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Executive Summary 

The purpose of this report is to outline code and solution verification activities applied to 
HIGRAD, a Computational Fluid Dynamics (CFD) solver of the compressible Navier-Stokes 
equations developed at the Los Alamos National Laboratory, and used to simulate various 
phenomena such as the propagation of wildfires and atmospheric hydrodynamics. Code 
verification efforts, as described in this report, are an important first step to establish the 
credibility of numerical simulations. They provide evidence that the mathematical formulation is 
properly implemented without significant mistakes that would adversely impact the application of 
interest. Highly accurate analytical solutions are derived for four code verification test problems 
that exercise different aspects of the code. These test problems are referred to as: (i) the quiet 
start, (ii) the passive advection, (iii) the passive diffusion, and (iv) the piston-like problem. These 
problems are simulated using HIGRAD with different levels of mesh discretization and the 
numerical solutions are compared to their analytical counterparts. In addition, the rates of 
convergence are estimated to verify the numerical performance of the solver. The first three test 
problems produce numerical approximations as expected. The fourth test problem (piston-like) 
indicates the extent to which the code is able to simulate a “mild” discontinuity, which is a 
condition that would typically be better handled by a Lagrangian formulation. The current 
investigation concludes that the numerical implementation of the solver performs as expected. 
The quality of solutions is sufficient to provide credible simulations of fluid flows around wind 
turbines. The main caveat associated to these findings is the low coverage provided by these 
four problems, and somewhat limited verification activities. A more comprehensive evaluation of 
HIGRAD may be beneficial for future studies. (Report approved for unlimited, public release on 
May xx, 2012, LA-UR-12-xxxx.) 
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1. Introduction 

This report details a preliminary effort to organize verification activities applied to HIGRAD, a 
Computational Fluid Dynamics (CFD) solver developed at the Los Alamos National Laboratory 
(LANL). This code is used to simulate various phenomena such as the propagation of wildfires 
and atmospheric hydrodynamics. HIGRAD is developed to take advantage of massively parallel 
computing architectures. The fluid dynamics solver is common to several applications, such as 
the simulation of wildfires (with the code FIRETEC), tracer transport and dispersion in urban 
areas, meteorological phenomena, and wind plants (with the code WindBlade) [1]. 

HIGRAD is used to simulate the performance of wind plants as part of the Laboratory Directed 
Research and Development Directed Research (LDRD-DR) project “Intelligent Wind Turbines” 
at LANL. The code WindBlade is being developed to couple the fluid dynamics solver HIGRAD 
with NLBeam, a nonlinear Finite Element (FE) representation of the structural components of 
wind turbines [2]. Using HIGRAD to develop this capability is advantageous because it can 
include atmospheric and topographic effects at the wind plant scale. The ultimate objective is to 
use WindBlade to economically study the power output of wind plants, optimal site placement, 
and array and wake impacts from turbine-turbine interactions and wind-turbine interactions. 

The reliance on the HIGRAD solver in the development of WindBlade provides one of the first 
viable simulation efforts to study wind turbines at the plant scale. This unique capability captures 
the realistic topology of the terrain; implements boundary conditions that do not rely on cyclic 
symmetry; and is capable of performing highly resolved, three-dimensional simulations that are 
inaccessible to other wind turbine software. However, credible predictions for the performance 
of wind plants require a rigorous verification of the code used to develop these models. 

Code verification is generally considered to be the first step of any Verification and Validation 
(V&V) study performed to establish the credibility of numerical simulations. Verification activities 
discussed in this report are different from the Software Quality Assurance (SQA) efforts typically 
carried out in a large-scale code project. SQA practices guarantee that the implementation of a 
model, solver or algorithm meets requirements of quality and performance from the perspective 
of the code developer. An example in the field of FE modeling is the implementation of “patch 
tests” to verify that a specific finite element possesses the correct number of rigid body modes 
and recovers the appropriate uniform-strain state. These practices are aimed at demonstrating 
the absence of programming mistakes. They do not, however, assess the performance of an 
algorithm, or numerical quality of discrete solutions, for a particular application of interest. 

The verification efforts presented in this report are performed from the perspective of the code 
user. They are applied to a particular application of the HIGRAD solver, which is the numerical 
simulation of flow dynamics around wind turbines. The difference with SQA practices is that the 
test problems analyzed here are not attempting to unambiguously prove that the software is 
correctly implemented. Rather, the analysis is meant to demonstrate that the implementation is 
properly formulated without any significant “bugs” or programming mistakes that may adversely 
impact the application of interest. Herein, we are not attempting to “prove” correctness; rather, 
we are attempting to dispute the existence of a major mistake. 

The importance of verification activities is emphasized from previous work on the development 
of FE models to simulate the structural vibration response of wind turbine blades. A recent code 
verification effort exposed a deficiency in the implementation of shell elements into commercial 
software [3]. Numerical estimates obtained from the FE analysis were compared to closed-form 
analytical solutions for a hollow cylinder subjected to torsional loading. The study found that the 
software incorrectly approximated the exact solution and, of even greater concern, that refining 
the mesh increased the error in the solution. Although simple, these findings called into question 
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the results of previous simulations in which these same shell elements were used to 
approximate the behavior of wind turbine blades. This example demonstrates the necessity of 
using code verification to establish credibility and verify the correctness of numerical models. 

Because the verification discussed in this report is application-driven, the investigation starts by 
identifying phenomena that are most important in the simulation of flow dynamics around wind 
turbines. The main features of the HIGRAD solver are overviewed in Section 2. A short list of 
the phenomenology verified in this report is given in Section 3. This list is surely not exhaustive 
but it illustrates a systematic procedure that can be implemented to prioritize the verification 
effort, while avoiding spending time and precious resources on aspects of the simulation that 
may not matter for the application of interest. 

Section 3 also discusses the verification activities performed that belong to two categories. The 
first category is the comparison of discrete solutions, obtained by simulating a test problem, to 
exact solutions. Metrics, such as the absolute difference between scalar quantities or Euclidean 
distances estimated over the computational domain, are calculated to assess the error between 
discrete and analytical solutions. This first category of verification, generally referred to as code 
verification, leads to a straightforward interpretation. The code either passes or fails the test. But 
it also presumes the availability of analytical solutions for comparison. Analytical solutions are 
available only for simple test problems that may not represent the complexity of scenarios that 
the software attempts to simulate. 

The second category of activities consists of refinement studies to assess the extent to which 
the code self-converges as the level of resolution is increased. Refinement can be performed in 
either space or time. In addition to studying self-convergence, solutions of a refinement study 
are also used to assess the numerical performance of the hydrodynamics code. This technology 
is briefly overviewed in Section 3. This second category is referred to as solution verification and 
it offers the advantage that analytical solutions are not required to study self-convergence. 

Sections 4, 5, 6, and 7 present the results of this preliminary verification study. The four test 
problems considered are the: (i) quiet start, (ii) passive advection, (iii) passive diffusion, and (iv) 
piston-like problems. All of these problems assess the extent to which the hydrodynamic solver 
accurately solves the conservation laws. The last problem stretches the domain of applicability 
of HIGRAD because it simulates the Rankine-Hugoniot condition of a discontinuity, a condition 
that is not expected to be encountered in the typical operation of a wind turbine. This problem is 
nevertheless studied to observe the extent to which stable solutions are calculated for a type of 
fluid flow outside the nominal operating regime of the software. High-level conclusions are given 
in Section 8 and details of the analytical solutions derived are presented in the appendix. 
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2. Overview of the HIGRAD Fluid Dynamics Solver 

      HIGRAD is a Computational Fluid Dynamics (CFD) model designed to represent sharp 
gradients in fluid flows. The acronym stands for “HIgh GRADient.” The model explicitly solves 
the compressible Navier-Stokes equations in arbitrarily complex, three-dimensional Cartesian 
geometry [4]. The fundamental conservation law solved, written in Eulerian frame-of-reference, 
that is, which remains fixed in space and time, is: 

, (1)

where the triplet (ρ; p; u) of state variables denotes the density, pressure, and velocity vector of 
an element of fluid, respectively. Symbols σD and f in the right-hand side denote the deviatoric 
stress tensor and applied body forces. The complete stress tensor, that includes isotropic and 
deviatoric components, is defined as: 

. (2)

The Navier-Stokes equation (1) expresses the conservation of momentum of a fluid element. It 
is augmented by the continuity equation that represents the conversation of mass during motion 
of the fluid: 

, (3)

and by the conservation of total energy. In one-dimensional “slab” geometry, and assuming that 
the fluid is inviscid and adiabatic, this system of equations reduces to the well-known Euler 
equations discussed in the appendix, and represented as: 

, 
(4)

where E denotes the total specific energy of an element of fluid, that is, E = ε + ½ u2 (and ε is 
the internal specific energy). Equations (1) to (4) do not include the equation of state added to 
provide closure by relating density, pressure, and energy. In this work, and because the focus is 
on verifying the numerical simulation of air flowing around wind turbines, a perfect gas law with 
adiabatic exponent γ = 7/5 is used. 

The HIGRAD code solves this system of coupled, nonlinear equations to calculate the values of 
density (ρ), pressure (p), velocity (uX, uY, uZ), and internal energy (ε) or temperature (T) in every 
zone of the computational grid. Depending on the problem, it offers the additional capability to 
solve for secondary variables such as the concentration of chemicals in the flow. This is used, 
for example, to simulate the dispersal of contaminants. The solver implements the finite volume 
method on a generalized coordinate grid. HIGRAD has been used to model hurricanes [5], 
cloud physics [6], and wildfires [7] among a number of diverse atmospheric phenomena. 
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The HIGRAD code discretizes the computational domain using hexahedron “cells” (or zones). 
Zones of the discretization are treated using the finite volume method, whereby state variables 
are approximated using a sub-grid model denoted as a generic function F(•) within each control 
volume V(E) of the mesh. For example, the density is approximated as: 

(E)

(E)

V
F( ) d    , (5)

where the integration of the sub-grid model is carried out over the volume V(E) of each zone. The 
HIGRAD code implements a piecewise constant sub-grid model, which means that F() = 1 and 
the state variables are constant within each finite volume of the discretization. With this choice, 
for example, equation (5) gives ρ(E) = constant in zone V(E). 

A number of standard finite volume schemes are employed to represent the various terms in the 
governing equations. See, for example, those given in references [8] and [9]. The HIGRAD code 
includes several temporal integration and spatial differencing schemes. The advective terms are 
computed using a Flux Corrected Transport (FCT) algorithm, where QUICK or QUICKEST are 
used for the high-order scheme and upstream differencing is used for the low-order scheme 
[10]. The FCT algorithm limits the high-order flux calculations using low-order fluxes to ensure 
the positive-definite advection of prognostic variables. Simply speaking, it means that the flux of 
quantity, such as mass or momentum, flowing through a zone from its neighbors cannot exceed 
the cumulative amount present in the originating zones. The pressure gradient, diffusion, and 
turbulence terms are approximated by a second-order accurate, centered-in-space scheme. 

The discretized equations are integrated in time explicitly. The schemes available for integration 
are Euler forward; Runge-Kutta of order-1, order-2, order-3, or order-4; Adams-Bashforth; and 
the Method of Averages (MOA) [11]. The Runge-Kutta family of time integration techniques is 
used exclusively for this study. 
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3. Rationale of the Selection of Verification Test Problems 

To emphasize the importance of verification activities, the principle of discretization is briefly 
explained in this section. The key point is that, when a system of partial differential equations is 
solved numerically by a computer code, the discrete solutions obtained approximate a system of 
equations that is different from the original system of equations! Understanding this difference 
is essential to assess if the software is performing correctly and, therefore, if it can be trusted. 

3.1 The Consistency and Convergence of Modified Equations 

The HIGRAD fluid dynamics code solves conservation laws that balance the rate-of-change 
in time of the state variable, the gradient of its flux, and a potentially non-zero source term in the 
right-hand side. Without loss of generality, this equation can be written in a one-dimensional, 
Cartesian coordinate system as: 

, (6)

where yExact(x;t) is the exact solution, F(•) denotes the flux term, and S(x;t) is a source or forcing 
function that drives the dynamics of the system. These generic functions depend on space and 
time, labeled “x” and “t,” respectively. When solving equation (6) with a numerical method, one 
seeks the best-possible approximation of the exact solution yExact. 

The numerical method discretizes the continuous equation (6) on a computational mesh to yield 
a discrete solution yk

n = y(k∆x; n∆t) where ∆x and ∆t are the spatial and temporal resolutions, 
respectively. The approximation yk

n is obtained by solving a discretized equation that looks, for 
example, something like: 

. (7)

The approximation of equation (7) corresponds to a hypothetical discretization scheme where 
the time differentiation operator (/t) is approximated by a forward Euler difference while the 
spatial differentiation operator (/x) is approximated by a centered difference. It is emphasized 
that equation (7) is shown for illustration only; it is not the differentiation scheme implemented in 
the HIGRAD code. The discrete values yk

n, Fk
n, and Sk

n can be obtained from finite difference, 
finite volume, or finite element approximations. One observes that the discretized equation (7) 
“appears” similar to the original, continuous equation (6). The similarity, however, is misleading. 

Contrary to common belief, the discrete solutions yk
n are not approximations of the continuous 

solution yExact of equation (6). Using the technique known as Modified Equation Analysis (MEA), 
see References [12] and [13], it can be shown that the approximations yk

n converge to the 
solution of a modified equation that takes a form such as: 

. (8)

Note that this example is conceptual and the correct form of the modified equation depends on 
properties of the original equation (6) and numerical method (7) implemented for its resolution. 
What is important to the discussion is that the continuous solution yMEA of the modified equation 
(8) is different from yExact, at least, as long as the spatial and temporal resolutions remain finite, 
that is, as long as ∆x  0 and ∆t  0. The Lax equivalence theorem of Reference [14] details the 
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conditions under which the discrete approximations yk
n are consistent with, and converge to, the 

continuous solution yExact. These concepts are illustrated graphically in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Concepts of consistency and convergence of numerical solutions. 

The terms shown between parentheses in the modified equation (8) represent an infinite series 
expansion that characterizes the truncation error of the numerical simulation. It can be seen that 
truncation is what explains the difference between the continuous solutions y and yExact. Since 
the leading-order term of spatial truncation is proportional to an exponent, such as ∆x or ∆x2, 
performing a mesh refinement study indicates how this error behaves. Likewise, performing a 
refinement study in time assesses how the temporal discretization error behaves. 

3.2 The Regime of Asymptotic Convergence of Discrete Solutions 

Because truncation error is the main mechanism by which the discrete solution yk
n obtained by 

running the analysis software differs from the exact solution yExact, understanding its behavior is 
key to assessing the numerical performance of the code. Hence, verifying the quality of discrete 
solutions hinges on the concept of the regime of asymptotic convergence. 

Different choices of resolution ∆x in a calculation induce different behaviors of the overall 
numerical error, as illustrated in Figure 2. By definition, the regime of asymptotic convergence is 
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the region where truncation effects dominate the overall production of numerical error. Plotting 
the solution error ||yExact – yk

n|| versus mesh size ∆x gives a conceptual illustration of the main 
three regimes of the discretization. 

Going from right (larger values of ∆x) to left (smaller values of ∆x), the first domain shown in 
color red is where the choice of mesh size is not appropriate to solve the discrete equations. 
This is, for example, the case when zones/cells are too coarse to resolve important geometrical 
features of the problem; when a constraint of numerical stability is violated; or when the mesh is 
too coarse to capture a characteristic scale over which the dynamics occur. Although it could be 
argued that discrete solutions originating from this regime of discretization are useful to indicate 
overall trends, their numerical quality should be questioned with the highest degree of suspicion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The three regimes of solution error versus spatial discretization. 

The second region shown in color green in Figure 2 is where truncation dominates the overall 
production of numerical error; it is the regime of asymptotic convergence. In this second regime, 
the numerical error can be reduced, that is, solution accuracy can be improved, by increasing 
the level of resolution in the calculation. We have just outlined the basic principle of conducting 
a mesh refinement study. 

The conceptual illustration shown in Figure 2 assumes that truncation effects, within the regime 
of asymptotic convergence, are dominated by a single error proportional to ∆xp, which appears 
as a straight line of slope “p” on a log-log representation. The particular functional form of the 
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modified equation, suggested in equation (8), motivates this assumption. It is also the reason 
why the behavior of truncation error is usually modeled by a simple equation such as: 

, (9)

where ε(∆x) denotes the difference, estimated in the sense of a user-defined norm ||•||, between 
the exact solution yExact of the continuous partial differential equations and the discrete solution 
yk

n obtained at mesh size ∆x. The pre-factor β represents a (constant) regression coefficient. 
The exponent p characterizes the rate at which the solution error ε(∆x) decreases as the level of 
resolution in the calculation is increased, or ∆x  0. The value of exponent p should match the 
order of accuracy of the numerical method implemented in the code. For example, the second-
order accurate Gudonov scheme of a finite volume method should exhibit a rate of p = 2. 

The last region shown in color grey in Figure 2 is a limiting case for asymptotic convergence 
due to the fact that, with finite arithmetic implemented in a computer, round-off effects eventually 
start to accumulate as ∆x  0. Round-off could then accumulate to the point where it supplants 
truncation error as the dominant mechanism that produces numerical error. 

Understanding the regime of asymptotic convergence is important for three reasons. First, the 
analyses of mesh refinement performed in this work are valid only within the asymptotic regime. 
Second, verifying that the level of resolution ∆x used in a calculation leads to discrete solutions 
within the asymptotic regime provides a strategy to reduce the solution error. If the error is too 
large for the intended application, then repeating the calculation with more resolution reduces it. 
This statement, however, is true only within the regime of asymptotic convergence. The third 
reason why it is important to understand the boundaries of the asymptotic regime, is that it is 
preferable to perform a calculation with the coarsest mesh that one can get away with. Coarser 
discretizations imply a lesser need for computational resources and faster turn-around times. 

3.3 Rationale for the Selection of Code Verification Test Problems 

The main objective of the verification work is to demonstrate that the numerical approximations 
provided by the HIGRAD code can be trusted for the simulation of wind turbine performance. To 
do so, the approximations are compared to exact solutions, or highly accurate solutions, derived 
from closed-form formulations of the conservation laws. These closed-form solutions, however, 
are available only for a limited number of simplified verification test problems and it is important 
to choose them without losing focus of the application of interest. 

When exact solutions are available for comparison, it is straightforward to evaluate a metric of 
error. This is discussed in section 3.4. Code credibility is then established by demonstrating that 
the solution error remains low for an as-wide-as-possible range of test problems. 

A second objective is to assess code performance. After verifying the lack of programming 
mistake that would significantly deteriorate the quality of numerical solutions, the question of 
code performance can be asked. Performance refers, here, to the overall behavior of truncation 
effects introduced by the implementation of specific algorithms or solvers. It is assessed through 
mesh refinement studies whereby the rate of convergence estimated from empirical solutions is 
compared to the formal order of accuracy of the numerical method. A code performs according 
to expectation if the accuracy that it provides compares favorably to the theory. This analysis is 
discussed in section 3.5 for the case where the exact solution of a test problem is known. For 
completeness, section 3.6 summarizes the case where the exact solution is not available. 

Because resources devoted to this study are limited, it is not possible to analyze a large number 
of test problems. The problems analyzed, therefore, are carefully selected. For the application of 

(x)   yExact  y
k
n      xp  + O xp+1 
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interest, it is deemed important to analyze test problems that assess the ability of the code to 
conserve mass, momentum, and energy while solving for state variables that represent the fluid 
flow around a wind turbine. A premium is placed on selecting test problems for their ability to 
diagnose a potential violation of the conservation laws. 

A second consideration is the verification of the flux corrected transport, an algorithm whose 
implementation can significantly influence the numerical quality of discrete solutions. A third and 
final consideration originates from the application of the HIGRAD code to flow dynamics around 
wind turbines. Realistic wind conditions include, at a minimum, velocity gradients. It is desirable 
to devote one test problem to the ability of the code to represent these velocity gradients. 

These considerations lead to the four test problems listed in Table 1. They comprise the rows of 
the table, while the columns identify which aspects (conservation law, flux corrected transport, 
and velocity gradient) are more specifically addressed by each problem. This way of selecting 
test problems is a simplified implementation of a Phenomenon Identification and Ranking Table 
(PIRT). A full PIRT analysis would consist of three basic steps that, here, have been simplified. 
The first step provides an as-exhaustive-as-possible list of the phenomenology that must be 
modeled for the application of interest. The phenomena include conservation laws, algorithms, 
models, and any other modeling or numerical aspect needed for the simulation. The second 
step ranks these phenomena from the most to least important. The goal is to prioritize the effort 
and avoid spending valuable resources to verify aspects to which predictions of the code may 
not be sensitive. The third and final step is to develop test problems appropriate to assess the 
implementation of the most important phenomena. Performing a somewhat more rigorous PIRT-
like analysis would be highly advisable to provide a credible verification of the WindBlade code. 

Table 1. HIGRAD solvers associated with the proposed test problems. 

Test 
Problem 

Conservation 
Laws 

Flux Corrected 
Transport 

Velocity 
Gradient 

Hydrodynamic 
Discontinuity 

Quiet Start  X    

Advection X X   

Diffusion X  X  

Piston-like  X   X 

The last column labeled “Hydrodynamic Discontinuity” refers to the ability of the fluid flow solver 
to capture interfaces, discontinuities, or mild “shocks.” Even though such flow conditions are not 
of interest for wind turbine applications, this phenomenology is nevertheless included to assess 
the extent to which HIGRAD is able to simulate these flow conditions. It makes for a particularly 
difficult test problem to “pass” because the code is not written to simulate these conditions. The 
code does not, for example, include models of artificial viscosity that are needed to “damp out” 
the spurious waves, known as Gibbs oscillation, generated at the flow discontinuity. The piston-
like test problem simulated for this assessment is detailed in Appendix B. 

Another consideration is the time devoted to the analysis of each individual problem. Running a 
test problem once to compare the discrete and exact solutions is not a concern, but performing 
a mesh refinement study rapidly becomes computationally expensive. Assuming, for example, 
that an initial grid is halved, then, halved again, the size of a three-dimensional problem grows 
by factors of eight, then, sixty-four. Solving the problem on the finest grid becomes 4,000 times 
more expensive than solving the problem on the initial grid if this resolution involves a solver 
whose computational cost is proportional to the square of the number of zones in the domain. 
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To alleviate this difficulty, it is decided to analyze the test problems of Table 1 on a rectangular, 
three-dimensional geometry. For the first three problems, the size of the domain is 64 x 64 x 64 
m3, whereas the domain analyzed for the piston-like problem is 0.5 x 10 x 0.5 cm3. Keeping 
these domains rectangular greatly facilitates the meshing strategy and successive refinements. 
The fact that “real” geometries with, for example, realistic descriptions of the terrain or boundary 
conditions, are not used for the assessment is irrelevant. Because the object of verification is to 
assess the quality of algorithms implemented in the code, what matters is that the simplified test 
problems exercise the same models, algorithms, or lines of coding, as those that would be 
exercised in the application of interest. For better credibility, it would be highly advisable to 
augment this preliminary study with mesh refinement studies that involve realistic descriptions of 
the geometry, wind turbine placements, and terrain and atmospheric conditions. 

Lastly, to ensure the stability of discrete solutions, it is important to guarantee that information is 
not propagated through the computational domain faster than the maximum wave speed ωMax of 
the phenomenon simulated. Because the mesh size ∆x used for a test problem is controlled by 
the domain size and other constraints imposed by the mesh refinement, the Courant-Friedrichs-
Levy (CFL) stability condition is enforced by selecting an appropriate time step ∆t such that: 

. (10)

The CFL condition of equation (10) is obtained for each test problem using the maximum speed 
of sound expected to be encountered in the simulation. When mesh refinement is carried out, a 
common time sampling, therefore, based on the smallest level of resolution, is used. Unless 
otherwise noted in sections 4 to 7, the simulations are performed with ∆t = constant such that 
no inconsistency is introduced in the discrete solutions due to a varying time sampling period. 
This rationale is deemed appropriate for a preliminary study because hydrodynamics solvers 
are generally written such that the temporal discretization is “slaved” to the spatial discretization 
through the CFL stability, and other, conditions. Hence, spatial truncation is the main production 
of numerical error. To verify the accuracy of the time integration scheme, the assessment of the 
scalar advection test problem in section 5 includes refinement studies in time as well as space. 

3.4 Comparison Between Exact and Discrete Solutions 

Code verification refers to the comparison of discrete approximations, obtained by simulating a 
test problem, to known exact solutions. Metrics, such as the absolute difference between scalar 
quantities or Euclidean distances estimated over the computational domain, can be calculated 
to assess the error between discrete and analytical solutions. One such metric used in this work 
is the Root Mean Square (RMS) error written, for example, as: 

, (11)

where yk
n is the numerical solution provided by HIGRAD at resolution ∆x and yExact is the exact 

solution of the problem. Both solutions are discretized spatially over the same computational 
geometry, which is indicated in equation (11) by the summation over index k = 1 … NK. (Note 
that a temporal error would be handled similarly by integrating over the time dimension instead 
of the spatial coordinates.) 

The assessment, based on the metric ε(∆x) = ||yExact – y(∆x)||, is straightforward: the code either 
passes or fails the test. Large errors indicate significant deviations from the exact solutions due 

1  
x

t
  CFL Max 


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

 x   1
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
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to programming mistakes. In general, estimating the error metric (11) will not indicate the origin 
of the discrepancy but a large error is a sure indicator that something is wrong. 

3.5 Analysis of Code Performance With a Known Exact Solution 

Another activity of code verification is to assess the numerical performance of an algorithm or 
solver implemented in the software. By repeating the analysis of the same test problem twice, 
but with different levels of mesh resolution, equation (11) can be calculated twice as: 

,       xF   1

NK
F

yk
Exact  yk

n (xF ) 2

k=1

NK
F

 . (12)

In equation (12), one of the two runs is referred to as the coarse-mesh calculation, while the 
other one is referred to as the fine-mesh calculation, to emphasize that different mesh sizes are 
used. The notation also introduces the symbols ∆xC and ∆xF that are characteristic mesh sizes 
of the coarse-mesh and fine-mesh calculations, respectively. 

The definition of these characteristic mesh sizes can be problematic in multiple dimensions, and 
especially in the case of a Lagrangian mesh. Because the HIGRAD code is based on a Eulerian 
frame-of-reference, the definition of these characteristic sizes is trivial. In the problems analyzed 
next, the discretization is performed with a constant mesh size and unit aspect ratios. 

Assuming that the truncation error behaves in the regime of asymptotic convergence according 
to the error Ansatz model of equation (9), and neglecting the higher-order terms, leads to: 

,      . (13)

A solution for the pair of unknown parameters (p; β) is given by: 

, (14)

and: 

, (15)

where η is the ratio of coarse-to-fine solution errors and R is the ratio of coarse-to-fine sizes: 

,      . (16)

The refinement ratio of equation (16) is, by definition, always greater than one since ∆xC ≥ ∆xF. 
The procedure outlined in equations (12-16) indicates that two calculations with different levels 
of mesh resolution are sufficient to estimate the rate-of-convergence p. If additional runs are 
available, then a least-squares solver can easily be implemented to estimate the pair of 
parameters (p; β) that best-fits the model of truncation error of equation (9). 

The observed rate-of-convergence estimated in equation (14) can be compared to the formal 
order of accuracy of the numerical method implemented in the code. Sub-optimal performance, 
for example, if p = 1.65 is observed when solving the test problem with a second-order accurate 
method, may be indicative of a mediocre implementation or, worst, a programming mistake. 

Running code verification test problems is useful for two purposes. First, it assesses the 
performance of the code on specific test problems for which an exact solution yExact is known, 

 xC   1
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C
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which allows code developers and analysts to make sure that no programming error is present. 
Second, it serves as benchmarking exercise to assess the rate-of-convergence of the numerical 
method implemented in the code. The main drawback, however, is that the exact solution of the 
continuous equations must be known. It seriously restricts the application of code verification to 
a few test problems that may not cover the full range of physics implemented in the code. 

3.6 Self-convergence and Analysis of Code Performance Without an Exact Solution 

We now turn our attention to the general case of solution verification, that is, the assessment of 
convergence of discrete solutions as the mesh size is refined, or ∆x  0. The main difficulty is 
that, in general, the exact solution yExact of the continuous equations is unknown, which implies 
that the solution error ε(∆x) as defined in equation (11) cannot be computed. 

To circumvent this difficulty, three assumptions are made. The first assumption is to replace the 
exact solution yExact by a “reference” solution denoted by yReference. The commonly encountered 
practice of defining this reference as the solution of a highly refined run of the code is strongly 
discouraged because the observations that result are prone to interpretation errors. Instead, this 
reference is made another unknown of the analysis. 

The second assumption is to specialize the analysis to scalar-valued quantities. These scalars 
are extracted from the calculation. They are local values, such as a peak pressure, or integrated 
over the entire computational domain, such as an average temperature. Further assuming that 
convergence is monotonic as the level of resolution is increased (this is the third assumption) 
transforms the standard Ansatz model of equation (9) into: 

(x)   yReference  y
k
n      xp  + O xp+1  . (17)

It is emphasized that this simplified representation of truncation error is, as before, valid only 
within the regime of asymptotic behavior. The main difference is that equation (17) depends on 
a triplet of unknown parameters (yReference; p; ), hence, requiring a minimum of three code runs. 
The reader is referred to References [15] and [16] for detailed discussions of how to handle the 
case of non-monotonic convergence in a manner similar to the derivations that follow. 

By repeating the analysis of the same test problem three times, but with different levels of mesh 
resolution, and neglecting the higher-order terms, equation (17) can be written three times as: 

. (18)

As before, the first run is referred to as the coarse-mesh calculation, performed at characteristic 
mesh size ∆xC. The second and third runs are referred to as the medium-mesh and fine-mesh 
calculations, performed at characteristic mesh sizes ∆xM and ∆xF, respectively. 

The equations (18) are manipulated to arrive at the expression below that needs to be solved to 
calculate the unknown rate-of-convergence p: 

, (19)

where η is the ratio of solution differences and RCM and RMF are refinement ratios defined as: 
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,      ,      . (20)

There is no closed-form solution to the nonlinear equation (19) when the refinement ratios RCM 
and RMF are different, and numerical optimization must be used to obtain the value of p that 
satisfies this expression. With a constant level of refinement across the three calculations, that 
is, RCM = RMF = R, the solution of equation (19) reduces to the well-known one: 

, (21)

where η is the ratio of solution differences defined in equation (20). 

To conclude the derivations, it can easily be verified that the reference solution is obtained as: 

, (22)

while the pre-factor coefficient is obtained as: 

, (23)

which completes the estimation of the triplet (yReference; p; ) of the solution error Ansatz model. 

In the verification literature, equation (22) is recognized as the Richardson extrapolation [17]. It 
is often noted that the reference solution yReference obtained in this manner is a better 
approximation of the exact-but-unknown solution yExact than the discrete solutions of the mesh 
refinement study yk

n(∆xC), yk
n(∆xM), and yk

n(∆xF). This is referred to self-convergence because 
what is assessed is the ability of the code to self-converge to a reference solution as the level 
mesh refinement is increased. It is noted, however, that there is no guarantee that the 
extrapolated solution yReference obtained in this manner will converge to the exact solution yExact 
as ∆x  0. The numerical method implemented in the code may generate a systematic bias 
that will remain undiscovered as long as the exact solution is unknown. 
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mesh generates a different level of “noise” and, second, to assess the numerical accuracy with 
a mesh refinement study. The domain is specified with an initial density concentration equal to 
ρ0 = 0.9987 kg/m3 at coordinate z = 0 m and ρ0 = 0.9935 kg/m3 at z = 64 m. 

Figure 3 compares the discrete solutions calculated by the HIGRAD code at times t = 0 sec. and 
t = 2,160 sec. It is noted that a two-dimensional representation of these solutions may not be 
necessary. A time series of the resolved kinetic energy integrated over the computational 
domain should be constant, therefore, indicating that no flow is induced and the various terms 
that contribute to the conservation laws are balanced. 

A visual comparison of left (at time t = 0 sec.) and right (at time t = 2,160 sec.) columns of the 
figure indicates that no disturbance is generated by the time integration. Similarly, the effect of 
increasing the level of spatial resolution is observed by comparing the coarse-size solution, 
medium-size solution, and fine-size solution. Again, no significant disturbance is generated. 

Table 2. Root Mean Square (RMS) errors of the Oxygen density concentration. 

Mesh 
Discretization 

Time 

Sampling 

Number of Cycles 
(Time Steps) 

RMS Error of Solution 
||yExact – y(∆x)|| 

Coarse, ∆x = 4 m ∆t = 0.20 sec. NCycle = 43,200 0.000 kg/m3 

Medium, ∆x = 2 m  ∆t = 0.10 sec. NCycle = 21,600 0.000 kg/m3 

Fine, ∆x = 1 m ∆t = 0.05 sec. NCycle = 10,800 0.000 kg/m3 

Table 2 is the counterpart of Figure 3 and it gives a quantitative comparison of the solution error 
obtained when analyzing the quiet start test problem with HIGRAD. The root mean square error 
||yExact – y(∆x)|| is calculated over the entire computational mesh as shown in equation (11). For 
each grid analyzed, the exact solution yExact is defined as the initial condition (at time t = 0 sec.) 
on that same mesh. This choice is made such that both exact and discrete solutions are defined 
on the same discretization, using zones that have identical volumes, which makes it easier to 
calculate the zone-to-zone differences. 

The results of Table 2 suggest that the approximation provided by the simulation is “exact” even 
after performing a large number of time-integration cycles, and irrespective of the level of mesh 
resolution used in the calculation. Because the solution errors reported in the table are equal to 
zero, the rate-of-convergence of the numerical method cannot be estimated for this problem. 
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Figure 5 indicates, in a “viewgraph norm” sense, the ability of the HIGRAD code to converge to 
the exact solution, shown in Figure 4, as the level of resolution in the calculation is increased. 
The discrete solution obtained with the coarsest level of spatial resolution clearly differs from the 
other ones. This is an example of calculation that is not even located in the regime of asymptotic 
convergence and, therefore, whose solution should be disregarded for the purpose of analyzing 
the performance of the code. 

The coarse-size solution is obtained with a mesh size of ∆x = 4 m, which corresponds to only 16 
zones across the computational domain. This is not enough to sufficiently resolve the density 
gradient that defines the contour of the bubble. Careful examination of Figure 5-1 indicates the 
presence of eight “lobes.” That the spatial gradient is spread over a number of components that 
happens to be exactly half the number of zones is a sure indication of spatial aliasing.1 

Table 3. Root Mean Square (RMS) errors of the Oxygen density concentration. 

Mesh 

Discretization 

RMS Error of Solution, ||yExact – y(∆x)|| 

CFL = 0.300 CFL = 0.150 CFL = 0.075 

Medium, ∆x = 2 m 7.83 x 10–3 kg/m3 5.51 x 10–3 kg/m3 3.92 x 10–3 kg/m3 

Fine, ∆x = 1 m 1.50 x 10–3 kg/m3 0.87 x 10–3 kg/m3 0.52 x 10–3 kg/m3 

Extra-fine, ∆x = ½ m 0.25 x 10–3 kg/m3 0.29 x 10–3 kg/m3 0.22 x 10–3 kg/m3 

Table 3 lists the L2 norms of differences between exact and discrete solutions, or RMS errors of 
equation (11), for the three finest levels of mesh resolution. The state variable analyzed is the 
density field in units of kg/m3. Solutions are analyzed at the final time of t = 10.667 sec., when 
the Oxygen bubble initially located at the center of the domain has gone through one complete 
revolution. The exact solution is, therefore, defined as the initial condition at t = 0 sec. 

Each column of Table 3 lists results for a constant CFL condition. The overall trend observed is 
a clear reduction of solution error as the grid is refined. Figure 6 is a graphical illustration of the 
data listed in the table, to which results obtained with other constant CFL conditions are added. 

The RMS errors plotted in Figure 6 can be examined in two ways. At constant CFL number, one 
can examine the effect of increasing the mesh resolution. (More highly resolved calculations are 
towards the right.) At constant grid, one can examine the effect of decreasing the CFL condition, 
which translated into more temporal resolution as CFL  0. In both cases, refining the model 
increases the computational demand but it also provides greater numerical accuracy. 

In Figure 6 the RMS error is plotted on a linear scale, which is not conducive to estimating the 
order of accuracy, or rate at which the solution error is reduced. Analyzing results obtained with 
constant CFL values may also run the risk of compounding the effects of spatial and temporal 
resolutions in the calculation. This is because both mesh size ∆x and sampling period ∆t must 
be adjusted in order to keep the CFL number constant. With two parameters (∆x; ∆t) varying 

                                                 
1 The terminology “spatial aliasing” is used, here, in a broad sense; it is in analogy to the temporal aliasing 
of a waveform. In the discipline of signal processing, a high-frequency component at frequency fK cannot 
be represented by sampling the signal at frequency ∆f if fK exceeds the Nyquist frequency. The Nyquist 
frequency is defined as fN = 2∆f. If the condition fK ≤ fN is violated, then the high-frequency component 
generates aliasing. It manifests itself by “folding” the high-frequency waveform over in the DC-to-fN Hertz 
range and adding the appearance of a low-frequency component that, actually, does not exist. Because 
the temporal and spatial resolutions are related through the CFL condition, an upper limit “fK ≤ fNyquist” in 
frequency translates to a lower limit “∆x ≥ ωMax ∆tN / CFL” in space. One uses equation (10) to translate 
one condition into the other one, together with the frequency-to-time conversion of ∆tN = 1/fN. 
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Table 6 quantifies the rates-of-convergence in time by applying the procedure of section 3.5 that 
requires data from only two runs. The accuracy is sub-optimal, as expected, when the runs used 
in the analysis violate the CFL stability condition. This is the case, for example, on the first row 
of the table where the solutions obtained with 200.0 and 100.0 milli-sec. are used. The results 
tabulated indicate that the convergence rates then stabilize at exactly first-order accuracy before 
improving somewhat when the runs are performed with very small time sampling. For reference, 
analyzing the advection problem with a sampling period of ∆t = 0.78125 milli-sec. corresponds 
to a stability condition of CFL = 0.067. 

Figure 11 is a counterpart to Figure 8 where a global model ||yExact – y(∆t)||2 = β ∆tp is best-fitted 
to the solution errors obtained for the 4th-order Runge-Kutta time integration scheme, which is 
the right-most column in Table 5. It gives an overall rate-of-convergence of p = 0.95 without 
having to rely on the procedure outlined in section 3.5. The other integration methods (RK-1 and 
RK-3) behave similarly. 

The fact that the formal order of accuracy in time is not recovered for the higher-order methods 
may be due to the stability demand of the CFL condition. This makes it difficult to “isolate” the 
truncation effects due to temporal discretization from those due to spatial discretization. Based 
on the observations made here, the time convergence study is not replicated with the other test 
problems. The sub-optimal performance of time integration remains, at this point, unexplained 
and is a potential area of re-investigation. 
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As discussed previously for the other test problems, the analytical solution is re-generated for 
each mesh size. This is important to enforce the comparison of exact and discrete solutions 
defined in the same mathematical space. The view shown in Figure 13 is of the diffusion 
transition region comprised between coordinates 0 m ≤ z ≤ 64 m. It is clear from this “viewgraph 
norm” that, as the mesh is refined, the simulation is more capable of replicating the closed-form 
solution. Equally important is the fact that the solution symmetry is preserved. 

The RMS norms of zone-to-zone differences between the exact and discrete solutions are given 
in Table 7. Two cases are analyzed. The first case applies to solution differences defined over 
the entire computational domain, which is the cube of size 0 m ≤ LX, LY, LZ ≤ 64 m. The second 
case applies to an interior region defined by the cube of size 16 m ≤ LX, LY, LZ ≤ 48 m. In other 
words, the second case is an analysis of a sub-region distant of 16 m from the edges of the 
domain. The inner cube is evaluated to assess if the treatment of the boundary condition affects 
the solution error and observed order of accuracy. 

Table 7. RMS errors of Oxygen density concentrations for the diffusion problem. 

Mesh Used Mesh Size 
RMS Errors (x 10–3 kg/m3) 

in the Inner Cube 
RMS Errors (x 10–3 kg/m3) 

in the Entire Domain 

Coarse (C) ∆x = 4 m 9.01 39.06 

Medium (M) ∆x = 2 m 2.24 19.79 

Fine (F) ∆x = 1 m 0.56 9.97 

Extra Fine (XF) ∆x = ½ m 0.14 4.99 

The RMS errors of solution differences defined over the entire domain are listed in the second 
column of Table 7. Those of the interior cube are given in the third, and right-most, column. In 
both cases, the exact and discrete solutions are taken at t = 240 sec. The solution errors clearly 
indicate the influence of the boundary condition. Including zones located near the edges of the 
domain significantly increases the overall error. 

In a relative sense, however, these differences between the exact and discrete solutions only 
represent small percentages of the overall solution magnitude. For example, the worst-case 
error reported in Table 7 for the entire domain, that is, ε(∆xC) = 39.06 10–3 kg/m3 obtained with 
the coarse-size grid, gives 15% error. The best-case of ε(∆xXF) = 4.99 10–3 kg/m3 obtained with 
the extra fine-size grid translates to 2% error. These low levels of error, relative to the solution 
magnitude, indicate that HIGRAD solves the linear diffusion equation in a satisfactory manner. 

Figure 14 is a companion to Table 9 that illustrates graphically the behavior of solution error as 
a function of mesh size, and for different conditions of CFL and time step controls. The figure on 
the left plots the solution error ε(∆x) versus mesh size ∆x for different CFL conditions. The figure 
on the right plots the solution error for different time steps. (The time sampling frequency is kept 
constant in all these simulations.) It can be observed that, in both cases, running the calculation 
at a different condition of CFL stability or time step controls has no effect on the error generated 
by the code. This is true whether the analysis is applied to the entire domain or restricted to the 
inner cube and away from the boundary condition. 

The log-log scale used on the right side of Figure 14 makes it easy to observe the convergence 
of the numerical method. Here, using the discrete solutions defined over the entire domain leads 
to first-order accuracy, approximately. Restricting the solutions to the inner cube region yields 
an unambiguous second-order convergence. The linear diffusion analyzed in this test problem is 
represented by a Laplacian operator, which produces “smooth” and well-behaved solutions. The 
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Table 9. RMS errors of density for the Noh-like problem. 

Mesh Used Mesh Size Number of Zones, NX RMS Errors (x 10–3 kg/m3) 

Coarse (C) ∆x = 1 mm 100 15.44 

Medium (M) ∆x = 0.5 mm 200 12.61 

Fine (F) ∆x = 0.25 mm 400 8.45 

Extra Fine (XF) ∆x = 0.125 mm 800 4.96 

Table 10 gives the parameters (p; β) of the model of truncation error ||yExact – y(∆x)||2 = β ∆xp. 
The model is best-fitted to the four RMS errors listed in Table 9. β represents the regression 
pre-factor and p is the observed rate-of-convergence. The analysis of mesh refinement results 
suggests a sub-optimal convergence because p = 0.55 is observed while a 1st-order accuracy is 
expected, in theory, for the approximation of a discontinuous solution by the numerical method. 
The observation of a lower than expected accuracy would normally raise concern about the 
quality of the implementation or, worst, suggest the presence of a programming mistake. This is, 
however, not the case here for the following reasons. 

Table 10. Parameters of the global model ||yExact – y(∆x)||2 = β ∆xp of solution error. 

Rate-of-convergence Pre-factor Coefficient 

p = 0.55 β = 0.321 kg/m3 

First, it is emphasized that the Noh problem is a challenging test for hydrodynamics solvers, 
whether the conservation laws are formulated in “moving” (Lagrangian) or “stationary” (Eulerian) 
frames-of-reference. It is common to get rates-of-convergence within ½ ≤ p ≤ ¾ when analyzing 
this problem. The accuracy estimated in Table 10 matches what is often observed. Second, it is 
noted that the HIGRAD solver is not constructed to simulate compressible flows that may 
develop shocks and other types of discontinuities. This is apparent from the occurrence of 
Gibbs oscillations in Figure 17, a well-understood phenomenon that a shock-capturing method 
would attempt to suppress with the addition of various forms of artificial viscosity. The presence 
of these spurious waveforms is undeniably detrimental to the numerical accuracy that we are 
attempting to estimate in Table 10 using a global model of truncation error. 

To further investigate the accuracy of the HIGRAD solver when applied to the Noh problem, the 
functional data analysis of Reference [19] is used next. This technique is capable of analyzing 
the self-convergence of entire fields, such as the density profiles of Figure 17, in the sense of 
the L2 norm. It also offers the advantage of decomposing the discrete solutions on a truncated 
basis of empirical “modes.” The orthogonal decomposition makes it possible to analyze the self-
convergence mode-by-mode, which greatly simplifies the derivations. It also provides a way to 
filter out undesirable waveforms that may “pollute” the solutions or be the manifestation of 
unstable contributions, such as the Gibbs oscillations of the Noh problem. For completeness, 
the main steps of the procedure are briefly described next. It is shown that, when this analysis 
technique is applied, a nearly 2nd-order accuracy is recovered for most of the density solution. 
The results suggest that the HIGRAD solver handles well the simulation of a discontinuous flow. 

The functional analysis of self-convergence starts by collecting the discrete solutions in a single 
data matrix denoted by the symbol Y below. The discrete solutions are the profiles of density 
obtained by running the Noh problem with different levels of mesh resolution. The data matrix Y 
collects ND rows (number of sample points) and m columns (number of computer runs) as: 
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vectors are dimensionless and shown without accounting for their respective importance, which 
is measured by the corresponding singular values σk. Figure 19 indicates that, as expected, the 
first SVD mode captures the undisturbed and post-shock regions of the flow. As the order of the 
decomposition increases, the subsequent modes attempt to capture finer-resolution details. The 
second mode matters most at the location of the discontinuity, without attempting to represent 
the Gibbs oscillations away from the shock front. Modes 3 and 4 represent finer-scale details of 
the post-shock oscillations. Understanding the nature of these various modes matters because 
it provide insight into the convergence behavior of the discrete solutions. 

The orthogonal vectors (U1; U2; U3; U4) form a basis of the sub-space defined by the columns of 
matrix Y. They can be used to express any discrete solution such as: 

   



1...mk

kk  UΔxη    Δxy , (28)

where the scalar value ηk(∆x) denotes the general coordinate defined by projecting the solution 
y(∆x) in the direction of the kth left singular vector Uk (with an inner product notation below): 

   Δxy   U  Δxη T
kk  . (29)

Alternatively, it can be verified the generalized coordinates can be calculated simply as: 

   ΔxV σ    Δxη kkk  . (30)

Because the generalized coordinate ηk(∆x) is a function of grid resolution, for each mode of the 
decomposition, self-convergence can be studied in a manner similar to the application of mesh 
refinement to any scalar response of the code. This is convenient because the analysis can be 
performed independently from one mode to the next. Results hence obtained are summarized in 
Table 12. Four models of truncation error, |ηk

Reference – ηk(∆x)| = βk ∆xp
k, are best-fitted to the 

generalized coordinates. The main difference with similar analyses performed previously is that 
the triplet of unknowns (ηk

Reference; βk ; pk) now depends on the principal component mode. 

Table 12. Solution convergence of generalized coordinates of the decomposition. 

Mode Rate-of-convergence Regression Pre-factor Extrapolated Solution 

1 p1 = 1.55 β1 = 238.129 kg/m3 η1
Reference = -10.092 kg/m3

2 p2 = 1.93 β2 = 90,216.10 kg/m3 η2
Reference = 32.496 10–3 kg/m3

3 p3 = -1.27 β3 = 2.619 10–6 kg/m3 η3
Reference = -20.183 10–3 kg/m3

4 p4 = -0.98 β4 = 4.955 10–6 kg/m3 η4
Reference = 0.146 10–3 kg/m3

The first observation from Table 12 is the better-than-first-order accuracy of the first and second 
modes of the decomposition. The second mode even indicates a second-order accuracy. The 
reason why the rate-of-convergence of the dominant mode is not closer to the theoretical value 
of p = 2 is likely because the undisturbed and post-shock regions are well captured by the four 
discrete solutions, even with the coarsest level of resolution. Their projections in the direction of 
mode U1, therefore, are very similar. The authors have observed this phenomenon in other 
studies: analyzing nearly identical generalized coordinates ηk(∆x) deteriorates the convergence 
below expectation. What is essential is that the first two modes of the decomposition indicate 
better-than-first-order accuracy, as opposed to Table 10 where the “conventional” analysis of L2 
norm of solution error seems to suggest sub-optimal accuracy. 



 

The seco
scale de
rates-of-c
in the sim
behavior 
therefore
because 

Recalling
data ana
matches 
observed
several z
accuracy
on the re

F

Finally, th
data ana
latter pro
The extra
of Table 
agreeme
shock co
final step

 

 

ond observa
tails of post
convergence
mulation. Co
leaves no d

e, not expect
the theory o

g that the tw
alysis provid

expectation
d because th
zones, which
y to first-orde
esults of Tab

igure 20. Co

he exact and
alysis assess
ovides an ind
apolated sol
12. The rec

ent for featur
ondition. The
p verifies the

ation from Ta
t-shock osci
e; it means t
ombining the
doubt that th
ted to conve
of asymptotic

wo stable mo
es strong ev

n for this var
he re-sampli
h mitigates t
er. The pres
ble 10, can b

omparison 

d extrapolat
ses self-conv
dependent p
ution is obta

construction 
res of the flo
e RMS error
e ability of the

 

able 12 is th
llations, are
that the solu
e visual illus
hese compo
erge. Ignorin
c convergen

odes accoun
vidence tha
riant of the 
ng algorithm
he sharp dis
ence of a pr
e ruled out.

of exact an

ed solutions
vergence wi

piece of info
ained from e

is limited to
ow such as 
r between th
e HIGRAD c

39 

hat the third
actually un

ution error gr
stration of Fi
onents are in
g these uns

nce applies o

nt for over 99
t the numer
Noh problem

m illustrated 
scontinuity th
rogramming 

nd extrapola

s are compa
ithout requir
rmation that

equation (28
o the stable 

the location
hese two de
code to accu

d and fourth 
nstable. This
rows as the 
igure 19 wit
ntroduced by
stable compo
only to stable

9.997% of th
rical perform
m. The near
in Figure 18
hat would ot
mistake, tha

ated solutio

red in Figur
ring knowled
t can be use
) and using 
modes. Fig

n of the disc
ensity solutio
urately self-c

modes, whi
s is clear fro

level of res
th the analys
y the Gibbs 
onents is the
e solutions. 

he informatio
mance of the
rly second-o

8 “smoothens
therwise red
at could be s

ons for the d

re 20. Becau
dge of the ex
ed to verify t
the extrapol

gure 20 pictu
continuity an
ons is 6.0 x 
converge the

ich capture 
om their neg
olution incre
sis of asym
oscillations

e right thing 

on, the funct
e HIGRAD s
order accura
s” the shock
duce any ord
suspected b

 

density field

use the funct
xact solution
the extrapola
lated coordin
ures an exce
nd average 
10–3 kg/m3.

e solutions.

finer-
gative 
eases 
ptotic 

s and, 
to do 

tional 
solver 
acy is 
k over 
der of 
based 

d. 

tional 
n, the 
ation. 
nates 
ellent 
post-
 This 



40 

 

8. Conclusion 

This report provides documentation of verification activities deployed on the HIGRAD code 
of computational fluid dynamics used to model atmospheric hydrodynamics and flow conditions. 
Highly accurate, analytical solutions are derived for four verification test problems that exercise 
different aspects of the code: (i) quiet start, (ii) passive advection, (iii) passive diffusion, and (iv) 
a Noh-like problem of compressible flow. The analytical solutions provide “references” useful to, 
first, verify the lack of obvious programming mistake and, second, quantify the overall accuracy 
of numerical solutions. In some cases, temporal or spatial refinement studies are carried out to 
assess the numerical performance of algorithms implemented in HIGRAD by comparing the 
observed rates-of-convergence to their theoretical counterparts. The quantitative nature of these 
verification activities is an asset to establish the “pedigree” and, hence, credibility of the code. 

The reference solutions for the first two test problems are inferred from basic physics principles. 
The quiet start problem behaves as expected, without introducing any error in the solution. The 
passive advection problem indicates nearly second-order accuracy. The observation of steady, 
monotonic convergence suggests that the solver is properly implemented for this problem. Not 
matching exactly the theoretical order of accuracy could be due to the treatment of the boundary 
condition where discretization of the gradient operator may only be first-order accurate. It does 
not, in our view, “fail” the verification exercise. The most significant implication of a sub-optimal 
accuracy is the tendency to increase the numerical uncertainty due to truncation effects. 

A time convergence study is also performed using the passive advection problem. It provides 
inconclusive results about the behavior of the time-differencing schemes because the three 
Runge-Kutta methods tested indicate first-order accuracy. A confounding factor of these studies 
may be the CFL-based, stability condition that makes it difficult to “isolate” the truncation effects 
due to temporal discretization from those of spatial discretization. It is recommended to further 
investigate the time-differencing schemes implemented in HIGRAD to resolve the inconsistency. 

The analytical solution for the passive diffusion problem is derived using Fick’s second law. The 
linear diffusion of this problem is modeled by a Laplacian operator that produces “smooth” and 
well-behaved solutions, leading to the expectation of second-order accuracy. The convergence 
rates estimated from several spatial refinement studies are consistent and insensitive to settings 
of the stability condition and time step control. However, they indicate only first-order accuracy. 
There is strong evidence that the numerical treatment of the boundary condition deteriorates the 
accuracy because the second-order behavior is recovered when zones located near the edges 
of the domain are excluded from the analysis. The diffusion problem shows that significant error 
is generated near the boundary. It is suggested to perform follow-up studies to better quantify 
this effect with other test problems and diagnose its source in the discretization of the Laplacian 
operator and/or numerical treatment of the boundary condition. 

Lastly, the HIGRAD code is assessed with a problem whose initial conditions closely mimic the 
well-known Noh problem commonly used to verify the capability of hydrodynamics methods to 
handle shocks and discontinuities. Due to the inability to exactly impose the boundary condition 
needed for the Noh test problem, an adjusted analytical solution is derived. The problem is used 
to assess the ability of the solver to, first, capture the Rankine-Hugoniot “jump” conditions and, 
second, convert kinetic energy into internal energy. It is noted that, because the HIGRAD code 
does not implement any model of artificial viscosity, it is not expected to do “well.” This test is 
nevertheless instructive to observe how the code behaves outside of its regime of applicability. 

Despite algorithmic limitations, the HIGRAD solver is capable of predicting features of the flow, 
such as the velocity of the discontinuity, its location, and overall post-shock state, with accuracy. 
The lack of dissipation yields “spurious” oscillations that are analogous to Gibbs’ phenomenon, 
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which is expected. Analyzing the behavior of these numerical solutions leads to a convergence 
rate of p = ½, approximately, under the conditions of uniform spatial refinement. Not recovering 
the first-order accuracy is not, however, a deficiency of the code as briefly summarized below. 

A functional data analysis is applied to the solutions of the Noh-like problem. It decomposes the 
solutions into empirical modes and exploits their orthogonality property to analyze the behavior 
of truncation error mode-by-mode. The procedure indicates that the convergence of numerical 
solutions projected on the first two modes, which represents over 99.997% of the information, is 
nearly second-order accurate. The analysis also suggests that the other modes, while they 
represent less than 0.003% of the information, are unstable because they attempt to capture the 
Gibbs oscillations. In conclusion, the functional data analysis indicates that HIGRAD behaves as 
expected when simulating compressible flows that may develop an evolving discontinuity. 

The code verification activities performed herein are an encouraging step towards establishing 
the “pedigree” and, therefore, credibility of the HIGRAD code. No major flow is diagnosed. This 
conclusion comes with the important caveat that the verification problems analyzed only provide 
a partial level of coverage of the overall capabilities, and potential applications, of HIGRAD. Test 
problems capable of exercising other aspects of the code that are not evaluated herein, such as 
thermal effects, should be investigated. 

In conclusion, it is recommended that the time-differencing schemes implemented be studied to 
better understand why their accuracy seems to be limited to first-order. Assessing the numerical 
treatment of the boundary condition, and potential interaction with the discretization of operators 
such as the gradient and Laplacian, should also be considered for further investigation. For the 
simulation of flow conditions around wind turbines, future efforts should consider the WindBlade 
code. In particular, the coupling between the HIGRAD and NLBeam codes should be examined. 
Finally, it is suggested that these verification activities be systematically captured by the code 
development team in a regression suite. Once a test problem is developed and analyzed, it is 
relatively easy to script it to progressively build a regression suite that can be analyzed in a daily 
or weekly basis. Doing so is essential to provide evidence that the models and algorithms 
perform according to expectation as new versions are developed and released. 
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Appendix A: Derivation of the Analytical Solution 
for the Passive Scalar Diffusion Test Problem 

Physically, diffusion describes the process by which particles spread from regions of higher 
to lower concentrations. The diffusion phenomenon simulated numerically in the test problem 
involves defining an essential boundary condition at the top and bottom of the domain, where 
the coordinates are z = 0 m and z = 64 m, respectively. Side edges of the rectangular domain 
are defined with a natural boundary condition, that is, a boundary where the time rate of change 
of the Oxygen concentration is zero. 

Table A-1 defines the variables and coefficients involved in the derivation of the exact solution. 
The table also proposes a set of units. The units can be changed to another set, as long as it 
remains internally consistent. 

Table A-1. Variables and coefficients needed to define the diffusion test problem. 

Symbol Physical Meaning Physical Units 

q Oxygen concentration kg/m3 

κ Diffusivity constant no unit 

(x; y; z) Spatial coordinates meter (m) 

t Time second (s) 

q∞ Oxygen concentration diffused kg/m3 

Q Initial Oxygen concentration kg/m3 

Lx, Ly, Lz Length of domain meter (m) 

In Cartesian three dimensions (x; y; z), Fick’s second law of diffusivity can be used to predict 
how the concentration changes with time: 

   tzyxqqqqqq zzyyxxt ,,,;  0 (A-1)

where q is the Oxygen concentration, t is the time, κ is the diffusivity constant, and (x; y; z) are 
the dimensions of length in each direction. The subscript t indicates the first partial derivative 
with respect to time and subscripts xx, yy, and zz indicates second partial derivatives taken with 
respect to the given variables. The initial condition is defined in equation (A-2): 

qx 0, y , z, t   qx Lx , y , z, t   0  
qy x ,0, z, t   qy x , Ly , z, t  0

 
     qtLyxqtyxq zz ,,,,,,, 00  

q x, y,z,0   Q x, y,z 

(A-2)

Here, the lengths of the domain in the x, y, and z directions are denoted as Lx, Ly, and Lz, 
respectively. The symbol Q represents the initial Oxygen concentration in the domain, and q∞ is 
the Oxygen concentration being diffused into the domain. The initial condition of equation (A-2) 
specifies an Oxygen concentration diffused in the z direction only, and at the top of the domain. 

The problem is reduced to a one-dimensional equation in the z direction. This equation does not 
depend on the x and y coordinates because of the use of a natural boundary condition: 

   tzqqqq zzt ,;  0 (A-3)
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with the following initial condition: 

  0,0 tq z        qtLq z ,       zQzq 0, (A-4)

To solve the system of equations (A-3) and (A-4), the following transformation is made to obtain 
homogenous boundary conditions: 

 tzqq ,;    (A-5)

This substitution yields the following equations, in which all right-hand sides are equal to zero: 

  0 zzt   
  0,0 tz ,      0, tL z  

(A-6)

Next, the separation of space and time variables (z; t) is invoked to obtain a separable solution: 

     tTzZtz , (A-7)

Substituting the decomposition (A-7) into equations (A-5) and (A-6) leads to the four equations: 










Z

Z

T

T

 
Z 0   0 ,    Z Lz  0 ,    T 0   0  

(A-8)

Variables in equation (A-8) can be further separated such that two distinct ordinary differential 
equations are formulated, as shown in equation (A-9): 







T

T

         



Z

Z
(A-9)

where: 

2
z  (A-10)

First, consider the ordinary differential equation for Z using the transformed initial condition: 

02  ZZ z  
    00  zLZZ

(A-11)

which has the solution: 

    ,3,2,1;
2

12
;cos 


 l

L

l
zAZ

z
l

 (A-12)

Second, consider the ordinary differential equation for T using the transformed initial condition: 

T  T  0 
T 0   0 (A-13)

which has the solution: 

 tET ll  exp . (A-14)

Next, expressions (A-7), (A-12), and (A-14) are substituted in equation (A-5) to yield a solution 
for the Oxygen concentration q expressed as an infinite series expansion: 
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. (A-15)

The orthogonality of Fourier series is used to define and calculate the coefficients Al: 

    
zL

z
l dzzqQ

L
A

0

cos
2  (A-16)

which leads to: 

(A-17)

Equation (A-17) can be written in a more compact form as: 

. (A-18)

The final step is to substitute the coefficient Al of equation (A-18) in the solution (A-15). The 
exact solution can be used to calculate the Oxygen concentration at any time t > 0: 

. (A-19)

 

  

q  q  Al e
 lt cos z 

l1





 
 

 






 




 

2

12
sin

12

4 


l

l

qQ
Al

Al 
4 Q q 

2l 1 
1 l1

q  q 
4 Q q 

2l 1 
1 l1 

l1



 e lt cos
2l 1  z

2Lz










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B-1 The Rankine-Hugoniot “Jump” Conditions in 1D, Cartesian Geometry 

The exact solution derived next is based solely on the “jump” conditions, without consideration 
for the initial and boundary conditions. It implies that, depending on how these conditions are 
implemented, the exact solution may not be valid near the edges of the computational domain. 
Likewise the solution presented next does not apply when the shock reaches, and bounces off, 
the opposite boundary. The derivation of the exact solution is presented next. 

The partial differential equations solved by the CFD solver express conservation laws that can 
be written in a generic sense as: 

q(x;t)

t
F(q)  S(x;t) (B-1)

where the symbol q denotes a single, or multiple, state variables. The functions F() and S() 
are the flux and source terms, respectively. Equation (B-1) expresses that the rate-of-change in 
time of quantity q is in equilibrium with the spatial gradient of the flux, modulo any amount that 
the source term adds or takes away. We seek a simplified test problem in one-dimensional (1D), 
Cartesian geometry. Equation (B-1) can, accordingly, be reduced to: 

q

t
 F(q)

x
 0 (B-2)

where the source term is defined as S(x;t) = 0 for simplicity. Equation (B-2) is further specialized 
to fluid dynamics next. 

In the remainder, we consider an ideal gas that operates under adiabatic conditions. The fluid is 
assumed inviscid, meaning that the effects of viscosity are negligible. In 1D Cartesian geometry, 
this fluid can be described by a system of conservation laws known as the Euler equations: 


t


  U 
x

 0

  U 
t


  U 2 P 

x
 0

  E 
t


U   E P 

x
 0
















(B-3)

where the symbols ρ, P, U, and E denote the fluid density, pressure, velocity, and specific total 
energy, respectively. From top to bottom, equation (B-3) expresses the conservation of mass (or 
continuity equation), momentum, and total energy. Total and internal energies are related by: 

E   1

2
U 2 (B-4)

Combining equations (B-3) and (B-4) indicates that the behavior of the fluid is described by four 
independent unknowns (ρ; P; U; ε) while there are only three conservation laws. Closure of this 
system of partial differential equations is provided by the equation-of-state (EOS) that relates 
the density and internal energy states to the pressure state or, conversely, density and pressure 
to internal energy. In this work, a polytropic EOS described by the following law is assumed: 

P   1     (B-5)
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where the symbol γ denotes the adiabatic index (or adiabatic exponent), defined as the ratio of 
specific heat capacities, or γ = CP/CV. The index γ is a material property of the fluid. The state 
variables and other coefficients defined in equations (B-3) to (B-5) are summarized in Table B-2, 
together a consistent set of physical units. 

Table B-2. Variables and coefficients needed to define the Noh-like test problem. 

Symbol Physical Meaning Physical Units 

ρ Mass density kg/m3 

P Pressure Pa  (Pa = N/m2 = kg m–1 s–2) 

U Flow/fluid velocity m/s 

ε Specific internal energy J/kg (J = Pa m3 = kg m2 s–2) 

E Specific total energy J/kg 

x Spatial coordinate meter (m) 

t Time second (s) 

γ Adiabatic exponent no unit 

CP, CV Specific heat capacities J kg–1 oK–1 

Figure B-2 defines the condition of the fluid assumed to formulate the Noh-like test problem. An 
infinitely strong discontinuity, identified by the subscript ()D, separates two different states. By 
analogy with Figure B-1, the discontinuity moves from right to left at the velocity VD. Fluid 
located to the left (or “in front”) of the discontinuity is in the undisturbed region that has not yet 
“seen” the discontinuity. Fluid located to the right (or “behind”) of the discontinuity is in the post-
shock region where motion stops due to the conversion of kinetic energy to internal energy. The 
undisturbed and post-shock regions are denoted by the subscripts ()1 and ()2, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B-2. Undisturbed and post-shock states separated by a discontinuity. 

Table B-3 lists the variables defined in Figure B-2 for the undisturbed and post-shock states. 
The “downstream” state (ρ1; P1; U1; ε1) is known because, by definition, the undisturbed region 

Undisturbed State 

(ρ1; P1; U1; ε1) 

Post-shock State 

(ρ2; P2; U2; ε2) 

Coordinate, x 

State Variable, q 

Shock 
Velocity, VD 

Discontinuity 

Front 
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corresponds to the initial condition controlled by the analyst. The “upstream” state (ρ2; P2; U2; ε2) 
is unknown, together with the velocity VD at which the discontinuity travels. If a closure equation, 
such as the polytropic EOS of equation (B-5), is used to calculate the specific internal energy as 
a function of (ρ; P), then the unknowns reduce to the four variables (ρ2; P2; U2; VD). 

Table B-3. Variables and coefficients needed to define the Noh-like test problem. 

Symbol Physical Meaning Status 

ρ1 

P1 

U1 

ε1 

Undisturbed density 

Undisturbed pressure 

Undisturbed flow velocity 

Undisturbed specific internal energy 

Known 

Known 

Known (and positive) 

Known from the pair (ρ1; P1) 

ρ2 

P2 

U2 

ε2 

Post-shock density 

Post-shock pressure 

Post-shock flow velocity 

Post-shock specific internal energy 

Unknown 

Unknown 

Unknown 

Known from the pair (ρ2; P2) 

VD Velocity of the discontinuity Unknown (and negative) 

γ Adiabatic exponent Known 

It is further assumed below that the post-shock velocity is known, and equal to U2 = 0, because 
the variant of the Noh problem studied here is formulated such that kinetic energy (or motion) is 
converted to internal energy (or heat) through an entropy-producing discontinuity. It reduces the 
number of unknowns of the problem to the triplet (ρ2; P2; VD). 

To derive the “jump” conditions, the conservation laws (B-3) are integrated over a small volume 
of fluid that extends from one side of the discontinuity to the other side. Because the geometry 
is 1D Cartesian, the element of fluid is simply an interval denoted by Ω = [x1; x2]. Applied to the 
generic form (B-2) of a conservation law, this integration gives: 

q

t
dx

x1

x2  F(q)

x
dx

x1

x2  0 (B-6)

If the first integral converges, then it can be switched with the time derivative to provide: 


t

q dx
x1

x2  F(q)

x
dx

x1

x2  0 (B-7)

The first integral must be separated in two halves, from coordinate x = x1 to the left-side of the 
discontinuity, then, from the right-side of the discontinuity to coordinate x = x2: 


t

q dx  q dx
xD

()

x2x1

xD
()










F(q)

x
dx

x1

x2  0 (B-8)

Switching, once more, the integral and time derivative operators introduces the derivative of the 
location xD of the discontinuity: 

q

t
dx  q

t
dx

xD
()

x2x1

xD
()










 q1  q2   xD

t
 F(q)

x
dx

x1

x2  0
 

(B-9)

where q1 and q2 denote the constant-valued states in the immediate vicinity of the discontinuity: 
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q1  lim
xxD

()

xD
() x  x1

 q(x) q2  lim
xxD

()

x2 x  xD
()

q(x)
(B-10)

The final step is to let the element of fluid tend to the discontinuity by taking the limits x1  xD
(–) 

on the left-side and x2  xD
(+) on the right-side. Because the state variables are continuous on 

both sides of the discontinuity, the first parenthesis of equation (B-9) cancels out: 

lim
x1xD

()

xD
() x  x1

q

t
dx  0

x1

xD
()


     

lim
x2xD

()

xD
() x  x2

q

t
dx  0

xD
()

x2 (B-11)

The second and third terms of equation (A-9) reduce to: 

q1 q2   xD

t
 F(q) xx1

xx2  0 (B-12)

or: 

q1 q2   xD

t
 F(q2 )F(q1)   0 (B-13)

Because the velocity at which the discontinuity travels is defined as VD = dxD/dt, equation (B-13) 
leads to the “jump” condition across the discontinuity: 

VD 
F(q2 )F(q1)

q2  q1

(B-14)

Equation (B-14) can be applied to the system of Euler equations (B-3), which gives: 

VD  2  1   2U2  1U1 
VD  2U2  1U1   2U2

2 P2   1U1
2 P1 

VD  2E2  1E1  U2 2E2 P2  U1 1E1 P1 










(B-15)

The three “jump” conditions expressed in equation (B-15) are manipulated next to get a closed-
form solution defined in the immediate vicinity of the discontinuity and away from the boundary. 

B-2 The Closed-form Solution of the Noh-like Test Problem 

The procedure proposed to derive a closed-form, analytical solution solves the three equations 
(B-15) simultaneously. By definition of the test problem, the state variables (ρ1; P1; U1; ε1) of the 
undisturbed region are equal to the initial conditions. They are assumed known since the initial 
conditions are defined and controlled by the user. The system of equations (B-15) is left with the 
four unknown state variables (ρ2; P2; U2; ε2) of the post-shock region, together with the unknown 
velocity VD of the discontinuity. 

Because we are only seeking to verify the hydro-code with the ideal gas law of equation (B-5), 
the specific internal energy ε2 can be solved for once the density ρ2 and pressure P2 have been 
obtained. It reduces the unknowns of equations (B-15) to the quadruplet (ρ2; P2; U2; VD). Finally, 
it is assumed that the post-shock velocity is known. This is because the variant of the Noh test 
problem sought here verifies the ability of the code to convert kinetic energy into internal energy. 
If this process is represented with accuracy by the numerical solution, then motion should stop 
behind the discontinuity, which implies that U2 = 0. 
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The post-shock velocity U2 is assumed to be equal to zero, a condition that is verified easily by 
examining the velocity field of the numerical solution computed by the code. It is emphasized 
that this assumption should be verified independently from the closed-form solution presented. 
Jointly assuming that the EOS is provided a closed-form equation and the post-shock velocity is 
equal to zero reduces the unknowns to the triplet (ρ2; P2; VD). It means that (B-15) is a system of 
three equations with three unknowns. The remainder of this section derives the exact solution. 

Substituting the condition U2 = 0 in system (B-15) simplifies the equations: 

VD  2  1   1U1

1U1VD  P2 P1   1U1
2

VD  2E2  1E1   U1 1E1 P1 







 (B-16)

Note that the second of equations (B-16) can alternatively be written as: 

VD
2  2  1   P2 P1   1U1

2
(B-17)

by substituting the factor (–ρ1U1) in the left-hand side with the first of equations (B-16). To derive 
the exact solution, the strategy is to express the unknowns VD and P2 as a function of the post-
shock density ρ2. The “jump” condition of the total energy conservation law is then used to solve 
for the last remaining unknown ρ2. 

We start with the “jump” condition of the continuity equation that can be written as: 

VD  
1U1

2  1
(B-18)

Likewise the “jump” condition of the momentum conservation law can be written by re-arranging 
the terms of equation (B-17) where the unknown VD is substituted using equation (B-18): 

P2  P1 
12

2  1

U1
2

(B-19)

The third of equations (B-16) is the “jump” condition of the total energy conservation law, used 
next to obtain a closed-form solution for the post-shock density ρ2: 

VD  2E2  1E1   U1 1E1 P1  (B-20)

The expressions of VD and P2 in equations (B-18) and (B-19), respectively, are substituted in 
equation (B-20) to obtain a single equation that depends only on the unknown density ρ2: 

 1U1

2  1

 2 2 
U2

2

2
Zero

















 1E1
















 U1 1E1 P1  (B-21)

Simplifying the expression leads to: 

122  12E1  2  1 P1 (B-22)

Next, the ideal gas EOS is used to replace the specific internal energy: 

  222 1 P  (B-23)
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which, after substitution in equation (B-22), gives: 

 1 1P2  12E1  2  1 P1 (B-24)

Equation (B-19) is, once more, used to eliminate the post-shock pressure P2. It gives: 

 1 1 2  1 P1   1 1
22U1

2  2  1 12E1  2  1 2
P1 

(B-25)

Finally, the terms of equation (B-25) are rearranged to formulate a quadratic equation in ρ2: 

2
2 1E1 P1 

A
    2  1 1P1   1  1

2U1
2  1

2E1
 

B
  

1
2P1

C
  0

 

(B-26)

or: 

A2
2 B2 C  0 (B-27)

The two solutions of the quadratic equation are given by: 

2 
B B2  4AC

2A
(B-28)

given the triplet of coefficients (A; B; C) that can be simplified as: 

A    2 P1  1

U1
2

2

B  21P1    1

2







1

2U1
2

C 1
2P1















(B-29)

A simple test can be implemented to select the solution (B-28) that is positive and greater than 
the undisturbed density, that is, ρ2 ≥ ρ1. After having obtained the post-shock density, equation 
(B-18) is used to calculate the velocity VD of the discontinuity. Likewise equation (B-19) is used 
to calculate the post-shock pressure P2. Finally, the EOS (B-23) gives the internal energy. 

B-3 Discussion of the Noh-like Test Problem 

The procedure to calculate the exact solution is to evaluate, first, the triplet (A; B; C) of equation 
(B-29) knowing the initial condition (ρ1; P1; U1) and adiabatic exponent γ. Second, the quadratic 
equation is solved by evaluating expression (B-28). The admissible solution, that is, ρ2 ≥ ρ1, is 
selected. Because of the various assumption made, this closed-form solution is valid only for a 
“well-developed” discontinuity that is located away from the edges of the computational domain 
where boundary effects may introduce unwanted perturbations. The closed-form solution is valid 
only for a polytropic EOS. 

The Noh-like test problem is simulated numerically by defining a rectangular domain initialized 
with a constant velocity everywhere. The initial condition of the fluid (ρ1; P1; ε1) is also constant 
throughout the domain. The boundary towards which the velocity vector points is fixed (motion 
is not allowed) and non-diffusive (no fluid is transferred through the boundary). The opposite-
side boundary is fixed in the case of a Eulerian frame-of-reference. For a Lagrangian frame-of-
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reference that moves with the flow, the opposite-side boundary moves at the prescribed velocity 
U1 = constant. The EOS must be a polytropic gas law defined by the adiabatic exponent γ. 

A numerical application of equations (B-18), (B-19), (B-28) and (B-29) is presented in Table B-4. 
It shows that the discontinuity increases the entropy in the system by ∆ε = 36.35 Joules-per-kg. 

Table B-4. Numerical application of the Noh-like test problem. 

State Value Total Specific Energy 

 

Undisturbed 

Density, ρ1 = 1 kg/m3 

Pressure, P1 = 1 Pa 

Flow velocity, U1 = 10 m/s 

 

ρ1(ε1 + ½U1
2) = 50.40 J/kg 

 

Post-shock 

Density, ρ2 = 1.790 kg/m3 

Pressure, P2 = 227.545 Pa 

Flow velocity, U2 = 0 m/s 

 

ρ2(ε2 + ½U2
2) = 86.75 J/kg 

Discontinuity Velocity, VD = –12.654 m/s  Entropy produced: ∆ε = 36.35 J/kg 

(Legend: Numerical application with the adiabatic exponent γ = 1.4.) 

Because of the assumptions made in the derivations, the exact solution can be used only in the 
vicinity of the discontinuity. It implies that the comparison with a numerical solution computed by 
the code is justified only if the solution is defined “away” from the edges of the computational 
domain where the boundary condition, depending on how it is implemented, could violate some 
of the assumptions made. Finally, it is noticed that the coefficients (B-29) of the exact solution 
depend on a single free parameter, γ, other than the initial condition. It provides the analyst with 
the possibility of optimizing this free parameter to “cancel-out” any effect of a boundary condition 
that may not be exactly implemented as fixed and non-diffusive. 

 

(This report contains 54 pages total.) 


