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Abstract

A theoretical model is developed to explain the plasma rotations induced by lower hybrid waves

in Alcator C-Mod. In this model, torodial rotations are driven by the Lorentz force on the bulk-

electron flow across flux surfaces, which is a response of the plasma to the resonant-electron flow

across flux surfaces induced by the lower hybrid waves. The flow across flux surfaces of the resonant

electrons and the bulk electrons are coupled through the radial electric field initiated by the resonant

electrons, and the friction between ions and electrons transfers the toroidal momentum to ions

from electrons. An improved quasilinear theory with gyrophase dependent distribution function is

developed to calculate the perpendicular resonant-electron flow. Toroidal rotations are determined

using a set of fluid equations for bulk electrons and ions, which are solved numerically by a finite-

difference method. Numerical results agree well with the experimental observations in terms of

flow profile and amplitude. The model explains the strong correlation between torodial flow and

internal inductance observed experimentally, and predicts both counter-current and co-current

flows, depending on the perpendicular wave vectors of the lower hybrid waves.

PACS numbers: 52.30.-q, 52.30.Ex, 52.65.-y
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I. INTRODUCTION

Plasma in tokamaks with rotation has many advantages. Strong rotation can stabi-

lize magneto-hydrodynamic (MHD) instabilities [1, 2] and gradients of plasma rotation help

improve confinement by reducing turbulence [3, 4]. According to experiments in Alcator

C-Mod, significant changes of toroidal rotation speed have been observed after the launch

of lower hybird waves for driving current [5–7]. The changes of rotation speed are either in

counter-current or co-current direction. For plasmas with relatively high current densities,

e.g., 700kA/m2, rotation speed increases in counter-current direction after the launch of

lower hybrid waves, and for plasmas with relatively low current densities, e.g., 400kA/m2,

rotation speed increases in co-current direction after the launch of lower hybrid waves [6, 7].

Recently, different theoretical approaches have been adopted to explain plasma rotations

with no external momentum input. A theory based on the turbulent momentum transport

seems to be promising, in which it is believed that non-zero parallel Reynolds stress of tur-

bulence is the force that drives toroidal flow [8, 9]. Thermal-ion-loss at plasma edge is also

suggested to be the reason of plasma intrinsic rotation [10]. In this theory, thermal ions

moving in certain direction are easier to hit first wall than others, as a result extra momen-

tum is left in plasma. There are a few theories exclusively for toroidal rotations observed

during lower hybrid current driving (LHCD) [11, 12]. In these works, it is suggested that

Ware pinch of trapped electrons induced by lower hybrid waves is the major reason for the

spin-up. However, there is no conclusive theoretical explanation of the toroidal rotations

observed in Alcator C-Mod with LHCD, which is sensitive to the configuration of the lower

hybrid waves and closely associated with wave-driven toroidal current. In this paper, we

present a new theory to understand the rotations observed in Alcator C-Mod with LHCD.

In our theory, the driving force of rotation is proportional to the magnitude of the wave-

driven toroidal current and depends on the propagation of lower hybrid waves in plasma. In

addition, this theory has the potential to be applied to toroidal rotations observed in other

situations, e.g. plasmas with ICRF heating [13, 14].

The main idea of our theory is as follows. In the background magnetic field, lower hybrid

waves push resonant electrons to drift across flux surfaces. This drift brings charge build-up

in plasma and therefore formation of the radial electric field which drives bulk electrons to

flow across flux surfaces to counteract the charge accumulation. The Lorentz force on the
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bulk-electron flow is the momentum source which drives plasma to spin up. The momentum

is transferred to ions by friction between bulk electrons and ions.

Two key points distinguish our theory from previous studies of plasma rotation. First, we

believe that the Lorentz force brought by the bulk-electron flow across flux surfaces is the

momentum source which drives toroidal plasma rotation. In other theories, non-diffusive

residual stress of momentum transport [8] or thermal-ion-orbit loss near edge [10] are the

candidates to provide the momentum for toroidal plasma rotation. In addition, the bulk-

electron flow is a response of the plasma to the resonant-electron flow across flux surfaces

induced by lower hybrid waves. In previous theoretical studies [15, 16], effects of lower hybrid

waves are considered solely to be driving current and heating.

Here, we briefly describe the physical picture of our theory. As explained above, the

Lorentz force is the momentum source for toroidal plasma rotation in our model. If we use

the two-fluid model to describe the plasma, the toroidal components of momentum equations

are,

neme
∂uϕe
∂t

+ nemeue ·
∂uϕe
∂x

= −(∇ ·Πe)
ϕ + neqe(E

ϕ + ure ×Bθ) + fϕei , (1)

nimi
∂uϕi
∂t

+ nimiui ·
∂uϕi
∂x

= −(∇ ·Πi)
ϕ + niqi(E

ϕ + uri ×Bθ) + fϕie , (2)

where terms on the right-hand side of Eqs. (1) and (2) represent momentum transport, elec-

tric force, the Lorentz force, and friction respectively. The driving force of rotation is one

or multiple terms on the right-hand side of Eqs. (1) and (2). The Lorentz force in Eq. (1),

ure ×Bθ, can act on toroidal rotation of ions, uϕi , through friction. The bulk electron flow,

ure, is a response of the plasma to a resonant-electron flow across flux surfaces which builds

up charge hence the radial electric field. This resonant-electron flow is induced by the E×B

drift due to the perpendicular electric field of the lower hybrid waves. It is well-known that

the electric field of lower hybrid waves has parallel and perpendicular components. In the

studies of ion radial transport and ion heating, the effects of the perpendicular electric field

of the lower hybrid waves have been well addressed [17–20]. However, in the area of lower

hybrid current driving, the effects of the perpendicular electric field of the lower hybrid

waves have been largely ignored.

In Sec. II, we will use kinetic equations to derive a set of fluid equations to describe the
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toroidal plasma rotation induced by lower hybrid waves. The resonant-electron flow across

flux surfaces is an input parameter of the fluid equations that has to be calculated before we

can solve the equations. In Sec. III, we will use an improved quasilinear theory to study the

distribution function of resonant electrons during LHCD and to calculate magnitude and

direction of the resonant-electron flow across flux surfaces. By substituting the results of

Sec. III into the fluid equations in Sec. II, the set of fluid equations is completed. Using the

completed fluid equations, we will study toroidal plasma rotation induced by lower hybrid

waves in Sec. IV. Discussions are given in Sec. V.

II. FLUID EQUATIONS FOR LHCD INDUCED PLASMA ROTATION

In this section, we start from kinetic equations of ions and electrons to derive a set of

fluid equations to study the rotation of a two-component plasma during the launch of lower

hybrid waves. As discussd in the end of Sec. I, the resonant-electron flow across flux surfaces

is an input parameter of the fluid equations, which has to be calculated before we can solve

the fluid equations. Therefore, we divide the distribution function of electrons into that of

resonant electrons and bulk electrons. We will use the distribution functions of bulk electrons

and ions to derive the fuild equations and use the distribution function of resonant electrons

to calculate resonant-electron flow across flux surfaces. This approximation has been adopted

in previous study for RF current-drive theory [16, 21]. Bulk electrons, i.e., those with speed

v . vet, all experience about the same collisionality with collision rate proportional to v−3et .

Here vet is thermal electron speed. Resonant electrons are those with speed v ∼ vLH � vet,

where vLH is parallel phase velocity of the lower hybrid wave. Collision frequency of these

electrons will be (vet/vLH)3 smaller than that for bulk electrons. In practise, even a resonant

electron with vet/v ∼ vet/vLH ' 1/3 may be considered fast, hence relatively collisionless.

Therefore it is reasonable to separate resonant electrons from bulk electrons. By taking this

approximation, we can take moments of the kinetic equations of bulk electrons and ions to

derive the set of two-fluid equations.

Kinetic equations for ions and electrons are

∂fe
∂t

+ v · ∂fe
∂x

+
qe
me

(E + v ×B) · ∂fe
∂v

= C(fe, fe) + C(fe, fi) , (3)

4



∂fi
∂t

+ v · ∂fi
∂x

+
qi
mi

(E + v ×B) · ∂fi
∂v

= C(fi, fi) + C(fi, fe) , (4)

where C is collision operator. As discussed above, we divide fe into fe = fenr + fer with

the assumption that fenr � fer. Here, fenr and fer are distribution function of bulk (non-

resonant) electrons and resonant electrons. Substituting fe = fenr + fer into Eqs. (3) and (4)

and only keep dominant terms, we have kinetic equations for resonant electrons, bulk elec-

trons and ions,

∂fer
∂t

+ v · ∂fer
∂x

+
qe
me

(E + v ×B) · ∂fer
∂v

= C(fer, fenr) + C(fenr, fer) + C(fer, fi) , (5)

∂fenr
∂t

+ v · ∂fenr
∂x

+
qe
me

(E + v ×B) · ∂fenr
∂v

= C(fenr, fenr) + C(fenr, fi) , (6)

∂fi
∂t

+ v · ∂fi
∂x

+
qi
mi

(E + v ×B) · ∂fi
∂v

= C(fi, fi) + C(fi, fenr) . (7)

One can notice that the equations of bulk electrons and ions, Eqs (6) and (7), seem to be

decoupled from the equation of resonant electrons, Eq. (5). We will see later that the physics

of resonant electrons and bulk electrons will be coupled by electromagnetic field. We will

use Eq. (5) to calculate the resonant-electron flow across flux surfaces later in Sec. III. Now

we take moments of Eqs. (6) and (7) to derive the two-fluid equations for bulk electrons and

ions,

∂nenr
∂t

+
∂

∂x
· (nenruenr) = 0 , (8)

∂ni
∂t

+
∂

∂x
· (niui) = 0 , (9)

nenrme
∂uenr

∂t
+ nenrmeuenr ·

∂uenr

∂x
= −∇ ·Πenr −∇penr + qe(E0 + uenr ×B0) + fenr,i ,

(10)

nimi
∂ui

∂t
+ nimiui ·

∂ui

∂x
= −∇ ·Πi −∇pi + qi(E0 + ui ×B0) + fi,enr , (11)

∂penr

∂t
+ uenr ·

∂penr
∂x

= −γpenr∇ · uenr , (12)
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∂pi

∂t
+ ui ·

∂pi
∂x

= −γpi∇ · ui . (13)

Here nenr, ni,uenr,ui,Πenr,Πi, penr and pi are density, fluid velocity, viscosity and pressure

of bulk electrons and ions respectively.

It is important to notice that the two-fluid equations are for bulk electrons and ions.

Fast oscillating field of lower hybrid waves have no direct effects on bulk electrons and ions.

Therefore we have ignored the wave field and used the slow-changing background field E0

and B0 instead of the total field E and B in the equations. In addition, Eqs. (8)-(13) do not

include resonant electrons directly. Resonant electrons act on bulk electrons and ions through

electric field E0 and magnetic field B0. The current carried by resonant electrons changes

B0 and the charge built up by the resonant-electron flow across flux surfaces generates radial

component of E0. For this reason, we use Maxwell’s equations of the background fields E0

and B0 to couple the physics of fields and particles,

∇ · E0 =
qener + qenenr + qini

ε0
, (14)

∇× E0 = −∂B0

∂t
, (15)

∇×B0 − µ0ε0
∂E0

∂t
= µ0(qeneruer + qenenruenr + qiniui) . (16)

Here, ner and neruer denote resonant-electron density and flow. We can simplify the problem

by assuming that background magnetic field is constant in the fluid equations. Thus, we

can use Poisson’s equation alone instead of the complete set of Maxwell’s equations. The

simplification can be justified by the following arguments. In experiments with LHCD,

toroidal current is usually controlled by feedback system to be constant before and after

the launch of lower hybrid waves. As a result, magnetic field is relatively constant except

that the radial profile of poloidal magnetic field changes. Therefore taking the background

magnetic field as constant is a good approximation.

After assuming constant magnetic field, the set of fluid equations includes Eqs. (8)-

(13) and (14), and they can be further simplified. Since toroidal rotation is our goal, we

will start from the toroidal component of momentum equations,

nenrme
∂uϕenr
∂t

+ nenrmeuenr ·
∂uϕenr
∂x

= −(∇ ·Πenr)ϕ + qe(E
ϕ
0 + urenrB

θ
0) + fφenr,i , (17)
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nimi
∂uϕi
∂t

+ nimiui ·
∂uϕi
∂x

= −(∇ ·Πi)ϕ + qi(E
ϕ
0 + uriB

θ
0) + fφi,enr . (18)

We have neglected (∇penr)ϕ and (∇pi)ϕ in Eqs. (17) and (18) because of the toroidal sym-

metry of tokamak. Convective terms, which are second terms on the left-hand side of E-

qs. (17) and (18), are typically small and can be ignored [22, 23]. Toroidal electric field on the

right-hand side of Eqs. (17) and (18) is close to zero during LHCD according to experimental

observations [24]. We can also safely neglect uri because ions response much more slowly to

the radial electric field than electrons do. Viscosities of bulk electrons and ions, which are

the first terms on the right-hand side of Eqs. (17) and (18), can be written as [25, 26],

−(∇ ·Πenr)
ϕ = nenrme(χenr

∂2uϕenr
∂r2

+ venr
∂uϕenr
∂r

) , (19)

−(∇ ·Πi)
ϕ = nimi(χi

∂2uϕi
∂r2

+ vi
∂uϕi
∂r

) , (20)

where χenr, venr, χi and vi are momentum diffusivities and momentum-pinch velocities of

bulk electrons and ions. Friction between bulk electrons and ions, fφenr,i and fφi,enr, are defined

as

fφenr,i = −fφi,enr = nenrmeνenr,i(u
ϕ
enr − u

ϕ
i ) . (21)

Here νenr,i is collision rate of bulk electrons on ions. If we assume that the time scale for

the charge build-up to reach steady state is much faster than that for plasma rotation, the

following equation holds while uϕi evolves,

∂(qener + qenenr + qini)

∂t
= −∇ · (qeneruer + qenenruenr + qiniui) = 0 . (22)

Since it is the flow across flux surfaces that causes charge build-up, we can re-write Eq. (22)

as,

∂(qener + qenenr)

∂t
= −1

r

∂

∂r
r(qeneru

r
er + qenenru

r
enr) = 0 . (23)

Again, uri in Eq. (23) has been neglected. With the boundary condition urer(r = a) =
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urenr(r = a) = 0, where a is minor radius, Eq. (23) gives

nenru
r
enr = −nerurer . (24)

Combining all the simplifications and definitions above, we have the toroidal momentum

equations for bulk electrons and ions,

nenrme
∂uϕenr
∂t

= nenrme(χenr
∂2uϕenr
∂r2

+ venr
∂uϕenr
∂r

)− qenerurerBθ
0 − nenrmeνenr,i(u

ϕ
enr − u

ϕ
i ) ,

(25)

nimi
∂uϕi
∂t

= nimi(χi
∂2uϕi
∂r2

+ vi
∂uϕi
∂r

)− nenrmeνenr,i(u
ϕ
i − uϕenr) . (26)

If we take densities nenr and ni, momentum diffusivities χenr and χi, momentum-pinch

velocities venr and vi, resonant-electron flow across flux surfaces neru
r
er and collision frequency

νenr,i to be known quantities, we only have two unknown variables left, uϕenr and uϕi for two

equations, Eqs. (25) and (26). Therefore Eqs. (25) and (26) are complete and can be used

to study toroidal rotation. This method has been adopted previously to study toroidal

rotations [23]. The differences here are that we use toroidal momentum equations of both

bulk electrons and ions instead of just one for ions, and there is a driving force qeneru
r
erB

θ
0

in the equation of bulk electrons. The magnitude and direction of neru
r
er will be calculated

in the next section. Another important feature of Eqs. (25) and (26) is the symmetry with

respect to the signs of uϕenr, u
ϕ
i and urer. If (uϕenr, u

ϕ
i ) is a solution of Eqs. (25) and (26) for

a given resonant-electron flow across flux surfaces neru
r
er, it is not difficult to prove that

(−uϕenr,−u
ϕ
i ) is also a solution of the system if we change the sign of neru

r
er. Therefore, our

approach theoretically allows the existence of opposite toroidal rotations.

III. LOWER HYBRID WAVES INDUCED RESONANT-ELECTRON FLOW

ACROSS FLUX SURFACES

In this section we calculate the resonant-electron flow across flux surfaces neru
r
er. Lower

hybrid waves used in LHCD can not only drive toroidal current but also push resonant

electrons to form a flow across flux surfaces. However we cannot obtain this flow by following

the standard quasilinear analysis for velocity-space diffusion caused by lower hybrid waves.
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Here we discuss the reason using the calculations in Refs [15, 27] as examples. Following these

standard analysis, we calculate the velocity-space diffusion of resonant-electron distribution

function in cylindrical coordinates for velocity and wave-vector,

vx = v⊥ cosφ vy = v⊥ sinφ

kx = k⊥ cosψ ky = k⊥ sinψ ,
(27)

where φ is the angle between x axis and perpendicular velocity, and ψ is the angle between

x axis and perpendicular wave-vector. The background magnetic field B0 is chosen to be

in the z-direction. Flow across flux surfaces is the first moment of the φ-dependent part of

the distribution function as shown later in Eq.(58). But in Refs [15, 27], the distribution

function is averaged over the period [0, 2π] in φ. The averaged distribution function only

depends on parallel velocity vz and perpendicular velocities v⊥. By taking the first moment

of the averaged distribution function, no flow across flux surfaces can be derived.

In order to correctly calculate the resonant-electron flow across flux surfaces, we do not

average resonant-electron distribution function over φ. The distribution function of resonant

electrons is expanded into Fourier components of φ,

f =
+∞∑

n=−∞

fneinφ . (28)

The first moment of the first harmonics f±1e±iφ gives the resonant-electron flow across flux

surfaces neru
r
er. We will first carry out the calculation for general electromagnetic waves, then

the result is restricted to lower hybrid waves. Following quasilinear theory [15, 27], we split

the distribution function of resonant electrons fer into fluctuation and non-fluctuation parts

denoted by f̃er and fer,0, then substitute them into Eq. (5). The corresponding equations of

f̃er and fer,0 are,

∂f̃er
∂t

+ v · ∂f̃er
∂x

+
qe
me

(v ×B0) · ∂f̃er
∂v

= − qe
me

(Ẽ + v × B̃) · ∂fer,0
∂v

, (29)

∂fer,0
∂t

+
qe
me

(v ×B0) · ∂fer,0
∂v

=C(fer,0, fenr) + C(fenr, fer,0) + C(fer,0, fi)

+
∂

∂v
· [− qe

me

(Ẽ + v × B̃)f̃er] ,

(30)
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where B0, Ẽ and B̃ are static magnetic field, electric field and magnetic field of the elec-

tromagnetic waves. We have neglected static electric field in Eqs. (29) and (30) because

contributions of static magnetic field and waves are dominant. Collision terms in Eq. (29)

are dropped since the fluctuation part is mainly determined by waves and static magnetic

field. For simplicity, we have ignored the spatial gradient of fer,0 in Eq. (30) as well.

The last term on right-hand side of Eq. (30) is the velocity-space diffusion which represents

the effect of waves on electrons. We will solve Eq. (29) for f̃er through Fourier transform,

then substitute it into the term of velocity-space diffusion to solve Eq. (30) for fer,0. Fourier

transforms of f̃er, Ẽ, and B̃ are,

f̃er =

∫ ∞
∞

d3k

(2π)3
f̃erke

i(k·r−ωkt) , (31)

Ẽ =

∫ ∞
∞

d3q

(2π)3
Ẽqe

i(q·r−ωqt) , (32)

B̃ =

∫ ∞
∞

d3q

(2π)3
B̃qe

i(q·r−ωqt) . (33)

It is convenient to use rotating coordinates for the wave field components in the form

Ẽ± = Ẽx ± iẼy

B̃± = B̃x ± iB̃y .
(34)

Using these expressions, we can write the Fourier-transformed Eq. (29) and (30) as

−iωkf̃er,k + i[kzvz + k⊥v⊥ cos(φ− ψ)]f̃er,k − ωce
∂f̃er,k
∂φ

= − qe
me

(Ẽk + v × B̃k) · ∂fer,0
∂v

, (35)

∂fer,0
∂t

+
qe
me

(v ×B0) · ∂fer,0
∂v

= C(fer,0, fenr) + C(fenr, fer,0) + C(fer,0, fi)

+
∂

∂v
·
∫
k

d3k

(2π)3
[− qe
me

(Ẽ−k + v × B̃−k)f̃er,k] .

(36)
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Equation (35) is a first-order differential equation in φ, the solution of which is

f̃er,k =
+∞∑

m,n=−∞

Jm(
k⊥v⊥
ωk

)Jn(
k⊥v⊥
ωk

) exp[i(n−m)ψ](− qs
ms

)[

i

ωk − (n− 1)ωce − kzvz
exp[i(m− n+ 1)ϕ]

2
(E−k Ĝ+

k +
k⊥E

z
k

ωk

e−iψĤ+)

i

ωk − (n+ 1)ωce − kzvz
exp[i(m− n− 1)ϕ]

2
(E+

k Ĝ−k +
k⊥E

z
k

ωk

e+iψĤ−)

ik⊥
2ωk

(E+
k e
−iψ − E−k e

+iψ)v⊥êφ +
i

ωk − nωce − kzvz
exp[i(m− n)ϕ]Ez

kêvz ] ·
∂fer,0
∂v

,

(37)

where Jn denotes nth order Bessel function of the first kind and

Ĝ±k ≡ êv⊥ ± iêφ −
kz
ωk

Ĥ±,

Ĥ± ≡ vzêv⊥ − v⊥êvz ± ivzêφ.
(38)

Following our procedure discussed above, we will substitute the solution f̃er,k into the term

of velocity-space diffusion in Eq.(36) to solve for fer,0. As mentioned after Eq. (28), we only

need the first harmonics of the fourier-transformed fer,0 to calculate the resonant-electron

flow across flux surfaces. Hence, we keep equations for the zeroth and the first harmonics,

f 0
er,0 and f±1er,0,

∂f 0
er,0

∂t
=C(f 0

er,0) +
∂

∂v
·D0φ ·

∂f 0
er,0

∂v
, (39)

∂f 1
er,0e

iφ

∂t
− ωce

∂f 1
er,0e

iφ

∂φ
=

∂

∂v
·Diφ ·

∂f 0
er,0

∂v
, (40)

∂f−1er,0e
−iφ

∂t
− ωce

∂f−1er,0e
−iφ

∂φ
=

∂

∂v
·D−iφ ·

∂f 0
er,0

∂v
. (41)

where C(f 0
er,0) ≡ C(f 0

er,0, fenr) + C(fenr, f
0
er,0) + C(f 0

er,0, fi) and the velocity-space diffusion

tensors D0φ, Diφ and D−iφ are,

D0φ =
q2e
m2
e

+∞∑
n=−∞

1

V

∫
d3k

(2π)3
i

ωk − nωce − kzvz
a∗nkank , (42)
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Diφ =
q2e
m2
e

+∞∑
n=−∞

1

V

∫
d3k

(2π)3
ieiφ

ωk − nωce − kzvz
b∗1nkc1nk , (43)

D−iφ =
q2e
m2
e

+∞∑
n=−∞

1

V

∫
d3k

(2π)3
ie−iφ

ωk − nωce − kzvz
b∗−1nkc−1nk , (44)

with

ank =
1

2
(E+

k gk +
k⊥E

z
k

ωk

eiψh)e−iψJn−1(
k⊥v⊥
ωc

)

+
1

2
(E−k gk +

k⊥E
z
k

ωk

e−iψh)eiψJn+1(
k⊥v⊥
ωc

)

+Ez
k êvzJn(

k⊥v⊥
ωc

) ,

(45)

b1nk =
1

2
(E+

k G−k +
k⊥E

z
k

ωk

eiψH−)Jn(
k⊥v⊥
ωc

)

+
1

2
(E−k G+

k +
k⊥E

z
k

ωk

e−iψH+)ei2ψJn+2(
k⊥v⊥
ωc

)

+(
ik⊥v⊥
2ωk

(E+
k e
−iψ − E−k e

iψ)êφ + Ez
k êvz)e

iψJn+1(
k⊥v⊥
ωc

) ,

(46)

b−1nk =
1

2
(E+

k G−k +
k⊥E

z
k

ωk

eiψH−)e−2iψJn−2(
k⊥v⊥
ωc

)

+
1

2
(E−k G+

k +
k⊥E

z
k

ωk

e−iψH+)Jn(
k⊥v⊥
ωc

)

+(
ik⊥v⊥
2ωk

(E+
k e
−iψ − E−k e

iψ)êφ + Ez
k êvz)e

−iψJn−1(
k⊥v⊥
ωc

) ,

(47)

c1nk = c−1nk =
1

2
(E+

k G−k +
k⊥E

z
k

ωk

eiψH−)e−iψJn−1(
k⊥v⊥
ωc

)

+
1

2
(E−k G+

k +
k⊥E

z
k

ωk

e−iψH+)eiψJn+1(
k⊥v⊥
ωc

)

+(
ik⊥v⊥
2ωk

(E+
k e
−iψ − E−k e

iψ)êφ + Ez
k êvz)Jn(

k⊥v⊥
ωc

) ,

(48)

gk = êv⊥ −
kz
ωk

(vzêv⊥ − v⊥êvz) , (49)

h = vzêv⊥ − v⊥êvz . (50)

We have dropped the collision terms in Eqs. (40) and (41) by assuming that f 0
er,0 � f±1er,0.

The physics of the zeroth harmonic f 0
er,0 in Eq. (39) has been well studied [15, 27], but the

physics of the first harmonic f±1er,0 in Eq. (40) and (41) has not. Heating and current-driving

effects of electromagnetic waves are reflected in the velocity-space diffusion tensor D0φ in

12



Eq. (39) since the tensor only contains velocity-diffusion in the êv⊥ and êvz directions. For

example, if we take Ek = ikΦ and n = 0 for D0φ, which is the case for lower hybrid waves

in LHCD, the only component left in D0φ is êvz êvz . This is exactly the diffusion coefficient

used in LHCD theory [16, 21].

Using the expressions for the velocity-space diffusion tensors in Eqs. (42)-(44), we can

solve Eqs. (40) and (41) for the first harmonics of the resonant-electron distribution function

f 1
er,0e

iφ and f−1er,0e
−iφ. Multiplying Eqs. (40) and (41) by e−iφ and eiφ, we have equations for

f±1er,0,

∂f 1
er,0

∂t
− iωcef 1

er,0 = P 1 , (51)

∂f−1er,0
∂t

+ iωcef
−1
er,0 = P−1 , (52)

with

P 1 ≡ e−iφ
∂

∂v
·Diφ ·

∂f 0
er,0

∂v
P−1 ≡ eiφ

∂

∂v
·D−iφ ·

∂f 0
er,0

∂v
. (53)

The solutions of Eqs. (51) and (52) are,

f 1
er,0 = eiωcet

∫ t

0

dt′e−iωcet′P 1 , (54)

f−1er,0 = e−iωcet

∫ t

0

dt′eiωcet′P−1 , (55)

with the initial condition that f±1er,0 = 0 at t = 0. We need time-averaged distribution

functions to calculate the resonant-electron flow across flux surfaces. The averages of f 1
er,0

and f 1
er,0 in one gyro-period at moment t are,

f 1
er,0 =

1

T
(

∫ t+T

0

dt′f 1
er,0 −

∫ t

0

dt′f 1
er,0) = − P 1

iωce
+

1

ω2
ce

dP 1

dt
≈ − P 1

iωce
, (56)

f−1er,0 =
1

T
(

∫ t+T

0

dt′f−1er,0 −
∫ t

0

dt′f−1er,0) =
P−1

iωce
+

1

ω2
ce

dP−1

dt
≈ P−1

iωce
, (57)

where T is one gyro-perido. We have dropped 1/ω2
ce(dP

±1/dt) in above solutions of f 1
er,0 and

f−1er,0, because (dP±1/dt)/P±1 � ωce. The resonant-electron flow across flux surfaces can be

13



calculated by taking the first moment of f 1
er,0e

iφ + f−1er,0e
−iφ,

neru
r
er =

∫
d3vvr(f 1

er,0e
iφ + f−1er,0e

−iφ) =

∫
d3vvr(

−P 1eiφ + P−1e−iφ

iωce
) . (58)

Equation (58) is correct for general electromagnetic waves. Now we apply Eq. (58) to lower

hybrid waves for LHCD to calculate the resonant-electron flow across flux surfaces induced

by lower hybrid waves.

In order to avoid the mathematical complexity of tokamak geometry, we carry out the

calculation in a slab geometry shown in Fig. 1. In this geometry, plasma exists in the region

a

Z A
xis

X  A x i sY  A x i s

k

B 0 ,  v z

v
φ

FIG. 1: Plasma exists in the region of 0 < y < a. A constant and uniform magnetic field is in z

direction, and lower hybrid waves propagate within the x− z plane.

of 0 < y < a. A constant and uniform magnetic field B0 is in z direction, and lower hybrid

waves propagate within the x − z plane. Here the −y direction in slab geometry is the

counterpart of the r direction in tokamak geometry. We first calculate neru
y
er using the

14



following equation,

neru
y
er =

∫
d3vv⊥ sinφ(

−P 1eiφ + P−1e−iφ

iωce
) , (59)

then consider it approximately the same as −nerurer. In order to calculate neru
y
er, we need

to know P±1. As shown in Eq. (53), P±1 are functions of the velocity-diffusion tensors D±iφ

and the zeroth harmonic of the distribution function f 0
er,0. We have to derive the expressions

for D±iφ and f 0
er,0 first. For lower hybrid waves in LHCD, we have Ek = ikΦ and n = 0 in

the expressions of velocity-space diffusion tensors D0φ, Diφ and D−iφ, which can be written

as,

D0φ =
q2e
m2
e

1

V

∫
d3k

(2π)3
iJ0J0

ωk − kzvz
Ez∗
k E

z
k êvz êvz , (60)

Diφ =
q2e
m2
e

1

V

∫
d3k

(2π)3
ieiφJ0J0
ωk − kzvz

1

2
[Ex

kG−k +
k⊥E

z
k

ωk

H−]∗Ez
kêvz , (61)

D−iφ =
q2e
m2
e

1

V

∫
d3k

(2π)3
ie−iφJ0J0
ωk − kzvz

1

2
[Ex

kG+
k +

k⊥E
z
k

ωk

H+]∗Ez
kêvz , (62)

Since the distribution function is approximately Maxwellian in the perpendicular direction,

k⊥v⊥/ωk < 1 holds for majority of the electrons. Therefore all terms related to J±1,±2

have been dropped in Eqs. (60)-(62), considering J±1,±2(k⊥v⊥/ωk) � J0(k⊥v⊥/ωk) when

k⊥v⊥/ωk < 1. Substituting D0φ, Diφ and D−iφ into Eq. (53) for P±1, we have

P 1 = P−1 =
q2e
m2
e

1

V

∫
d3k

(2π)3
[

1

v⊥

∂

∂v⊥
v⊥ −

1

v⊥
]

iJ0J0
ωk − kzvz

Ex∗
k E

z
k

2

∂f 0
er,0

∂vz
. (63)

In Eq. (63), we have neglected terms proportional to kzvz/ωk and kzv⊥/ωk since the parallel

phase velocity of lower hybrid waves is large compared to the electron thermal velocity. The

last step before we can use P±1 to calculate the resonant-electron flow across flux surfaces

is to determine f 0
er,0. In the LHCD theory [16, 21], an analytical solution of f 0

er,0 is obtained

using a one-dimensional theory,

f 0
er,0 = C exp[−v

2
⊥
v2et

] exp[
1

v2et

∫ vz

0

−dv′

zv
′

z/(1 +
v

′3
z

v3et

D0φ(v
′
z)

(2 + Zeff )v2etνenr,i
)] , (64)

where vet is the thermal velocity of bulk electrons, and C is an integration constant. The

15



velocity-diffusion tensor D0φ in Eq. (64) is usually assumed to be [16, 21]

D0φ = D0φ(vz)êvz êvz , (65)

with

D0φ(vz) =

 D0φ, VLH1 6 vz 6 VLH2;

0, vz < VLH1 or VLH2 < vz.
(66)

Here VLH2 and VLH1 are the upper and lower limit of the parallel phase velocity. Usually,

D0φ is considered to be constant and VLH1 ≈ VLH2 = VLH . Spread of the parallel phase

velocity ∆VLH is defined as VLH2 − VLH1 which satisfies ∆VLH � VLH . Parallel velocities

of resonant electrons satisfy VLH1 6 vz 6 VLH2. Substituting f 0
er,0 in Eq. (64) into P±1 in

Eq. (63), we have

P 1 = P−1 =

− Cνenr,i(2 + Zi)
v3et
v2z

[
1

v⊥

∂

∂v⊥
v⊥ −

1

v⊥
] exp(−v

2
⊥
v2et

)
q2e
m2
e

1

V

∫
d3k

(2π)3
iJ0J0

ωk − kzvz
Ex∗

k E
z
k

2
/D0φ .

(67)

We need to know the integral

q2e
m2
e

1

V

∫
d3k

(2π)3
iJ0J0

ωk − kzvz
Ex∗

k E
z
k

2
/D0φ

in Eq. (67) before we can use the equation to calculate the resonant-electron flow across flux

surfaces. Using the definition of D0φ in Eq. (60), we can write the above integral as

1

2

q2e
m2
e

1

V

∫
d3k

(2π)3
iJ0J0

ωk − kzvz
Ex∗

k E
z
k/
q2e
m2
e

1

V

∫
d3k

(2π)3
iJ0J0

ωk − kzvz
Ez∗
k E

z
k ,

which can be estimated to be Ex
k/2E

z
k = kx/2kz. As a result, P±1 can be written as

P 1 = P−1 = −C (2 + Zeff )

2
νenr,i

kx
kz

v3et
v2z

[
1

v⊥

∂

∂v⊥
v⊥ −

1

v⊥
] exp(−v

2
⊥
v2et

) . (68)

At last, we can use P±1 to calculate the resonant-electron flow across flux surfaces. Substi-
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tuting P±1 into Eq. (59), we have

neru
y
er = −Cπ(2 + Zeff )

νenr,i
ωec

kx
kz

v5et∆VLH
V 2
LH

. (69)

Since resonant electrons only exist in the resonant region of velocity space, which is VLH1 6

vz 6 VLH2, the integration in Eq. (59) is only needed to be completed in this region. The

integral constant C can be determined by the wave-driven current in z direction,

JLHz = qe

∫
d3vf 0

er,0vz = qeCπv
2
etVLH∆VLH . (70)

Combining Eqs. (69) and (70), we have the resonant-electron flow across flux surfaces

qeneru
y
er = −kx

kz

(2 + Zeff )

V 3
LH/v

3
et

νenr,i
ωec

JLHz . (71)

As discussed previously, we can write resonant-electron flow across flux surfaces in tokamak

geometry approximately as

qeneru
r
er ≈ −qeneruyer =

k⊥
k‖

(2 + Zeff )

V 3
LH/v

3
et

νenr,i
ωec

JLH‖ , (72)

where JLH‖ is plasma current measurable in experiments. It is important to pay attention

to the factor k⊥ in Eq. (72). This factor shows that propagation of lower hybrid waves in

plasma determines the direction of the resonant-electron flow across flux surfaces if other

terms in Eq. (72) are fixed. With the symmetry of Eqs. (25) and (26) discussed in Sec. II, our

theory predicts opposite toroidal rotations given opposite k⊥. In studies of propagation of

lower hybrid waves in tokamaks [28, 29], there is no restriction for the sign of k⊥, which in

experiments might depend on the configuration of the discharge. In next section, we will

substitute the result in Eq. (72) into Eqs. (25) and (26) to study the toroidal rotation induced

by lower hybrid waves.

IV. LHCD INDUCED PLASMA ROTATION

In this section, we will numerically solve Eqs. (25) and (26) for the toroidal rotation of

ions. As discussed in Sec. II, we take densities nenr and ni, momentum diffusivities χenr

17



and χi, momentum-pinch velocities venr and vi, resonant-electron flow across flux surfaces

qeneru
r
er, poloidal magnetic field Bθ

0 and collision frequency νenr,i as known quantities. For

simplicity, we assume flat radial profiles for these quantities except for Bθ
0 , venr, vi and

qeneru
r
er. The values of densities, momentum diffusivities and collision frequency are, nenr =

ni = 1020/m3, χenr = χi = 0.225m2/s and νenr,i = 105/s. To determine the radio profile

of the poloidal magnetic field Bθ
0 , we assume a geometry with circular flux surfaces and

a large aspect ratio with Bθ = rB0/qR0. The axial magnetic field, safety factor, major

radius and radial coordinate are B0 = 5T , q = 1.5, R0 = 0.67m, and 0m < r < 0.21m. For

momentum-pinch velocities, theoretical results of either turbulent equipartition pinch [25, 26]

or fluid treatment [30] are not consistent with experiment observations [31]. Therefore in our

calculation, we assume that vi = venr = 4 exp[−(r/a − 0.4)2/20]m/s, which is consistent

with typical experimental observations [31]. The resonant-electron flow across flux surfaces

qeneru
r
er is calculated using Eq. (72). For a typical case of LHCD, we take k⊥ = ±17k‖,

VLH/vte = 4, JLH‖ = 2 × 106A/m2, Zeff = 2.0 and ωec = 8.8 × 1011 s−1. Here the sign

of k⊥ depends on the direction in which lower hybrid waves propagate. Different signs of

k⊥ correspond to different directions of the driving force. In LHCD experiments, the sign

of k⊥ can be positive or negative, as a result toroidal rotations in both co-current and

counter-current directions are predicted. Substituting these parameters into Eq. (72), we

have the resonant-electron flow across flux surfaces qeneru
r
er ∼ ±0.25A/m2, where the sign is

determined by that of k⊥. With all the input quantities in Eqs. (25) and (26) determined, we

can numerically solve the two equations for ion toroidal rotation. We apply a finite difference

method in which the grid size is 1/400 of the minor radius a and the time-step is 1/200 of

the thermal collision time 1/νenr,i. The numerical results are presented in Fig. 2. Shown in

Fig. 2 (a) is radial profile of toroidal velocity of ions for the case of qeneru
r
er = −0.25A/m2.

The profile is plotted from plasma core (r = 0m) to plasma edge at r = a = 0.21m. The

maximum rotation speed is −37km/s, located at plasma core. Fig. 2 (b) is the time history

of the rotation speed at plasma core for the same case. Plotted in Fig. 2 (c) is the radial

profile of the rotation speed by taking qeneru
r
er = 0.25A/m2. The peak speed is 37km/s

which is also located at plasma core. The time history of the core rotation for this case is

shown in Fig. 2 (d). The symmetry with respect to the sign of uϕenr, u
ϕ
i and urer discussed at

the end of Sec. II is evident from the numerical results shown in Fig. 2.

As displayed in Fig.2 (a) and (c), the rotation speed reaches its peak value at plasma core,
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FIG. 2: (a) Radial profile of rotation speed with qeneru
r
er = −0.25A/m2. (b) Time history of the

rotation speed at plasma core for the same case as (a). (c) Radial profile of rotation speed with

qeneru
r
er = 0.25A/m2. (d) Time history of the rotation speed at plasma core for the same case as

(c).

this radial profile is consistent with experimental results [5, 32]. The time scale of rotation

is also important. The time history of flow in Fig. 2 (c) and (d) can be fitted by exponential

functions with a characteristic time of 65ms, which is shorter than the typical 150ms

observed in experiments [5]. The reason of this difference might be that we have ignored

the time it takes to establish toroidal current in Eq. (72). The driving force of rotation is

proportional to the resonant-electron flow across flux surfaces which itself is proportional to

the toroidal current as shown in Eq. (72). In practise, increase of the toroidal current will

not be instantaneous because of the plasma internal inductance, neither will be the driving

force. Therefore, we might be able to obtain results with more accurate characteristic time

if we allow the toroidal current to have a finite increasing time.

One significant advantage of our theory is that both counter-current and co-current ro-

tations are predicted with different signs of k⊥ as shown in Fig.2. Recent studies have

reported that there are indeed toroidal rotations in both directions during launch of lower
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hybrid waves depending on specific experimental setups [6, 7]. For example, the rotation

speed is observed to increase by 30km/s in the counter-current direction after the launch

of lower hybrid waves for an initial toroidal current of 700kA [6, 7]. By lowering the initial

toroidal current to 300kA, the rotation speed increases by 20km/s in the co-current direction

after the launch of lower hybrid waves [6, 7].

V. CONCLUSION AND DISCUSSION

In this paper, we have presented a theoretical model to explain plasma rotations induced

by lower hybrid waves observed in Alcator C-Mod. The driving force of the rotations is

the Lorentz force on the bulk-electron flow across flux surfaces, which is a response of the

plasma to the resonant-electron flow across flux surfaces induced by the lower hybrid waves.

The flow across flux surfaces of the resonant-electrons and the bulk electrons are coupled

through the radial electric field initiated by the resonant electrons, and the friction between

ions and electrons transfers the toroidal momentum to ions from electrons. Toroidal rota-

tions are determined using a set of fluid equations for bulk electrons and ions. However, the

resonant-electron flow across flux surfaces cannot be found using the standard quasilinear

theory [15, 27] for velocity-space diffusion. We have developed an improved quasilinear the-

ory to calculate the resonant-electron flow across flux surfaces as a result of velocity-space

diffusion induced by lower hybrid waves. It turns out that it is necessary to include the gy-

rophase dependent part of the distribution function in the analysis. Velocity-space diffusion

tensors for the zeroth and first gyro-phase harmonics of the resonant-electron distribution

function are derived, and kinetic equations for the first harmonics of the distribution func-

tion are solved. The resonant-electron flow is then calculated by taking the first moment of

the first harmonics. A numerical code based on a finite-difference method is used to solve the

fluid equations for the toroidal flow. The numerical results agree well with the experimental

observation in terms of flow profile and amplitude.

In this theoretical model, the driving force of toroidal rotations is proportional to the

toroidal current driven by the lower hybrid waves, as shown in Eq. (72). During the launch

of lower hybrid waves, increasing the wave-driven current while fixing the total current is

accompanied by variations in current density profile, which is usually measured by nor-

malized internal inductance. Therefore, our theory has explained the mechanism of the
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strong correlation between rotation speed and normalized internal inductance observed in

experiments [5]. In addition, it is able to explain the recent experiments in which both

counter- and co-current rotations are observed during the launch of lower hybrid waves with

different initial currents. Both counter-current and co-current rotations are predicted by

this model depending on the sign of k⊥. Different discharge configurations in experiments

might have changed k⊥, and thus resulted in different rotation directions. The theoretical

model developed is also applicable to toroidal rotations observed in certain other tokamak

experiments, for example, in discharges with ICRF heating. From Eq. (58), the lower hy-

brid waves is not the only mode that is able to drive resonant-particles to flow across flux

surfaces. For this reason, we can follow the same procedure to calculate the Lorentz force

and toroidal rotations induced by ICRF waves. Results in this direction will be reported in

future publications.
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