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Executive Summary

The ability of water managers to maintain adequate supplies in coming decades depends,
in part, on future weather conditions, as climate change has the potential to alter river 
flows from their current values, possibly rendering them unable to meet demand.  
Reliable climate projections are therefore critical to predicting the future water supply for 
the United States.  These projections cannot be provided solely by global climate models 
(GCMs), however, as their resolution is too coarse to resolve the small-scale climate 
changes that can affect hydrology, and hence water supply, at regional to local scales.  A 
process is needed to ‘downscale’ the GCM results to the smaller scales and feed this into 
a surface hydrology model to help determine the ability of rivers to provide adequate 
flow to meet future needs. 

We apply a statistical downscaling to GCM projections of precipitation and temperature 
through the use of a scaling method.  This technique involves the correction of the 
cumulative distribution functions (CDFs) of the GCM-derived temperature and 
precipitation results for the 20th century, and the application of the same correction to 21st

century GCM projections.  This is done for three meteorological stations located within 
the Coosa River basin in northern Georgia, and is used to calculate future river flow 
statistics for the upper Coosa River. Results are compared to the historical Coosa River 
flow upstream from Georgia Power Company’s Hammond coal-fired power plant and to 
flows calculated with the original, unscaled GCM results to determine the impact of 
potential changes in meteorology on future flows.
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1.0  Introduction

Expected increases in atmospheric greenhouse gas (GHG) concentrations may result in a 
dramatic shift in the earth’s climate.   Predicted global temperature increases will likely 
produce changes in both large-scale weather patterns and in regional- to local-scale 
atmospheric phenomena that affect precipitation, humidity, solar insolation, winds, etc.  
The accurate projection of the magnitude of these latter effects is imperative for an 
informed and reliable determination of optimal adaptive strategies for resource 
management (e.g., Rajagopalan et al., 2009).  In the summary of a recent world summit 
on climate prediction, the following statement was presented first in a list of 12 
significant needs. (Shukla et al., 2009):

“Considerably improved predictions of the changes in the statistics of regional climate, 
especially of extreme events and high-impact weather, are required to assess the impacts 
of climate change and variations, and to develop adaptive strategies to ameliorate their 
effects on water resources, food security, energy, transport, coastal integrity, 
environment, and health. Investing today in climate science will lead to significantly 
reduced costs of coping with the consequences of climate change tomorrow.” (italics 
added)

Changes in regional climate can take the form of changes in the frequency of extreme 
temperature and precipitation values, and this could have a direct impact on society.  For 
example, climate change could adversely affect water supplies for irrigation and domestic 
use. (Adverse changes in lake and snowpack levels are already creating a concern for 
water managers in the western US (Levi, 2008)).  Increases in streamflow in the 
Southeast have been noted (Milly et al., 2005), though a small reduction in extreme 
precipitation events in the Southeast has been noted by Kunkel et al., (1999).  Roy et al. 
(2010) used the bias-corrected global climate model (GCM) results for the 21st century 
produced by Mauer (2007), along with projections of demand, to determine the future 
sustainability.  What they found for the Southeast was that precipitation was projected to 
increase, but with large increases in temperature.  The greater evaporation resulted in a 
decrease in available precipitation (their Fig. 12) throughout most of the southern U.S. 
(especially along the Gulf and up into the Midwest).  Increased drought is forecasted by 
the most recent report from the Global Change Research Program in the section on the 
future of Southeastern climate (Karl et al., 2009), and by Strzepek et al., (2010).        

The objective of this study is a projection of the future flows for a specific basin within 
the Southeast.  We selected the Coosa River basin in northern Georgia, as it plays an 
important role in supplying water for industry and domestic use in northern Georgia, and 
has been involved in water disputes in recent times (Chapman, 2009; Joyner, 2011). We 
will simulate the future river flow of this basin using a watershed model run with 
projected local meteorology for the period 2040-2049.  Given their inability to resolve 
small-scale features that can affect the local meteorology, GCMs tend to produce 
simulations with incorrect means, variances, or that fail to capture extremes when studied 
at the small-scale (Risbey and Stone, 1996; Prudhomme et al., 2002; Stephens et al., 
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2010), so the local-scale meteorological forcing for the watershed model cannot come 
directly from a GCM.  Instead, we will use future climate projections statistically-
downscaled from a GCM as input to the model.  

2.0  Experimental Method

Statistical downscaling has been applied by several researchers to produce local climate 
forecasts (Kidson and Thompson, 1998; Spak et al., 2007; Lim et al., 2007; Zorita and 
von Storch, 1999; Gangopadhyay and Clark, 2005; Salathe, 2005; Wood et al., 2002; 
Hayhoe et al., 2004), using a variety of methods to relate GCM output to the desired 
small scale.  These all have the advantage in being quicker and less computationally 
expensive than the alternative – dynamic downscaling, by which a regional climate 
model is run nested within the GCM to get the small-scale meteorology (Hewiston and 
Crane, 1996).  The latter has an advantage in that it can simulate feedbacks between the 
coarse and fine scales (if run interactively within a GCM), and is less reliant on the 
stationarity of current statistics.  Statistical and dynamic downscaling have been 
evaluated in head-to-head comparisons, and, depending on the forecasted location, 
generally found to have equivalent skill (Kidson and Thompson, 1998; Murphy, 1999; 
Wood et al., 2004; Hayhoe et al., 2008).  
        
Statistical downscaling methods have the disadvantage in that they make assumptions 
about 1) the accuracy of the GCM for the future and 2) the permanence of the 
relationships between the GCM output and existing station data, both of which are 
difficult to test (Vrac et al., 2007; Hewiston and Crane, 1996; Zorita and von Storch, 
1999).  The latter can be mitigated somewhat by training the method over a relatively 
long period of time so that many input-output scenarios go into the training (Zorita and 
von Storch, 1999).  In this way, any future scenario will likely have occurred at least a 
few times in the training data, and the model will be prepared for it.  There is some 
justification for the assumption that the large-scale patterns of today will still exist in the 
future, albeit with different frequencies (Branstator and Selten, 2009), and that shifts in 
these patterns can be linked to changes in local precipitation (Li et al., 2011).  As for the 
former, we cannot assume that good GCM agreement for the 20th century implies that the 
21st century GCM projections are accurate.  Errors in the GCM will necessarily be 
propagated into any local changes derived through a statistical or dynamic downscaling 
process (Prudhomme et al., 2002).  This can be ameliorated through the use of an 
ensemble of GCMs (Sun et al., 2011; Crosbie et. al., 2011), producing local-scale 
forecasts for a range of possible global climates.  Therefore, we believe statistical 
downscaling can be a valid tool for producing climate projections of value to resource 
managers.

The research described here utilizes a probabilistic method for statistical downscaling, by 
which the results of a 20th century GCM are ranked to develop a cumulative distribution 
function (CDF), which is then transformed to match the CDF of the observed data.  This 
same transformation is then applied to the future GCM time series.  Unlike other 
downscaling methods, it does not use the GCM large-scale variables such as geopotential 
or sea-level pressure directly.  Rather, it accepts as input the GCM gridded surface 
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meteorology (temperature and precipitation, which are related to the simulated large-
scale variables through the model parameterizations) interpolated to the desired station, 
along with actual data from the station for an identical time period to determine an 
appropriate ‘correction’ to the GCM needed to bring its statistics in line with the station 
data.  This same correction is then applied to future predictors (GCM results for the 21st

century).  It is conceptually similar to the perturbation method, by which accuracy in the 
changes in GCM output is assumed and these simulated increases and decreases are 
applied to the observed current climate to get the future climate (Prudhomme et al., 
2002).  This process is similar to the method of O’Brien et al., (2001) in which the 
probability density curves of two separate time series are used to determine the function 
needed to map one to the other, and which was also used in a regional climate project 
(Dalton and Jones, 2010).  The use of observations to transform a GCM CDF, and the 
subsequent application of the same transformation to a GCM CDF of the future, has been 
widely applied to make GCM results more accurate for local scales (Wood et al., 2002; 
Hayhoe et al., 2004; Hayhoe et al., 2008; Michelangeli et al., 2009), and several 
researchers have specifically applied this process to hydrologic basin simulations 
(Dettinger et al., 2004; Sun et al., 2011).  It also formed the basis of the GCRP climate 
report (Karl et al., 2009).  Widmann and Bretherton (2000) and Widmann et al., (2003) 
both validated the use of GCM precipitation as a predictor for downscaling.

GCMs are free running of course, so no month-to-month correlation between 
observations and results from 20th century simulations can be expected.  We can hope to 
see similar means and variances (calculated over decades) between the two, however, and 
this can be used to create multi-year statistics of future climate.  Like all statistical 
downscaling methods, this one makes assumptions about the future – namely, that current 
GCM errors will be of a similar nature in the future and be reduced using the corrections 
derived with current data.  This assumption can be partially validated through a cross 
validation process, by which the model is judged by its ability to accurately ‘predict’ 
existing 20th century data from a wide range of climate regimes, and by the projection of 
a period in the observation record.       

Downscaled climate model results have been used as input to hydrologic models for 
various parts of the world (Reaney and Fowler, 2008; Hageman et al., 2011; Crosbie et 
al., 2011; Samadi et al., 2012), using various GCMs and downscaling methods.  The use 
of multiple models can improve projections of regional climate, especially when applied 
to the problem of future hydrology (Hagemann et al., 2011; Crosbie et al., 2011), so we 
use five global models in our training and forecasting process.  GCM simulations of the 
20th and 21st centuries have been performed with several models as part of the IPCC 
Fourth Assessment Report (AR4) (IPCC, 2007), and the simulations are publicly 
available on the World Climate Research Program's Coupled Model Intercomparison 
Project (WCRP CMIP-3) Multi-Model Dataset Archive (Meehl et al., 2007).  For our 
work, we selected the Goddard Institute of Space Studies (GISS) Model E (Schmidt et 
al., 2006), the Meteorological Research Institute (MRI) of Japan’s model (Yukimoto et 
al., 2006), the Canadian Climate Center (CCC) model (Scinocca et al., 2008), the 
Geophysical Fluid Dynamics Laboratory (GFDL) model (Delworth et al., 2006), and the 
United Kingdom Meteorological Office (UKMO) model (Johns et al., 2006)– and one 
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scenario of future climate forcing – a simulation of the 20th century and the 21st century 
using the A1B scenario.  This comprises moderate increases in population and GHG 
emission during the 21st century, and the simulated climate tends to lie near the middle of 
the various GCM runs (IPCC, 2007).  The GCMs reproduce the southeastern temperature 
well, clustering about the observed value (Table 2.1a), while all five have a dry bias for 
precipitation.   The overall comparison is good, however, so we feel these GCMs are 
adequately representing the southeastern US.  All five GCMs call for average 
temperature increases of 1-3ºC from the 1950s to the 2040s in the Southeastern U. S. 
under this scenario (Table 2.1b), with two GCMs predicting a reduction in precipitation 
and the other three predicting an increase.  Therefore, the use of all five GCMs in 
developing downscaled statistics provides an appropriate range of possible future 
climates.  The GCM meteorology was bilinearly interpolated to the various stations 
within the basin to create an interannual time series of monthly-mean GCM values at 
those stations.  We use GCM values from 1950-1990 for training, and the target future 
years are 2040-2049.  This provides us with a scenario that is far enough in the future to 
experience climate change but near enough to be relevant to resource planners who may 
be required to develop and implement adaptive strategies.   

Table 2.1.  a) Temperature and precipitation values averaged over the Southeast 
(90W to 75W, 30N to 37N) for the five GCMs and observations from the NCEP 
reanalysis (Kalnay et al., 1996), both over the period 1950-1999.  b) Changes in the 
GCM between the 2040s and the 1950s, averaged over the Southeast (90W to 75W, 
30N to 37N).

The local meteorological observations used for training were obtained from the 
Integrated Surface Hourly (ISH) dataset1, compiled by the National Climatic Data Center 
(NCDC).  This includes data throughout the 20th century, so we will have a large amount 
of information to train our GCM ensemble.  Three stations within the basin were selected 
– Dalton, Jasper, and Rome, all in northern Georgia (Fig. 2.1). All have complete records 
for the training period, and have data for both temperature and precipitation.  Monthly-
mean time series were created for temperature and precipitation for both the GCMs and 

                                                          
1 http://gcmd.nasa.gov/records/GCMD_gov.noaa.ncdc.C00532.html
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the historical data for the years 1950-1990.  These were then used as input for the 
‘training’ phase and the ‘prediction’ phase.  

Figure 2.1.  Upper Coosa river basin, along with the three stations to be used in the 
downscaling.  The watersheds to be simulated are 1) the Upper Coosa, 2) Conasauga, 
3) Coosawattee, and 4) Etowah. 

Datasets of downscaled GCM projections for the 21st century have been developed for an 
array of stations in the U.S.2, but we want to study the process and determine how the 
downscaling actually acts to change the GCM climate and estimate how well the process 
can create accurate projections.  The downscaling method must be tested using existing 
data to confirm that the relationships developed in training still hold when applied to 
projection.  All methods for determining a relationship between predictors and a 
predictand are susceptible to overfitting, in which a strong relationship between the 
training input and output is established, but which applies poorly to new input data 
(Fogel, 2000).  To ensure that overfitting does not occur, we will apply a leave-one-out 
cross validation to the downscaling (Michaelsen, 1987).  

                                                          
2 http://cida.usgs.gov/climate/hayhoe_projections.jsp
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3.0  Downscaling Process

3.1   The CDF Method

In this process, the interpolated GCM time series at the station site is corrected based on 
the observed station data, and the same correction is applied to the GCM projections for 
the 21st century.  Because the small-scale processes unresolved by GCMs are often 
responsible for extreme values in the meteorological record, GCMs are far less likely to 
produce an extremely hot July or rainy November.  Applying a seasonal bias correction 
alone (for example, calculating the January temperature bias as the difference between 
the GCM January climatology and the observed climatology for that month, and 
subtracting it from the future GCM January time series) will not mitigate this 
shortcoming.  The downscaling should be designed to correct not only the bias, but also 
the probability of an extreme value, giving the downscaled GCM extreme monthly values 
with the same likelihood as the observed data.   

This process, primarily based on the work of Wood et al., (2002), begins with a time 
series of gridded GCM monthly-means for the variable of interest interpolated to the 
desired station for both an historical period (1950-1990) and the targeted future years 
(2040-2049).  The months are segregated, and the 41 years are ranked from smallest to 
largest for each month, for both the GCM and observed data (Fig. 3.1a).  For each GCM 
value (e.g., the 25th ranked value), a correction factor is determined to ‘adjust’ the GCM 
value to the corresponding observed value (the 25th observed ranked value).  This process 
produces a function that transforms each GCM value into the corresponding observed 
value (Fig. 3.1b), which is then applied to the future values.  A linear interpolation 
between successive values is applied to find the conversion factor needed for any input 
value, and a check indicates that, for each downscaled value, the value represents the 
percent ranking of the observed data that matches that of the original GCM value.

The conversion function only extends to the highest GCM value.  Since the future will 
often contain values higher than this, we need a way to transform these to be consistent 
with the observed relationship between the historical GCM run and the observed data.  
We apply the method of Wood et al., (2002) – for temperature, we assume a Gaussian 
distribution for the observed and GCM data, and use this to perform a probability 
matching between the two.  For precipitation, a Gumbel distribution is assumed.  (A χ2

test indicates that the observed and GCM values are well described by these 
distributions.)  As an example, if a future GCM temperature value is determined to be 
ranked at 99.712% probability (based on the Gaussian properties of the historic GCM 
results), the observed value with that same probability (based on the observed Gaussian 
properties) is selected as the downscaled value.     
      
We will test this through a ‘leave-one-out’ cross-validation, by which each missing rank 
is recreated with a transformation developed without that value.  The evaluation process 
begins with the selection of a single rank from the 20th century (e.g., the lowest value, 
selected from the ranked 41 values) to serve as the ‘missing’ rank, which is not used for 
the training.  The input-output relationship generated by the training is then used to 
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‘predict’ the observational data for the missing rank.  This process is repeated with 
another missing rank (e.g., the next lowest value) until every year of the training period 
has had an opportunity to serve as the missing rank and be estimated by a process that did 
not train on it.  The result comprises 41 projections of local observations for each month 
that can be used to evaluate how well the trained scaling process can recreate the 
observed data.  

Figure 3.1.  a) CDF of 20
th

century January temperature in Dalton for the original 
(solid line) GISS GCM and the observed station data (dotted line), b) Difference 
between the two curves as a function of the GCM temperature.   

In one example, the GISS July temperature (Fig. 3.2) and precipitation (Fig. 3.3) at 
Dalton, GA is first recreated for each missing rank (using the cross validation).  The 
cumulative distribution function (CDF) of the temperature shows that the original GCM 
CDF was not only too cool, but also failed to capture the warmest temperature extremes 
(Fig. 3.2a).  The downscaled distribution fits the observed distribution much better.  
When these same corrections are applied to the GCM for the future period (Fig. 3.2b), the 
GCM time series at this station was altered to produce a new, warmer projection, with 
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greater deviations from the mean (Fig. 3.2c).  For precipitation, the mean was lowered, 
while the range was expanded to allow for greater variability in the rainfall time series 
(Fig. 3.3a,b).  The downscaling translates into a reduced projection of 21st century 
precipitation (Fig. 3.3c).      

Figure 3.2. a) Temperature CDFs for the observed July (dashed line), the GISS GCM 
July (solid line), and the downscaled GISS GCM July (dotted line). b) Scatter plot 
comparing the original GISS GCM July temperature with the downscaled GISS GCM 
temperature, both for the 20th century (open circles) and for the 2040s (filled circles). c) 
comparison of the original GISS (solid line) and the downscaled GISS (dotted line) July 
temperature for the 2040s.   
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Figure 3.3.  As in Fig. 3.2, but for precipitation. 
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3.2 Cross Validation

The cross validation was applied to all 5 GCMs for each station.  Each month was acted 
on separately, with a different correction applied to each.  The goal is to ‘predict’ each 
month of the missing rank by applying the same correction to the GCM for that year 
according to how the process corrected the other years.  The process will be judged 
according to how well the statistics of the downscaled distributions resemble those of the 
observed distributions.  Since we are interested in recreating the extremes values, we 
validate the average of ranks 1-5 (bottom 10%) and ranks 37-41 (top 90%) values for the 
downscaled GCM.    

For the GISS model (Fig. 3.4), we see that the hottest GCM values were originally too 
warm in winter (Fig. 3.4a) and too cool in summer, which is corrected in the downscaled 
CDF.  The coolest temperatures were mostly too warm and the downscaling process has 
altered made their ranges are much closer to the observed ranges.  The GCM 
precipitation also showed a seasonal bias, with the wettest years too dry in winter and too 
wet in summer, also corrected with the downscaling (Fig. 3.4c).  Summertime droughts 
were too wet (Fig. 3.4d), and are brought into line with the observed values through the 
downscaling.

Unlike the GISS, the CCC GCM had hottest and coldest temperatures that were too cold 
in winter and too warm in summer, with a very low bias after the downscaling (Fig. 
3.5a,b).  The wettest precipitation values were too low, and the driest values were too wet 
(Fig. 3.5c,d), and these were improved by the downscaling (Fig. 3.5c,d).  With the MRI 
(Fig. 3.6) – we see hottest temperatures too low in winter and summer (less so in the 
latter) (Fig. 3.6a), with coldest temperatures that were too low in winter and too warm in 
summer (Fig. 3.6b).  Wettest values were too low throughout the year, with driest values 
too wet (Fig. 3.6c,d).  The downscaling has greatly reduced the errors. 

The GFDL model has hottest temperatures that are too warm in summer and much colder 
in winter, with coldest temperatures that are too low overall, especially in winter (Fig. 
3.7a,b).  The highest precipitation values tended to be slightly too low, with driest values 
too wet in spring and too low in fall (Fig. 3.7c,d).  We see how the downscaling has 
corrected these.  The UKMO GCM has hottest temperatures too high in summer and too
low in spring and fall (Fig. 3.8a), with coldest temperatures too low in winter and too 
warm in summer (Fig. 3.8b).  The wettest years are too dry for most of the year, and the
driest years are much too wet (Fig. 3.8c,d).  As before, the downscaling has greatly 
improved these values.  
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Figure 3.4.  a) Monthly bias for the original (solid) and downscaled (open) GISS GCM 
90th percentile temperatures for Dalton (diamond), Jasper (triangle), and Rome 
(square). b) as in a), but for lowest 10th percentile. c) ratio of modeled to observed 
precipitation for the original (solid) and downscaled (open) GISS GCM 90th percentile 
for Dalton (diamond), Jasper (triangle), and Rome (square), d) as in c), but for the 
lowest 10th percentile.  Note that the downscaled data is the product of a cross-
validation process, so each predicted month can be considered independent of the 
months used for forecasting.
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Figure 3.5.  As in Figure 3.4, but for the CCC model. 



SRNL-STI-2013000265
Revision 0

13

Figure 3.6.  As in Figure 3.4, but for the MRI model. 
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Figure 3.7.  As in Figure 3.4, but for the GFDL model. 
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Figure 3.8.  As in Figure 3.4, but for the UKMO model. 
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3.3 The 1990s

As another test, we apply this process to project future temperature and precipitation 
values for the period 1991-1999 for Jasper, GA, for comparison to the actual data from 
that time.  The CDF correction term will now come from the entire period 1950-1990, 
with no missing years, and this will be used to transform each GCM value into a 
downscaled value that represents the observed value with the same percentile ranking.  
This is applied for all 5 GCMs, and the results are averaged over all 9 years.  In Fig. 3.9, 
the observed data are plotted along with the average GCM values for all 5 GCMs, 
allowing one to estimate the spread of the GCM ensemble.  

The observed temperature is captured reasonably well in both the original and 
downscaled GCM curves (Fig. 3.9a), but the spread in the downscaled GCM is much 
smaller than that of the original GCM (Fig. 3.9b), suggesting that the downscaled 
ensemble will be more accurate.   For precipitation (Fig. 3.9c,d), the downscaled 
ensemble also does better at narrowing the range of possibilities while still capturing the 
actual value.

3.4 The 21st Century

For the 2040s, this process is repeated by calculating the correction factors using all 
historic years (i.e., no missing years), and these same optimal corrections are applied to 
the GCM projections for the 2040s to adjust the values for the future.  These will 
necessarily reflect the corrections seen in Figs. 3.4-3.8.      

Tables 3.1 and 3.2 summarize the temperature and precipitation changes, respectively, 
between the observed 1950s and the simulated 2040s for the 5 GCMs, both downscaled 
and unscaled.  The unscaled GISS-projected temperature increases are reduced in two 
seasons when downscaled, but actually increased in the other two.  For the CCC, 
projected winter and springtime temperature decreases become increases after 
downscaling, as do those for the MRI and GFDL (MAM only).  For the UKMO model, 
relatively large temperature increases are maintained when the downscaling is applied.  

Decreases in precipitation seen in the unscaled GCMs become small to moderate 
increases in the downscaled GCMs for all 5 models except UKMO, and large 
summertime increases often become small increases (JJA for GISS, MRI, GFDL) or 
decreases (JJA for UKMO).  These differences in predicted precipitation should be 
reflected in the calculated flows. 

Changes in the direction, not just the magnitude, of the climate shifts when downscaling
is done tend to be uncommon when large areas (e.g., the Mississippi or Amazon basins) 
are studied (Hagemann et al., 2011).  However, they can be more likely when much 
smaller areas are studied, as we see here.

For comparison with the statistical downscaling, a dynamically-downscaled dataset from 
the NARCCAP depository was downloaded, and values averaged over the Southeast.  We 
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selected the global Community Climate System Model (CCSM) coupled to the Canadian 
Regional Climate Model (CRCM) (Mearns et al., 2007).  Tables 3.1 and 3.2 show how 
this compares to the scaled GCM.  The coupled dynamic model shows much larger 
changes for both variables than either the statistically downscaled or unscaled GCM 
projections.  Note that both the scaled GCM results (all models except the UKMO) and 
the CRCM results call for wetter conditions year-round, with the CRCM and the scaled 
GISS calling for cooler winters, while the downscaled results for the other four GCMs 
show warmer year-round conditions.

Figure 3.9.   Comparison of the 1991-1999 mean for the Jasper observed 
temperature (thick dashed line), along with the 1991-1999 means from the 5 
GCMS (thin lines) for a) the original GCM temperature, b) the downscaled GCM 
temperature, c) the original GCM precipitation, and d) the downscaled GCM 
precipitation. 
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Table 3.1.  Seasonal mean temperature changes (C) averaged over the three stations 
between the observed 1950s and the modeled 2040s for the original GCM, the scaled 
GCM, and the CCSM/CRCM coupled model. 
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Table 3.2.  As in Table 2 but for the seasonal total precipitation (mm).
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3.5 Disaggregation

These monthly means must be ‘disaggregated’ to create hourly time series if they are to 
serve as input to the hydrology model.  This is done by the selection of an ‘analog’ for 
each of the 120 (12 months x 10 years) future months, similar to the process of Salathe 
(2005).  For each of the future months, monthly-mean downscaled precipitation values 
from the GCM are compared to historic values, and the one with the closest match is 
selected as the analog for that month (e.g., for the GISS GCM at Dalton, March of 1960 
was selected as the analog for March of 2045).  (The same month of the year was always 
used, and, for February, each year is matched according to whether it is or is not a leap 
year.)  This process generally assumes that an extremely rainy month in the future will 
qualitatively resemble a rainy month of the past, which does limit its ability to represent 
unprecedented events, but allows for the increased occurrence of currently rare events.  
The hourly time series from the analog was adjusted so that the monthly mean matched 
that of the downscaled month: by addition for the temperature and multiplication for the 
precipitation (Fig. 3.10).  The disaggregation process was then repeated using the 
monthly-mean temperature values from the original, unscaled GCM, so that we may see 
the effects of downscaling versus using the original GCM.  The final product was ten (5 
scaled GCMs and 5 unscaled GCMs), 10-year time series of hourly temperature and 
precipitation.   

Figure 3.10.  Hourly Dalton March temperature data from 1960 (observed data
[solid black line], mean = 4.19°C [dashed black line]), and adjusted to represent 
March of 2045 (scaled GISS GCM [solid gray line], mean=13.21°C [dashed gray 
line]). 
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4.0  Hydrologic Effects

The watersheds upstream from Plant Hammond include the Conasauga, Coosawattee, 
Oostanaula and Etowah Rivers, as shown in Figure 2.1.  The Better Assessment Science 
Integrating Point and Nonpoint Sources (BASINS) (U.S. EPA, 2007) software was used 
to develop a runoff model for each watershed.  BASINS integrates a Geographic 
Information System (GIS) data analysis and a modeling system to support watershed-
based analyses.  In this study, BASINS 1) downloads the digital elevation, hydrography, 
meteorological and stream flow data, as well as the soil and land use data from various 
web sites, 2) delineates the watershed, and 3) generates input files for the watershed 
runoff model, HSPF (Hydrological Simulation Program – FORTRAN) (Bicknell et al., 
2005).  For our simulation, we will use current land surface data, choosing to focus on the 
flow changes caused by the changes in meteorology.   

The model must first be calibrated and tested for each sub-basin, and this was done for 
each of the four.  The Coosawattee river (in the Coosawattee basin) is impounded by 
Carters Dam, forming Carters Lake (completed in 1977), and the Etowah river (in the 
Etowah basin) is impounded by the Allatoona Dam (completed in 1950).  The stream 
flows of both rivers are influenced by dam operations.  Therefore, the Coosawattee and 
Etowah River watershed runoff models must be developed with data from the period 
prior to dam construction to avoid the influence of the dam operation.  

There were no meteorological and observed flow data having the same time span 
common to all four watersheds prior to the construction of dams, so the HSPF calibrated 
runoff model was developed for each sub-basin separately.  Then, the four derived HSPF 
runoff models were combined to form a single HSPF runoff model of the entire Coosa 
River watershed to simulate the runoff flow upstream from Plant Hammond, representing 
the watersheds’ natural flows as they were before dam construction.  The watershed 
parameters derived from the individual HSPF runoff model calibration were maintained 
in the combined HSPF runoff model.  

We describe in detail how the calibration was done for the Conasauga watershed, and 
then show how accurately all 4 simulations were able to reproduce historical flow data.  
The Conasauga River originates in Murray County, GA, flows northward into Tennessee, 
where it flows briefly westward before turning back south and flowing into Murray 
County again.  From there the Conasauga flows southwestward into Gordon County, 
where it converges with the Coosawattee River to form the Oostanaula River 
(GeorgiaInfo, 2010). The watershed lies upstream from the USGS gage station 02387000 
(Latitude: 34º40’00”N, Longitude: 84º55’42”W), which will be used for validation of the 
watershed simulation.

4.1  Determination of the HSPF Spin-Up Time

The initial soil moisture profile affects the infiltration of precipitation and the available 
precipitation for watershed runoff.  For most simulations, the initial soil moisture profile 



SRNL-STI-2013000265
Revision 0

22

is unknown and is set by the program with an artificial default value.  The impact of the 
initial soil condition decreases as the HSPF simulation duration increases, indicating that 
a proper spin-up time can be used to eliminate the error associated with an unknown 
initial soil condition.  To determine the appropriate spin-up period, the HSPF model was 
first set to simulate the Conasauga River watershed runoff flow.  Two cases were 
simulated with the same initial conditions but different start times - Case 1 was simulated 
from January 1, 1980 to December 31, 1990, and Case 2 was simulated from January 1, 
1982 to December 31, 1990.  Both start with the same soil moisture (an artificial initial 
soil condition set by the program), so Case 2 will have a different value at its start 
(January 1, 1982) than Case 1 (started in 1980) has at that same date.  The simulated 
daily flows for Case 2 are initially lower than Case 1, but the magnitude of the difference 
decreases as simulation progresses.  The “memory” effect of the initial soil condition 
becomes negligible after two-years.  Therefore, in this study, the results of the first two 
years of simulation are discarded, for a simulation of the years 2042-2049.

4.2 Test Flow Simulations

To validate the HSPF runoff model, the calibrated Conasauga watershed was used with 
meteorological observations from Dalton, GA to simulate runoff from January 1, 1991 to 
December 31, 2001.  Fig. 5.1a shows the comparison between the USGS gauge-observed 
(GA092493) and the simulated daily flows, and while we see periods of excessive peak 
flow, overall the agreement is good.  The mean error is -0.22 m3/s, the mean absolute 
error is 19.32 m3/s, and the mean square error is 55.66 m3/s.  A cumulative distribution 
function of the observed and simulated flows (Fig. 5.1b) shows how the probability of 
high and low flows is similar in the model and observations.  

This determination of spin-up and parameter calibrations was done for each of the 4 sub-
basins, and the flow data was similarly compared to gauge observations.  The differences 
between the observed and the simulated flow volume are less than 10% for all 4 
watersheds.  Given the good agreement between the observed and simulated flows, we 
are confident that the BASINS simulations are producing good representations of the 
hydrology within the watershed.  

5.0  River Flow Simulation

The calibrated HSPF runoff models derived in Section 4 were combined to form a single 
HSPF runoff model which simulates the upper Coosa River runoff flow for the entire 
basin upstream from Plant Hammond.  The projections of temperature and precipitation 
were then used as input for the BASINS model to simulate river flow for the upper Coosa 
basin for the target 10-year period (2040-2049).  Disaggregated hourly 
meteorology for the 2040s, derived from the 5 GCM models (both scaled and unscaled), 
was used as input to create ten projections.  Fig. 5.2 shows a comparison of the five sets 
of simulated flow for the last 8 years of the 2040s (96 months).  The effect of using the 
downscaled GISS model is generally to increase the flows, and the effect is more 
pronounced for the CCC, MRI, and GFDL models.  The effect is weaker for the UKMO 
model.   
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The simulated annual flow cycles for the downscaled GCMs are generally greater than 
the historical pre-dam flows, particularly in winter (Fig. 5.2a), with the peak shifted 1 
month later in 4 of the 5 models.  Without downscaling, the peak flows are substantially 
lower in 3 of the 5 GCMs, and the range of variability among the GCMs is greater,
especially during the summer and fall.  Overall, Fig. 5.2 makes clear that using the 
unscaled GCM would lead one to believe that future winter flows will fall well below the 
current levels, often by large percentages, while the use of downscaled GCM results in 
flows closer to the historic levels.

Figure 5.1.  Simulated (red) and observed (black) Conasauga River watershed daily 
mean flow at USGS02387000, represented as a) a time series, and b) a probabilistic 
distribution. 
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Figure 5.2.  Flow at mouth of basin upstream from Plant Hammond for observed 
periods 1938-1949 (thick black line) with the simulated period 2042-2049 for the a) 
downscaled and b) unscaled GCMs.
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Figure 5.3 shows the simulated and observed probability distributions for the peak 
(February to March) flows over the eight- year period developed with the downscaled 
and undownscaled GCM , and the same pattern is visible in each – relative to the 
observations, the probability overall is shifted from the highest flows (e.g., 900m3/s 
becomes less likely) to the lowest flows (200 m3/s becomes more likely).  For the 
downscaled flows, the latter effect tends to dominate, leading to generally greater peak 
flows (Fig. 5.3a), while the former effect is much greater for the undownscaled flows, 
leading to the steep decline in peak flows seen in Fig. 5.3b.  

6.0 Conclusions

Large scale climate simulations have become a fundamental part of climate projection, as 
only these models can encompass the global processes (jet streams, El Nino, stratospheric 
dynamics, etc.) that affect regional climate.  These cannot form the sole basis for a 
regional climate projection, however, as the coarse grid spacing will necessarily miss the 
small-scale surface and atmospheric features that can lead to large meteorological 
differences between two relatively nearby locations.  Results from the five GCMs used in 
this study performed poorly in recreating the statistics of temperature and precipitation 
observed during the 20th century, especially with respect to the year-to-year variability, 
and this flaw can be assumed to exist in GCM projections of the 21st century as well.  

Many downscaling methods have been developed to map a GCM input onto an observed 
output, and we selected one that involves a relatively straightforward mathematical 
transformation that is nevertheless capable of accurately recreating the statistics of the 
20th century.  The application of this statistical downscaling process was used to bring 
GCM simulations of the 20th century in line with observations, both by fixing biases (that 
often varied seasonally) and increasing the variability of the GCM to allow for the 
possibility of extremely warm, cool, wet or dry months (which were often absent in the 
GCM).  This correction was then applied to future GCM variables for a more accurate 
projection.    

Furthermore, this was used to predict the flow within the Coosa River basin upstream 
from the Plant Hammond for that future period.  We also created such a simulation with 
unscaled GCM results taken from the original simulations.  The contrast between the two 
was clear – the use of downscaling led to significantly greater flows in the basin than 
flows determined from the unscaled GCM, which produced strong decreases in basin 
flow.  A water management plan based on the latter would require more planning and 
expense than one based on the former.  

As adaptation to climate change becomes a more prominent goal for decision makers 
responsible for water and other natural resources, downscaled climate data will be more 
in demand.  The method applied for this work has shown itself to be computationally 
inexpensive and useful for identifying and correcting the large errors in GCM depictions 
of the local-scale climate.  
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Figure 5.3.  Probabilistic distributions for the Feb.-Mar. historical flow and the Feb.-
Mar. GCM flow for future meteorological conditions for the downscaled flows (top), 
and the unscaled flows (bottom).
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