
par o

Parallel Analysis Tools and New Visualization Techniques 
for Ultra-Large Climate Data Sets (ParVis)

Argonne National Laboratory: Robert Jacob, Jayesh Krishna, Julian Grindeanu, Danqing
Wu, Tim Tautges, Mike Wilde, Sheri Mickelson
Sandia National Laboratory: Pavel Bochev, Kara Peterson
Pacific Northwest National Laboratory: Jeff Daily, Jian Yin
National Center for Atmospheric Research: Don Middleton, Mary Haley, David Brown,
Richard Brownrigg, Wei Huang, Dennis Shea
University of California-Davis: Kwan-Liu Ma, Jinrong Xie



Summary

ParVis was a project funded under LAB 10-05: “Earth System Modeling: Advanced 
Scientific Visualization of Ultra-Large Climate Data Sets” . Argonne was the lead lab 
with partners at PNNL, SNL, NCAR and UC-Davis.

A primary focus of ParVis was introducing parallelism to climate model analysis to 
greatly reduce the time-to-visualization for ultra-large climate data sets. Work in the first 
two years was conducted on two tracks with different time horizons: one track to provide 
immediate help to climate scientists already struggling to apply their analysis to existing 
large data sets and another focused on building a new data-parallel library and tool for 
climate analysis and visualization that will give the field a platform for performing 
analysis and visualization on ultra-large datasets for the foreseeable future. In the final 2 
years of the project, we focused mostly on the new data-parallel library and associated 
tools for climate analysis and visualization.

ParGAL

Our library for processing ultra-large climate data on native grids is called the Parallel 
Gridded Analysis Library (ParGAL) and its development was the main focus of the final 
2 years of work.

Refactoring: A careful examination of the existing ParGAL algorithms was conducted 
to extract generic software behavioral patterns and techniques to make the code more 
extensible and readable. This work involved introducing new data structures to 
encapsulate data residing in the mesh and manipulation of the data. The existing 
algorithms were completely rewritten using the new data structures used for representing 
data and software design patterns like iterators that help in traversing and manipulating 
the data. There was no significant performance impact due to the redesign of the 
algorithms. However, the algorithms now use better software design concepts and are 
more easily extensible to new meshes (grids).

New functions: two new algorithms, dim_sum_n() and dim_product_n(), were added to 
the existing list of algorithms supported by ParGAL. The dim_sum_n() algorithm 
computes the sum of a variable's given dimension(s) at all other dimensions and the 
dim_product_n() similarly computes the product of a variable's given dimension(s) at all 
other dimensions.



MOAB/ParGAL developm ent

We have made several changes to MOAB to facilitate the development of ParGAL.

The parallel climate data reader was refactored inside MOAB, to separate different data 
formats supported, and to allow adding more data formats. Initially, only FV, Euler and 
HOMME grids were supported. Support for MPAS reader GCRM grids were added 
conforming to this new design. A GCRM reader, writer, and test suite were successfully 
added to MOAB. The GCRM grid is now a fully supported addition to the MOAB 
software.

The initial MPAS reader used trivial partitioning to balance the load on each task. This 
approach worked fine for meshes with 200K cells, but it could not process in parallel the 
65 million element mesh (MPAS 3km glogal grid), due to the very bad locality of data in 
the file. A new partitioning technique that leveraged the Zoltan recursive coordinate 
bisection method (RCB), successfully read and processed in parallel the 1.1TB file (See 
Figure 1).

Figure 1: 1024 part partition of the 65M element MPAS mesh. One part is highlighted

A climate data writer was added to MOAB too, which allows saving of the results that 
can only be calculated with ParGAL so they can be exported to other analysis or 
visualization tools. The writer follows the new software design of the reader, to allow for 
easily adding new data formats. Currently, all NetCDF (NC) readers have corresponding 
NC writers (Euler, FV, Homme, MPAS, GCRM). For unstructured mesh formats, just the 
variables are written to the new files, the mesh will not be duplicated for the new file, so 
these new files output from MOAB must be used in conjunction with the original files, 
that do contain all mesh information.



Additional changes to MOAB include the ability to append new variables to an existing 
file and support for processing a time series split up over several files.

Intrepid/ParGAL algorithm developm ent

During this reporting period we continued the development, testing, and implementation 
of parallel algorithms to perform operations currently handled by NCL spherical 
harmonic functions. Parallel grid-specific algorithms for computing vorticity, 
divergence, streamfunction, and velocity potential from velocity have been implemented 
in the ParGAL library for Community Atmosphere Model (CAM) grids. For these grids 
the finite element method was used to compute L2 projections and to solve Poisson 
equations using components of the Trilinos project, including the finite element library, 
Intrepid, the linear algebra framework, Epetra, and the multi-grid solver, ML.
Algorithms corresponding to NCL spherical harmonic functions that have been 
implemented in the ParGAL library are shown in Table 1. Existing serial functions in 
NCL are available for CAM finite volume (CAM-FV) and Eulerian (CAM-Eul) grids, but 
the algorithms for computing these quantities directly on the spectral element (CAM-SE) 
grid provide new capabilities.

Table 1: Status of development and implementation of parallel algorithms for the NCL 
spherical harmonic functions._________________________________________________
NCL Function Description Status
uv2dv(F,f,G,g)

uv2vr(F,f,G,g)

uv2vr(F,f,G,g)

uv2sfvp(F,f,G,f)

Divergence from velocity field

Vorticity from velocity field

Vorticity and divergence from 
velocity field
Streamfunction and velocity 
potential from velocity field

In ParGAL for CAM-FV, CAM- 
Eul and CAM-SE grids 
In ParGAL for CAM-FV, CAM- 
Eul and CAM-SE grids 
In ParGAL for CAM-FV, CAM- 
Eul and CAM-SE grids 
In ParGAL for CAM-FV, CAM- 
Eul and CAM-SE grids

Over this reporting period the algorithms for vorticity and divergence were refactored for 
ease of use and to allow for extensions to algorithms that utilize the finite volume method 
rather than the finite element method. In addition, the mapping used to convert reference 
coordinates to physical coordinates on the surface of the sphere for the CAM-SE grid was 
changed. The previous implementation used a gnomonic cubed sphere mapping and the 
new method uses an element local mapping. By changing to an element local mapping 
the method can be used for any unstructured quadrilateral grid on the sphere where 
velocity values are located at the nodes of the grid.

The algorithms implemented in ParGAL were tested using given velocity fields with 
known vorticity, divergence, streamfunction and velocity potential and expected 
convergence under grid refinement was seen. To test parallel performance, scaling runs 
were completed on Fusion for a 0.1 degree structured CAM-FV grid with 26 vertical 
levels. The results exhibit good parallel scaling up to 256 processors as shown in Figure



2. For this high resolution grid the parallel algorithm outperforms the serial NCL 
algorithm even on a single processor, requiring only 712 seconds while execution time 
for the serial NCL spherical harmonic algorithm is 6568 seconds.

10

10 10 10 

Number of Cores
10

Figure 2. Execution time for computing vorticity from the velocity field for a 0.1 degree 
finite volume grid on the Fusion cluster at ANL.

Parallel Algorithms for MPAS Grids

We also developed a prototype algorithm for computing streamfunction from vorticity for 
an MPAS Voronoi grid using the finite volume method. The MPAS grid provides 
vorticity values (Q at the nodes of the polygon cells in the mesh (Figure 3). In order to 
compute the streamfunction (!?)we solve a Poisson equation using integration over the 
dual triangle mesh, shown in red. This algorithm has been implemented in the latest 
version of ParGAL.

Figure 3. MPAS grid with dual triangle cell shown in red.



The result from a ParGAL streamfunction calculation on the MPAS grid for a Rossby 
wave test case is shown in Figure 4, along with results from ParGAL streamfunction 
calculations for CAM-FV and CAM-SE grids for comparison. These plots illustrate the 
ability of the ParGAL library to perform computations on structured and unstructured 
grids on the sphere using both finite element and finite volume methods.

(a) (b) (c)
Figure 4. Streamfunction computed using ParGAL algorithms given cell-centered velocities 
on a CAM-FV grid (a), nodal velocities on a CAM-SE grid (b), and nodal vorticities on an 
MPAS grid (c).

Par NCL Development and Release

ParNCL (Parallel NCL) is a parallel version of the NCL interpreter that performs climate 
data analysis in parallel using ParGAL (and Intrepid) and MOAB. Additional 
development of ParNCL includes:

MPAS support: All of the ParGAL algorithms have been updated to work with data on 
MPAS grids. Results are calculated on and saved on the MPAS mesh.

Distributed Multidimensional Data Subscripting for Unstructured Grids: ParNCL now 
supports data slicing (subscripting) across time and level dimensions for variables read 
from unstructured grids (HOMME and MPAS). ParNCL continues to support 
subscripting across all dimensions for distributed data read from structured grids. 
ParNCL allows users to subscript the distributed multidimensional data read from a 
NetCDF file by specifying the beginning index, the end index and a stride (Range 
subscripting) or by explicitly providing the indices of the selection of the data in a vector 
(Vector subscripting).

Support for variable metadata: The NetCDF variables that represent climate data may 
have associated ancillary information called attributes that provides more information 
about the variable. ParNCL now supports variable attributes associated with the 
variables. The user can also add new attributes to the variables in the user script.

Support for creating new variables on the mesh: ParNCL now allows users to create



variables on the mesh using the new() function available in NCL. The data associated 
with these variables reside on the MOAB mesh and are treated (can be manipulated) as 
any other data residing on the mesh.

Miscellaneous new algorithms: A parallel version of the NCL gc_inout() algorithm that 
determines if a list of 1 at/1 on specified points are inside or outside of spherical 1 at/1 on 
polygon(s) was implemented. The new algorithms dim_sum_n() and dim_product_n() 
were added into the list of existing algorithms. ParNCL now supports versions of the 
existing algorithms that retain metadata in the result of a calculation.

Parallel NetCDF writer: ParNCL now uses the NetCDF writer implemented in MOAB to 
write data in parallel to NetCDF files. A serial NetCDF writer was also implemented to 
handle variables with data layouts that are not currently supported by the MOAB 
NetCDF writer.

We made a ParNCL beta release to the community and a 1.0 release is imminent. 

Improvements to  NCL

In this final period of the NCAR Command Language (NCL) visualization component of 
the ParVis project, the focus was on refactoring and speeding up the internal algorithms 
for generating publication-quality raster images of high-resolution structured and 
unstructured grids generated by the Community Earth System Model (CESM).

The datasets for this project included global hexagonal Model Prediction Across Scales 
(MPAS) grids generated by the atmospheric and ocean components of the CESM. Grids 
of two resolutions were included: a lower resolution grid with 2,621,442 cells 
(approximately 0.16 degrees per cell), and a higher resolution grid with 65,536,002 cells 
(approximately 0.03 degrees per cell). These grids were chosen because NCL initially 
took hours to render the lower resolution grid with numerous issues, and was unable to 
render the higher resolution grid due to the internal triangulation drawing algorithm 
exceeding its capacity.

The main tasks for this project included:

• Profiling the code to understand the bottlenecks.
• Refactoring the code to work faster in single process mode, using a general 

scheme that worked for any set of structured or unstructured grids.
• Applying parallelization for further speed-up of the general scheme.
• Ensuring that the refactored code still produced publication-quality visualizations, 

a key component of NCL.

The bottleneck was caused by a process that 1) projects the cell nodal points into the 
plane of the map projection, generating a 2D tri angulation of the projected points, and 2) 
creates a connectivity data structure that allows for quick traversal through the mesh.



Profiling this code pointed to the second step as being a major time sink, because it was 
using a binary tree that became excessively unbalanced.

For the second task, a better key-generation algorithm provided the first big performance 
improvement, speeding up the rendering of the lower resolution grid from 1.5 hours to 
just over a minute. In order to draw the higher resolution grid within the limitations of the 
tri angulation code, however, it was necessary to implement a subdivision of the grid into 
tiles. Initially this was done in data space, but this approach proved to be problematic 
when transforming into arbitrary map projections. Therefore, this approach was replaced 
with a tiling of the 2D projected space, a four-step process: 1) points are sorted into their 
respective tiles, 2) data in each tile are triangulated, 3) connectivity structures are 
generated, and 4) each tile is plotted to its own section of the in-memory raster image.
The complete image was then rendered to the output format (a square PNG image of 
either 1024 or 6000 pixels).

To ensure a high-quality PNG image, each tile was generated with a bit of overlap with 
adjoining tiles and the overlapping pixels were thrown away when the tile was inserted 
into the in-memory image. This eliminates any noticeable edge effects along the 
boundaries of the tiles.

t2m 2009-01-28_00:00:00 65536002 cells

230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325

Figure 5. Using the new tiling approach, the first ever NCL graphic of the 65 million MPAS grid was 
produced, with a rendering time of about 46 minutes in single process mode for a 1024 x 1024 pixel 
PNG image.

A final improvement to the single process performance came from the realization that, 
given the correct parameters, the triangulation routine could produce information about 
the mesh that would allow for the generation of the connectivity data structure directly in 
linear time. This eliminated the need for the intermediate generation of the binary tree



and reduced the rendering time from 46 minutes to just over 6 minutes for a 1024 x 1024 
pixel PNG image (Figure 5).

Tiling the image allowed for the introduction of parallelization through OpenMP 
directives. Some of the lower level Fortran 77 code, which relies heavily on common 
blocks, is not at all thread-safe, so for the third task, the code had to be rearranged and 
certain sections marked "critical" in order to make the parallelization work. Given these 
constraints, the code ran successfully with as many as 36 threads. However, significant 
additional improvements to the timings seem to end after more than about 16 threads.

By applying OpenMP using 6 threads, the generation time of the 1024x1024 image of the 
65 million-cell grid was reduced to about 2.5 minutes. See Table 2 for a summary of the 
observed speed-ups under different conditions. High-quality images are important to 
NCL users, so we included timing results for both 1024 x 1024 and 6000 x 6000 pixel 
images.

NCL Test Case PNG Size CPU seconds
Lower resolution grid

CPU seconds
Higher resolution grid

Before any improvements 1024 -5 4 0 0 Not possible
Before any improvements 6000 Not attempted Not possible
After refactoring, single 
threaded

1024 23.6 406.3

After refactoring; single 
threaded

6000 43.4 430.3

After refactoring; OpenMP 
applied with 6 threads

1024 15.1 175.8

After refactoring; OpenMP 
applied with 6 threads

6000 23.3 233.6

After refactoring; OpenMP 
applied with 16 threads

1024 12.0 146.8

After refactoring; OpenMP 
applied with 16 threads

6000 21.9 173.6

Table 2: A summary of the NCL speed-up rates observed when executing an NCL script to create 
color-filled PNG images of the lower and higher resolution MPAS grids.

For the final task, the quality of these images was improved by refactoring the contour 
line and label generating code to work with the tiling mechanism. These features have not 
been modified to work with OpenMP, but they will draw correctly in the context of 
splitting the mapped area into tiles.

Further improvements are possible with more refactoring of the code, including rewriting 
more of the Fortran 77 code with thread safety in mind, and parallelizing the cairo 
graphics library.



Data Compression for Ultra-Large da ta  sets

The move toward high-resolution climate models creates bottlenecks for model output 
and analysis input that cannot be solved by increasing the scale of current parallel file 
systems. Additionally, the total volume of data generated by the models will quickly 
exceed our capacity to store the data during simulations or for post analysis. ParVis and 
the PNNL team are investigating compression algorithms, based on information theory, 
that work effectively on floating point climate model outputs. To ease adoption, we are 
integrating our compression capabilities into the Parallel NetCDF library, which is 
currently used by existing high-resolution climate codes such as the CESM and GCRM.

In our last year, we mainly focused on producing publications to disseminate our research 
results. We published two full research papers and one poster paper, respectively

• T. Bicer, J. Yin and G. Agrawal, "Improving I/O Throughput o f  Scientific 
Applications using Transparent Parallel Compression", in Proceedings of the 
International Symposium on Cluster, Cloud and Grid Computing (CCGrid'14), 
Chicago IE, May 2014 (283 submitted, 54 accepted, 19.1% acceptance rate),

• Dongfang Zhao, Jian Yin, Kan Qiao, loan Raicu. "Virtual Chunks: On Supporting 
Random Accesses to Scientific Data in Compressible Storage Systems", IEEE 
International Conference on Big Data 2014; (18% acceptance rate), and

• Dongfang Zhao, Jian Yin, loan Raicu. “Improving the I/O Throughput fo r  Data- 
Intensive Scientific Applications with Efficient Compression Mechanisms", Poster 
at SC 2013.

Our two full research papers were accepted into conferences with acceptance rates less 
than 20% and our CCGrid paper was nominated for best paper.
In our CCGrid paper, we describe how compression can improve end-to-end performance 
of scientific applications. We present an integrated architecture where compression is 
transparently implemented at the application library level. In this paper, we present our 
results for both reads and writes. Parallel writes are particular challenging with 
compression. We organized and analyzed the techniques that we developed in the 
previous year and experimental results and present the performance tradeoff between 
dense storage and sparse storage.

In our SC poster and IEEE BigData paper, we present an architecture that integrates 
compression at the file system level. Our SC poster gives a brief overview while our 
IEEE BigData paper gives more details. We also submitted a journal paper to IEEE 
Transactions on Services Computing and it is currently in review. In these papers, we 
describe a concept called virtual chunks aiming to support efficient random accesses to 
the compressed scientific data without sacrificing its compression ratio. Implementing 
compression at the file system level is particularly challenging. Compressing the entire 
data can result in a good compression ratio, however any retrieval request triggers the 
decompression from the beginning of the compressed file. On the other hand, block-level



compression provides flexible random accesses to the compressed data, but introduces 
extra overhead when applying the compressor to each block that results in a degraded 
overall compression ratio. In either case, the storage systems result in retrieving more 
blocks than are needed and hence the end-to-end application performance degrades. Our 
proposed virtual chunk architecture is designed to address this problem. In the virtual 
chunk architecture, we can start decompression from multiple starting points within the 
data while still allowing data to be stored continuously in storage devices. This enables 
random access of compressed data and avoids the pitfall of having to retrieve more 
storage blocks than are needed. Since the number of storage blocks that need to be 
retrieved determines the I/O overhead, we significantly reduce I/O overhead and improve 
application throughput. Another advantage of implementing parallel compression at the 
file system level is that it is transparent; no application or application library changes are 
needed and hence can save much time for application developers and make deployment 
easier.

Pagoda command-line tools
ParGAL excels at complex spatial operations in parallel on ultra-large climate data 
because of its detailed description of the mesh with MOAB. But simple time averages 
can, in many cases, use tools without detailed mesh descriptions. The main impediment 
to using the Pagoda parallel command-line tools for this purpose was its dependence on 
the Global Arrays library for parallelization. Efforts were made to eliminate this 
dependency in a future release of the Pagoda tools by focusing efforts on an MPI-only 
runtime for the Global Arrays library. The next release of Pagoda will only depend on 
the Parallel NetCDF library and MPI which will significantly reduce its barriers to 
adoption.

In addition, the work on Pagoda as well as our compression work was presented at the 
American Geophysical Union 2013 Fall Meeting. Our emphasis on reducing I/O costs 
using parallel I/O was well received by attendees. As a result, parallel I/O will be a point 
of emphasis in ongoing NetCDF Operators (NCO) development by Zender et al. done 
under the ACME project. This may result in the diminished use of our Pagoda tools, 
however our influence in utilizing parallel I/O in the more widely adopted tools used by 
the climate community cannot be overlooked.

Additional approaches for reducing I/O  in climate models
Further efforts to support the GCRM grid and high performance EO were realized with a 
journal submission to the International Journal of High Performance Computing 
Applications.

• Lynn Wood, Jeff Daily, Michael Henry, Bruce Palmer, Karen Schuchardt, Donald 
Dazlich, Ross Heikes, and David Randall. “A global climate model agent for high 
spatial and temporal resolution data,” International Journal of High Performance 
Computing Applications 1094342013518808, first published on January 17, 2014 
doi:10.1177/1094342013518808.

In this paper we address the issue that fine cell granularity in modern climate models can 
produce terabytes of data in each snapshot, causing significant I/O overhead. Our



approach uses a method of reducing the I/O latency of high-resolution climate models by 
identifying and selectively outputting regions of interest. Using the GCRM model and 
running with up to 10,240 processors on a Cray XE6, this method provides significant 
I/O bandwidth reduction depending on the frequency of writes and the size of the region 
of interest. The implementation challenges of determining global parameters in a strictly 
core-localized model and properly formatting output files that only contain subsections of 
the global grid are addressed, as well as the overall bandwidth impact and benefits of the 
method. The gains in I/O throughput provided by this method allow dual output rates for 
high-resolution climate models: a low-frequency global snapshot as well as a high- 
frequency regional snapshot when events of particular interest occur.

Project M anagement 

Project organization and resources

The PI is responsible for coordinating effort among the various tasks and insuring 
progress is made on deliverables. The project is spread over 5 institutions and a “lab 
lead” at each is responsible for coordination of the ParVis members at their respective 
institutions. The leads are: Robert Jacob (AML), Pavel Bochev (Sandia), Jeff Daily 
(PNNL), Don Middleton (NCAR) and Kwan-Liu Ma (UC-Davis).

All team members participate in biweekly conference calls devoted to updates and 
discussion of near-term development. The AML web and audio service provider, 
AdobeConnect, is used to facilitate sharing presentations and recording notes from the 
call. Regular telecons continued through May, 2014. Two mailing lists hosted by 
Argonne are also used by the team: one for general discussion (parvis) and another for 
development details and code check-in messages (parvis-dev).

Our last all-hands meeting was in October, 2012.

The PI keeps the ParVis advisory panel (David Randall (CSU), William Gustafson 
(PNNL), Gokhan Danabasoglu (NCAR), Cecilia Bitz (University of Washington) and 
David Lawrence (NCAR)) advised of progress and solicits feedback from them.

The MCS division at Argonne provides resources for software development (svn 
repository, bug tracking and test/development machines). We have also obtained an 
allocation of computer time on Argonne’s Fusion cluster for testing on tens to hundreds 
of processors. ParVis developers have been given access to the Eureka analysis/viz 
cluster at the Argonne Leadership Computing Facility through the INCITE project led by 
Warren Washington (time on Eureka is not charged to the project)

Communicat ion with the  broader  community



We maintain a website (http://trac.mcs.anl.gov/proiects/parvis) to both host software we 
make available for the community and provide notes and material for ParVis team 
members. Most of the content is world readable except for the repository and the ticket 
system. ParGAL is open source and instructions are available to download directly from 
the repository. We also have tarballs available of the ParNCL source and binaries for 
some systems. We also maintain a one-way mailing list (parvis-ann) that anyone can 
subscribe to for announcements about ParVis and ParVis software. The ParGAL source 
will be moved to github after the 1.0 release.

In addition to the papers mentioned above, the ParVis submitted a successful session 
proposal for the Fall 2013 AGU (Dec, 2013) meeting that informed the community about 
new approaches to big data analysis in climate. The ParVis project gave a talk on data- 
parallel algorithms at the oral session and presented an overview poster at the poster 
session. We updated the CESM community about ParVis with posters and presentations 
at the 17th and 18th annual CESM Workshops in June, 2013 and 2014.

To support our users, we have set up a parvis-users mailing list to field questions. We are 
also maintaining installed versions of ParNCL and the Swift diagnostics on DOE analysis 
machines.


