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• Background 
• Experimental setup 
• Aqueous Geochemistry 
• Mineral Alterations 

• Illitization (or lack thereof). 

• Zeolite alteration 

• Sulfide decomposition 

• Geochemical modeling 
• Conclusions 

Outline 
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• Evaluate various generic geological 
repositories  features for used nuclear fuel 
disposal. 

• Waste canisters are surrounded with 
bentonite buffer acting as a barrier. 

• Bentonite buffer performance confirmation 
is necessary. 

Background 

Investigation Focus 

Characterize bentonite buffer stability at nuclear repository conditions. 
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• Very low permeability 

• Swelling capacity to self heal upon crack formation. 

• High affinity for radionuclide adsorption. 

Why bentonite? 

Pusch, R. (2001) SKB TR-01-08 
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Bentonite and origins 

 
 

Active Bentonite Mining Area 

Area of Noncommercial Bentonite Occurrence 

Late Cretaceous volcanism 
Ash deposited in Mowry Seaway 
Alkaline groundwater devitrified 
volcanic ash. 
Na-montmorillonite (70-90 wt.%)  

Courtesy of Bentonite Performance Minerals 

Courtesy of Bentonite Performance Minerals 
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Bentonite characteristics 

Montmorillonite 72 
Clinoptilolite 13 

Feldspar 9 
Biotite 3 

Cristobalite/Opal-C 2 
Quartz 1 
Pyrite 0.4 

 Montmorillonite 
 (Na.31,Ca.04,K.01)(Al1.53,Fe.21,Mg.18,Ti.01)(Si3.98,Al.02)O10(OH)2 
 

 Clinoptilolite 
 (Na4.30,Ca0.39,K0.14,Mg0.20)(Si29.82,Al6.28,Fe0.03)O72∙nH2O  

 Reducing horizon 
Pyrite 
Ferrous-Fe dominant (higher layer charge) 

 Bentonite Mineralogy, wt. % 

clinoptilolite 

pyrite cube pyrite framboid 

montmorillonite 
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Experimental conditions 

Heating Conditions 
• ~160 bar; 120 to 300 ºC; 5 weeks 
• ~160 bar; isothermal 300 ºC; 6 weeks 

Experimental Reactants  
• Unprocessed, Wyoming bentonite 
• K-Na-Ca-Cl-based solution 

• Synthetic Stripa V2 (69-4) groundwater 
•  ~1,900 ppm total dissolved solids 

• Brine/bentonite ratio of ~9:1 
• Reducing redox 
• Inclusion of metal plates 

• 304 SS, 316 SS, Low-C Steel, Copper 

Analytical Techniques  
• Mineralogical (XRD, XRF, SEM) 
• Aqueous (ICP, Alkalinity) 
• GWB Geochemical Modeling 
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Aqueous Geochemistry 
Na-K exchange 

SiO2 evolution 

Al availability 
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Ramped: solution evolution 

 K+ is exchanged for Na+ 

 Na+ release dependant on K+ 

 Na+ conc. sustained by exchange 

Na 

K 

Si 

 SiO2 saturation 
 Temperature dependant 
 Cristobalite saturation 
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Isothermal, 300 oC: solution evolution 

 K+ is exchanged for Na+ 

 Na+ release dependant on K+ 

 Na+ conc. sustained by exchange 

Lower starting K+ 

Na 

Si 

SiO2 saturation 
 Cristobalite saturation 
 Constant concentrations 

K 
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Al3+ is variable 
 Temperature dependant 
 Shows initial increase at 300 ºC 
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Mineral Alterations 
Illitization (or lack thereof) 

Zeolite alteration 

Sulfide decomposition 
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Major mineralogical alterations 

Interface:  Strong influence from “waste container”  
 Fe-rich phyllosilicates (saponite/chlorite) on steel  
 Chalcocite (Cu2S) on copper 
 
Bulk:  1) Zeolite alteration  
  Clinoptilolite 13 wt. %  2 wt. % 
  Analcime 0 wt. %  3 wt. % 
 2) H2S(aq,g) formation 
  Pyrite decomposition  0.4 wt. %  N.D. 

 3) Silica formation 
  cristobalite/opal-C 2 wt. %  4 wt. % 

 4) Authigenic illite formation ??? 
 5) Feldspar overgrowths ??? 

Fibrous illite? 

Plagioclase overgrowths? 
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Montmorillonite ‘stability’ 
Ramped 120 to 300 ºC Isothermal 300 ºC 

 No illitization via I/S intermediate 
 K-enrichment of montmorillonite 

Na ↔ K exchange buffering the solution chemistry 
 300 ºC experiments yielded cristobalite/opal-C in clay fraction 

(Na.28,Ca.05,K.06)(Al1.49,Fe.24,Mg.18,Ti.01)(Si3.98,Al.02)O10(OH)2 (Na.31,Ca.05,K.02)(Al1.46,Fe.26,Mg.19,Ti.01)(Si3.83,Al.17)O10(OH)2 
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Smectite ~ -0.33 
(Na.31,Ca.02)(Al1.67,Fe.20,Mg.13)Si4O10(OH)2 

Illite ~ -0.90 
K.90(Al1.67,Fe.20,Mg.13)(Si3.43,Al0.57)O10(OH)2 

Δ, t 

Release 
+ Na+

(aq) 
+ H2O 

+ SiO2(aq) 

Consume 
+ K+

(aq) 
+ Al3+

(aq) 

Al 

K 

 
 
 
 
 
 
 

R-1 I/S mixed-layer 
S 

S 

S 

S 

I 

I 

I 
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 Solution chemistry falls within illite field, but illitization does not occur. 
 Saturated with respect to cristobalite, but only 2% cristobalite. 

 Smectite and zeolite probably controlling Si concentrations. 
 Controls on illitization not well established. 
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Zeolite dissolution-recrystallization 

(Na0.64,Ca0.05)(Si2.23,Al0.77)O6∙1H2O (Na4.30,Ca0.39,Mg0.20,K0.14)(Si29.82,Al6.28,Fe0.03)O72∙21H2O 

Clinoptilolite Analcime 

Δ, t 

Release 
+ K+

(aq) 
+ H2O 

+ SiO2(aq) 

Consume 
+ Na+

(aq) 
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 Initial formation occurs as clusters of “nm” crystallites 
 Ripens into 5-10 μm, subhedral trapezohedra 
 Si/Al 2.83 to 2.97 during ripening process 
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 Solution chemistry converges to a uniform composition within high-silicon 
analcime stability field early during reaction 

 Saturated with respect to cristobalite 
 Do not see analcime until long-term, 300 ºC reaction   
   suggesting kinetics is determining the occurrence 
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• Sulfide formation 

• Odor evolved with steel. 

• No odor with copper. 

• Minor abundances, but serious 
implications for repository system. 

Pyrite decomposition 

FeS2(pyrite) + 2H+ + nCl- + H2O(aq)  FeCln2-n + 2H2S(aq,g) + ½O2 

FeS2(pyrite) + H2O = Fe2+ + 1/4 H+ + 1/4 SO4
2- + 7/4 HS- 

H2S(aq) = H+ + HS- 

H2S(g) = H+ + HS-  

Sulfide < 0.5 wt.% 
Total sulfur < 1 wt.% 

SKB Restrictions 
(Börjesson et al., 2010) 
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 Na-bentonite buffers the Na/Ca/K groundwater concentrations. 

 High Na+ activity and restricted K+ supply inhibit/retarding illitization. 

 Clinoptilolite to analcime occurs in a High-Si environment. 

 Produces a -17% volume change (~2 % bulk bentonite volume). 

 Sequester Al (zeolites, feldspars) appears to inhibit illitization. 

 Mineral dissolution/alteration appears to control the silica activity. 

 

 Waste canister material seem to have no effect on bentonite. 

Key Observations 
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 Montmorillonite did not undergo illitization (T > 300 oC) under the 
experimental conditions. 

 The environment surrounding the bentonite is key in controlling the 
mineral reactions, subsequently the bentonite stability. 
• K+, Na+, silica activities are key to maintaining a viable montmorillonite 

 Silica controlled by the entire system, not just illitization. 

 Have to evaluate the entire system, before determining the long-term 
stability of bentonite. 

 Need good and representative thermodynamic data and mineral 
compositions for accurate long-term modeling. 

Conclusions 
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Thank You! 

Questions? 
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from Marty et al., 2010 
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 Mechanical/physical properties 
 Develop a 2% buffer volume loss or increased porosity 

 Release H2O and SiO2 (quartz, cristobalite, opal, amorphous) 

 

 Radionuclide sorption properties 
 Clinoptilolite readily exchanges Ba, Cs, and Sr 

• Minor surface sorption of actinide complexes 
• Negligible anion sorption/exchange 

 Analcime affect exchange of the alkali and alkaline earths 
• Minor effect on actinide sorption 
• Negligible anion sorption/exchange 

Implications to barrier properties 
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Hypothetical situation 

dV = -17.1% (quartz) 
@ 2000 kg/m3 bentonite blocks 
-2.2 % volume change of bulk buffer system 

1) increase in pore volume 
2) total volume loss (compaction) 

11.9 m3 bentonite 
23,800 kg bentonite 
2,000 kg/m3 blocks 

1.75 m 
Modeled from SKB TR-10-15 
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