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Summary

We used 10 Hz eddy flux signals and 0.2 Hz incident radiation (global shortwave
and PAR) records from Harvard Forest (Massachusetts) and Tapajos National Forest
(Brazil) to establish empirical relationships among directly measured cloud type
and cover percentage and corresponding PAR fluctuations and its diffuse fraction. In
future work such a cloud characterization will be related to water and light use
efficiency estimates for each of these ecosystems.

We developed empirical relationships to link sky cover type and fraction (measured
with the ceilometer) to incident direct and diffuse PAR. We developed a
methodology for constructing synthetic incident solar radiation time series based on
operational reports of sky cover and cloud type from National Weather Service
METAR reports. The aim of this work is to document the temporal and spectral
properties radiation incident on the canopy, as a first step toward developing a sky-
type parameterization for the net carbon uptake models.

Work completed during this project:

1. Ceilometer estimates of cloud cover type and fraction. Cloud cover fraction has
been obtained by examining the time fraction of cloud ‘hits) from the ceilometer We
classify cloud type by examining time series statistics from the ceilometer and the
high-frequency incident PAR/incident global solar radiative flux records.

2. Developed algorithms to detect light/dark intervals in the 1Hz incident solar
radiation records from the extensive archive from Harvard Forest and 3 years of
data from the tropical rain forest (Brazil).

3. Found the probability density functions (pdf) for the length of the light and dark
intervals and evaluated the validity of Lognormal and log-Lognormal distributions
to describe these distributions. Three years of data have been processed to date.

4. Developed a method to quantify the standard meteorological descriptions of
“broken” and “scattered” clouds in terms of the pdf of the light fluctuation field.

5. Made repeated trips to Harvard Forest to repair lightning damage to the suite of
radiative flux measurements operated by ASRC at the EMS tower.

6. Acquired a new Linux server and hard disk array to facilitate the calculations,
which had bogged down our existing Sun workstation, which is no longer being
updated by the manufacturer.

7. Completed an algorithm that will generate a time series of light/dark intervals
that will correspond to a given cloud state based on operational meteorological sky
cover reports.



This research has been done by Sergey Kivalov and David Fitzjarrald.

1. Introduction.

The presence of clouds results in a light environment for plants that features
reduced light levels, a higher diffuse fraction, altered spectral quality, characterized
by alternating relatively bright and dark periods. Field measurements of CO; uptake
over vegetated surfaces show that canopy photosynthesis is more efficient on partly
cloudy days ([Freedman et al., 2001; Gu et al.,, 2002]). This phenomenon is often
attributed to more uniform illumination of the canopy on such days. However,
reducing light intensity also limits water stress, and fluctuating light could offer
other efficiencies related to stomatal opening and closing time scales. It is difficult
to assign a single cause to a complex ecosystem response. Recent
model/observation studies (e.g. Still et al, [2009]) sidestep these issues by treating
‘clouds’ as generic ‘PAR reducing media’. Mercado et al. [2009] noted, “... the net
effect on photosynthesis of radiation changes associated with an increase in clouds
or scattering aerosols depends on a balance between the reduction in total PAR
(which tends to reduce photosynthesis) and the increase in the diffuse fraction of
the PAR (which tends to increase photosynthesis).” In cloudless conditions, aerosols
alter the ratio of direct to diffuse short-wave radiation. By modulating the quality of
light impinging on the ecosystem, sky condition has an important influence on the
carbon uptake. Incident light variability clearly affects photosynthesis [Whitehead and
Teskey [1995]) but it is also an important concern in understanding output photovoltaic
arrays (Giraud and Salameh [1999]).

To examine the connections among cloud fraction and type, incident light quality,
and the carbon and water exchanges, we were motivated by the following
ecological questions:

e How does the ‘cloudy day’ carbon uptake depend cloud type, cloud fraction, and
season?

e Are light and water use efficiencies enhanced on partially cloudy days because
canopy warming and stress is relaxed by intermittent shading?

« Alternatively, does diffuse radiation, by more completely illuminating more of the
canopy, lead to enhanced uptake on cloudy days?

In pursuit of these ultimate objectives, we focused this research on the following
research question:



What quantitative functions exist linking cloud type and fraction and incident
radiation properties (diffuse/direct ratio, time fraction of direct illumination,
spectral characteristics)?

This research has been done by Sergey Kivalov and David Fitzjarrald.

2. Observing clouds and incident radiation.

Falconer [1948] examined time series of daylight in the northern sky, qualitatively
associating the patterns with the cloud types reported by meteorological observers.
He showed that different types of clouds produce different variability of lighting
conditions. Sharp current peaks in photomultiplier current showed presence of cumulus
clouds; altostratus produced much smoother line. Freedman et al., [2001] and Freedman
and Fitzjarrald [2001] extended this approach, showing how sky type could be
characterized using, incident downwelling global solar radiative flux and its
temporal standard deviation (Sa» and osqn.). In recent years, more studies of the
statistics of instantaneous and time-averaged diffuse fraction in cloudy conditions
are found in the solar energy than in the ecological literature. Suehrcke and
McCormick [1988a, 1988b] presented early versions of the probability density
functions of incident light (direct and diffuse components) on cloudy days. Woyte et
al. [2007] and Chow et al,[2011] and Lave et al. [2011] updated this work, using
wavelet analysis of fluctuations in the instantaneous clearness index, an approach
we propose to follow in part. To date, characterizing sky type has been taken as a
consequence of statistical analysis. The few efforts to incorporate causal influences
have involved mesoscale model output.

Our effort links these approaches by including information about boundary layer
development and subsequent cloudiness throughout the diurnal cycle. We classify
cloud type by examining time series statistics from the ceilometer and high-
frequency incident PAR record.

Duchon and O’Malley [1999] used pyranometer-averaged 1-min irradiance data to
analyze response to cloud conditions. They removed a running mean and standard
deviation values computed in 21-min moving window, empirically chosen. For cumulus
clouds, the rapid rise in standard deviation and decrease in mean values occurred
simultaneously. They found on average 45% agreement between their pyranometer
method and human observations of cloud types.



Orsini et al. [2002] improved the previous researchers’ methods but them by establishing
new decision criteria and applying them to both solar and infrared radiation. They
analyzed 10-min averages of 1-min measurements of both down dwelling and upwelling
total and long wave radiations from four sensors: two pyrradiometers and two
albedometers. The short wave radiation components were derived from differences
between the total and long wave components. Analyzing 50-min running mean and
standard deviation values, the authors received 94% success prediction rate for cirrus,
67% for cirrostratus and altostratus, and 33% for cumulus. From the long wave
component, they computed cloud base height distributions, which helped with
distinguishing among the polar cloud classes.

Another method to estimate cloud conditions from 5-min short wave averages is
presented in Assuncéo et al. (2007) paper. The authors estimated sky conditions for four
categories: sun with cloud reflection; sun without clouds; sun partially concealed; sun
totally concealed. Their method is based on the frequency distributions of clearness
index for clear sky and four types of cloud cover (Weibull distributions). There is 95%
correlation between the method derived relative sunshine and the shortwave irradiance
observations in Sdo Paulo, Brazil.

In this work we used Harvard Forest observations and measurements in the
Amazon rainforest (LBA-EC) obtained by instruments deployed and recorded by our
group to demonstrate the feasibility of defining incident light fraction from
operational cloudiness data products that can be exploited by terrestrial biosphere
models over large spatial domains. We note that most ecological studies do not
explicitly link cloud type and cover fraction, staples of weather reports to properties
of light incident at the surface. Making this connection opens the way to include
operational information in studies of incident light temporal variability.
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Figure 1a. Albany, NY, day 293 (19 October 2000). (top): ceilometer
cloud height (m). (middle): TSI sky imager cloud cover (%). (bottom):
diffuse fraction. Arrows indicate point in time (1215 LT) where images in
Fig. 1b were taken and clouds are predominantly cumulus.

Fig. 1b. (top): TSI unprocessed

and (bottom) processed image at
1215 LT for 19 October 2000.

A case illustrates the link between cloud cover and incident solar radiation (Figure
1). Ceilometer estimates of cloud base to indicate cloud cover fraction found using
the whole-sky camera. The diffuse fraction remains small during the partly cloudy
morning of the central day in the plot, increasing to nearly 1 as the sky became
overcast. In our work, we classify cloud type by examining time series statistics
from the ceilometer and high-frequency incident PAR record. Separating boundary
layer cumulus, a direct local consequence of surface heat and moisture flux
convergence into the lower atmosphere, from generic cloud cover will become
important as coupled atmosphere/land surface models are exercised at increasingly
higher resolution.. The most promising sky types for vegetation sensitivity are
likely to be the forced cumulus situations studied in [Freedman et al., 2001;
Freedman and Fitzjarrald, 2001].



We made measurements of cloud base along with high time resolution incident
solar radiation measurements at a tropical forest site in Brazil (Figure 2). The
regularity of the tropical environment (Figure 3) leads to a repeatable sequence of
forced cumulus development in late morning. This makes for an ideal laboratory to
study links between measured cloudiness and its consequence on surface radiative
fluxes.
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Figure 2. Top panel: Cloud base at km67 Brazil (black), lifting condensation level (LCL) at kmé67 (blue),
and LCL at km77 (purple) during a wet season period in 2001 (May 2-11, days 122-131). Bottom panel: As
in top panel but for a dry season period in 2001 (October 2-12, days 275-285). LCL at km77 (a cleared
agricultural site) corresponds to the km67 cloud base better than does local LCL at km67 (an old-growth
forest site).

Km&7 Cloud base and Km77 LGL 2001 - 2003
LEA-ECO kmET Clowd Fraction 2001-2003

Kot :Aw:lhu!l‘_Cl;‘m:A:u

KT cléns Bt el saasoe

Madians and quarikes ane shown N 4

Wt season |DOY 75-135)
Diry ssasmazn (DROY 160851 86

1500

i o
= ¥ = .
E \ E 7/
T E # )
£ M\ ; TN
£ | { - //
| } Ll -
3 | L i
| | A
4 Yol
! WL
| . =
i L] .:- [ 5 ] 1 0
Tani| GRT] P T— e M T)



Figure 3. Left: Hourly median & mean (dashed) cloud cover fraction at km67 for the wet season (red) and
dry seasons 2001-2003 (bars indicate quartiles). Note the absence of nocturnal dry season clouds. Right:
The bars denote the quartiles. The cloud base during dry season afternoons is ~1300m; during wet season ~
750m. The km77 LCL corresponds well to the km67 cloud base during the dry season, but slightly
underestimates in the wet season.

Our effort concentrated first on defining the probability density function of light and
dark intervals on partly cloudy days. Then we quantified what is meant by
“scattered” and “broken” cloud fields, typically reported by weather observers and
the National Weather Service automatic weather stations (ASOS), in terms of the
temporal qualities of incident radiation.

To generate ‘artificial sky patterns’ (see below) we started with methodology
described by Beyer et al. [1994]. Suehrcke and McCormick [1988a; 1988b] presented
early versions of the probability density functions of incident light (direct and
diffuse components) on cloudy days. [Woyte et al., 2007] updated their work,
introducing wavelet analysis of fluctuations in the instantaneous clearness index.

3. Light and dark periods in Brazil and at Harvard Forest.

At an old-growth forest site of LBA-ECO (Km67), located in the Tapajos National
Forest off Kilometer 67 of BR-163 south of Santarem, a Vaisala CT-25K ceilometer
was installed in April, 2001 and remained operational through June, 2003. The
ceilometer provided 15-second measurements of cloud base (three levels up to
7500 m), echo intensity, and a 30-m resolution backscatter profile. Global long-,
short- and PAR radiation upwelling and downwelling were recorded at 5 s intervals
(Figure 4).

At an old-growth forest near Petersham Massachusetts Global long-, short-wave and
PAR radiative fluxes (upwelling and downwelling) have been were recorded at 1 s
intervals since 1994. Light and dark periods measurements were extracted and a
threshold 0.8 of the clear sky was used to identify cloud-shaded periods (Figure 5).
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Figure 4. Tapajos National Forest, Brazil. Top column left: Location map; Top right: Example of incident
short-wave radiation. Second column: expanded view. Third column: sequence of 16 selected days. Fourth
column: histogram of light intervals. Fifth column: histogram of dark intervals.
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Figure 5. Harvard Forest MA. Top: Example of one day of filtered incident solar radiation; Second row:
Raw data; Third row: histogram of 8 days of light periods; Fourth row: histogram of corresponding dark
intervals.
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Statistics of cloud cover estimates.

We estimated the statistical relationships between the cloud and clear area sizes
and between the sizes of the light and dark passes and connect them to the cloud
cover change

Assuming that the convective clouds are circular and uniformly distributed over the
sky and that the wind in the cloud base is stationary over the small time interval
when a set of clouds passes over, we derived the following expressions connecting
cloud diameter D, measured cloud size (dark pass) d, distance between clouds L, and
measured path (light pass) I:

» 4 2 2 /d d
(D+L) ——3D| = L—%M—D—% ;l—;,

where o = % ~ (0.849 is equal to the mean ratio value.

The change between scattered and broken cloud conditions occurs when the areas
of clouds and free space among them are equal to each other, occurs when:

L =0.346D.

For the consecutive light and dark periods, we received the alternate formula for the

measured d and [:

|~ 0.8857E ~1.043d.
a

This formula is valid for the nonstationary slowly variable winds because it
represents the ratio between the consecutive light and dark periods and doesn’t
specify their actual sizes, which will of course depend on the actual wind speed.

4. Parameterizing Irradiance

Because of large variability of the light and dark periods, it seems to be practical a
selective approach when only one type of clouds is chosen based on METAR data
and/or the measured d and I/ sequences.

In our current research we are going to follow this approach and look though the
couple years worth of irradiation data from Harvard Forest. Then we generate the
light and dark distributions over this large time interval.

Clear sky irradiance parameterization

11



We incorporated the clear sky fit into the algorithm to retrieve the light and dark
sequences. Unless there were no clear sky interpreted data in the daytime
measurements, this helped to better position the curve over the real data. However,
if two days or more are joined together for this analysis, there is usually enough
information to fit this curve over the data.

Originally, in single-day studies we used the simple equation for the insolation
parameterization as in Kalisch and Macke [2008]:

Qqy =S,-cosz- T,

where Sy is the solar constant, z is the zenith angle, and T is the atmospheric
transmittance.

We did not use any water vapor correction in this calculation; the transmittance
coefficient was calculated by the non-linear best fit in the Splus package, intrinsically
absorbing all the changes in the environment. The resulting clear sky fit was
generally good in around noon, but yielded overestimates both during the morning
and afternoon hours.

One approach is to keep the same equation but change the way to define Kalisch and
Macke [2008] derived T from the water vapor partial pressure at the ground level by
Zillman [1972]:

B cosz
(cosz+a)p, 10~ +bcosz+c’

0

in whicha =2.7, b = 1.085, and c = 0.1. The authors presented cases where this
approach overestimates the clear sky irradiation for broken cloud conditions. They
optimized the coefficients to reduce the systematical errors with their 2006 cruise
data and found that Zillman’s parameterization is useful for the calculating short-
term fluctuations.

For this study, we use a more natural approach following the exponential law of
extinction in atmosphere. The intensity of the passing through the atmosphere
irradiation is a subject to Bouguer extinction law:

=1, e*M®,
where 1,1, are the light intensities, M(z) is the relative air-mass number, z is the
zenith angle, and A4 is the extinction coefficient.

The A-M (Z) is also named as optical thickness or optical depth (McCartney [1976]),

which generally depends on the wavelength of light. For the relative air-mass
estimation, we accommodated Andrew Young’s approximation formula Young
[1994], derived for 678 nm wavelength (red light) for consistency with the air-mass
table from 1972 International Organization for Standardization standard
atmosphere (ISO) Standard Atmosphere (1972).

12



For the horizontal irradiance |, the cos(z) is included in the law of extinction:

l,, =1, cos(z)- e A,

We used these algorithms to recover cloud fraction, temperature, dew point,
pressure, and wind vector from the earlier METAR files.

5. Statistics of light and dark intervals at two forest sites.

The samples of the spectra of light and dark generated for month of February and
July were used in Fitzjarrald and Kivalov [2012]. We focused on two ecosystems in
FLONA-Tapajo6s, Brazil and Harvard Forest, MA. We used our modified software to
analyze the highly variable days over the month time span and derive the light and
dark period histograms from the data.

Figures 6 and 7 show 5 days from Harvard Forest of 16 days from Brazil.
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Figure 6. Spectra of light and dark intervals generated for 16 July days at the Tapajos National Forest site,
Brazil.
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Figure 7. Histograms of the duration of light and dark intervals generated for 5 February days at Harvard
Forest.

The Lognormal distribution to describe the light and dark intervals for broken and
scattered cloud conditions.

We seek to link cloud classification used in operational meteorology and
widely available to the temporal properties of light and dark intervals as observed
at the ground.

Our initial approach was to parameterize by the pdf of the light and dark
intervals using the Lognormal distribution. These cases give evidence of Lognormal
distributions in both light and dark series for both sites, consistent with the work of
Lopez et al. (1977) on Lognormal distributions of cumulus cloud sizes. We expected
that their advection over a site would produce a similar shade pattern. The
Lognormal pdfis:

14
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where M and S are the parameters.

The mean, variance, skewness, and kurtosis of the distributions can be derived from
M and S by the formulas:
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The fits of the log-normal distributions into the multi-year histograms of the light
and dark periods for both the Scattered and Broken cloud conditions are presented
in the following Figures.

The histograms and the distributions are placed over the logarithmic time scale. The
vertical lines in the graphs are the distribution mean values and the standard
deviation intervals (in seconds) around the means.

Scattered cloud conditions:
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Figure 8. The log-normal pdf fits into the multi-year histograms for scattered cloud conditions
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Dark period Light period
M 0.33162 0.47809
S 0.50504 0.54233
H 1.58274 1.86855
10 (seconds) (38.25992) (73.88426)
o 0.85314 1.09267
10° (seconds) (7.13089) (12.37871)

Table 1. Parameter values for the scattered cloud distributions in Figure 8.

Broken cloud conditions:

02 03 04 05

00 01

06

0.4

0z

00

Diark Periods (seconds)

1000

10000

Light Periods {seconds)

Figure 9. The log-normal pdf fits into the multi-year histograms for broken cloud conditions
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Dark period Light period
M 0.44681 0.40866
S 0.51181 0.49249
H 1.78208 1.69883
10# (seconds) (60.54527) (49.98475)
o) 0.97521 0.89006
10 (seconds) (9.44513) (7.76367)

Table 2. Parameter values for broken cloud distribution illustrated in Figure 9.

From these short samples, there is some evidence for Lognormal distributions in
both light and dark series for both sites. This is consistent with the works of Lopez

et al. (1977) on Lognormal distributions of cumulus cloud sizes. However, below we

show that further work demonstrated that in most cases a better description fitted

the long duration samples from Harvard is actually the Weibull distribution.

The clear sky correction applied for multiple months.

During the clear sky fitting, we saw that the atmospheric extinction slightly varies

every day, and it varies significantly from month to month. The clearest months are
in the winter with A4 < 0.04, and the haziest months are in the summer with 4 > 0.16.

We need to make sure that our 0.85 (15%) threshold from the clear sky values we
use to distinguish between light and dark is not going to be compromised by the
month-by month irradiation change due to A change. Table 3 shows the annual
differences in irradiation for the different air masses = zenith angles due to the

extinction coefficient change.

Air-mass M (z)

zenith
angle

A=0.04 e
A=0.166 e

annual
difference

~AM(z)

~AM(z)

1.154

30

0.954889

0.825667

13.5%

1.42 2

45

0.944783

0.790002

16.4%

60

0.923116

0.717487

22.3%

76

0.852144

0.607745 0.514788

39.6%
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Table 3. Differences in irradiation for the different air masses

For the zenith angles > 45°, annual differences in the clear sky irradiance exceed
16%, over our 0.85 threshold. We must introduce some flexibility into the extinction
with an additional haze coefficient: coeff,. This is done by using the formula similar

to the standard one used in the clear sky model for the sun elevation:

coeff, =C, —C, co{%(DOY - c3)J.

Then the law of extinction for the horizontal irradiance will be modified as
following:

_ —A, -coeff,-M (2)
I, =1, - cos(z)- e ",

where A; is a correction coefficient, which should be near unity in ideal case.

Table 4 presents the extinction coefficient (A) values of the clear sky fitting for 2008,
2009, 2010, and 2011. We filtered extreme values of extinction values by applying a
95% confidence interval. The last row of the table shows the best fit into the coeff,

formula above.

Table 4. Extinction coefficient (A) values

Jan Feb Mar Apr May | Jun Jul Aug Sep Oct Nov | Dec
0.0507 0.0504 | 0.0829 0.1315 0.1629 | 0.1569 | 0.1668 0.1533 0.1371 0.0918 0.0667 | 0.0603
© +0.004 | +£0.002 | +0.002 | +0.012 | £0.015 | +0.01 +0.007 | £0.009 | +0.012 | +£0.006 | +£0.007 | +0.005
S
0.0463 | 0.0474 | 0.0830 | 0.1164 | 0.1593 | 0.1595 | 0.1486 | 0.1510 | 0.1358 | 0.0865 | 0.0763 | 0.0529
+0.008 | £0.004 | £0.007 | +£0.009 | +0.008 | +0.011 | £0.014 | +£0.008 | +0.005 | +0.012 | £0.002 | +0.002
(few (few
2 dat d
=) ata) ata)
S
0.0374 | 0.0458 | 0.0845 | 0.1069 | 0.1718 | No 0.1663 | 0.1685 | 0.1322 | 0.1044 | 0.0676 | 0.0554
+0.003 | £0.003 | £0.006 | +0.004 | +0.011 | data +0.008 | £0.014 | £0.004 | +0.003 | +0.004 | +0.003
(few (few (few
S data) data) data)
S
N
0.0436 | 0.0408 | 0.0821 | 0.1222 | 0.1626
+0.003 | £0.005 | £0.005 | +0.01 +0.008
(few
= data)
S
0.0442 | 0.0583 | 0.0841 | 0.1179 | 0.1481 | 0.1683 | 0.1719 | 0.1582 | 0.1305 | 0.0977 | 0.0667 | 0.0476
fam
9]
Q
5]

Figure 10 shows the best fit of the data from the Table 2 into the coeff, formula
above with coefficients ¢1=0.10805, c2=0.06461, and ¢3=5.74010.
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Figure 10. CO(Elr'fh best fit of the data from the Table 4.

6. Analyzing the long-term record from the Harvard Forest site.

In this section we focus on distributions of cloud induced incident light
fluctuations. To achieve its goal, the analysis of the single point ground
measurements of incident light is conducted on the 0.2 Hz short wave irradiation
data from Harvard Forest for multiple years. We refine the approach to incorporate
operational meteorological cloud cover and sky descriptions into the analysis. The
distinction between the cloud conditions and levels is done by using data from
closest METAR stations: KORE and KORH and by lifting condensation level
calculations. We present the distributions of light and dark for the scattered and
broken clouds as well as for the low and mid-upper cloud layers.

Data sources

The radiation data to analyze is collected from Harvard Forest Tower. This is 30
meter Eddy Flux Tower set up in 1990, and it is a part of Environment Measurement
Station located at Harvard Forest near Petersham, MA. In this research, we use 6
years (from 2006 to 2011) of 1 Hz irradiation measurements from the Harvard
Forest Tower combined with 10 Hz flux measurements from other sources into the
1-second raw files.

The direct cloud fraction measurements estimated by ceilometers is the main
reference for our research comparison. To do this, we use the METAR-ASOS data
from the NCDC database (METAR). For the cloud cover, the METAR standard is
following: FEW (1/8 TO 2/8 cloud coverage); SCT (SCATTERED, 3/8 TO 4/8 cloud
coverage); BKN (5/8-7/8 coverage); OVC (OVERCAST, 8/8 Coverage).
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The closest two METAR-ASOS sites are the Orange Municipal Airport, MA station
(KORE) (The same station was used in Freedman et al. (2000) with Harvard Forest)
and KORH - Worcester Regional Airport, MA. Even though KORE is closer to
Harvard Forest than KORH, the KORH is to the south at higher elevation; KORE is to
the northwest. So from the irradiation point of view, the KORH cloud condition
might be more representative than KORE ones. This can be justified by the solar
geometry for northern hemisphere that the direction to sun is to the south of the
observer on the ground, so the fluctuation of downwelling irradiance will be due to
the clouds to the south on the station. This south shift will depend on the cloud base
height. In the summer time, the solar elevation will be up to 70 degrees so that
south shift will be small, but in the winter, when the sun is just 20 degrees above the
horizon, it can be significant. So KORH could give better relevant cloud estimations
than KORE for this time frame.

Data preparation

In this data analysis, the 1-second shortwave radiation data was normalized against
the calculated clear sky irradiance. This normalization helps to exclude from the
considerations the light variability due to the daily clear sky irradiance change and
keep only the light variability induced by the atmosphere. The normalized
irradiance data values are generally between 0 and 1, but they can increase above 1
(the clear sky threshold) when the reflections of light from the edges of the low-
level cumulus clouds occur (Lianhong Gu et al.(2001), Segal, M. & J. Davis (1992)).

An example of the processing approach (Figure 11) shows the raw data clearly
presenting the clear sky outer irradiation envelope (dashed line) and the inner
irradiation envelope associated with the cloudy conditions.

clo1

2000-04-05_d cat
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Figure 11. A single day of 1-second incident shortwave radiative flux. Top: Normalized series; Bottom:
Raw data before normalization.

We distinguished dark and light periods by applying the threshold of 0.8 to the
normalized 1-second data. The choice of the threshold can be justified by the
magnitude of the fluctuations of normalized 1-second data between 0.4 - 0.5 and 1.1
- 1.2, such that 0.8 is approximately the median of the data.

The signal undergoes nearly instantaneous jumps back and forth across the
threshold. The relatively long period above the threshold is associated with the
single clear-from-cloud period, and the continuous period below the threshold is
associated with the single cloud passage. Duration of the cloud passes are
conveniently represented by the number of data points therein.

Data in Figure 12 demonstrate that both scattered and broken cloud conditions
introduce different lighting regimes and these must be treated separately. To do
this, we use conventional National Weather Service METAR data from the KORE and
KORH stations discussed earlier and filter for consistent conditions at both sites.
This ensures that we are within some homogeneity of cloud condition above the
Harvard Forest site.

7. Multiple year data analysis

Applying the described technique to the 6 years of 1-second data (from 2006 to
2011) brought the following combined histograms of the distributions of light and
dark periods by their lengths in seconds.

All-level cloud condition analysis: superiority of Weibull distribution

The first group of graphs is for the scattered cloud conditions represented by 20378
cases, and the second group of graphs is for the broken cloud conditions
represented by 8912 cases.
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Figure 12. Left: distribution the scattered cloud conditions ; Right distribution for broken cloud conditions.

The following Table presents the means and standard deviations of the originally
selected data.

Scattered clouds prevail Broken clouds prevail
clear mean=234.180 std=557.177 clear mean=85.8718 std=191.693
cloud mean=125.382 std=370.451 cloud mean=206.262 std=545.718

The two lines on the Figures are the best fits of the Weibull (solid line) and
Lognormal (dotted line) distributions into the histograms of the distributions. It is
easy to see that for the times below 2000 seconds, the Weibull pdffit is better than
the Lognormal one. Due to its shape, the Lognormal pdf fits make overestimations of
occurrence of the short light and dark periods around 10 - 40 seconds, and
underestimations of occurrence of the middle light and dark periods around 60 -
1000 seconds. They become closer but still with the overestimations of occurrence
of the longer light and dark periods above 2000 seconds. On the other hand, the
Weibull pdf fits better resemble the overall shapes of the histograms with some
underestimations of occurrence of the longer light and dark periods above 1000
seconds.

The same conclusions give Kolmogorov-Smirnov goodness of fit tests performed on
the Weibull and Lognormal pdf fits in our R programs. The following Table shows
the results of the K-S tests for the fits above.

Scattered clouds prevail Broken clouds prevail
Lognormal clear S=0.06393394 P=0 clear S$=0.05777095 P=0
cloud S$=0.05220196 P=0 cloud $=0.05587026 P=0
Weibull clear $=0.01482499 P=0.00017471 clear S=0.01548434 P=0.02350232
cloud $=0.01920975 P=4.0840e-07 cloud S$=0.02041007 P=0.00085514

The K-S goodness of fit statistics are at least twice lower for the Weibull pdfs than
for the Lognormal pdfs, and confidence probabilities are above 0. This concludes
that for the presented combined cases, the Weibull pdf fits are better than the
Lognormal pdf fits for both light and dark pass lengths and for both Scattered and
Broken cloud conditions.
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Strict separation by cloud level analysis

The cloud levels are distinguished by using the calculated lifting condensation level
(LCL) by Freedman, ].M. et al.(2000). To make the clear distinction between the
levels, the LCLs for two sites KORE and KORH were used simultaneously. For the
low-level clouds, the only data with the cloud heights below LCLs*1.3 and below
2000 m was considered to belong to the convective clouds above the Convective
Boundary Layer. For the mid-upper level clouds, the only data with the cloud
heights above LCLs*1.3 was chosen to belong to middle and upper layers.

The main representation of clouds in these levels is the following. For the low-level
(below 2000m), there are fair weather Cumulus, which are the Convective Boundary
Layer induced convective clouds, developed from them Cumulonimbus
(thunderstorms), and Stratocumulus and Nimbostratus (overcasts). For the mid-
level (from 2000 to 6000m), there are Altocumulus (convective on the middle level,
cold front advancing) and Altostratus (approach of a warm front, overcasts).

Similar combined histograms as above but separated for two cloud levels are
presented in Figure 13.
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Figure 13. Combined histograms as above but separated for two cloud levels.
Low-level clouds Mid-upper level clouds
Scattered clouds prevail Scattered clouds prevail
clear mean=240.478 std=576.282 clear mean=208.4227 std=486.668
cloud mean=113.533 std=345.263 cloud mean=191.9706 std=519.558
Broken clouds prevail Broken clouds prevail
clear mean=88.2070 std=186.746 clear mean=91.58089 std=212.320
cloud mean=186.818 std=501.570 cloud mean=261.9054 std=683.577

Table 6. Means and standard deviations of the originally selected data separated by cloud levels.

The presented graphs feature the same types of histograms and fits as in the all-
level cloud condition case. The Weibull fits are the solid lines; Lognormal fits are the
dotted lines. The low-level cloud case shows the same features with the all-level
cloud case with the generally better fittings of the light and dark histograms by the
Weibull pdf. However, the mid-upper level cloud case doesn’t follow the same
pattern as the low-level and all-level cloud cases. For the dark passes, it shows more
skewed and fatter tailed distributions those could be more suitable for the
Lognormal fits than for the Weibull ones.

The similar conclusions give the Kolmogorov-Smirnov goodness of fit tests
performed on the separated by cloud level data. The following Table presents the K-
S statistics and confidence probabilities for the Weibull and Lognormal fits for each
cloud level.
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Low-level clouds

Scattered clouds prevail Broken clouds prevail
Lognormal clear S=0.06173337 P=0 clear S=0.05514045 P=6.3989e-08
cloud S$=0.0598134 P=0 cloud $=0.06411985 P=1.0908e-10
Weibull clear $=0.01412341 P=0.02480259 clear $=0.01866348 P=0.2500152
cloud $=0.01690931 P=0.00440223 cloud $=0.02269663 P=0.09064011

Mid-upper level cloud

Scattered clouds prevail Broken clouds prevail
Lognormal clear S=0.08056974 P=1.4174e-07 clear S$=0.05129616 P=6.8412e-05
cloud $=0.0339844 P=0.1073872 cloud $=0.04716372 P=0.00028206
Weibull clear $=0.02834449 P=0.2386451 clear $=0.02855647 P=0.07428998
cloud $=0.03828326 P=0.03983675 cloud $=0.0368747 P=0.006728118

Table 7. K-S statistics and confidence probabilities for the Weibull and Lognormal fits for each cloud level

It is seen that the Weibull pdfbetter fits the low cloud level light and dark passes
than the Lognormal one, and the same is correct for the mid-upper cloud level light
passes. But for the mid-upper cloud level dark passes, there is just a slight
advantage to use the Weibull fit over the Lognormal one for broken cloud
conditions. And for the scattered cloud conditions, the Lognormal fit for the mid-
upper cloud level dark passes looks preferable over the Weibull one.

The restrictions imposed on the cloud level data selection put out of considerations
all cases with detected by both KORE and KORH ceilometers mixes between low and
mid-upper level clouds. It happened that for broken cloud conditions from 8912
cases in total, 2864 were chosen for the low-level and only 1947 were chosen for
mid-upper level, and for scattered cloud conditions from 20378 cases in total,
10581 were chosen for the low-level and only 1258 were chosen for mid-upper
level. So due to low numbers of available cases, the mid-upper level data for both
scattered and broken cloud conditions can be underrepresented to make clear
statistical decisions on the best fits.

Multiple cloud levels analysis

Finally we look at the cases where the clouds present on both cloud levels for at
least one of the sites. For broken cloud conditions from 8912 cases in total, there are
2373 cases satisfying these criteria, and for scattered cloud conditions from 20378
cases in total, there are only 418 cases respectively.
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Figure 14. Combined histograms as above but for scattered and broken cloud conditions.

Scattered clouds prevail Broken clouds prevail
clear mean= 110.2506 std= 217.922 clear mean= 68.8129 std=126.016
cloud mean= 91.9521 std= 220.398 cloud mean= 167.357 std=419.893

Table 8. Means and standard deviations of the originally selected data.

The presented graphs show the consistency with both the all-level and the low-level
cloud cases with the generally better fittings of the light and dark histograms by the
Weibull pdfs. Even though the number of periods is small for the scattered cloud
conditions, the Weibull pdfs fit very well in the histograms of both light and dark
passes as well.

The same conclusions give Kolmogorov-Smirnov goodness of fit tests.

Scattered clouds prevail Broken clouds prevail
Lognormal clear S=0.08108483 P=0.00973136 clear $=0.08258132 P=2.6090e-14
cloud $=0.0555088 P=0.148404 cloud $=0.06908216 P=7.8624e-10
Weibull clear $=0.03292917 P=0.7591014 clear $=0.02102211 P=0.2366273
cloud $=0.03832949 P=0.5317434 cloud S=0.01455967 P=0.6937822

Table 9. K-S statistics and probabilities for the fits in Figure 14.

The K-S statistics are much lower for the Weibull pdfthan for the Lognormal, and
confidence probabilities are much higher for the Weibull fits. In the agreement with
the observations above, this also concludes that for the mixed cloud level only cases,
the Weibull fits are better than the Lognormal ones.

8. Generating synthetic time series for given cloud conditions

The statistical analysis of the data showed that the Weibull distributions are the
better fits for all pass lengths but for scattered cloud conditions when no low-level
clouds are presented. So in simulating 1-second time series of the fluctuating light
for different cloud conditions, we use the best fits using the Weibull pdf. The results
of simulations are presented on the following figures. To make the distinctions, each
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Figure presents two independently generated time series. It can be seen that the all-
level, low-level, and mixed level cloud simulation cases feature more rapid light
fluctuations than the mid-upper level cloud simulation. This is in the agreement
with the cloud types presented on the different levels. This also signifies that the
most rapid light fluctuations are due to the presence of the low-level clouds
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Figure 15. All-level sky condition synthetic time series.

Low-level cloud condition
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Figure 16. Low-level sky condition synthetic time series.
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Figure 17. Mid-upper level sky condition synthetic time series.

The mixed cloud level only
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Figure 18. Mixed sky condition synthetic time series.

Growing and non-growing season analyses

The growing season is associated with the leave emergence from deciduous trees
and vegetation. The start of the season is accompanied with the rapid change in the
heat and moisture fluxes in mixed layer in such way that the sensible heat flux
begins to fall and specific humidity and the latent heat flux increase due to
vegetation evapotranspiration (Fitzjarrald et al., 2001; Freedman etal., 2001). A
rapid drop in Bowen ratio with leaf emergence heralds the beginning of the growing
season in the NE United States in spring followed by the growth of Bowen ratio in
the fall. For Harvard Forest, the effective growing season in approximately 140t day
of the year (beginning of May) and finishes in September (Sakai et al, 1997;
Freedman et al, 2001; Fitzjarrald et al. 2001).

During this season the surface T and q tendencies approximately balance to
maintain the relative humidity at about 50% , which maintains a nearly constant
lifting condensation level height (Fitzjarrald et al., 2001). This occurs because plant
evapotranspiration and more frequent occurrence of convective boundary layer
cumulus clouds, which we believe serves to reduce mid-day plant water stress. So
the growth season should have distinctive features with higher light and dark
variability comparing to the fall-winter season and entire year.

To investigate this feature, we separated our 6-year long 1-second series on the
growing season and the rest fall-winter season. As noticed above, the growing
season consists of the data from May till September, and the rest is the fall-winter
season. For consistency with the previous Freedman et al., 2001 work, we also made
a separate look at the Pre and Post-growing season periods. In the current research
the growing season is taken between 1221 and 274t day (153 days), and the rest is
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non-growing season (212 days). Hence, the pre-growing season is 121 days long,

and the post-growing season is 91 days long.

Scattered clouds

All season growing Non growing | Pre growing | Postgrowing
low 21041 11327 9714 6079 3635
5035101 2418759 2616342 1531184 1085158
upper 2538 1505 1034 711 323
584776 355210 229606 133020 96586
Mix 5 2 3 1 2
both 893 271 622 585 37
Mix 874 694 180 97 83
Atlast one 212414 129038 83376 68132 15244
Broken clouds
All season | growing Non Pre Post
growing growing growing
low 5782 2092 3691 2544 1148
928944 347713 581276 365409 215903
upper 3989 1451 2539 1645 895
1090166 337393 752818 421665 331189
Mix 764 471 294 186 109
both 92315 51552 40808 19347 21497
Mix 4683 2624 2059 1297 762
Atleast 590812 326092 264720 160025 104695
one

Table 10. Cloud distribution among the selected seasons both by number of cases and by duration

(seconds).
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When scattered clouds are detected, the low-level clouds are predominant in all
cases. When broken clouds are detected, the upper level clouds overtake the low-
level ones, especially during the non-growing season. Due to the different lengths of
the growing season (153 days) and non-growing season (212 days), the direct inter-
comparison is not possible, but we still can make a direct comparison between the
scattered and broken within the seasons and compare the relative occurrence of

different cloud levels between the seasons.

The following diagram presents the within-the-season comparison of frequency of
the cloud levels between the scattered and broken conditions:

Growing season

Non-Growing season

Low level; Growing

Low level; Non-

season Growing season
13% 18%
M Sc low M Sc low
H Br low H Br low
87% 82%
Upper level; Growing Upper level; Non-
season Growing season
23%
49% 51% B Sc upper B Sc upper
M Br upper M Br upper

77%

Mix level; Growing
season

28%
M Sc mix at least
M Br mix at least
72%

Mix level; Non-

Growing season
24%
B Sc mix at least

M Br mix at least
76%
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Figure 19. Seasonal pattern of the frequency of the cloud levels reported for the scattered and broken
conditions.

Even though both the low-level clouds and the mixed level clouds maintain about
the same proportion between scattered and broken for all seasons with a little more
broken low clouds in non-growing season, upper level scattered clouds prevail
during the growing season, while upper level broken clouds dominate during non-
growing season.

The following cumulative diagram presents the cloud level distribution between the
growing and non-growing seasons by duration:

Scattere . .
d clouds Growing season Non-Growing season
129% 5% 8%3%
B Sc low M Sc low
B Sc upper B Sc upper
Broken . .
clouds Growing season Non-Growing season
17%
H Br low H Br low
B Br upper M Br upper

Figure 20. Cumulative diagram of the cloud level frequency distribution for growing and non-growing
seasons.

Scattered cloud conditions represent by low-level clouds more than 80% of the time.
The upper level clouds make about 10% of the scattered cloud conditions time, and
the rest is In contrast, for broken cloud conditions, the presence of cloud at different
levels differs between the growing and non-growing seasons. During the growing
season all the cloud level and their mixing are about equally present, but during the
non-growing season the upper level clouds prevails (47% of time) over the low-
level clouds (36% of time), and the mix level clouds are less present.

32




Scatt

ered Pre-Growing season Post-Growing season
clou 8% 4% 8%.% m Sc low
ds
B Sc low
B Sc upper
B Sc upper
Sc mix at least
one
Brok . .
en Pre-Growing season Post-Growing season
clou
ds M Br low H Br low
B Br upper B Br upper

Br mix at least
one

Br mix at least
one

Figure 21. Cumulative diagram of the cloud level frequency distribution between the pre-growing and
post-growing seasons.

The diagrams show consistent cloud level distribution between the seasons for
scattered cloud conditions with predominantly low-level clouds presented. For
broken cloud conditions, the upper level clouds are predominant, but the Pre-
growing season has higher relative occurrence of low-level clouds than the Post-
growing season, and on the contrary, the Post-growing season has higher
occurrence of the upper level clouds than the Pre-growing season.

Combining the cloud occurrence on the different levels with the mean durations on
the light and dark passes we found before, we can conclude that the predominant
presence of low-level clouds during the scattered cloud conditions and the
predominant presence of upper level broken clouds at non-growing season lead to
the higher observed light variability for scattered cloud conditions at growing
season than one for the broken cloud conditions at non-growing season when the
cloud cover more dense and uniform.
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The statistics and distributions by seasons
Following to the previous approach we present the statistics and distribution
analysis by seasons.

Growing season

Low-level clouds

Mid-upper level clouds

Scattered clouds prevail

Scattered clouds prevail

clear mean= 225.4502 sd=526.9268 clear mean= 200.2684 sd=395.3591

cloud mean= 105.1991 sd=292.8009 cloud mean= 204.7045 sd=549.3856
Broken clouds prevail Broken clouds prevail

clear mean= 100.6787 sd=205.4549 clear mean= 78.92504 sd=144.6563

cloud mean= 184.6023 sd=473.4006 cloud mean= 256.2927 sd= 634.7743

Table 11. Means and standard deviations for the cloud levels during the growing season.

Low-level clouds

Scattered clouds prevail Broken clouds prevail
Lognormal clear S=0.06698743 P=0 clear S=0.063071 P=0.000526463
cloud S=0.06412432 P=0 cloud S=0.079343 P=4.60635e-06
Weibull clear S=0.01672778 P=0.0733787 clear S=0.0333443 P=0.1834406
cloud S=0.0181584 P=0.0437299 cloud S=0.0305637 P=0.2667655
Mid-upper level cloud
Scattered clouds prevail Broken clouds prevail
Lognormal clear S=0.092517 P=5.40153e-06 clear S=0.04704517 P=0.0906212
cloud S=0.05282059 P=0.0302742 cloud S=0.04720548 P=0.0752418
Weibull clear S=0.03485879 P=0.2980189 clear S=0.04487425 P=0.1105022
cloud S=0.03348862 P=0.3451332 cloud S=0.04364525 P=0.1059944

Table 12. Results of Kolmogorov-Smirnov goodness of fit test on Lognormal and Weibull distributions.

Non-Growing season

Low-level clouds

Mid-upper level clouds

Scattered clouds prevail

Scattered clouds prevail

clear

| mean= 253.9502 sd= 619.9795

clear

mean= 210.0039 sd=557.1735
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cloud | mean=121.8572 sd=393.0108 cloud | mean=173.2941 sd=472.326
Broken clouds prevail Broken clouds prevail

clear mean= 80.9989 sd=174.6784 clear mean= 98.30105 sd=241.824

cloud mean= 184.8522 sd=510.8986 cloud mean= 262.8654 sd=706.5661

Table 13. Means and standard deviations for the cloud levels at non-growing season.

Low-level clouds

Scattered clouds prevail

Broken clouds prevail

Lognormal clear S=0.0596080 P=3.1086e-15 clear S=0.0533031 P=7.8240e-05
cloud S=0.0562768 P=2.4924e-13 cloud S=0.0604692 P=3.1280e-06
Weibull clear S$=0.018892 P=0.05500099 clear $=0.02189409 P=0.3277309
cloud S=0.022526 P=0.01370872 cloud S=0.0287877 P=0.08283305

Mid-upper level clouds
Scattered clouds prevail Broken clouds prevail

Lognormal clear S=0.07735439 P=0.0041113 clear S=0.0553768 P=0.00098360

cloud S=0.05453729 P=0.0890928 cloud S=0.0474353 P=0.0070189

Weibull clear S=0.03792537 P=0.4249463 clear S$=0.0293539 P=0.2203998
cloud S=0.06291591 P=0.0247064 cloud S=0.0337477 P=0.09777574

Table 14. Kolmogorov-Smirnov goodness of fit test on Lognormal and Weibull distributions.

In all the cases except for the dark passes for mid-upper level scattered clouds at
non-growing season the Weibull distribution fit performs better than the Lognormal
fit. So in the synthetic time series generation we’ll continue using Weibull
distribution as we’ve done it earlier.

Generating the synthetic time series
We uses the same algorithm as above to generate time series for the growing and
non-growing seasons. The following Figures present the synthetic daytime series:
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Figure 22. Synthetic times series for the growing season condition, low cloud situation.
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Figure 23. Synthetic times series for the growing season condition, upper cloud only situation.
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Figure 24. Synthetic times series for the non-growing season condition, low cloud only situation.
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Figure 25. Synthetic times series for the non-growing season condition, upper cloud only situation.

The major drawback of this pure statistical approach of time series generation above is
the rapid change of the simulated irradiances within the light or dark passes. In real
conditions, there could be many different values so the variability is being held the same,
but the values are distributed in more organized way so the change in irradiance occurs
much slowly and at a smaller pace.

9. Conclusions

Cloud level cases studies concentrate on scattered and broken cloud conditions. In
presence of the low-level clouds there is very good agreement between all-clouds
cases for using the Weibull pdffit to describe the distributions of light and dark
periods.

In the mid-upper level cloud case, different distribution behavior is observed. The
corresponding distributions are more skewed and fatter tailed, which makes them
more suitable for the Lognormal pdf fits instead of the Weibull ones. This may occur
owing to the different cloud patterns between the low-level convective clouds and
the middle level frontal clouds. However, the low number of light and dark periods
observed in this case doesn’t fully support this conclusion.

In all cases, the scattered cloud conditions are characterized by the larger mean light
pass lengths and smaller mean dark pass lengths. And for the broken cloud
conditions, the mean light pass lengths are smaller than the dark ones.

10. Plans for future studies
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This work helped us to understand better the light and dark distributions of light
change induced by clouds in Harvard Forest. We find that the the Weibull
distribution adequately describes the both light and dark interval durations.

In current research we focused on bulk sets of periods without distinguishing the
periods with the similar cloud base speeds or cloud sizes. There is some ambiguity
because variable winds will alter the absolute light and dark passes lengths and
broad peaks in the histograms. However, these winds will have a minor of no effect
on the consecutive light and dark period lengths over short intervals.

In continuing work, we will focus on the time-series and statistical relationships of
light and dark and their ratios on the short scale to clear the ambiguity induced by
wind change. In future work such a cloud characterization can be related to water

and light use efficiency estimates for each of the three ecosystems.

The following tasks are left for future work:

1. We will use the synthetic and observed temporal forcing functions to exercise a
stomatal opening/closing model following the methods of [Ooba and Takahashi,
2003] and [Vico et al., 2011]. The ambition in this modeling exercise is to split apart
the sensitivity of net carbon uptake by a forested ecosystem on cloudy days into
dependence on: a) diffuse vs. direct illumination; b) reduction of heat stress owing
to dark intervals during cloud passage; c) enhancement of photosynthesis during
limited light intervals.

2. Installing a cloud ceilometer near the EMS tower to recover cloud base and cloud
fraction. High frequency echo data will be complemented with coarser GOES
satellite cloud estimates. This is to be followed by intercomparison, calibration and
replacement of the radiative flux observation suite at the HF EMS tower. There is a
pressing need to keep the EMS radiation instruments operating during the
period when the new NEON tower is starting up.

3. At the time of the Freedman et al. [2001] and Fitzjarrald et al. [2001] papers,
National Weather Service Automatic Surface Observing System (ASOS) stations
were still being commissioned all over the US. In future we would like to return
these analyses to include the US east of the Mississippi, taking advantage of the
additional decade of data from the much larger ASOS station database.

4. We will consider the correlation dimension of the varying solar radiation signal
using Theiler’s [1987] approach and then generate synthetic series associated with
known sky types. The most promising sky types for vegetation sensitivity are likely
to be the forced cumulus situations studied in [Freedman et al., 2001; Freedman and
Fitzjarrald, 2001].

38



5. Finally, we hope to return to our original ecological question: How does the
‘cloudy day’ carbon uptake depends on cloud type, cloud fraction, and season? These
data will complement the ongoing subcanopy eddy COz, H20 and heat flux
measurements
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