetrachloroethane 0.50 U 541-73-1 1,3-Dichlorobenzene 0.50 U 106-46-7 1,4-Dichlorobenzene 0.50 U 95-50-1 1,2-Dichlorobenzene 0.50 U 96-12-8 1,2-Dibromo-3-Chloropropane 0.50 U 120-82-1 1,2,4-Trichlorobenzene 0.50 U	95-47-6	o-Xylene	0.50	U		
75-25-2 Bromoform 0.50 U 98-82-8 Isopropylbenzene 0.50 U 79-34-5 1,1,2,2-Tetrachloroethane 0.50 U 541-73-1 1,3-Dichlorobenzene 0.50 U 106-46-7 1,4-Dichlorobenzene 0.50 U 95-50-1 1,2-Dichlorobenzene 0.50 U 96-12-8 1,2-Dibromo-3-Chloropropane 0.50 U 120-82-1 1,2,4-Trichlorobenzene 0.50 U	179601-23-1	m,p-Xylene	0.0082	JB		
B8-82-8 Isopropylbenzene 0.50 U 79-34-5 1,1,2,2-Tetrachloroethane 0.50 U 541-73-1 1,3-Dichlorobenzene 0.50 U 106-46-7 1,4-Dichlorobenzene 0.50 U 95-50-1 1,2-Dichlorobenzene 0.50 U 96-12-8 1,2-Dibromo-3-Chloropropane 0.50 U 120-82-1 1,2,4-Trichlorobenzene 0.50 U	100-42-5	Styrene	0.50	U		
79-34-5 1,1,2,2-Tetrachloroethane 0.50 U 541-73-1 1,3-Dichlorobenzene 0.50 U 106-46-7 1,4-Dichlorobenzene 0.50 U 95-50-1 1,2-Dichlorobenzene 0.50 U 96-12-8 1,2-Dibromo-3-Chloropropane 0.50 U 120-82-1 1,2,4-Trichlorobenzene 0.50 U	75-25-2	Bromoform	0.50	U		
541-73-1 1,3-Dichlorobenzene 0.50 U 106-46-7 1,4-Dichlorobenzene 0.50 U 95-50-1 1,2-Dichlorobenzene 0.50 U 96-12-8 1,2-Dibromo-3-Chloropropane 0.50 U 120-82-1 1,2,4-Trichlorobenzene 0.50 U	98-82-8	Isopropylbenzene	0.50	U		
106-46-7 1,4-Dichlorobenzene 0.50 U 95-50-1 1,2-Dichlorobenzene 0.50 U 96-12-8 1,2-Dibromo-3-Chloropropane 0.50 U 120-82-1 1,2,4-Trichlorobenzene 0.50 U	79-34-5	1,1,2,2-Tetrachloroethane	0.50	υ		
95-50-1 1,2-Dichlorobenzene 0.50 U 96-12-8 1,2-Dibromo-3-Chloropropane 0.50 U 120-82-1 1,2,4-Trichlorobenzene 0.50 U	541-73-1	1,3-Dichlorobenzene	0.50	U		
96-12-8 1,2-Dibromo-3-Chloropropane 0.50 U 120-82-1 1,2,4-Trichlorobenzene 0.50 U	106-46-7	1,4-Dichlorobenzene	0.50	U		
120-82-1 1,2,4-Trichlorobenzene 0.50 U	95-50-1	1,2-Dichlorobenzene	0.50	U		
	96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U		
37-61-6 1,2,3~Trichlorobenzene 0.50 U	120-82-1	1,2,4-Trichlorobenzene	0.50	U		
	87-61-6	1,2,3~Trichlorobenzene	0.50	U		

SOM01.2 (4/2007) 10/12/2011

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

MRMW11S-W-30078

Lab Name:	TESTAMERICA	A BURLINGTO	ON	_	Con	tract:	8E-0	0302		
Lab Code:	STLV C	ase No.:	MORRIL M	od. Ref	No.:		ŝ	SDG No.:	200-7	357
Matrix: (S	SOIL/SED/WAT	ER) Water	c		Lab	Sample	ID:	200-73	57-4	
Sample wt/	vol: 25.0	(g/m]	L) mL		Lab	File ID	: 1	DHTA08.D	1	
Level: (TH	RACE or LOW/	MED) TRAC	CE	_	Dat	e Receiv	edi	10/05/	2011	·
% Moisture	e: not dec.	*			Dat	e Analyz	ed	10/07/	2011	100
GC Column:	DB-624	ID	: 0.20	(mm)	Dil	ution Fa	cto	r: 1.0		
Soil Extra	ct Volume:			(uL)	Soi.	l Aliquo	t Vo	olumeș	مومرو <u>بات رومانا مسار ش</u>	(uL)
CONCENTRAL	ION UNITS: (1	ug/L or ug	/kg) u	J/L	Pur	ge Volum	e:	25.0	4-9-80	(mL)
CAS NUM	BER	COL	POUND NA	ME		RT	1	EST. C	CONC *	Q
01	Unkno	wn				6.	67		3.3	BXJ
02 E9667961	Total	Alkanes				N/A				

¹EPA-designated Registry Number.

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

MRMW11S-W-30078DL

Lab Name:	TESTAMERICA E	URLINGTÓN	1		Contract:	8E-0	0302	
Lab Code:	STLV Cas	e No.: M	ORRIL	Mod. Ref	No.:	S	DG No.:	200-7357
Matrix: (S	OIL/SED/WATER)	Water			Lab Sample	ID:	200-735	57-4
Sample wt/	vol: 25.0	(g/mL)) mL		Lab File I	D: D	HTA10.D	
Level: (TR	ACE/LOW/MED)	TRACE			Date Recei	ved:	10/05/2	2011
% Moisture	: not dec.				Date Analy	zed:	10/07/2	2011
GC Column:	DB-624	ID:	0.20	(mm)	Dilution F	actor	: 2.2	
Soil Extra	ct Volume:			(uL)	Soil Aliqu	ot Vo	lume:	(uL)
Purge Volu	me: 25.0			(mL)				

CAS NO,	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
75-71-8	Dichlorodifluoromethane	1.1	U
74-87-3	Chloromethane	1.1	U
75-01-4	Vinyl chloride	1.1	U
74-83-9	Bromomethane	1.1	U
75-00-3	Chloroethane	1.1	U
75-69-4	Trichlorofluoromethane	1.1	U
75-35-4	1,1-Dichloroethene	1.1	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	1.1	U
67-64-1	Acetone	11	U
75-15-0	Carbon disulfide	0.078	JDB
79-20-9	Methyl acetate	1.1	U
75-09-2	Methylene Chloride	1.1	U
156-60-5	trans-1, 2-Dichloroethene	1.1	U
163404-4	Methyl tert-butyl ether	1.1	U
75-34-3	1,1-Dichloroethane	1.1	U
156-59-2	cis-1,2-Dichloroethene	1.1	U
78-93-3	2-Butanone	11	U
74-97-5	Bromochloromethane	1.1	U
67-66-3	Chloroform	0.84	JD
71-55-6	1,1,1-Trichloroethane	1.1	U
110-82-7	Cyclohexane	1.1	U
56-23-5	Carbon tetrachloride	35	DB
71-43-2	Benzene	1.1	U
107-06-2	1,2-Dichloroethane	1.1	U

Report 1,4--Dioxane for Low-Medium VOA analysis only

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

MRMW11S-W-30078DL

Lab Name: TESTAMERICA BURLINGTON	v#	Contract: 8E-	00302
	od. Ref No.		SDG No.: 200-7357
Matrix: (SOIL/SED/WATER) Water		Lab Sample ID:	200-7357-4
Sample wt/vol: 25.0 (g/mL) mL	_	Lab File ID:	DHTA10.D
Level: (TRACE/LOW/MED) TRACE		Date Received:	10/05/2011
% Moisture: not dec.		Date Analyzed:	10/07/2011
GC Column: DB-624 ID: 0.20	(accure)	Dilution Facto	r: 2.2
Soil Extract Volume:		Soil Aliquot V	olume: (uL)
Purge Volume: 25.0	(mL)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q	
79-01-6	Trichloroethene	1.1	U	
108-87-2	Methylcyclohexane	1.1	U	
78-87-5	1,2-Dichloropropane	1.1	U	
75-27-4	Bromodichloromethane	1.1	U	
10061-01-5	cis-1,3-Dichloropropene	1.1	U	
108-10-1	4-Methyl-2-pentanone	11	U	
108-88-3	Toluene	0.033	JDB	
10061-02-6	trans-1,3-Dichloropropene	1.1	U	
79-00-5	1,1,2-Trichloroethane	1.1	U	
127-18-4	Tetrachloroethene	1.1	U	
591-78-6	2-Hexanone	11	U	
124-48-1	Dibromochloromethane	1.1	υ	
106-93-4	1,2-Dibromoethane	1.1	U	
108-90-7	Chlorobenzene	1.1	U	
100-41-4	Ethylbenzene	1.1	υ	
95-47-6	o-Xylene	1.1	U	
179601-23-1	m,p-Xylene	0.020	JDB	
100-42-5	Styrene	1.1	U	
75-25-2	Bromoform	1.1	U	
98-82-8	Isopropylbenzene	1.1	U	
79-34-5	1,1,2,2-Tetrachloroethane	1.1	U	
541-73-1	1,3-Dichlorobenzene	1.1	U	
106-46-7	1,4-Dichlorobenzene	1.1	U	
95-50-1	1,2-Dichlorobenzene	1.1	U	
96-12-8	1,2-Dibromo-3-Chloropropane	1.1	U	
120-02-1	1,2,4-Trichlorobenzene	1.1	U	
87-61-6	1,2,3-Trichlorobenzene	1.1	U	

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

MRMW11S-W-30078DL

Lab Name: TEST	TAMERICA BURLINGTON	0011020000	8E-00302		
Lab Code: STLV	Case No.: MORRIL Mod. Ref N		S	DG No.: 200-7	357
Matrix: (SOIL/:	Lab Sample	ID:	200-7357-4 DHTA10.D		
Sample wt/vol:	Lab File ID:): D			
Level: (TRACE d	Date Received: 10/05/2011				
% Moisture: not	Date Analyzed 10/07/2011				
GC Column: DB-	Dilution Factor: 2.2				
Soil Extract Vo	Soil Aliquot Volume: (uL)				
CONCENTRATION (JNITS: (ug/L or ug/kg) ug/L	Purge Volum	ne;	25.0	(mL)
CAS NUMBER	COMPOUND NAME	RT		EST. CONC.	Q
	Unknown	6.	67	6.4	B X D J
E9667961	Total Alkanes	N/A	1		

1EPA-designated Registry Number.

12.1

EPA SAMPLE NO.

MRMW2S-W-30069

Lab Name: TESTAMER	ICA BURLINGTON	_	Contract:	8E-00302	
Lab Code: STLV	Case No.: MORRIL	Mod. Ref	No.\$	SDG N	0.: 200-7357
Matrix: (SOIL/SED/W	ATER) Water		Lab Sample	ID: 200	-7357-2
Sample wt/vol: 25.	0 (g/mL) mL		Lab File I	D: DHTAO	6.D
Level; (TRACE/LOW/M			Date Recei	ved: 10/	05/2011
% Moisture: not dec	 A structure of the same th		Date Analy	zed: 10/	07/2011
GC Column: DB-624	ID: 0.20	(mm)	Dilution F	actor: 1	0
Soil Extract Volume	1	(uL)	Soil Aliqu	ot Volume	(uL)
Purge Volume: 25.0		(mL)			

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
75-71-8	Dichlorodifluoromethane	0.50	Ŭ
74-87-3	Chloromethane	0.50	U
75-01-4	Vinyl chloride	0.50	U
74-83-9	Bromomethane	0.50	U
75-00-3	Chloroethane	0.50	U
75-69-4	Trichlorofluoromethane	0.50	U
75-35-4	1,1-Dichloroethene	0.50	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	U
67-64-1	Acetone	5.0	U
75-15-0	Carbon disulfide	0.036	JB
79-20-9	Methyl acetate	0.50	U
75-09-2	Methylene Chloride	0.50	U
156-60-5	trans-1,2-Dichloroethene	0.50	U
1634-04-4	Methyl tert-butyl ether	0.50	U
75-34-3	1,1-Dichloroethane	0.50	υ
156-59-2	cis-1,2-Dichloroethene	0.50	U
78-93-3	2-Butanone	5.0	U
74-97-5	Bromochloromethane	0.50	U
67-66-3	Chloroform	0.50	U
71-55-6	1,1,1-Trichloroethane	0.50	U
110-82-7	Cyclohexane	0.50	U
56-23-5	Carbon tetrachloride	0.043	JB
71-43-2	Benzene	0.50	0
107-06-2	1,2-Dichloroethane	0,50	Ų

EPA SAMPLE NO.

MRMW2SHW-30069

Lab Name:	TESTAMERI	CA BURLING	TON			Contract:	8E-	00302	
Lab Code:	STLV	Case No.:	MORRIL	Mod.	Ref	No.:		SDG No.:	200-7357
Matrix: (S	OIL/SED/WA	ATER) Wat	er			Lab Sampl	e īD:	200-735	7-2
Sample wt/	vol: 25.0) (g/i	mL) mL			Lab File	1D:	DHTA06.D	
Level: (TR	ACE/LOW/ME	D) TRACE	A. 18 20 - 20 - 20 - 20 - 20			Date Rece	ived:	10/05/2	011
% Moisture	; not dec.					Date Anal	yzed:	10/07/2	011
GC Column:	DB-624	I	D: 0.20	(10)	m)	Dilution	Facto	or: 1.0	
Soil Extra	ct Volume:			(u)	L)	Soil Aliq	uot 🕅	Volume:	(uL)
Purge Volu	me: 25.0			(m)	L)				

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
79-01-6	Trichloroethene	0.50	U
108-87-2	Methylcyclohexane	0.50	U
78-87-5	1,2-Dichloropropane	0.50	U
75-27-4	Bromodichloromethane	0.50	U
10061-01-5	cis-1,3-Dichloropropene	0.50	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	0.025	JB
10061-02-6	trans-1,3-Dichloropropene	0.50	U
79-00-5	1,1,2-Trichloroethane	0.50	U
127-18-4	Tetrachloroethene	0.50	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	0.50	U
106-93-4	1,2-Dibromoethane	0.50	U
108-90-7	Chlorobenzene	0.50	U
100-41-4	Ethylbenzene	0.50	U
95-47-6	o-Xylene	0.50	U
179601-23-1	m,p-Xylene	0.021	JB
100-42-5	Styrene	0,50	U
75-25-2	Bromoform	0.50	U
98-82-8	Isopropylbenzene	0.50	U
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U
541-73-1	1,3-Dichlorobenzene	0.50	U
106-46-7	1,4-Dichlorobenzene	0.50	U
95-50-1	1,2-Dichlorobenzene	0.50	U
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U
120-82-1	1,2,4-Trichlorobenzene	0.50	U
87-61-6	1,2,3-Trichlorobenzene	0.50	U

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

MRMW2S-W-30069

Lab Name:	TESTAMER	ICA BURLING	TON			Contract:	8E-	00302	_	
Lab Code:	STLV	Case No.:	MORRIL	Mod.	Ref	No.:		SDG No.:	200-7	357
Matrix: (S	OʻIL/SED/W	ATER) Wat	er			Lab Sampl	e ID:	200-73	57-2	
Sample wt/	vol: 25.	0 (g/	mL) mL			Lab File	ID:	DHTA06.D		
Level: (TR	ACE or LO	W/MED) TR	ACE			Date Rece	ived:	10/05/2	2011	
% Moisture	: not dec	ť				Date Anal	yzed:	10/07/2	2011	
GC Column:	DB-624	I	D: 0.20	(m	m)	Dilution	Facto	or: 1.0		
Soil Extra	ct Volume	k		(u	L)	Soil Aliq	uot V	/olume:		(uL)
CONCENTRAT	ION UNITS	∷(ug/L or u	.g/kg)	ug/L		Purge Vol	ume:	25.0		(mL)
CAS NUME	BER	C	OMPOUND	NAME		E	RT	EST. C	ONC.	Q
	Unk	nown			1.1		6.67	Y	3.0	BXJ

N/A

01 02 E9667961

1 EPA-designated Registry Number.

Total Alkanes

SOM01.2 (4/2007) 10/12/2011

EPA SAMPLE NO.

MRMW4S-W-30071

Lab Name:	TESTAMERI	CA BURLING	TON	_	Contract: 8E	-00302
Lab Code:	STLV	Case No.:	MORRIL	Mod. Rei	E No.:	SDG No.: 200-7357
Matrix: (S	OIL/SED/WA	ATER) Wat	er		Lab Sample II	200-7357-3
Sample wt/	vol: 25.0) (g/	mL) mL		Lab File ID:	DHTA07.D
Level: (TR	ACE/LOW/ME	ED) TRACE			Date Received	i: 10/05/2011
<pre>% Moisture</pre>	; not dec.				Date Analyzed	1: 10/07/2011
GC Column:	DB-624	I	D: 0.20	(nun)	Dilution Fact	or: 1.0
Soil Extra	ct Volume:		,	(uL)	Soil Aliquot	Volume: (uL)
Purge Volu	me: 25.0			(mL)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
75-71-8	Dichlorodifluoromethane	0.50	U
74-87-3	Chloromethane	0.50	U
75-01-4	Vinyl chloride	0.50	U
74-83-9	Bromomethane	0.50	U
75-00-3	Chloroethane	0.50	U
75-69-4	Trichlorofluoromethane	0.50	υ
75-35-4	1,1-Dichloroethene	0.50	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	U
67-64-1	Acetone	0.98	JB
75-15-0	Carbon disulfide	0.037	JB
79-20-9	Methyl acetate	0.50	U
75-09-2	Methylene Chloride	0.50	U
156-60-5	trans-1,2-Dichloroethene	0.50	U
1634-04-4	Methyl tert-butyl ether	0.50	U
75-34-3	1,1-Dichloroethane	0.50	U
156-59-2	cis-1,2-Dichloroethene	0:50	U
78-93-3	2-Butanone	5.0	U
74-97-5	Bromochloromethane	0.50	Q
67-66-3	Chloroform	0.50	U
71-55-6	1,1,1-Trichloroethane	0,50	Ü
110-82-7	Cyclohexane	0.50	U
56-23-5	Carbon tetrachloride	0.11	JB
71-43-2	Benzene	0.50	U
107-06-2	1,2-Dichloroethane	0.50	U

EPA SAMPLE NO.

MRMW4S-W-30071

Lab Name:	TESTAMERIC	CA BURLING	ron		Contract:	8E-00302	
Lab Code:	STLV	Case No.:	MORRIL	Mod. Re	f No,:	SDG No.:	200-7357
Matrix: (S	OIL/SED/WA	rer) Wate	er		Lab Sample	ID: 200-73	57-3
Sample wt/	vol: 25.0	(g/m	nL) mL		Lab File I	D: DHTA07.D	
Level: (TR	ACE/LOW/ME	D) TRACE			Date Recei	ved: 10/05/	2011
% Moisture	: not dec.				Date Analy	zed: 10/07/	2011
GC Column:	DB-624	II	0.20	(mm)	Dilution F	actor: 1.0	
Soil Extra	ct Volume:			(uL)	Soil Aliqu	ot Volume:	(uL)
Purge Volu	me: 25.0			(mL)			

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
79-01-6	Trichloroethene	0.50	υ
108-87-2	Methylcyclohexane	0.50	U
78-87-5	1,2-Dichloropropane	0.50	U
75-27-4	Bromodichloromethane	0.50	U
10061-01-5	cis-1,3-Dichloropropene	0.50	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	0.013	JB
10061-02-6	trans-1, 3-Dichloropropene	0.50	U
79-00-5	1,1,2-Trichloroethane	0.50	U
127-18-4	Tetrachloroethene	0.50	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	0.50	U
106-93-4	1,2-Dibromoethane	0.50	U
108-90-7	Chlorobenzene	0.50	U
100-41-4	Ethylbenzene	0.50	U
95-47-6	o-Xylene	0.50	U
179601-23-1	m,p-Xylene	0.0052	JB
100-42-5	Styrene	0.50	U
75-25-2	Bromoform	0.50	U
98-82-8	Isopropylbenzene	0.50	U
79-34-5	1,1,2,2-Tetrachloroethane	0.50	υ
541-73-1	1,3-Dichlorobenzene	0.50	U
106-46-7	1,4-Dichlorobenzene	0.50	U
95-50-1	1,2-Dichlorobenzene	0.50	U
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U
120-82-1	1,2,4-Trichlorobenzene	0.50	ΰ
87-61-6	1,2,3-Trichlorobenzene	0.50	U

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

MRMW4S-W-30071

Lab Name: TEST	FAMERICA BURLINGTON	Contract:	8E-0	0302		
Lab Code: STL	Z Case No.: MORRIL Mod. Ref N	0	S	DG No.:	200-7	357
Matrix: (SOIL/	SED/WATER) Water	Lab Sample	ID:	200-735	57-3	
Sample wt/vol:	25.0 (g/mL) mL	Lab File I	D: D	HTA07.D		
Level: (TRACE	or LOW/MED) TRACE	Date Receiv	ved:	10/05/2	011	
% Moisture: no	t dec,	Date Analy:	zed\$	10/07/2	2011	
GC Column: DB-	-624 · ID: 0.20 (mm)	Dilution Fa	actor	:: 1.0		
Soil Extract V	olume: (uL)	Soil Alique	ot Vo	lume:		(uL)
CONCENTRATION	UNITS: (ug/L or ug/kg) ug/L	Purge Volu	ne:	25.0		(mL)
CAS NUMBER	COMPOUND NAME	R″		EST. CO	DNC.	Q
	Unknown	6.	. 67		3.3	ВХЈ
E966796 1	Total Alkanes	N/A				

1 EPA-designated Registry Number.

EPA SAMPLE NO.

MRQCTB-W-30090

Lab Name:	TESTAMERICA BUR	LINGTON		*.	Contract:	8E-0	0302	
Lab Code:	STLV Case I	No.: MOE	RIL Mc	d. Ref N	0, 4	S	DG No.:	200-7357
Matrix: (SC	DIL/SED/WATER)	Water			Lab Sample	ID:	200-735	57-5
Sample wt/w	vol: 25.0	(g/mL)	mL		Lab File I	D: D	HTA04.D	
		RACE			Date Recei	ved:	10/05/2	011
% Moisture:	not dec.				Date Analy	zed;	10/07/2	011
GC Column;	DB-624	ID: (0.20	(mm)	Dilution F	actor	: 1.0	
Soil Extrac	ct Volume:			(uL)	Soil Aliqu	ot Vo	lume:	(uL)
Purge Volum	ne: 25.0			(mL)				

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
75-71 8	Dichlorodifluoromethane	0.50	U
74-87-3	Chloromethane	0.50	U
75-01-4	Vinyl chloride	0.50	U
74-83-9	Bromomethane	0.50	U
75-00-3	Chloroethane	0.50	U
75-69-4	Trichlorofluoromethane	0.50	U
75-35-4	1,1-Dichloroethene	0.50	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	U
67-64-1	Acetone	2.5	JB
75-15-0	Carbon disulfide	0.065	JB
79-20-9	Methyl acetate	0.50	U
75-09-2	Methylene Chloride	0.017	JВ
156-60-5	trans-1,2-Dichloroethene	0.50	υ
1634-04-4	Methyl tert-butyl ether	0.50	U
75-34-3	1,1-Dichloroethane	0.50	U
156-59-2	cis-1,2-Dichloroethene	0.50	υ
78-93-3	2-Butanone	5.0	U
74-97-5	Bromochloromethane	0.50	U
67-66-3	Chloroform	0.045	J
71-55-6	1,1,1-Trichloroethane	0.50	U
110-82-7	Cyclohexane	0.50	U
56-23-5	Carbon tetrachloride	0.016	JB
71-43-2	Benzene	0.050	J
107-06-2	1,2-Dichloroethane	0.50	U

EPA SAMPLE NO.

MRQCTB-W-30090

Lab Name:	TESTAMERI	CA BURLING	TON		Contract:	8E-00302		
Lab Code:	STLV	Case No.:	MORRIL	Mod. Rei	No.3	SDG No.;	200-7357	
Matrix: (SC	DIL/SED/WA	TER) Wat	er		Lab Sample	ID: 200-73	57-5	
Sample wt/v	vol: 25.0	(g/	mL) mL		Lab File ID:	DHTA04.D		
Level: (TRA	ACE/LOW/ME	D) TRACE		_	Date Receive	ed: 10/05/	2011	
% Moisture:	not dec.				Date Analyze	ed: 10/07/.	2011	
GC Column:	DB624	I	D: 0.20	(mm)	Dilution Fac	ctor: 1.0		
Soil Extrac	ct Volume:			(uL)	Soil Aliquot	t Volume:	(uL)	
Purge Volum	ne: 25.0			(mL)				

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
79-01-6	Trichloroethene	0.50	U
108-87-2	Methylcyclohexane	0.50	U
78-87-5	1,2-Dichloropropane	0.50	U
75-27-4	Bromodichloromethane	0.50	U
10061-01-5	cis-1,3-Dichloropropene	0.50	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	0.15	JB
10061-02-6	trans-1,3-Dichloropropene	0.50	U
79-00-5	1,1,2-Trichloroethane	0.50	U
127-18-4	Tetrachloroethene	0.50	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	0.50	U
106-93-4	1,2-Dibromoethane	0.50	U
108-90-7	Chlorobenzene	0.50	U
100-41-4	Ethylbenzene	0.016	J
95-47-6	o-Xylenc	0.032	J
179601-23-1	m,p-Xylene	0.042	JB
100-42-5	Styrene	0.030	J
75-25-2	Bromoform	0.50	υ
98-82-8	Isopropylbenzene	0.50	U
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U
541-73-1	1,3-Dichlorobenzene	0.024	JB
106-46-7	1,4-Dichlorobenzene	0.50	Ũ
95501	1,2-Dichlorobenzene	0.50	U
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	Ü
120-82-1	1,2,4-Trichlorobenzene	0.50	U
87-61-6	1,2,3-Trichlorobenzene	0.50	Ū

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

MRQCTB-W-30090

Lab Name: TE	STAMERICA BURI	INGTON	<u>^</u>	Contract	: 8E-0	8E-00302				
Lab Code: ST	LV Case No	O.: MORRIL	Mod. Ref	No 🥡 📃		SDG No.: 200	-7357			
Matrix: (SOIL	/SED/WATER)	Water		Lab Samp	le ID:	200-7357-5	a met skat 2000-000-00			
Sample wt/vol	: 25.0	(g/mL) mL	· · · · · · · · · · · · · · · · · · ·	Lab File	ID:	DHTA04.D				
Level: (TRACE	or LOW/MED)	TRACE	2	Date Rec	eived:	10/05/2011				
% Moisture: n	ot dec.			Date Ana	lyzed:	10/07/2011				
GC Column: D	B-624	ID: 0.20	(mm)	Dilution Factor: 1.0						
Soil Extract	Volume:		(uL)	Soil Ali	quot V	olume	(uL			
CONCENTRATION	UNITS: (ug/L c	or ug/kg)	ug/L	Purge Vo	lume:	25.0	(mL			
CAS NUMBER		COMPOUND	NAME		RT	EST. CONC.	0			
Azarta me	Unknown				6.67	2.	9 B X J			
E9667961	Total Alkar	nes		N/	A					

1EPA-designated Registry Number.

EPA SAMPLE NO.

MRSM2-W-30063

Lab Name:	TESTAMERICA BURLINGTON					Contract:		8E-00302		
Lab Code:	STLV Cas	se No.:	MORRIL	Mod.	Ref	No.: *		SDG No.: 200-7357		
Matrix: (SC	DIL/SED/WATER) Wat	er			Lab Samp	le ID;	200-735	57-1	
Sample wt/v	vol: 25.0	(g/1	mL) mL			Lab File	ID:	DHTA05.D		
Level: (TRA	ACE/LOW/MED)	TRACE				Date Rece	eived:	10/05/2	2011	
% Moisture:	not dec.					Date Anal	lyzed;	10/07/2	2011	
GC Column:	DB-624	I	D: 0.20	(m	m)	Dilution	Facto	r: 1.0		
Soil Extrac	ct Volume:			(u	L)	Soil Alio	quot V	olume:	(uL)	
Purge Volum	ne: 25.0			(m	L)					

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
75-71-8	Dichlorodifluoromethane	0.50	U =
74-87-3	Chloromethane	0.50	U
75-01-4	Vinyl chloride	0.50	U
74-83-9	Bromomethane	0.50	υ
75-00-3	Chloroethane	0.50	υ
75-69-4	Trichlorofluoromethane	0.50	U
75-35-4	1,1-Dichloroethene	0.50	Ŭ
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	U
67-64-1	Acetone	1.4	JB
75-15-0	Carbon disulfide	0.042	JB
79-20-9	Methyl acetate	0.50	U
75-09-2	Methylene Chloride	0.50	U
156-60-5	trans-1,2-Dichloroethene	0.50	U
1634-04-4	Methyl tert-butyl ether	0.50	U
75-34-3	1,1-Dichloroethane	0.50	U
156-59-2	cis-1,2-Dichloroethene	0.50	υ
78-93-3	2-Butanone	5.0	U
74-97-5	Bromochloromethane	0.50	U
67-66-3	Chloroform	0.50	U
71-55-6	1,1,1-Trichloroethane	0.50	U
110-82-7	Cyclohexane	0.50	U
56-23-5	Carbon tetrachloride	0.045	JB
71-43-2	Benzene	0.50	U
107-06-2	1,2-Dichloroethane	0.50	U

EPA SAMPLE NO.

MRSM2-W-30063

Lab Name:	TESTAMERICA B	URLINGT	FON		Contract	:: 8E-0	8E-00302		
Lab Code:	STLV Case	No.:	MORRIL	Mod. Ref	Nort	S	DG No.: 200-7357		
Matrix: (S	OIL/SED/WATER)	Wate	er		Lab Samp	ole ID:	200-7357-1		
Sample wt/	vol: 25.0	(g/m	nL) mL		Lab File	e ID: D	HTA05.D		
Level: (TR	ACE/LOW/MED)	TRACE			Date Rec	ceived:	10/05/2011	12	
% Moisture	: not dec.				Date Ana	alyzed:	10/07/2011		
GC Column:	DB-624	II	0.20	(mm)	Dilutior	a Factor	: 1.0		
Soil Extra	ct Volume:			(uL)	Soil Ali	quot Vo	lume: ()	uL)	
Purge Volu	me: 25.0			(mL)					

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
79-01-6	Trichloroethene	0.50	U
108-87-2	Methylcyclohexane	D.50	U
78-87-5	1,2-Dichloropropane	0.50	U
75-27-4	Bromodichloromethane	0.50	U
10061-01-5	cis-1,3-Dichloropropene	0.50	U
108-10-1	4-Methy1-2-pentanone	5.0	υ
108-88-3	Toluene	0.24	JB
10061-02-6	trans-1,3-Dichloropropene	0.50	U
79-00-5	1,1,2-Trichloroethane	0.50	U
127-18-4	Tetrachloroethene	0.50	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	0.50	U
106-93-4	1,2-Dibromoethane	0.50	υ
108-90-7	Chlorobenzene	0.50	υ
100-41-4	Ethylbenzene	0.50	U
95-47-6	o-Xylene	0.50	U
179601-23-1	m,p-Xylene	0.0032	JB
100-42-5	Styrene	0.50	U
75-25-2	Bromoform	0.50	U
98-82-8	Isopropylbenzene	0.50	U
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U
541-73-1	1,3-Dichlorobenzene	0.50	U
106-46-7	1,4-Dichlorobenzene	0.50	U
95-50-1	1,2-Dichlorobenzene	0.50	U
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U
12082-1	1,2,4-Trichlorobenzene	0.50	U
87-61-6	1,2,3-Trichlorobenzene	0.50	U

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

MRSM2-W-30063

Lab Name: TE	STAMERICA BURLINGTON		Contract:	8E-00302			
Lab Code: ST	LV Case No.: MORRIL Mo	od, Ref No) v #	S	DG No.: 200-7	357	
Matrix: (SOII	/SED/WATER) Water		Lab Sample	ID:	200-7357-1		
Sample wt/vol	: 25.0 (g/mL) mL		Lab File I	D: D	HTA05.D		
Level: (TRACE	or LOW/MED) TRACE		Date Receiv	ved:	10/05/2011		
% Moisture: n	ot dec.		Date Analy:	zed:	10/07/2011		
GC Column: D	B-624 ID: 0.20	(mm)	Dilution Fa	actor	: 1.0		
Soil Extract	Volume:	(uL)	Soil Alique	ot Vo	lume:	(uL)	
CONCENTRATION	UNITS: (ug/L or ug/kg)	g/L	Purge Volu	ne:	25.0	(mL)	
CAS NUMBER	COMPOUND NA	ME	RT	1	EST. CONC.	Q	
-	Unknown		6	. 67	3.0	BXJ	

N/A

01 02

E9667961

Total Alkanes

1 EPA-designated Registry Number.

6A - FORM VI VOA-1 VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: TESTAMERICA BURLI	NGTON		Contract	t: 6E-00	302		
Lab Code: STLV Case No.	.: MORRIL Mo	d. Ref No	D.:	SE	G No.: 2	200-7357	
Instrument ID: D.i		Calibration Date(s):			10/06/2011 10/06/2		
Heated Purge: (Y/N) N		Calibra	tion Time	(s): 13	331	1511	
		(mL)					
Purge Volume: 25.0							
GC Column: DB-624	ID: 0.20	(mm)	Length:	25	(m)		
LAB FILE ID:	RRF0.5 = D	HT05.D		RRF1.	0 = DHT0	6.D	
RRF5.0 = DHT07.D	RRF10 = D	HT08.D		RRF20) = <u>DHTO</u>	9.D	
COMPOUND	RRF0.5	RRF1.0	RRF5.0	RRF10	RRF20	RRF	%RSD
Dichlorodifluoromethane	0.673	0.704	0.619	0.638	0.662	0.659	5.0
Chloromethane	0.743	0.778	0.669	0.691	0.703	0.717	6.0
Vinyl chloride	0.622	0.669	0.607	0.634	0.663	0.639	4.2
Bromomethane	0.278	0.306	0.285	0.318	0.341	0.306	8.4
Chloroethane	0.359	0.386	0.332	0.347	0.366	0.358	5.6
Trichlorofluoromethane	0.796	0.854	0.750	0.779	0.806	0.797	4.8
1,1-Dichloroethene	0.370	0.427	0.383	0.409	0.433	0.404	6.7
1,1,2-Trichloro-	0.456	0.492	0.450	0.466	0.489	0.471	4.0
1,2,2-trifluoroethane Acetone	0.037	0.033	0.026	0.025	0.026	0.029	18.1
Carbon disulfide	1.092	1.169	1.060	1.106	1.141	1:114	3.8
Methyl acetate	0.106	0.099	0.072	0.070	0.071	0.084	20.5
Methylene Chloride	0.336	0.368	0.325	0,333	0.337	0.340	4.8
trans-1,2-Dichloroethene	0.431	0.447	0.387	0.402	0.412	0.416	5.7
Methyl tert-butyl ether	0.476	0.540	0.482	0.497	0.518	0.503	5.3
1,1-Dichloroethane	0.700	0.746	0.663	0.682	0.696	0.697	4.4
cis-1,2-Dichloroethene	0.310	0.345	0.342	0.354	0.368	0.344	6.3
2-Butanone	0.038	0.045	0.042	0.043	0.044	0.042	5.8
Bromochloromethane	0.103	0.116	0.1.04	0.108	0.112	0.109	5.0
Chloroform	0.623	0.687	0.620	0.635	0.649	0.643	4.2
1,1,1-Trichloroethane	0.630	0.699	0.612	0.622	0.607	0.634	5.9
Cyclohexane	0.625	0.790	0.784	0.814	0.796	0.762	10.1
Carbon tetrachloride	0.565	0.632	0.566	0.575	0.570	0.582	4.8
Benzene	1.719	1.938	1.691	1.695	1.677	1.744	6.3
1,2-Dichloroethane	0.297	0.346	0.310	0.306	0.325	0.317	6.0
Trichloroethene	0.403	0.435	0.390	0.405	0.404	0.407	4.0
Methylcyclohexane	0.590	0.687	0.666	0.682	0.668	0.659	5.9

6R - FORM VI VOA-2 VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: TESTAMERICA BURLIN	IGTON		Contrac	t: 8E-0	0302		
Lab Code: STLV Case No.	: MORRIL MC	d. Ref No	0.2	S	DG No.: 2	00-7357	
Instrument ID: D.i		Calibration Date(s):		(s); 1	0/06/2011	10/06/2011	
Heated Purge: (Y/N) N		Calibra	tion Time	(s): 1	331	1511	
Purge Volume: 25.0		(mL)		-			
			×	05	()		
GC Column: DB-624	ID: 0.20	(mm)	Length:	2.5	(m)		
LAB FILE ID;	RRF0.5 = D	HT05.D		RRF1	.0 = DHTO	6.D	
RRF5.0 = DHT07.D	RRF10 = E	HT08.D		RRF2		9.D	
COMPOUND	RRF0.5	RRF1.0	RRF5.0	RRF10	RRF20	RRF	%RSD
1,2-Dichloropropane	0.388	0.432	0.380	0.378	0.380	0.392	5.8
Bromodichloromethane	0.374	0.426	0.379	0.387	0.385	0.390	5.3
cis-1,3-Dichloropropene	0.366	0.459	0.488	0.497	0.502	0.462	12.2
4-Methyl-2-pentanone	0.086	0.107	0.112	0.114	0.114	0.107	11.2
Toluene	1.599	1.942	1.813	1.851	1.860	1.813	7.1
trans-1,3-Dichloropropene	0.268	0.343	0.352	0.372	0.382	0.343	13.1
1,1,2-Trichloroethane	0.174	0.197	0.167	0.172	0.174	0.177	6.6
Tetrachloroethene	0.350	0.395	0.352	0.366	0.375	0.368	5.0
2-Hexanone	0.059	0.079	0.078	0.078	0.080	0.075	12.0
Dibromochloromethane	0.183	0.215	0.202	0.212		0.206	7.0
1,2-Dibromoethane	0.138	0.165	0.149	0.153	0.161	0.153	6.9
Chlorobenzene	1.069	1.210	1.073	1.105		1.119	5.2
Ethylbenzene	1.663	2.054	2.103	2.220		2.063	11.7
o-Xylene	0.519	0.677	0.747	0.811		0.723	18.4
m,p-Xylene	0.599	0.744	0.798	0.845	0.877	0.772	14.1
Styrene	0.771	1.076	1.153	1.259	a fair and a second sec	1.120	19.6
Bromoform	0.159	0.179	0.164	0.176	and the second se	0.173	6.6
Isopropylbenzene	1.396	1.920	2.125	2.302	and the second se	2.031	19.8
1,1,2,2-Tetrachloroethane	0.179	0.200	0.185	0.186		0.189	4.3
1,3-Dichlorobenzene	1.373	1.526	1.507	1.613		1.550	8.5
1,4-Dichlorobenzene	1.771	1.822	1.585	1.632		1.704	5.7
1,2-Dichlorobenzene	1.360	1.428	1.352	1.391		1,398	3.2
1,2-Dibromo-3-Chloropropane	0.031	0.044	0.040	0.043	- All and the second	0.041	13.0
1,2,4-Trichlorobenzene	0.694	0.719	0.774	0.895	A Annual of Constant of Constant	0.817	15.6
1,2,3-Trichlorobenzene	0.543	0.603	0.599	0.669	0.737	0.630	11.8

6C - FORM VI VOA-3 VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: TESTAMERICA BURLING	TON		Contract	: 8E-00	302			
Lab Code: STLV Case No.:	MORRIL MO	d. Ref No	D.:	SI	DG No.: 2	00-7357		
Instrument ID: D.i		Calibration Date(s):		(s): 1(0/06/2011	10/06/2011		
Heated Purge: (Y/N) N		Calibra	Calibration Time(s): 1331 1511					
Purge Volume: 25.0		(mL)						
GC Column: DB-624	ID: 0.20	(mm)	Length:	25	(m)			
LAB FILE ID;	RRF0.5 = D	HT05.D		RRF1	0 = DHT0	6.D		
RRF5.0 = DHT07.D	HT08.D		RRF2() = DHT0	9.D			
COMPOUND	RRF0.5	RRF1.0	RRF5.0	RRF10	RRF20	RRF	%RSD	
Vinyl Chloride-d3	0.582	0.631	0.561	0.582	0.611	0.593	4.7	
Chloroethane-d5	0.449	0.483	0.413	0.434	0.454	0.446	5.8	
1,1-Dichloroethene-d2	0.844	0.919	0.823	0.850	0.874	0.862	4.2	
2-Butanone-d5	0.039	0.039	0.037	0.037	0.040	0.039	2.8	
Chloroform-d	0.674	0.702	0.633	0.651	0.664	0.665	3.9	
1,2-Dichloroethane-d4	0.260	0.279	0.238	0.244	0.247	0.253	6.5	
Benzene-d6	1.531	1.718	1.533	1.528	1.514	1.565	5.5	
1,2-Dichloropropane-d6	0.407	0.469	0.408	0.404	0.405	0.418	6.7	
Toluene-d8	1.320	1.582	1.473	1.512	1.526	1.483	6.7	
trans-1,3-Dichloropropene-d4	0.254	0.284	0.290	0.313	0.325	0.293	9.3	
2-Hexanone-d5	0.021	0.030	0.036	0.038	0.040	0.033	23.4	
1,1,2,2-Tetrachloroethane-d2	0.184	0.205	0.182	0.188	0.194	0.190	4.9	
1,2-Dichlorobenzene-d4	0.796	0.868	0.793	0.831	0.883	0.834	4.9	

7A - FORM VII VOA-1 VOLATILE CONTINUING CALIBRATION DATA

Lab Name:	TESTAMERI	CA BURLING	INGTON Contract:			8E-0030	8E-00302			
Lab Code:	STLV	Case No.:	MORRIL	Mod. Ref No.	d. Ref No.:		No.: 2	200-7357		
Instrument	ID: D.i			Calib	ration Dat	e: 10/	07/2011	Time:	0730	
Lab File I	d: DHTA02	. D		Inít. Cal	lib. Date(s): 10/	06/2011	10/06/	2011	
EPA Sample	No. (VSTD#	###): V	STD005DJ	Init.	Calib. Ti	me(s):	1331	1511	L	
Heated Pur	rge: (Y/N)	N	GC Column:	DB-624	ID: 0.20	(nm) Le:	ngth; 2	5 (m)		
Purge Volu	ume: 25,0			(mL)						

.

COMPOUND	RRF	RRF5.0	MIN RRF	%D	MAX &D
Dichlorodifluoromethane	0.659	0.648	0.010	-1.7	40.0
Chloromethane	0.717	0.705	0.010	-1.7	40.0
Vinyl chloride	0.639	0.626	0.010	-2.0	30.0
Bromomethane	0.306	0.308	0.010	0.7	30.0
Chloroethane	0.358	0.347	0.010	-3.2	40.0
Trichlorofluoromethane	0.797	0.781	0.010	-2.0	40.0
1,1-Dichloroethene	0.404	0.397	0.010	-1.8	30.0
1,1,2-Trichloro-1,2,2-trifluoroethane	0.471	0.470	0.010	-0.2	40.0
Acetone	0.029	0.022	0.010	-23.7	40.0
Carbon disulfide	1.114	1.127	0.010	1.2	40.0
Methyl acetate	0.084	0.067	0.010	-19.5	40.0
Methylene Chloride	0.340	0.335	0.010	-1.4	40.0
trans-1,2-Dichloroethene	0.416	0.365	0.010	-12.3	40.0
Methyl tert-butyl ether	0.503	0.396	0.010	-21.3	40.0
1,1-Dichloroethane	0.697	0.671	0.010	-3.8	30.0
cis-1,2-Dichloroethene	0.344	0.338	0.010	-1.7	40.0
2-Butanone	0.042	0.035	0.010	-16.5	40.0
Bromochloromethane	0.109	0.103	0.010	-4.8	30.0
Chloroform	0.643	0.617	0.010	-4.1	30.0
1,1,1-Trichloroethane	0.634	0.636	0.010	0.3	30.0
Cyclohexane	0.762	0.817	0.010	7.2	40.0
Carbon tetrachloride	0.582	0.596	0.010	2.4	30.0
Benzene	1.744	1.765	0.010	1.2	30.0
1,2-Dichloroethane	0.317	0.294	0.010	-7.3	30.0
Trichloroethene	0.407	0.406	0.010	-0.3	30.0
Methylcyclohexane	0.659	0.699	0.010	6.2	40.0

Report 1,4-Dioxane for Low/Medium VOA analysis only

7B - FORM VII VOA-2 VOLATILE CONTINUING CALIBRATION DATA

Lab Name:	TESTAMERIC	CA BURLING	TON	-	Cont	ract: 8E-	-00302			
Lab Code:	STLV	Case No.:	MORRIL N	Mod. Ref N	10.1		SDG No	.: 2	00-7357	
Instrument	ID: D.i			Cal	ibrati	on Date:	10/07/	2011	Time:	0730
Lab File I	d: DHTA02	. D		Init. (Calib.	Date(s):	10/06/	2011	10/06/	2011
EPA Sample	No. (VSTD#	###): VS	TD005DJ	Ini	t. Cal	ib. Time(s	s): 13	331	1511	
Heated Pur	ge: (Y/N)	N G	C Column:	DB-624	ID:	0.20 (mm)	Lengt	h: 2	5 (m)	
Purge Volu	me: 25.0			(mL)						

COMPOUND	RRF	RRF5.0	MIN RRF	۶D	MAX %D
1,2-Dichloropropane	0.392	0.383	0.010	-2.2	40.0
Bromodichloromethane	0.390	0.375	0.010	-4.0	30.0
cis-1,3-Dichloropropene	0.462	0.479	0.010	3.7	30.0
4-Methyl-2-pentanone	0.107	0.099	0.010	-7.2	40.0
Toluene	1.813	1.875	0.010	3.4	30.0
trans-1,3-Dichloropropene	0.343	0.340	0.010	-0.9	30.0
1,1,2-Trichloroethane	0.177	0.161	0.010	-9.0	30.0
Tetrachloroethene	0.368	0.367	0.010	-0.3	30.0
2-Hexanone	0.075	0.069	0.010	-8.5	40.0
Dibromochloromethane	0.206	0.190	0.010	-8.1	30.0
1,2-Dibromoethane	0.153	0.140	0.010	-8.3	40.0
Chlorobenzene	1.119	1.089	0.010	-2.7	30.0
Ethylbenzene	2.063	2.175	0.010	5.4	30.0
o-Xylene	0.723	0.763	0.010	5.6	30.0
m,p-Xylene	0.772	0.820	0.010	6.1	30.0
Styrene	1.120	1.169	0.010	4.4	30.0
Bromoform	0.173	0.159	0.010	-8.1	30.0
Isopropylbenzene	2.031	2.208	0.010	8.7	40.0
1,1,2,2-Tetrachloroethane	0.189	0.169	0.010	-10.6	30.0
1,3-Dichlorobenzene	1.550	1.501	0.010	-3.1	30.0
1,4-Dichlorobenzene	1:704	1.603	0.010	-5.9	30.0
1,2-Dichlorobenzene	1.398	1.330	0.010	-4.9	30.0
1,2-Dibromo-3-Chloropropane	0.041	0.035	0.010	-13.1	40.0
1,2,4-Trichlorobenzene	0.817	0.732	0.010	-10.3	30.0
1,2,3-Trichlorobenzene	0.630	0.566	0.010	-10.2	30.0

7C - FORM VII VOA-3 VOLATILE CONTINUING CALIBRATION DATA

Lab Name:	TESTA	MERIC	CA BUF	RLING'I'ON	_	Contract:	8E-0	0302	
Lab Code:	STLV		Case	No.: MORRIL M	od. Ref No.	:	ę	BDG No.: 2	00-7357
Instrument	ID:	D.i	_		Calib	ration Date	e: 1	0/07/2011	Time: 0730
Lab File I	d: DH	TA02	. D		Init. Cal	lib. Date(s	s): 1	0/06/2011	10/06/2011
EPA Sample	No.(V	STD#	###):	VSTD005DJ	Init.	Calib. Ti	me(s)	: 1331	1511
Heated Pure	ge: (Y	/N)	N	GC Column:	DB-624	ID: 0.20	(mm)	Length: 2	5 (m)
Purge Volu	me: 2	5.0			(mL)				

COMPOUND	RRF	RRF5.0	MIN RRF	%D	MAX &D
Vinyl Chloride-d3	0.593	0.578	0.010	-2.6	30.0
Chloroethane-d5	0.446	0.429	0.010	-3.8	40.0
1,1-Dichloroethene-d2	0.862	0.854	0.010	-0.9	30.0
2-Butanone-d5	0.039	0.031	0.010	-19.0	40.0
Chloroform-d	0.665	0.642	0.010	-3.5	30.0
1,2-Dichloroethane-d4	0.253	0.229	0.010	-9.6	30.0
Benzene-d6	1.565	1.575	0.010	0.6	30.0
1,2-Dichloropropane-d6	0.418	0.406	0.010	-3.0	40.0
Toluene-d8	1.483	1.536	0.010	3.6	30.0
trans-1,3-Dichloropropene-d4	0.293	0.277	0.010	-5.5	30.0
2-Hexanone-d5	0.033	0.031	0.010	-7.3	40.0
1,1,2,2-Tetrachloroethane-d2	0.190	0.168	0.010	-12.0	30.0
1,2-Dichlorobenzene-d4	0.834	0.774	0.010	-7.2	30.0

7A - FORM VII VOA-1 VOLATILE CONTINUING CALIBRATION DATA

Lab Name:	TESTAMERI	CA BURLIN	NGTON		Cont	ract: 8E-	-00302	
Lab Code:	STLV	Case No.	: MORRIL	Mod. Ref	No.:		SDG No.:	200-7357
Instrument	ID: D.i			Ca	libratio	on Date:	10/07/201	1 Time: 1844
Lab File I	d: DHTA25	5.D		Init.	Calib.	Date(s):	10/06/201	1 10/06/2011
EPA Sample	No. (VSTD	*###): ``	VSTD005JD	In	it. Cal	ib. Time(s	s): <u>1331</u>	1511
Heated Pur	ge: (Y/N)	N	GC Column	: DB-624	ID:	0.20 (mm)	Length:	25 (m)
Purge Volu	me: 25.0			(mL)				

COMPCUND	RRF	RRF5.0	MIN RRF	₿D	MAX %D
Dichlorodifluoromethane	0.659	0.602	0.010	-8.7	50.0
Chloromethane	0.717	0.660	0.010	-8.0	50.0
Vinyl chloride	0.639	0.584	0.100	-8.6	50.0
Bromomethane	0.306	0.286	0.100	-6.5	50.0
Chloroethane	0.358	0.324	0.010	-9.6	50.0
Trichlorofluoromethane	0.797	0.728	0.010	-8.6	50.0
1,1-Dichloroethene	0.404	0.376	0.100	-7.0	50.0
1,1,2-Trichloro-1,2,2-trifluoroethane	0.471	0.447	0.010	-5.0	50.0
Acetone	0.029	0.021	0.010	-30.1	50.0
Carbon disulfide	1.114	1.068	0.010	-4.1	50.0
Methyl acetate	0.084	0.063	0.010	-24.9	50.0
Methylene Chloride	0.340	0.301	0.010	-11.4	50.0
trans-1,2-Dichloroethene	0.416	0.329	0.010	-20.9	50.0
Methyl tert-butyl ether	0.503	0.337	0.010	-32.9	50.0
1,1-Dichloroethane	0.697	0.623	0.200	-10.7	50.0
cis-1,2-Dichloroethene	0.344	0.309	0.010	-10.0	50.0
2-Butanone	0.042	0.030	0.010	-28.3	50.0
Bromochloromethane	0.109	0.090	0.050	-17.1	50.0
Chloroform	0.643	0.568	0.200	-11.7	50.0
1,1,1-Trichloroethane	0.634	0.580	0.100	-8.5	50.0
Cyclohexane	0.762	0.749	0.010	-1.7	50.0
Carbon tetrachloride	0.582	0.555	0.100	-4.6	50.0
Benzene	1.744	1.602	0.400	-8.1	50.0
1,2-Dichloroethane	0.317	0.267	0.100	-15.7	50.0
Trichloroethene	0.407	0.373	0.300	-8.5	50.0
Methylcyclohexane	0.659	0.643	0.010	-2.3	50.0

7B - FORM VII VOA-2 VOLATILE CONTINUING CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON	Contract: 8E-00302
Lab Code: STLV Case No.: MORRIL M	od, Ref No.: SDG No.: 200-7357
Instrument ID: D.i	Calibration Date: 10/07/2011 Time: 1844
Lab File Id: DHTA25.D	Init. Calib. Date(s): 10/06/2011 10/06/2011
EPA Sample No.(VSTD####): VSTD005JD	Init. Calib. Time(s): 1331 1511
Heated Purge: (Y/N) N GC Column:	DB-624 ID: 0.20 (nm) Length: 25 (m)
Purge Volume: 25.0	(mL)

COMPOUND	RRF	RRF5.0	MIN RRF	€D	MAX %D
1,2-Dichloropropane	0.392	0.339	0.010	-13.4	50.0
Bromodichloromethane	0.390	0.332	0.200	-15.0	50.0
cis-1,3-Dichloropropene	0.462	0.424	0,200	-8.4	50.0
4-Methyl-2-pentanone	0.107	0.083	0.010	-22.4	50.0
Toluene	1.813	1,719	0.400	-5.2	50.0
trans-1,3-Dichloropropene	0.343	0.295	0.100	-14.2	50.0
1,1,2-Trichloroethane	0.177	0.144	0.100	-18.5	50.0
Tetrachloroethene	0.368	0.332	0.100	-9.7	50.0
2-Hexanone	0.075	0.056	0.010	-24.9	50.0
Dibromochloromethane	0.206	0.170	0.100	-17.8	50.0
1,2-Dibromoethane	0.153	0,121	0.010	-20.7	50.0
Chlorobenzene	1.119	0.978	0.500	-12.6	50.0
Ethylbenzene	2.063	1.994	0.100	-3.3	50.0
o-Xylene	0.723	0.687	0.300	-5.0	50.0
m,p-Xylene	0.772	0.745	0.300	-3.5	50.0
Styrene	1.120	1.058	0.300	-5.6	50.0
Bromoform	0.173	0.133	0.050	-23.0	50.0
Isopropylbenzene	2.031	2.010	0.010	-1.1	50.0
1,1,2,2-Tetrachloroethane	0.189	0.146	0.100	-22.7	50.0
1,3-Dichlorobenzene	1.550	1.343	0.400	-13.3	50.0
1,4-Dichlorobenzene	1.704	1.471	0.400	-13.7	50.0
1,2-Dichlorobenzene	1.398	1.175	0.400	-15.9	50.0
1,2-Dibromo-3-Chloropropane	0.041	0.030	0.010	-25.3	50.0
1,2,4-Trichlorobenzene	0.817	0.635	0.200	-22.3	50.0
1,2,3-Trichlorobenzene	0.630	0.487	0.200	-22.6	50.0

7C - FORM VII VOA-3 VOLATILE CONTINUING CALIBRATION DATA

Lab Name: TESTAMER	ICA BURLINGTON	Contract: 8E	-00302
Lab Code: STLV	Case No.: MORRIL N	Mod. Ref No.:	SDG No.: 200-7357
Instrument ID: D.i		Calibration Date:	10/07/2011 Time: 1844
Lab File 1d: DHTA2	5.D	Init. Calib. Date(s):	10/06/2011 10/06/2011
EPA Sample No. (VSTD	####): VSTD005JD	Init. Calib. Time(s): 1331 1511
Heated Purge: (Y/N)	N GC Column:	DB-624 ID: 0.20 (mm) Length: 25 (m)
Purge Volume: 25.0		(mL)	

COMPOUND	RRF	RRF5.0	MIN RRF	₿D	MAX &D
Vinyl Chloride-d3	0.593	0.535	0.010	-9.8	50.0
Chloroethane-d5	0.446	0.406	0.010	-9.0	50.0
1,1-Dichloroethene-d2	0.862	0.793	0.010	-8.0	50.0
2-Butanone-d5	0.039	0.026	0.010	-33.4	50.0
Chloroform-d	0.665	0.585	0.010	-12.0	50.0
1,2-Dichloroethane-d4	0.253	0.205	0.010	-19.2	50.0
Benzene-d6	1.565	1.442	0.010	-7.8	50.0
1,2-Dichloropropane-d6	0.418	0.364	0.010	-13.0	50.0
Toluene-d8	1.483	1.399	0.010	-5.7	50.0
trans-1,3-Dichloropropene-d4	0.293	0.243	0.010	-17.0	50.0
2-Hexanone-d5	0.033	0.024	0.010	-26.4	50.0
1,1,2,2-Tetrachloroethane-d2	0.190	0.149	0.010	-21.6	50.0
1,2-Dichlorobenzene-d4	0.834	0.690	0.010	-17.3	50.0

EPA SAMPLE NO.

VBLKDJ

Lab Name: 'IESTAMERICA BURLINGTON Contract: 8E-00302 Lab Code: STLV Case No.: MORRIL Mod. Ref No.: SDG No.: 200-7357 Lab Sample ID: MB 200-26380/3 Matrix: (SOIL/SED/WATER) Water Sample wt/vol: 25.0 (g/mL) mL Lab File ID: DHTA03.D Date Received: Level: (TRACE/LOW/MED) TRACE Date Analyzed: 10/07/2011 % Moisture: not dec. ID: 0.20 (mm) Dilution Factor: 1.0 GC Column: DB-624 Soil Aliquot Volume: (uL) (uL) Soil Extract Volume: (mĽ) Purge Volume: 25.0

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
75-71-8	Dichlorodifluoromethane	0.50	U
74-87-3	Chloromethane	0.50	U
75-01-4	Vinyl chloride	0.50	υ
74-83-9	Bromomethane	0.033	J
75-00-3	Chloroethane	0.50	υ
75-69-4	Trichlorofluoromethane	0.50	U
75-35-4	1,1-Dichloroethene	0.50	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	U
67-64-1	Acetone	1.1	J
75-15-0	Carbon disulfide	0.086	J
79-20-9	Methyl acetate	0.50	U
75-09-2	Methylene Chloride	0.039	J
156-60-5	trans-1,2-Dichloroethene	0.50	U
1634-04-4	Methyl tert-butyl ether	0.50	U
75-34-3	1,1-Dichloroethane	0.50	U
156-59-2	cis-1,2-Dichloroethene	0.50	U
78-93-3	2-Butanone	5.0	U
74-97-5	Bromochloromethane	0.50	U
67-66-3	Chloroform	0.50	U
71-55-6	1,1,1-Trichloroethane	0.50	U
110-82-7	Cyclohexane	0.50	U
56-23-5	Carbon tetrachloride	0.018	J
71-43-2	Benzene	0.50	Ŭ
107-06-2	1,2-Dichloroethane	0.50	U

EPA SAMPLE NO.

VBLKDJ

Lab Name: TESTAMERICA B	URLINGTON		Contract: 8E-00302
Lab Code: STLV Case	e No.: MORRIL M	od. Ref N	o.: SDG No.: 200-7357
Matrix: (SOIL/SED/WATER)	Water		Lab Sample ID: MB 200-26380/3
Sample wt/vol: 25.0	(g/mL) mL	- m-	Lab File ID: DHTA03.D
Level: (TRACE/LOW/MED)	TRACE		Date Received:
<pre>% Moisture: not dec.</pre>			Date Analyzed: 10/07/2011
GC Column: DB-624	10: 0.20	(mm)	Dilution Factor: 1.0
Soil Extract Volume:		(uL)	Soil Aliquot Volume: (uL)
Purge Volume: 25.0		(mL)	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
79-01-6	Trichloroethene	0.50	U
108-87-2	Methylcyclohexane	0.50	U
78-87-5	1,2-Dichloropropane	0.50	U
75-27-4	Bromodichloromethane	0.50	U
10061-01-5	cis-1,3-Dichloropropene	0.50	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	0.011	J
10061-02-6	trans-1,3-Dichloropropene	0.50	U
79-00-5	1,1,2-Trichloroethane	0.50	U
127-18-4	Tetrachloroethene	0.50	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	0.50	U
106-93-4	1,2-Dibromoethane	0.50	U
108-90-7	Chlorobenzene	0.50	U
100-41-4	Ethylbenzene	0.50	U
95-47-6	o-Xylene	0.50	U
179601-23-1	m,p-Xylene	0.0038	J
100-42-5	Styrene	0.50	U
75-25-2	Bromoform	0.50	U
98-82-8	Isopropylbenzene	0.50	U
79-34-5	1,1,2,2-Tetrachloroethane	0.50	Ū
541-73-1	1,3-Dichlorobenzene	0.040	J
106-46-7	1,4-Dichlorobenzene	0.50	υ
95-50-1	1,2-Dichlorobenzene	0.50	U
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U
120-82-1	1,2,4-Trichlorobenzene	0.074	J
87-61-6	1,2,3-Trichlorobenzene	0.079	J

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.	EPA	SAMPLE	NO.
----------------	-----	--------	-----

VBLKDJ

VBL

I	Lab Name:	TESTAMERICA	BURLING	TON			Contr	act: 8	E-00302		
I	Lab Code:	STLV Ca	ase No.:	MORRIL	Mod.	Ref N	0.:		SDG No	.: 200-7	357
М	Aatrix: (S	OIL/SED/WATE	R) Wat	er			Lab S	Sample I	D: MB 2	00-26380	/3
5	Sample wt/	vol: 25.0	(g/	mL) mL			Lab E	ile ID:	DHTA03	. D	P
I	Level: (TR	ACE or LOW/M	ED) TR	ACE			Date	Receive	d:		
ę	Moisture	: not dec;			_		Date	Analyze	d: 10/0	7/2011	
G	GC Column:	DB-624	I	D: 0.20	(m1	n)	Dilut	ion Fac	tor: 1.	0	
S	Soil Extra	ct Volume:			(u)	L)	Soil	Aliquot	Volume:		(uL)
C	CONCENTRAT	ION UNITS: (u	g/L or u	ig/kg)	ug/L		Purge	e Volume	: 25.0		(mL)
T	CAS NUME	BER	C	OMPOUND	NAME	-		RT	EST.	CONC.	Q
01		Unknow	'n			-		6.6	7	3.4	XJ
02	E9667961	Total	Alkanes	anning an anning an				N/A			1

1EPA-designated Registry Number.

EPA SAMPLE NO.

VHBLK01

Lab Name:	TESTAMERICA	BURLINGT	ON			Cont	ract:	8E-04	0302		
Lab Code:	STLV Ca	se No.:	MORRIL	Mod.	Ref	No.:		S	DG No.:	200-735	7
Matrix: (S	OIL/SED/WATE	R) Wate	r			Lab	Sample	ID:	200-735	57-6	
Sample wt/	vol: 25.0	(g/m	L) mL	y order to		Lab	File ID): D	HTA11.D		
Level: (TR	ACE/LOW/MED)	TRACE		_		Date	Receiv	ved:			
% Moisture	: not dec.					Date	Analyz	ed:	10/07/2	2011	
GC Column:	DB-624	ID	: 0.20	(m	m)	Dilu	tion Fa	actor	: 1.0		
Soil Extra	ct Volume:			(u)	L)	Soil	Aliquo	ot Vo	lume:		(uL)
Purge Volu	me: 25.0			(m)	L)						

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
75-71-8	Dichlorodifluoromethane	0.50	U
74-87-3	Chloromethane	0.50	U
75-01-4	Vinyl chloride	0.50	U
74-83-9	Bromomethane	0.50	U
75-00-3	Chloroethane	0.50	U
75-69-4	Trichlorofluoromethane	0.50	U
75-35-4	1,1-Dichloroethene	0.50	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	U
67-64-1	Acetone	5.0	U
75-15-0	Carbon disulfide	0.029	JB
79-20-9	Methyl acetate	0.50	U
75-09-2	Methylene Chloride	0.50	U
156-60-5	trans-1,2-Dichloroethene	0.50	U
1634-04-4	Methyl tert-butyl ether	0.50	U
75-34-3	1,1-Dichloroethane	0.50	U
156-59-2	cis-1,2-Dichloroethene	0.50	U
78-93-3	2-Butanone	5.0	U
74-97-5	Bromochloromethane	0.50	U
67-66-3	Chloroform	0.50	U
71-55-6	1,1,1-Trichloroethane	0.50	U
110-82-7	Cyclohexane	0.50	U
56-23-5	Carbon tetrachloride	0.017	JB
71-43-2	Benzene	0.50	U
107-06-2	1,2-Dichloroethane	0.50	U

EPA SAMPLE NO.

VHBLK01

Lab Name: TESTAMERICA BUR	LINGTON	Con	tract: 8E-00302
Lab Code: STLV Case N	No.: MORRIL Mc	d. Ref No.;;	SDG No.: 200-7357
Matrix: (SOIL/SED/WATER)	Water	Lab	Sample ID: 200-7357-6
Sample wt/vol: 25.0	(g/mL) mL	Lab	File ID: DHTA11.D
Level: (TRACE/LOW/MED) TH	RACE	Dat	e Received:
% Moisture: not dec.		Dat	e Analyzed: 10/07/2011
GC Column: DB-624	ID: 0.20	(mm) Dil	ution Factor: 1.0
Soil Extract Volume:		(uL) Soi	1 Aliquot Volume: (uL)
Purge Volume: 25.0		(mL)	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
79-01-6	Trichloroethene	0.50	U
108-87-2	Methylcyclohexane	0.50	U
78-87-5	1,2-Dichloropropane	0.50	U
75-27-4	Bromodichloromethane	0.50	U
10061-01-5	cis-1,3-Dichloropropene	0.50	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	0.50	U
10061-02-6	trans-1,3-Dichloropropene	0.50	U
79-00-5	1,1,2-Trichloroethane	0.50	U
127-18-4	Tetrachloroethene	0.50	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	0.50	U
106-93-4	1,2-Dibromoethane	0.50	U
108907	Chlorobenzene	0.50	U
100-41-4	Ethylbenzene	0.50	U
95-47-6	o-Xylene	0.50	U
179601-23-1	m,p-Xylene	0.50	U
100-42-5	Styrene	0.50	U
75-25-2	Bromoform	0.50	U
98-82-8	Isopropylbenzene	0.50	U
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U
541-73-1	1,3-Dichlorobenzene	0.50	U
106-46-7	1,4-Dichlorobenzene	0.50	U
95-50-1	1,2-Dichlorobenzene	0.50	U
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U
120-82-1	1,2,4-Trichlorobenzene	0.50	U
87-61-6	1,2,3-Trichlorobenzene	0.50	U

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

VHBLK01

Lab Name: TES	TAMERICA BURLINGTON		Contract:	8E~(00302		
Lab Code: STI	V Case No.: MORRIL M	od. Ref Nc		1	SDG No.:	200-73	357
Matrix: (SOIL	SED/WATER) Water		Lab Sample	ID:	200-7357	7-6	
Sample wt/vol	: 25.0 (g/mL) <u>mL</u>		Lab File I	D:]	DHTA11.D		
Level: (TRACE			Date Recei	ved			
<pre>% Moisture: ne</pre>	ot dec.	-	Date Analy	zed\$		011	
GC Column: DE	B-624 ID: 0.20	(mm)	Dilution F	acto	r: 1.0		
Soil Extract	/olume:	(uL)	Soil Aliqu	ot V	olume:		(uL)
CONCENTRATION	UNITS: (ug/L or ug/kg) u	g/L	Purge Volu	me:	25.0		(mL)
CAS NUMBER	COMPOUND NF	ME	R	r	EST. CO	NC.	Q
	Unknown		б	. 67		3.2	BXJ
E9667961	Total Alkanes		N/A				

01 02 E9667961

¹EPA-designated Registry Number.

EPA SAMPLE NO.

VIBLKDM

Lab Name:	TESTAMERIC	A BURLING	TON	2		Contract:	8E-00	302	
Lab Code:		Case No.:	MORRII	, Mod.	Ref	No. :	SI	DG No.:	200-7357
Matrix: (S	OIL/SED/WAT	TER) Wat	er			Lab Sample	e ID:	VIBLK 2	200-26380/9
Sample wt/	vol: 25.0	(g/	mL) mL	1		Lab File 1	ED: DF	HTA09.D	
Level: (TR	ACE/LOW/MEI)) TRACE				Date Recei	lved:		
% Moisture	: not dec.					Date Analy	/zed:	10/07/2	2011
GC Column:	DB-624	I	D: 0.20) (n	um)	Dilution H	Factor	1.0	
Soil Extra	ct Volume:			(u	L)	Soil Aliqu	iot Vol	Lume:	(uL)
Purge Volu	me: 25.0			(π	ιL)				

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
75-71-8	Dichlorodifluoromethane	0.50	U
74-87-3	Chloromethane	0.50	U
75-01-4	Vinyl chloride	0.50	U
74-83-9	Bromomethane	0.50	U
75-00-3	Chloroethane	0.50	U
75-69-4	Trichlorofluoromethane	0.50	U
75-35-4	1,1-Dichlorcethene	0.50	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	U
67-64-1	Acetone	5.0	U
75-15-0	Carbon disulfide	0.027	JB
79-20-9	Methyl acetate	0.50	U
75-09-2	Methylene Chloride	0.50	U
156-60-5	trans-1,2-Dichloroethene	0.50	U
1634-04-4	Methyl tert-butyl ether	0.50	U
75-34-3	1,1-Dichloroethane	0.50	U
156-59-2	cis-1,2-Dichloroethene	0.50	U
78-93-3	2-Butanone	5.0	U
74-97-5	Bromochloromethane	0.50	U
67-66-3	Chloroform	0.50	U
71-55-6	1,1,1-Trichloroethane	0.50	U
110-82-7	Cyclohexane	0.50	U
56-23-5	Carbon tetrachloride	0.022	JB
71-43-2	Benzene	0.50	U
107-06-2	1,2-Dichloroethane	0.50	U

EPA SAMPLE NO.

VIBLKOM

Lab Name: TESTAMERIC	CA BURLINGTON		Contract: 8E-00302	
Lab Code: STLV	Case No.: MORRIL	Mod. Ref	No.: SDG No.: 200-	7357
Matrix: (SOIL/SED/WAY	TER) Water		Lab Sample ID: VIBLK 200-26	380/9
Sample wt/vol: 25.0	(g/mL) mL		Lab File ID: DHTA09.D	
Level: (TRACE/LOW/ME	D) TRACE		Date Received:	
% Moisture: not dec.			Date Analyzed: 10/07/2011	
GC Column: DB-624	ID: 0.20	(mm)	Dilution Factor: 1.0	
Soil Extract Volume:		(uL)	Soil Aliquot Volume:	(uL)
Purge Volume: 25.0		(mL)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) ug/L	Q
79-01-6		0.50	
108-87-2	Methylcyclohexane	0.50	U
78-87-5	1,2-Dichloropropane	0.50	U
75-27-4	Bromodichloromethane	0.50	U
10061-01-5	cis-1,3-Dichloropropene	0.50	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	0.0043	JB
10061-02-6	trans-1,3-Dichloropropene	0.50	U
79-00-5	1,1,2-Trichloroethane	0.50	U
127-18-4	Tetrachloroethene	0.50	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	0.50	U
106-93-4	1,2-Dibromoethane	0.50	υ
108-90-7	Chlorobenzene	0.50	U
100-41-4	Ethylbenzene	0.50	U
95-47-6	o-Xylene	0.50	U
179601-23-1	m,p-Xylene	0.50	U
100-42-5	Styrene	0.50	U
75-25-2	Bromoform	0.50	U
98-82-8	Isopropylbenzene	0.50	U
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U
541-73-1	1,3-Dichlorobenzene	0.50	U
106-46-7	1,4-Dichlorobenzene	0.50	U
95-50-1	1,2-Dichlorobenzene	0,50	U
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U
120-82-1	1,2,4-Trichlorobenzene	0.50	U
87-61-6	1,2,3-Trichlorobenzene	0.50	U

JJ - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

VIBLKDM

Lab Name: TEST	Lab Name: TESTAMERICA BURLINGTON			Contract: 8E-00302			
Lab Code: STLV	Case No.: MORRIL Mod. Ref 1	No . 🐲		SDG No.: 200-7	357		
Matrix: (SOIL/SED/WATER) Water			Lab Sample ID: VIBLK 200-26380/				
Sample wt/vol: 25.0 (g/mL) mL			Lab File ID: DHTA09.D Date Received: Date Analyzed: 10/07/2011				
Level: (TRACE or LOW/MED) TRACE							
% Moisture: not dec _a							
GC Column: DB-624 ID: 0.20 (mm)			Dilution Factor: 1.0				
Soil Extract Volume: (uL)			Soil Aliquot Volume: (uL)				
CONCENTRATION U	DNITS: (ug/L or ug/kg) ug/L	Purge	Volume:	25.0	(mL)		
CAS NUMBER	COMPOUND NAME		RT	EST. CONC.	Q		
01	Unknown		6.67	3.0	BXJ		
02 E9667961	Total Alkanes	the state of the s	N/A				

÷.

¹EPA-designated Registry Number.

Environmental Science Division

Argonne National Laboratory 9700 South Cass Avenue, Bldg. 203 Argonne, IL 60439-4843 www.anl.gov

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC