
LA-UR-14-25932
Approved for public release; distribution is unlimited.

Title: Fehmpytests: Developing a Usable and Modular Test Suite for FEHM

Author(s): Lange, Mark

Intended for: Report

Issued: 2014-07-29

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer,is operated by the Los Alamos National Security, LLC for
the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Departmentof Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

Fehmpytests:

Developing a Usable and Modular Test Suite for FEHM

by Mark Lange and Dylan Harp

1. PROJECT REPORT

Introduction

The Earth and Environmental Sciences Division at Los Alamos National

Laboratory uses the Finite Element Heat and Transfer Code (FEHM) to

simulate subsurface processes. To ensure accuracy, FEHM

needs to be tested on a regular basis. The original test suite for

FEHM tested a large portion of FEHM features. However, the suite was

difficult to run and modify. Fehmpytests attempts to solve these

problems by creating a new test suite using Python's unittest module

and a general test method. Python's unittest module addresses the

problem of executing the test suite by allowing anyone with Python

2.7 to run the suite through a command line interface. The general

test method addresses the problem of modifying the test suite by

removing the common details of simulation testing. Future plans for

Fehmpytests include adding more test coverage, integrating the suite

into the FEHM build process, and improving the developer interface.

Background

Because it models complex physical systems, FEHM has a vast spectrum

of functionality. The original test suite, written in Perl and

Fortran, tested a large portion of the FEHM functionality. However,

this test coverage was incomplete. Because of the complexity of the

old test suite's structure, adding new tests to FEHM was not easy for

developers. In addition to the incomplete coverage, FEHM was only

tested periodically by a code administrator and rarely by code

developers during code development.

These two factors, incomplete test coverage and infrequent testing,

motivated the development of a new test suite, Fehmpytests, written

in Python. The goal of Fehmpytests was to address the problems with

the old test suite and ultimately inspire better developer practices.

Python was chosen as the language of the new test suite because the

language is platform independent, maintainable, has support for a

unit testing framework, and works with PyFEHM, a Python based front

end for FEHM.

Developing FEHM

When I first arrived at Los Alamos National Laboratory, my mentor,

Dylan Harp, had already written a few tests under the Python unit

test framework. Using this framework, the structure of Fehmpytests

was already simpler than the old test suite. The code was easier to

read and understand.

For this project, I made my own personal goal to program generalized

code that could be applied to several different scenarios. This would

make not only my own task easier but any future developer's task

easier as well.

One problem Fehmpytests had when I arrived was that, throughout each

unit test, the algorithms were noticeably similar. This added

unnecessary code bulk that could potentially scare away developers

from adding new tests.

Once I understood where the repeated steps were, I started to design

a general test method whose only parameter was the name of the folder

containing the necessary FEHM files. This would create a simple

developer interface that removed unnecessary details anytime a new

test was created.

In an attempt to generalize all tests, I needed to know the spectrum

of tests from the old suite. Specifically, I needed to know what data

files were associated with each FEHM function so that I could compare

simulated data to correct data. During this summer project, I

identified 4 types of data files produced during FEHM simulations:

1. Contour

2. History

3. Output

4. Tracer

Each file type needed similar but slightly different algorithms for

testing the data inside. Going back to my goal of creating modular

and generalized code, I handled these different file formats with the

concept of closure.

In Python, methods are first class objects. This means methods can

return other methods and variables can store them. I used closure to

create a template method for test cases. In the future, anyone who

discovers a new file type only needs to change a smaller part of the

code to do so.

With the code in a maintainable state, the last thing I needed to do

was define a folder structure for developers to provide the necessary

files for each test. To keep the structure simple and intuitive, I

divided all test case directories into compare and input folders.

With this structure, the developer only needs to organize their

comparison and input files for the test case they want to add.

Future Ideas

The bigger goal of Fehmpytests was to inspire better developer

practices. These practices include frequent testing and complete test

coverage. There are two ideas that could be implemented into

Fehmpytests to help better meet these goals.

To achieve frequent testing, fehmpytests could be incorporated into

the FEHM build process by including its execution into the FEHM

makefile. This would force developers to run the suite anytime they

compile FEHM.

To achieve complete test coverage, developers need to be motivated to

add their own tests. The process for adding more tests could be

improved by adding a command line or graphical interface.

2. INSTALLATION

Once you have an account on the FEHM development site and have been

given read/write permissions, follow these steps for installation.

1. Obtain the FEHM repository. Fempytests are included with the
FEHM repository. To obtain the FEHM repository, type the
following command into a terminal:

 hg clone https://ancho.lanl.gov/fehm/hg/fehm-open

https://ancho.lanl.gov/fehm/hg/fehm-open

2. Build FEHM. In a terminal, navigate to fehm-open/source and type
the following command:

 gmake xfehm -f Makefile.fehm

3. TESTING FEHM

3.1 Testing in Default Mode

To test the default suite:

1. Navigate the folder fehmpytests in a terminal.

2. Type the following command into the terminal:

 python fehmpytests.py <fehm-path>

Where <fehm-path> is the path to the FEHM executable.

3.2 Testing in Admin Mode

To test the admin suite:
1. Navigate to the folder fehmpytests in a terminal.

2. Type the following command into the terminal:

 python fehmpytests.py --admin <fehm-path>

where <fehm-path> is the path to the FEHM executable.

3.3 Testing in Developer Mode

To test the developer suite:
1. Navigate to the folder fehmpytests in a terminal.

2. Type the following command into the terminal:

python fehmpytests.py --dev <fehm-path>

where <fehm-path> is the path to the FEHM executable.

3.4 Testing in Solo Mode

The process for testing a single test case in solo mode is similar to
testing a suite in the other modes. There is an additional command
line argument needed.

To test a singe test case:
1. Navigate to the folder fehmpytests in a terminal.

2. Type the following command into the terminal:

 python fehmpytests.py <fehm-path> <test-case>

 where <fehm-path> is the location of the FEHM executable and
<test-case> is the name of the test case method.

 Warning: Developers must run in default, admin, or developer mode
 before committing new code.

3.5 Creating an Error Log

An error log can be created to show details about an error and where
it occurred. To generate an error log, add the switch log after
fehmpytests.py and before <fehm-path>. Here is an example:

 python fehmpytests.py --admin --log <fehm-path>

4. CREATING NEW TEST CASES

A developer can add new test cases to the suite. There are two steps
to adding new test cases:

1. Create the test case folder.

2. Add the test method.

4.1 Create the Test Case Folder

This is the folder structure of a test-case:

 [test-case]
 |
 |_[input]
 | |
 | |_[control]
 |
 |_[compare]

All input files needed to run the FEHM functionality of the test-case
go inside the input folder. All control files go inside the control
folder. All compare files (contour, history, and output) that are
known to be correct go inside the compare folder.
To set up a new test-case folder:

1. Go into the folder fehmpytests.

2. Create a folder <test-case> where <test-case> is the name of the
new case.

3. Inside <test-case>, create two folders called input and compare.

4. Inside the input folder, create a folder called control.

5. In the control folder, place all control files.

6. If there is only one control file, rename it to fehmn.files.

7. If there are more than one control file, rename each file to
<subcase>.files where <subcase> is the name of the subcase.

8. In the input folder, place all input files needed for the FEHM
run.

9. In the compare folder, place all comparison files known to be
correct.

4.2 Add the Test Method

To add the test method:
1. Open fehmpytests.py.

2. Inside the class Tests, write a method test_<name> where <name>
is the name of the test case. Here is an example for the avdonin
test method:

 class fehmTest(unittest.TestCase):
 …
 #This is the new test method for avdonin.
 def test_avdonin(self):
 …
 …

3. Inside this test method, call

 self.test_case(’<test-case>’)

where <test-case> is the name of the folder you created for the
new test-case. See 4.4 Documentation on test_case Method below

 for details on the general test case method. Here is an example
for the test method for avdonin:

 class fehmTest(unittest.TestCase):
 …
 def test_avdonin(self):
 #Add this line to test avdonin.
 self.test_case(’avdonin’)
 …

4. Inside the class Suite, under the condition all, add the
following line:

 suite.addTest(fehmTest(’<method-name>’))

where <method-name> is the name of the test method you just
 defined. Here is an example for adding the avdonin test to the

test-suite:

 def suite(case, test_case):
suite = unittest.TestSuite()

if case == ’all’:
 suite.addTest(Tests(’test_saltvcon’))
 suite.addTest(Tests(’test_dissolution’))

 …
 #Add avdonin to suite.
 suite.addTest(Tests(’test_avdonin’))
 …

Running fehmpytests will now include the new test case.

4.3 Customizing a Test-Case

By default, test_case() will check for a maximum difference less than
1.e-4 on all outputs of the FEHM simulation. Passing a dictionary
into test_case() as the second argument allows a developer to specify
how these tests are performed.

The following keywords are recognized by test_case():

Keyword Python Type

variables list

nodes list

components list

maxerr float

test_measure string

The following is an example for specifying the components, variables,
and format for the saltvcon test:

 #Pass a dictionary into test_case() with keywords
specified.
 def test_saltvcon(self):
 arguments = {}
 arguments[’components’] = [’water’]
 arguments[’variables’] = [’Kx’]
 arguments[’format’] = ’relative’

 self.test_case(’saltvcon’, arguments)

4.4 Documentation on test_case() Method

The following is documentation for the use of the test_case method
which is used to test FEHM functionality.

 fehmTest.test_case(name, parameters={})

 Performs a test on a FEHM simulation and raises an AssertError if
 it fails the test.

 Parameters

 • name (str) – The name of the test-case folder.

 • parameters (dict) – Attribute values that override default
 values.

 The folder name in fehmpytests must exist with correct
 structure. If parameters are not passed into this method, all
 simulated outputs will be checked for a relative difference of
 less than 1.e-4.

5. Test Case Descriptions

The following is a list of the 13 test cases currently included in
Fehmpytests and descriptions of what is tested. By default, all
simulated results are compared to those that are provided in the
compare folder. Most test cases currently included are customized
using optional arguments for fehmTest.test_case().

 Test the Radial Heat and Mass Transfer Problem

 fehmTest.test_avdonin()

 Compares the generated contour and history files to old contour and
 history files that are known to be correct. For contour files, only
 the temperature values at time 2 are tested. For history files, all
 temperature values are tested.

 Test the boun test results (Flow Macro vs Boun Macro)

 fehmTest.test_boun()

 Compares the generated contour files to old contour files that are
 known to be correct. Only the pressure and hydraulic head values at
 time 2 are tested.

 Test the Concentration Dependent Brine Density Functionality

 fehmTest.test_cden()

 Compares generated history files to old history files that are
 known to be correct. Only the density values are tested.

 Test the Dissoultion Macro

 fehmTest.test_dissolution()

 A one-dimensional transport simulation of calcite (CaC03(s))
 dissolution is tested. Profiles of concentration versus reactor
 length, at selected times, will be compared against the analytical
 solution.

Details of this test are described in the FEHM V2.21 Validation Test Plan on pages 93-95 (STN:
10086-2.21-00, Rev.No. 00, Document ID: 10086-VTP-2.21-00, August 2003)

 Test the DOE Code Comparison Project, Problem 5, Case A

 fehmTest.test_doe()

 Compares the generated contour and history files to old contour and
 history files that are known to be correct. For contour files, only
 the pressure, temperature, and saturation values at time 3 are
 tested. For history files, all pressure, temperature, and
 saturation values are tested.

 Test Dry-Out of a Partially Saturated Medium

 fehmTest.test_dryout()

 Compares the generated contour files to old contour files known to
 be correct. The saturation is tested for all times.

 Test Head Pressure Problem

 fehmTest.test_head()

 Compares the generated contour files to old contour files that are
 known to be correct. Only the pressure values at day 2 are tested.

 Test Multi-Solute Transport with Chemical Reaction

 fehmTest.test_multi_solute()

 Compares the generated tracer files to old tracer files known to be
 correct. All concentration values are tested.

 Test Temperature in a Wellbore Problem

 fehmTest.test_ramey()

 Compares the generated contour and history files to old contour and
 history file that are known to be correct. For the contour files,
 only the temperature values at time 2 are tested. For the history
 files, all temperature values are tested.

 Test the Salt Permeability and Porosity Macro

 fehmTest.test_salt_perm_poro()

 The porosity-permeability function for compacted salt from Cinar et
 at. (2006) is tested using a six node problem with porosities from
 0.01 to 0.2.

The excel spreadsheet in information/salt-permporo.xlsx contains calculations of the perm-poro
function. Cinar, Y, G Pusch and V Reitenbach (2006) Petrophysical and capillary properties of
compacted salt. Transport in Porous Media. 64, p. 199-228, doi:10.1007/s11242-005-2848-1

Test the Salt Variable Conductivity Macro

fehmTest.test_saltvcon()

Tests the calculations of thermal conductivity of crushed and intact
salt.

Intact salt: kxi = k_{t-300}(300/T)^1.14
 Munson et al. (1990) Overtest for Simulate Defense High-Level Waste (Room B): In
 Situ Data Report. WIPP. Sandia National Laboratories, SAND89-2671

Thermal conductivity of crushed salt from Asse mine:
 kx_asse = -270*phi^4+370*phi^3-136*phi^2+1.5*ph
 Bechtold et al. (2004) Backfilling and sealing of underground respositories for radioactive
 waste in salt*(BAMBUS II project), EUR 20621, ISBN 92-894-7767-9

 kx = (k_{t-300}/kx_asse)*(300/T)^1.14
 if kx is less then 1.e-6, set to 1.e-6.

The excel spreadsheet /information/saltvcon.xlsx contains the associated calculations.

Test One Dimensional Reactive Solute Transport

fehmTest.test_sorption()

Compares the generated tracer files to old tracer files known to be
correct. All concentraction values are tested.

Test Pressure Transient Analysis Problem

fehmTest.test_theis()

Compares the generated contour files to old contour files known to
be correct. Only the pressure values at time 2 are tested.

Acknowledgements

I would like to thank Dylan Harp for his help and mentoring. I would

also like to thank Shaoping Chu, Zora Dash, David Dempsey, Terry

Miller, Phil Stauffer, and Cameron Tauxe for their help and feedback

on this project. This project was funded by the DOE Office of Science

SULI program.

