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Abstract

In M editerranean climates, the season of w ater availability (winter) is out of phase 
w ith the season of light availability and atm ospheric dem and for m oisture 
(sum m er). Multi-year half-hourly observations of sap flow velocities in 26 
evergreen trees in a small w atershed in Northern California show  th a t different 
species of evergreen trees have different seasonalities of transpiration: Douglas-firs 
respond immediately to the first w inter rain, while Pacific m adrones have peak 
transpiration  in the dry summer. Using these observations, we have derived 
species-specific param eterization of norm alized sap flow velocities in term s of 
insolation, vapor pressure deficit and near-surface soil m oisture. A simple 1-D 
boundary layer model showed th a t afternoon tem peratures may be higher by 1°C in 
an area w ith Douglas-firs than w ith Pacific m adrones.

The results point to the need to develop a new  representation  of subsurface 
m oisture, in particular pools beneath  the organic soil mantle and the vadose zone. 
Our ongoing and future w ork includes coupling our new  param eterization of 
transpiration w ith new  representation of sub-surface m oisture in saprolite and 
w eathered bedrock. The results will be im plem ented in a regional climate model to 
explore vegetation-clim ate feedbacks, especially in the dry season.
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Estimation of carbon-climate feedbacks in Earth System Models depends on the 
modeled soil m oisture status and the response of ecosystems w hen soil m oisture is 
low (e.g. Fung et al. 2005; Friedlingstein e t al. 2006). Current param eterizations of 
photosynthesis and evapotranspiration (ET) use a simple sigmoid function 
dependence on soil m oisture, loosely defined as the degree of saturation in the 
rooting zone. The same dependence is used for all p lant function types. The goal of 
the w ork is to improve the param eterization of photosynthesis and transpiration, 
especially their dependence on soil m oisture, in regional and global climate model.

1. New Parameterization
The w ork took advantage of unprecedented high-frequency (30 minutes) 
observations of sapflow velocities in 26 evergreen trees, tem perature, humidity, 
insolation and soil m oisture in a steep (~32°) very small w atershed (~4,000 m 2) 16 
km east of the Pacific coast in northern  California (39.729°N 123.644°W). The 
observations span three years, from 2009 to 2011. The observations show th a t sap­
flow of evergreen needle-leaved trees (Douglas-firs) responded to the first rains of 
the w inter rainy season, and shu t down in the dry sum m er season; while sapflow of 
evergreen broadleaved trees (oak, Pacific m adrones) ram ped up slowly in the 
winter. Madrones, in particular, have maximum sapflow in the dry sum m er season.

We applied a Jarvis model (Jarvis 1976) param eterization for norm alized sapflow 
velocity (v„) as:

w here VPD is vapor pressure deficit, 6 is volum etric soil m oisture (m 3 w a te r /m 3 
total), and /  is insolation, k , Do, |3, 60 and y are constants we determ ined for each tree 
species by the Markov Chain Monte Carlo m ethod (Table 1). The radiation function 
is m odeled after W aring and Landsberg (2011). The soil m oisture function is a 
sigmoid function th a t represents threshold limitation of transpiration by 6 in very 
dry soils; it approxim ates the piecewise linear Feddes model (Feddes et al. 1978, 
Chen et al. 2008). The VPD function is an asym ptotic function (Lohamm ar e t al. 
1980; Lindroth and Halldin 1986; Dang et al. 1997). The results are shown in Table 
1 and Figure 1.

VPD 1
• (y(I-1000)  + l ) (1)

| VPD 1 +  exp(-P(&  -  &0)
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Table 1. Median values of estim ated Jarvis param eter distributions for each tree

k  (kPa"1) Do (kPa) P (unitless) do  (unitless) y  (W /m 2) ' 1
Douglas-Fir 7.23 0.14 30 0.263 5.44e-4
Pacific Madrone 1 .0 2 1.23 42 0.173 7.20e-4
Live Oak 1.57 0.81 28 0.208 8.25e-4
Bay 1.16 1.04 87 0.218 7.46e-4
Tanoak 0.95 1.55 35 0.250 8.45e-4
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Figure 1. Functional dependence of norm alized sap flow velocities (Equation 1) on 
VPD (top panel), soil m oisture (middle panel), and insolation (lower panel) for five 
evergreen tree  species (Douglas-fir, Pacific m adrone, live oak, bay and tan oak) in a 
small Northern California w atershed (Link e t al. 2014).

Douglas-fir has a low y, m eaning its sap flow rem ains high a t low insolation and 
increases only slightly with increasing insolation. Also Douglas-fir sapflow increases 
m ore quickly a t low VPD and is no t very sensitive to VPD variations. Pacific 
m adrone, on the other hand, has a higher y, showing a strong dependence on
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insolation. Similarly, m adrone sap flow increases m ore gradually w ith VPD (higher 
Do).

The m oisture response is captured by the two param eters |3 and do. Douglas-flr’s 
higher do shows th a t its sapflow begins to decline a t higher values of 0. The lower 
value of do for Pacific m adrone reflects th a t its sapflow can rem ain high a t low 
values of 0 .

These results dem onstrate the different ET responses to the dem and for moisture. 
Douglas-firs appear to be limited by m oisture in the shallow soils and respond 
immediately to the first rains. Madrone sapflow appears to be driven by energy 
supply and atm ospheric dem and for w ater in the summer; as the shallow soils are 
dry, these trees m ust access a different m oisture pool.

2. Climate Feedback

The ability of Pacific m adrones and other evergreen broadleaved trees to transpire 
in the dry sum m er season has implications for energy balance and tem perature.

To illustrate the species difference on climate feedback, we used a simple slab model 
to calculate the climate response in a uniform Douglas-fir plantation w ith a uniform 
plantation of Pacific m adrones. Because advective effects (especially cooling effects 
from the ocean) are left out, tem peratures are expected to be higher than observed. 
In August, soil evaporation is the same ~15  W /m 2 in both cases. However, peak 
afternoon la ten t flux plateaued around 130 W /m 2 in the Douglas-fir case, much 
lower than the 210 W /m 2 in the Pacific m adrone case. Despite the slightly lower 
radiation, the afternoon sensible heat flux a t the Douglas-fir plantation was higher 
by ~70 W /m 2 to com pensate for the much low er laten t heat flux. As a result, 
surface air tem perature  was ~1°C higher a t the Douglas-fir case (Figure 2 ).

3. Future Plans

Direct observations of ET a t our site and a t several AmeriFlux sites show  sustained 
diy-season ET despite declining soil m oisture. The seasonality of ET a t these sites is 
not captured by curren t param eterizations th a t depend on soil m oisture in the 
upper 0.5-1 m. Here we point to species-specific behavior. We p resen t three 
hypotheses:
(1) Pacific m adrones have deeper roots and can access deeper water. In SW 
Oregon, Douglas-fir roots w ere confined to the upper 1.5m of the subsurface, with 
no roots below 2.5 m, while m adrones in the same area had roots extending to 2-3.5 
m below the surface (Wang et al. 1995);
(2) M adrones can access w ater tightly bound in the soil-rock m atrix by m aintaining 
hydraulic function a t lower tissue w ater potentials. M adrones have minimum leaf 
w ater potentials of about -3.0 MPa (M orrow and Mooney 1974; Wang e t al. 1995) vs. 
-2.0 MPa in Douglas-firs (Running 1976; Wang et al. 1995);

4



(3) M adrones may have maximum LAI in the sum m er. LAI lifespan is ~ 1 4  m onths 
(Ackerly 2004) and M adrones are observed to drop their leaves in late summer.
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Figure 2. D iu rn a l v a r ia tio n  o f th e  a tm o s p h e r ic  b o u n d a ry  la y e r for A u g u s t 
a s  m o d e led  by  a  s im p le  ID  s la b  m o d e l, w ith  so il m o is tu re  o f 0 .0 7  
m 3/ m 3. Solid  a n d  d a s h e d  lin e s  sh o w  r e s u l t s  for a n  a ll-D o u g la s-fir  
su r fa c e  a n d  a n  a ll m a d ro n e  su rfa c e , re sp ec tiv e ly . T op left: n e t  
ra d ia tio n , s e n s ib le  h e a t  (H), a n d  la te n t  h e a t  flux  (LE). T op R ight: h e ig h t 
o f th e  b o u n d a ry  lay er. B o tto m  left: A ir te m p e ra tu re  (Ta) a n d  g ro u n d  
te m p e ra tu re  (Ts). B o tto m  rig h t: sp ec ific  h u m id ity  a n d  VPD. F ro m  L ink  
2 0 1 4  (in p re p a ra tio n ) .

Thompson e ta l. (2011) also found th a t cu rren t models can capture ET seasonality 
a t AmeriFlux sites w ith shallow-rooted vegetation. Their model was im proved 
w hen the model soil depth was increased a t some tim e or a t other tim es w hen 
deeper w ater was m ade available for ET.

With DOE support, we are developing a new  param eterization of subsurface 
m oisture th a t includes m oisture in saprolite and w eathered bedrock below the 
organic soil mantle. This will be coupled w ith our species-specific sensitivity of ET,
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and im plem ented in WRF to te st our ability to simulate ET seasonality a t all 
AmeriFlux sites.
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