IMPACTS OF INTERACTING ELEVATED ATMOSPHERIC CO_2 and O_3 on the Structure and Functioning of a Northern Forest Ecosystem: Operating and Decommissioning the Aspen FACE Project

Final Technical Report for the Period September 1, 1995 – March 31, 2014 and highlighting overall findings from the final phase of Aspen FACE,

April 1, 2008 – March 31, 2014

submitted June 30, 2014 by

Andrew J. Burton (PI)

Michigan Technological University 1400 Townsend Drive Houghton, MI 49931

Co-Investigators: David F. Karnosky (deceased, lead PI through 2008), Kurt Pregitzer, Kevin Percy, Neil Nelson, Alistair Rogers, John Nagy, Mark Kubiske, Rick Lindroth, and Don Zak

Distribution A: Approved for public release; further dissemination unlimited. (Unclassified Unlimited)

Executive Summary

Two of the most important and pervasive greenhouse gases driving global change and impacting forests in the U.S. and around the world are atmospheric CO_2 and tropospheric O_3 . As the only free air, large-scale manipulative experiment studying the interaction of elevated CO_2 and O_3 on forests, the Aspen FACE experiment was uniquely designed to address the long-term ecosystem level impacts of these two greenhouse gases on aspen-birch-maple forests, which dominate the richly forested Lake States region. The project was established in 1997 to address the overarching scientific question: "What are the effects of elevated $[CO_2]$ and $[O_3]$, alone and in combination, on the structure and functioning of northern hardwood forest ecosystems?"

From 1998 through the middle of the 2009 growing season, we examined the interacting effects of elevated CO₂ and O₃ on ecosystem processes in an aggrading northern forest ecosystem at a free-air carbon dioxide enrichment (FACE) facility near Rhinelander, Wisconsin to compare the responses of early-successional, rapid-growing shade intolerant species (trembling aspen [*Populus tremuloides* Michx.] and paper birch [*Betula papyrifera* Marsh.]) to those of a late successional, slower growing shade tolerant species (sugar maple [*Acer saccharum* Marsh.]). Three replicate FACE rings were established in 1997 for a factorial combination of four treatments (CO₂, O₃, CO₂+O₃ and control) in a randomized block design. Rooted cuttings from five aspen clones previously characterized for O₃ and CO₂ sensitivities were planted 1.0 m apart in one-half of each FACE ring. The other half was divided into equal size plots of aspen/sugar maple and aspen/paper birch, again at 1 m x 1 m spacing. Fumigations with elevated CO₂ (560 ppm during daylight hours) and O₃ (approximately 1.5 x ambient) were conducted during the growing season from 1998 to 2008, and in 2009 through harvest date.

Response variables quantified during the experiment included growth (height, diameter, biomass, leaf area, root production, and fine root mortality), competitive interactions and stand dynamics, physiological processes (photosynthesis, respiration, stomatal conductance, and chlorophyll content), plant nutrient status and uptake (nitrogen), tissue biochemistry (carbohydrates, phenolic glycosides, and antioxidants), litter quality and decomposition rates, hydrology, soil respiration, microbial community composition and respiration, VOC production, treatment-pest interactions, and treatment-phenology interactions. From mid-June to mid-August in 2009, we conducted a detailed harvest of the site. The harvest included detailed sampling of a subset of trees by component (leaves and buds, fine branches, coarse branches and stem, coarse roots, fine roots) and excavation of soil to a depth of 1 m. An excavator and commercial soil sieve were used to recover coarse roots, with additional cores from pit faces used to capture fine root biomass.

Throughout the experiment, aspen and birch photosynthesis increased with elevated CO_2 and tended to decrease with elevated O_3 , compared to the control. In contrast to aspen and birch, maple photosynthesis was not enhanced by elevated CO_2 . Elevated O_3 did not cause significant reductions in maximum photosynthesis in birch or maple. In addition, photosynthesis in ozone sensitive clones was affected to a much greater degree than that in ozone tolerant aspen clones. Altered photosynthesis had direct effects on net primary productivity (NPP), including production of foliage, which created a positive feedback that led to even greater enhancement of C assimilation under elevated CO_2 for aspen and birch and further reduction of C assimilation under elevated CO_3 for aspen.

Treatment effects on photosynthesis contributed to CO₂ stimulation of aboveground and belowground growth that was species and genotype dependent, with birch and aspen being most

responsive and maple being least responsive. The positive effects of elevated CO₂ on net primary productivity NPP were sustained through the end of the experiment, but negative effects of elevated O₃ on NPP had dissipated during the final three years of treatments. The declining response to O₃ over time resulted from the compensatory growth of O₃-tolerant genotypes and species as the growth of O₃-sensitive individuals declined over time. As a result, annual NPP by the end of the project was similar under ambient and elevated O₃. Project results suggest that the changing atmospheric composition could shift the genotypic composition and average pollutant responses of tree populations over moderate timescales. Given the degree to which O₃ has been projected to decrease global NPP, the compensatory growth of O₃ tolerant plants in our experiment, as they replaced senescing O₃ sensitive plants, should be considered in future simulations.

Cumulative NPP over the entire experiment was 39% greater under elevated CO_2 (P < 0.001) and 10% lower under elevated O_3 (P = 0.026). Enhanced NPP under elevated CO_2 was sustained by greater root exploration of soil for growth-limiting N, as well as more rapid rates of litter decomposition and microbial N release during decay. Overall, our observations indicate that elevated CO_2 has altered SOM cycling at this site to favor C and N accumulation in less stable pools, with more rapid turnover. Results from our long-term measurements at Aspen FACE clearly indicate that plants growing under elevated carbon dioxide, regardless of community type or ozone level, obtained significantly greater amounts of soil N. These results indicate that greater plant growth under elevated carbon dioxide has not led to "progressive N limitation". In no case did we find significant interactions among plant community, CO_2 , or O_3 , indicating that NPP in the three plant communities in our experiment responded similarly to both CO_2 and O_3 . If similar forests growing throughout northeastern North America respond in the same manner, then enhanced forest NPP under elevated CO_2 may be sustained for a longer duration than previously thought, and the negative effect of elevated O_3 may be diminished by compensatory growth of O_3 -tolerant plants as they begin to dominate forest communities.

By the end of the experiment, elevated CO_2 increased ecosystem C content by 11%, whereas elevated O_3 decreased ecosystem C content by 9%. Total ecosystem C content in the interaction treatment (elevated CO_2 and O_3) did not significantly differ from that of the control. Total ecosystem C content responded similarly to the treatments across the three forest communities. The treatment effects on ecosystem C content resulted from differences in tree biomass, particularly woody tissues (branches, stem, and coarse roots), and lower C content in the near-surface mineral soil. For tree C, the negative effect of elevated O_3 was smaller (-15%) than the positive effect of elevated CO_2 (+44%).

During its duration, the Aspen FACE project involved collaboration between scientists from 9 countries, and over the course of the experiment there were over 120 Aspen FACE scientific users. These scientists helped produce 75 publications during the most recent funding period (2008-2014) and 207 peer-reviewed publications (169 in refereed journals) since the beginning of the project. Numerous additional findings beyond those highlighted above or described in this report can be found in the publications listed.

Table of Contents

Executive Summary	i
Table of Contents	iii
Background	1
Solicitation of Proposals	1
Preproposals	1
Full Proposals and Panel Review.	2
Funding Decisions	2
Establishing Subcontracts	3
Monitoring Progress	3
Experimental Design	4
Findings	5
Canopy Gas Exchange	5
Net Primary Production	5
Sustaining soil N availability	7
Competitive Interactions	7
Effects of Canopy Development on NPP	8
Ecosystem Carbon Content	9
Other Responses.	11
Soil respiration and fine root dynamics	11
Treatment-pest interactions	12
Stomatal conductance and ecosystem water use	13
Bacterial and fungal responses	13
Reproductive fitness	14
Wood decomposition processes	14
Brief History of Aspen FACE Funding, Publications and Operation	15
Table of Aspen FACE Investigators	17
Cited References (not listed in publications)	21
Aspen FACE Publications	23
Aspen FACE Publications during the Final Project Period (2008 – 2013)	23
Aspen FACE Peer-Reviewed Journal Articles from 2007 and Earlier	31
Aspen FACE Other Peer-Reviewed Articles from 2007 and Earlier	40
Aspen FACE Other Publications from 2007 and Earlier	44

Final Technical Report Grant No. DE-FG02-95ER62125

Project: Impacts of Interacting Elevated Atmospheric CO₂ and O₃ on the Structure and Functioning of a Northern Forest Ecosystem: Operating and Decommissioning the Aspen FACE Project

The Aspen FACE project occurred due to the vision of efforts of the late Dr. David F. Karnosky and colleagues in the early 1990s. Dr. Karnosky was the Principal Investigator for this project from its initiation until his death in 2008. Without his efforts, Aspen FACE would not have happened, and this report is dedicated in his memory.

Background

Human activities have greatly accelerated rates of global environmental change. Understanding the consequences of these changes for forest ecosystems is a pressing challenge, given the importance of forests in global net primary production (NPP), carbon sequestration, human economies, and as repositories of biodiversity. There is growing recognition that global change and long-range transport of air pollutants have the potential to significantly affect global air quality in the coming decades (Brasseur et al. 2003). Two of the most important and pervasive greenhouse gases driving global change and impacting forests in the U.S. and around the world are [CO₂] and tropospheric O₃ (Felzer et al. 2004, Sitch et al. 2007).

As the only free air, large-scale manipulative experiment studying the interaction of atmospheric [CO₂] and [O₃] on forests, the Aspen FACE experiment was uniquely designed to address the long-term ecosystem level impacts of these two greenhouse gases on aspen-birch-maple forests, which dominate the richly forested Lake States region (USDA 2004, Heath and Smith 2004). The Aspen FACE Project was established in 1997 to address the overarching scientific question:

"What are the effects of elevated [CO₂] and [O₃], alone and in combination, on the structure and functioning of northern hardwood forest ecosystems?"

Data gathered over the decade-long experiment was intended to improve our ability to predict how forest ecosystem productivity, health and composition will respond as the concentrations of both CO₂ and O₃ increase in the future and address the overall hypothesis that: *Genetic differences regulating C assimilation, growth and C allocation are the fundamental controls on changes in ecosystem composition and function as atmospheric CO₂ and O₃ rise. Under this hypothesis, ecosystem responses to CO₂ and O₃ are mediated through the life history traits of the dominant plants, and responses to CO₂ and O₃ cascade through ecosystems in a predictable manner.*

Among the scientific questions the Aspen FACE Experiment was intended to address are:

Where is the missing carbon from global carbon models? Is it being sequestered by forests?

Will more or less CO₂ be sequestered by forest trees as CO₂ levels rise?

Are forests net carbon sources or sinks? Do they change over time?

Is carbon sequestered by trees stored for long time periods in the soil?

Will elevated CO₂ alleviate other stresses (e.g. ozone, drought, low fertility)?

Will our forests become more or less productive over time under elevated CO₂?

How will elevated CO₂ affect insect and disease interactions with trees?

How do CO₂ and the greenhouse gas ozone interact?

This report will focus primarily on results from the last years of treatment and final harvest to answer these questions, but will also describe results from earlier work conducted under this project and others from the entire duration of Aspen FACE, to help explain the changes over time the led to the overall final results of the experiment.

Experimental Design

From 1998 through the middle of the 2009 growing season, we examined the interacting effects of elevated CO₂ and O₃ on ecosystem processes in an aggrading northern forest ecosystem. This study utilized a free-air carbon dioxide enrichment (FACE) facility near Rhinelander, Wisconsin to compare the responses of early-successional, rapid-growing shade intolerant species (trembling aspen [*Populus tremuloides* Michx.] and paper birch [*Betula papyrifera* Marsh.]) to those of a late successional, slower growing shade tolerant species (sugar maple [*Acer saccharum* Marsh.]). Three replicate FACE rings were established in 1997 for a factorial combination of four treatments (CO₂, O₃, CO₂+O₃ and control) in a randomized block design. Rooted cuttings from five aspen clones previously characterized for O₃ and CO₂ sensitivities were planted 1.0 m apart in one-half of each FACE ring (Fig. 1). The other half was divided into equal size plots of aspen/sugar maple and aspen/paper birch, again at 1 m x 1 m spacing, to examine interactions between shade tolerant and intolerant species. The close spacing simulated a naturally regenerating forest. Fumigations with elevated CO₂ (560 ppm during daylight hours)

and O_3 (approximately 1.5 x ambient) were conducted over 165, 144, 145, 150, 137, 143, 154, 143, 140, 125 and 140-day growing seasons from 1998 to 2008, respectively, and in 2009 through harvest date.

Measurements made included growth (height, diameter, biomass, leaf area, root production, and fine root mortality), competitive interactions and stand dynamics, physiological processes (photosynthesis, respiration, stomatal conductance, and chlorophyll content), plant nutrient status and uptake (nitrogen), tissue biochemistry (carbohydrates, phenolic glycosides, and antioxidants), litter quality and decomposition rates, hydrology, soil respiration, microbial community composition and respiration, VOC production, treatment-pest interactions, and treatment-phenology interactions. Many of these measurements were not directly supported by this grant, but this grant did provide the infrastructure and site operations that made possible all of the long-term collaborative research at the Aspen FACE facility. Additional details regarding the experimental design. treatments and measurements can be found in Dickson (2000) and the forthcoming Kubiske et al. (2014).

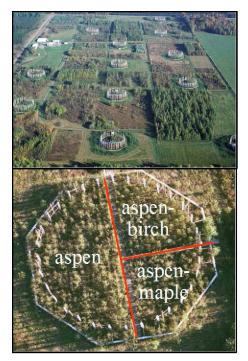


Fig. 1. Aerial views of the FACTS II FACE Experiment. Pictured in panel A is the entire FACE array. Panel B illustrates the division of the FACE rings into sections containing aspen, aspen-birch and aspen-maple.

From mid-June to mid-August in 2009, we conducted a detailed harvest of the site using protocols developed collaboratively between Michigan Tech, the USFS Northern Research Station (Rhinelander), the University of Michigan, and the

University of Nevada, Reno. Portions of the above- and belowground components of the experiment were harvested by block after the entire canopy had developed. Fumigation within a ring was continued to within one week of the harvest. The harvest included detailed sampling of a subset of trees by component (leaves and buds, fine branches, coarse branches and stem, coarse roots, fine roots) and excavation of soil to a depth of 1 m. An excavator and commercial soil sieve were used to recover coarse roots, with additional cores from pit faces used to capture fine root biomass. The destructive harvest produced detailed information on above- and belowground biomass, tree allometry, and soil C and N that far exceeded that which had been obtained by less intensive sampling during the experiment. In addition to the primary measurements and samples for our core scientists, we provided samples and/or data from the final harvest in response to more than 25 requests from researchers with universities and government agencies from five countries.

Findings:

Canopy Gas Exchange

Throughout the experiment, photosynthesis increased with elevated CO₂ and tended to decrease with elevated O₃, compared to the control (Fig. 2, Fig. 3; see Karnosky et al. 2003, Darbah et al. 2010b, McGrath et al. 2010 and earlier reports). Responses were species and genotype specific. In contrast to aspen and birch, maple photosynthesis was not enhanced by elevated CO₂ (Fig. 2). Elevated O₃ did not cause significant reductions in maximum photosynthesis in birch or maple. In addition, photosynthesis in ozone sensitive clones was affected to a much greater degree than that in ozone tolerant clones (Noormets et al. 2001).

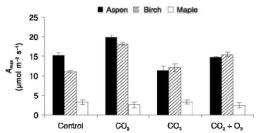


Fig. 2. Light-saturated CO_2 assimilation rates of aspen, birch and maple g_1 ing under experimental atmospheric CO_2 and O_3 treatments. Data represent the mean and SE of three trees from each of three replicates for three to five measurement times over the 1999 and 2000 growing seasons. Elevated CO_2 significantly (P < 0.05) increased A_{max} in aspen and birch, while elevated O_3 significantly decreased A_{max} in aspen. The figure is from Karnosky et al. 2003 (Fig. 4).

Darbah et al. (2010b) examined two of the aspen clones for evidence of photosynthetic acclimation to the treatments over the first eleven years of exposure and found no evidence indicating changes over time in the positive (CO₂) or negative (O₃) responses to the treatments (Fig. 3). The effects of O₃ and CO₂ on photosynthesis have varied with diurnal and seasonal patterns of environmental stress (drought, high air temperature). The positive impact of CO₂ on net photosynthesis was more pronounced on days with environmental stress but relatively less pronounced during midday depression, while the negative impact of ozone tended to decrease in both cases (Kets et al. 2010).

Altered photosynthesis had direct effects on net primary productivity (see next section), including production of foliage (Fig. 4, Talhelm et al. 2012) which created a positive feedback that led to even greater enhancement of C assimilation under elevated CO₂ for aspen and birch and further reduction of C assimilation under elevated O₃ for aspen (Karnosky 2003).

Elevated CO₂ also conferred increased thermotolerance for both aspen and birch trees while isoprene production in aspen conferred further thermotolerance in aspen (Darbah et al. 2010a). This has potential climatic change implications, as isoprene-emitting trees may have a competitive advantage as temperatures rise.

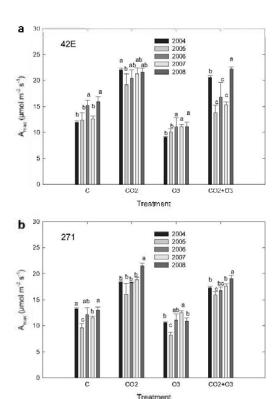


Fig. 3. Average seasonal maximum assimilation rate (Amax) for the growing seasons 2004 through 2008 in aspen clones 42E and 271, showing significant differences among years within each of the four treatments. Measurements were taken from the same trees each year at the Aspen FACE site, Rhinelander, WI, USA. Within a treatment, letters indicate significant differences (P < 0.05) among years. Elevated CO₂ significantly increased Amax in all years. Elevated O₃ significantly reduced Amax in all years except 2007, when O₃ treatment was halted for over a month due to equipment failure. Figure is from Darbah et al. 2010b (Fig. 1).

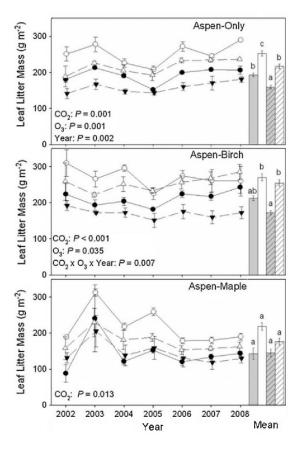


Fig. 4. Annual leaf litter mass (g m⁻²) in the three community types for the ambient (filled circles, filled bar), $+CO_2$ (empty circles, empty bar), $+O_3$ (solid triangles, filled hatched bar), and $+CO_2+O_3$ (empty triangle, empty hatched bar). Bar graphs are means over the entire collection period. Error bars are ± 1 SE. Reported ANOVA P values are from repeated measures analyses within each community. Letters denote significant differences in pair-wise comparisons (P < 0.05) among the treatments within a community. Figure is from Talhelm et al. 2012 (Fig. 1).

Net Primary Productivity

Treatment effects on photosynthesis have contributed to CO₂ stimulation of aboveground and belowground growth that was species and genotype dependent, with birch and aspen being most responsive and maple being least responsive. The positive effects of elevated CO₂ on net primary productivity (NPP) were sustained through the end of the experiment, but negative effects of elevated O₃ on NPP had dissipated during the final three years of treatments (Fig. 5 and Zak et al. 2011).

Relative to NPP under ambient CO₂, NPP was significantly enhanced under elevated CO₂ by 40% in 2006 (P = 0.009), 14% in 2007 (P = 0.013), and 25% in 2008 (P = 0.009), which

corresponded to the 10^{th} to 12^{th} years of the experiment. Despite elevated O_3 -induced reductions in plant growth that occurred early in the experiment, elevated O_3 had no effect on NPP during the 10^{th} to 12^{th} years of exposure (Fig. 5; P = 0.128 to 0.887). In no case did we find significant interactions among plant community, CO_2 , or O_3 , indicating that NPP in the three plant communities in our experiment responded similarly to both CO_2 and O_3 . If similar forests growing throughout northeastern North America respond in the same manner, then enhanced forest NPP under elevated CO_2 may be sustained for a longer duration than previously thought, and the negative effect of elevated O_3 may be diminished by compensatory growth of O_3 -tolerant plants as they begin to dominate forest communities.

The treatments are clearly affecting NPP through their effects on photosynthesis and leaf area, and evidence suggests they also may also be affecting NPP by altering growing season phenology. Taylor et al. (2008) reported a significant delay in the decline of autumnal canopy leaf area index in elevated CO₂. Leaf level photosynthetic activity and carbon uptake during the senescence period

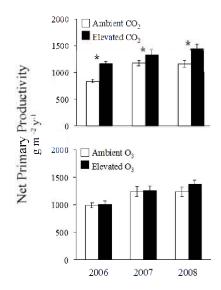


Fig. 5. Net primary productivity (NPP) during the last three years of the Rhinelander FACE experiment. NPP has been sustained under elevated CO₂ and NPP has recovered under elevated O₃ due to compensatory growth of O₃ tolerant genotypes and species.

were enhanced under elevated CO₂. The findings reveal a direct effect of rising atmospheric CO₂, independent of temperature, in delaying autumnal senescence. Riikonen et al. (2008) also observed delayed autumnal senescence under elevated CO₂, as well as accelerated senescence and delayed spring leaf development under elevated O₃, and McGrath et al. (2009) have found that found spring leaf flush is suppressed by elevated O₃ in aspen and stimulated by elevated CO₂. For birch, accelerated senescence under elevated O₃ was associated with decreased expression of photosynthesis- and carbon fixation-related genes, and increased expression of senescence-associated genes (Kontunen-Soppela et al. 2009).

Year-to-year variation in treatment growth responses has occurred at Aspen FACE, and the long-term nature of the project has enabled the research team to explain much of this variation. Kubiske et al. (2006) found the photosynthetically active radiation and temperature during specific times of the year explained 20-63% of the annual variation in growth response to elevated CO₂ and O₃. Cloudy summers and cool autumns were responsible for several years with a decreased CO₂ growth response. Climatic variation has also played a role in predisposing trees to deleterious effects of other stressors. For example, three to five times as many birch in the O₃ treatments succumbed to drought stress in 2005, due to subsequent infestation with bronze birch borer, which does not infect healthy birch trees.

Following the final harvest, estimates of cumulative NPP for the entire experiment were made (Talhelm et al. 2014) in order to understand the magnitude and temporal dynamics of the treatment effects on NPP and to test the hypothesis that the relationship between ecosystem C content and NPP had not been altered by elevated CO₂ and/or O₃. Previous NPP estimates at Aspen FACE included only the first six years (1998-2003; King et al. 2005) or last three years of the experiment (2006-2008; Zak et al. 2011) and had been constructed using different allometric

equations and assumptions. Thus, estimating cumulative NPP (1998-2008) was not a simple combination of the earlier analyses. NPP was considered to include fine roots (<2 mm diameter), small roots (1 - 2 mm diameter), coarse roots (>2 mm diameter), stems, branches, leaves, groundcover vegetation, and other plant litter. The NPP estimates were derived from previous

publications on the production of leaves, fine roots, and groundcover plants (e.g. Bandeff et al. 2006, Pregitzer et al. 2008, Talhelm et al. 2012) and estimates of tree biomass created from annual stem diameter measurements and allometric equations created from trees harvested in 2000, 2002, and 2009.

Cumulative NPP was 39% greater under elevated CO_2 (P < 0.001), 10% lower under elevated O_3 (P = 0.026), and varied by more than 27% across communities (P < 0.001) (Fig. 6 and Talhelm et al. 2014). Interactions were not significant between treatments (P = 0.661) or between the treatments and communities $(P \ge 0.65)$ for cumulative NPP. The O₃ effect on annual NPP gradually disappeared during the final 7 years of the experiment (dashed line in Fig. 6b). Specifically, the O₃ effect on tree productivity (NPP_{tree}) declined from a peak of -95 g m⁻² in 2002 (P = 0.002) to -17 g m⁻² 2 in 2008 (P = 0.554; linear $r^{2} = 0.66$, P =0.026). Over a similar period, the absolute effect of elevated CO₂ on NPP_{tree} was fairly consistent, changing from +189 g m⁻² in 2001 to +200 g m⁻² in 2008 (linear r^2 = 0.24, P = 0.223). The declining response to O₃ over time resulted from the compensatory growth of O₃-tolerant genotypes and species as the growth of O₃sensitive individuals declined over time (see next section), thereby causing annual NPP to attain equivalent levels under ambient and elevated O₃. Given the degree to which O₃ has been projected to decrease global NPP, the compensatory growth of O_3 tolerant plants in our experiment, as they replaced senescing O₃ sensitive plants, should be considered in future simulations. Depending on the generality of this response, this effect could dramatically

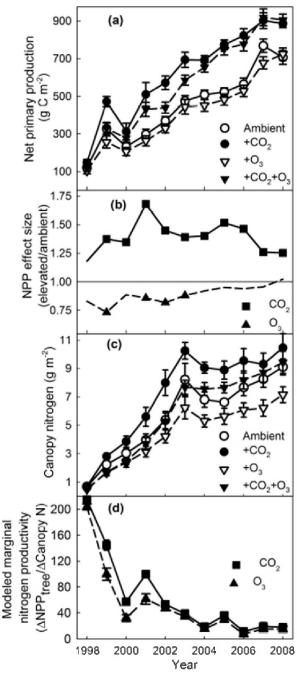


Fig. 6. (a) NPP, (b) NPP effect sizes, (c) canopy N (elevated/ambient, 1 = no effect), and (d) the modeled marginal N productivity ([NPP_{tree(elevated)} - NPP_{tree(ambient)}]/ [Canopy $N_{(elevated)}$ – Canopy $N_{(ambient)}$]). In (b), symbols are shown only when NPP effects are significant (P < 0.05). Bars are ± 1 standard error. Figure is from Talhelm et al. 2014.

diminish the predicted negative effect of elevated O_3 on NPP and C storage on land as well as projected feedbacks to atmospheric CO_2 and climate warming.

Sustaining soil N availability

The inability of maple to respond positively to elevated CO₂ was at least partly due to a superior ability of aspen to acquire N under elevated CO₂ (Zak et al. 2012). Enhanced net primary productivity (NPP) under elevated CO₂ was sustained by greater root exploration of soil for growth-limiting N, as well as more rapid rates of litter decomposition and microbial N release during decay (Zak et al. 2011, 2012). Results from our long-term measurements at Aspen FACE clearly indicate that plants growing under elevated carbon dioxide, regardless of community type or ozone level, obtained significantly greater amounts of ¹⁵N tracer as well as soil N. These results indicate that greater plant growth under elevated carbon dioxide has not led to "progressive N limitation".

This is in agreement with accumulating evidence suggesting that elevated CO₂ can supplement the supply of soil N to plants by increasing the production of root exudates, which, in turn, facilitate the decay of soil organic matter and the subsequent release of inorganic N for plant uptake (Zak et al. 1993, Langley et al 2009, Drake et al 2011). This mechanism has sustained enhanced NPP under elevated CO₂ in a loblolly pine (*Pinus taeda*) forest (Drake et al. 2011) as well as a scrub-oak forest (Langley et al. 2009), and several lines of evidence indirectly indicate it may have contributed to the greater plant acquisition of soil N under elevated CO₂ at Aspen FACE. In our experiment, soil organic matter is accumulating at a slower pace under elevated CO₂, despite the fact that both above- and belowground litter production have significantly increased under elevated CO₂ (Talhelm et al. 2009). This observation indicates that the decay of soil organic matter is occurring at a more rapid rate under elevated CO₂, a response that has occurred in parallel with the increased rate of forest floor N cycling. These findings support the idea that greater belowground plant growth under elevated CO₂ has accelerated organic matter decay and increased the supply of N to plants, thereby sustaining the enhancement of NPP under elevated CO₂. This finding differs from those of short-term decomposition studies at Aspen FACE (Liu et al. 2009a,b), highlighting the importance of long-term field measurements for separating true responses from transient effects.

After a decade, NPP remained enhanced under elevated CO₂ and has recovered under elevated O₃ by mechanisms that remain un-calibrated or not considered in coupled climate-biogeochemical models simulating interactions between the global C cycle and climate warming.

Competitive Interactions

The long-term nature of the experiment has enabled assessment of treatment effects on competitive interactions among the tree species and among the aspen clones. Kubiske et al. (2007) utilized trends in species' importance, calculated as an index of volume growth and survival, as indications of shifting community composition. For the pure aspen community, different clones emerged as having the highest change in relative importance values. In the control and elevated CO₂ treatments, clone 42E was rapidly becoming the most successful clone while under elevated O₃, clone 8L emerged as the dominant clone. For the mixed aspen-birch community, importance of aspen and birch changed by -16% and +62%, respectively, in the control, with the presence of elevated O₃ hastening the conversion of stands to paper birch, whereas the presence of elevated CO₂ delayed it. Relative importance of aspen and maple

changed by -2% and +3%, respectively, after seven years in the control treatments. Elevated O3 slightly increased the rate of conversion of aspen stands to sugar maple, but maple was placed at a competitive disadvantage to aspen under elevated CO₂. Project results suggest that the changing atmospheric composition could shift the genotypic composition and average pollutant responses of tree populations over moderate timescales (Moran and Kubiske 2013).

Differences among the aspen clones in performance under elevated O₃ are explained in part by reduced early season stomatal conductance and O₃ uptake in clone 8L under elevated O₃, allowing it to avoid damaging exposure (Rouse 2008). Differences in isoprene emissions also may be important, due to the role of isoprene in protection against oxidative stress from O₃ exposure. Working at Aspen FACE, Calfapietra et al. (2008) found isoprene emissions decreased significantly under both elevated CO₂ and elevated O₃ in O₃-sensitive aspen, but only alignsty in O₂ talgrant again. The ability of

slightly in O₃-tolerant aspen. The ability of O₃-tolerant clones to maintain higher amounts of isoprene emission may be an important factor in strengthening their existing ability to minimize O₃ uptake through lower stomatal conductance. Finally, variation in cellular responses to DNA damage between aspen clones may contribute to O₃ tolerance or sensitivity. Tai et al. (2009) found that exposure to O_3 and CO_2 in combination with O₃ increased DNA damage levels above background. Ozone-tolerant clones 271 and 8L showed the highest levels of DNA damage under elevated O₃ compared with ambient air, but clone 8L also demonstrated the highest level of excision DNA repair.

Effects of Canopy Development on NPP

We fit several stand-level models that predict NPP_{tree} based on canopy development metrics (leaf area, canopy N, etc.) and canopy productivity (e.g., produc tivity per leaf area). This allowed us to test the hypotheses that both canopy development and canopy productivity would be stimulated by elevated CO₂ and depressed by elevated O₃ in these young forests (Norby & Zak 2011, Ainsworth et al. 2012). We expected that developmental effects would diminish as all stands reached maximum leaf area index (Körner 2006, Norby & Zak 2011). Through this analysis, we also hoped to gain further insight into the diminishing effect of O₃ on NPP.

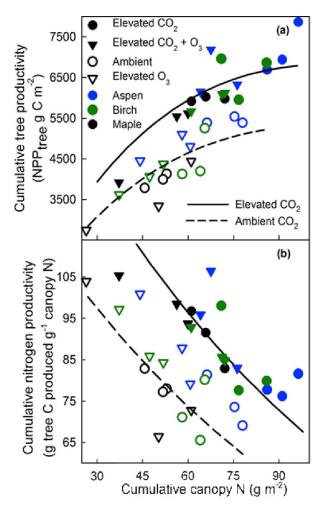


Fig. 7. Cumulative canopy N in relation to (a) cumulative tree productivity and (b) N productivity, with lines displayed representing mixed model estimates of these relationships (community effects not shown for simplicity). Slopes in (b) do not differ, but intercepts differ by community (P = 0.031) and between ambient CO_2 and elevated CO_2 (P < 0.001). Ozone effects on the slopes and intercepts were not significant (P > 0.25). Figure is from Talhelm et al. 2014.

We evaluated several canopy attribute stand productivity models using the cumulative NPP data. We tested (1) the N Productivity Model (Ågren 1983), which describes increasing NPP_{tree} with canopy N but a diminishing return as foliar biomass accumulates; (2) the Reich model (Reich 2012), which predicts productivity based upon stand leaf area index (LAI, m^2 m^{-2}), foliar N concentration, and their interaction (LAI × N); and (3) a model developed from remote sensing (Smith et al. 2002) that predicts a base rate of p roductivity (an intercept) and greater rates of productivity as foliar N concentration increases. We used corrected AIC (AICc) for model selection. In the selected model for NPP_{tree}, stands with more cumulative canopy N (g foliar N m^{-2} of ground area) had greater cumulative NPP_{tree} (Fig. 7a), but N productivity (NPP_{tree} per canopy N) decreased as canopy N accrued (Fig. 7b). Cumulative canopy N, leaf area (m^2 m^{-2}), and canopy leaf mass (g m^{-2}) were correlated with each other (n = 36, r > 0.80, P < 0.001; not shown). Likewise, annual canopy N (Fig. 6c), leaf area, and canopy leaf mass (Talhelm et al., 2012) responded similarly to the treatments through time. However, canopy N was the best predictor of NPP_{tree}.

Neither CO_2 nor O_3 affected the rate at which N productivity decreased with canopy N accrual (i.e., slopes in Fig. 7b were not different: P > 0.25). Cumulative NPP_{tree} was greater under elevated CO_2 because of increases in both canopy N content (+28%, P < 0.001) and the maximum rate of N productivity (N productivity_{max}, the y-intercept in Fig. 7b; +28%, P < 0.001). Communities also differed in both of these traits (P < 0.035). In contrast, the negative effect of elevated O_3 on cumulative NPP_{tree} resulted from decreased canopy N (-21%, P < 0.001), as there was no meaningful impact on cumulative N productivity_{max} (-2%, P = 0.659).

Because NPP_{tree} was a function of canopy N, the disappearance of the O_3 effect on annual NPP (Fig. 6b) despite the consistent negative effect on canopy N (Fig. 6c) might seem to indicate a weakening physiological impact of O_3 . For further insight, we fit the NPP_{tree} model to annual data and then applied the annual models for elevated stands to the matching ambient stands (18 pairs at the ring-section level). This allowed us to estimate the marginal increase in NPP_{tree} caused by differences in canopy N between the treatments (\triangle NPP_{tree}/ \triangle N). This analysis revealed that marginal N productivity decreased by more than a factor of 10 during the experiment (Fig. 2d), meaning that differences in canopy N created by elevated CO_2 or O_3 had gradually smaller impacts on NPP. Notably, the annual O_3 effects on NPP predicted by differences in canopy N closely matched the observed O_3 effects (r = 0.82, P = 0.002; not shown). Thus, the diminishing impact of O_3 on NPP was due to a declining relative impact of canopy N differences rather than a physiological acclimation to O_3 .

Ecosystem C Content

Prior to the experiment, we hypothesized that ecosystem C content would be enhanced by elevated CO_2 and decreased by elevated O_3 . We further hypothesized that CO_2 and O_3 would have counteracting effects on ecosystem C content. We observed that the two gases had opposite and nearly equal effects on ecosystem C content (Fig. 8, Talhelm et al. 2014): elevated CO_2 increased ecosystem C content by 11%, whereas elevated O_3 decreased ecosystem C content by 9%. Total ecosystem C content in the interaction treatment (elevated CO_2 and O_3) did not significantly differ from that of the control (Fig. 8). Total ecosystem C content responded similarly to the treatments across the three forest communities (Treatment × Community: P > 0.25). There were also no significant interactions between CO_2 and O_3 for any of the largest C pools (P > 0.1). The treatment effects on ecosystem C content resulted from differences in tree

biomass, particularly woody tissues (branches, stem, and coarse roots), and lower C content in the near-surface mineral soil (Fig. 8). For tree C, the negative effect of elevated O_3 was smaller (-15%) than the positive effect of elevated O_2 (+44%)

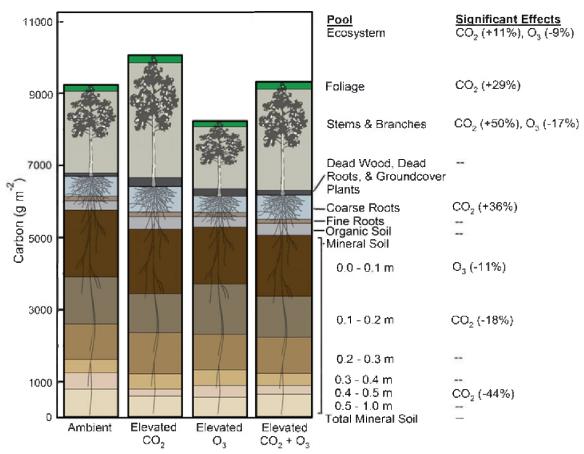


Fig. 8. Ecosystem carbon content at the Aspen FACE experiment. Data are averaged across the three forest community types and include soil to 1 m in depth. The height of each bar segment represents mean size of each pool and the total bar height is represents ecosystem C content for each treatment. Significant ($P \le 0.05$) effects of the treatment gases and the size of these effects (%) are shown to the right of the figure. Pools without significant treatment effects are denoted with "--". The figure is from Talhelm et al. 2014.

We also assessed tree C at the species level. The two species within the aspen-birch community responded similarly to the treatments and the proportion of tree C represented by aspen within the community was not influenced by CO_2 or O_3 (44 ± 4% aspen; P > 0.69). However, there was not a uniform treatment response within the aspen-maple community: elevated CO_2 increased aspen tree C by 76% and decreased maple tree C by 32% ($CO_2 \times$ species: P < 0.001), while elevated O_3 decreased aspen tree C by 22% and changed maple tree C by <1% ($O_3 \times$ species: P < 0.001). In interpreting the treatment effects on maple, it should be noted that the faster growing aspen represented 87% (± 2%) of tree C within this community and was taller throughout the experiment than the slower growing maple. In comparison, height differences were not significant between aspen and birch until the final full year of the experiment.

Neither CO₂ nor O₃ affected the total amount of C in the top 1 m of mineral soil. However, each gas significantly decreased mineral soil C content in one of the two depth increments nearest to

the surface: soil C within the top 0.1 m of mineral soil was lower under elevated O₃, whereas soil C from 0.1 to 0.2 m in depth was lower under elevated CO₂ (Fig. 8). Soil C was also lower under elevated CO₂ at 0.4 to 0.5 m in depth (Fig. 8), but there were no additional treatment effects on soil C.

After 11 years, there were no significant main effects of CO₂ or O₃ on surface soil (0-20 cm) C content across all three communities, but within the aspen community, elevated CO₂ caused a significant decrease in soil C content (Talhelm et al. 2009). Overall, our observations indicate that elevated CO₂ has altered SOM cycling at this site to favor C and N accumulation in less stable pools, with more rapid turnover (Hofmockel et al. 2011). Elevated O₃ had the opposite effect, significantly reducing cPOM N by 15% and significantly increasing the C:N ratio by 7%. Our results demonstrate that CO₂ can enhance SOM turnover, potentially limiting long-term C sequestration in terrestrial ecosystems; plant community composition is an important determinant of the magnitude of this response. In addition, an initial reduction in the formation of new (fumigation-derived) soil C by O₃ under elevated CO₂ (Loya et al. 2003) proved to be only a temporary effect, mirroring trends in fine root biomass. These results contradict predictions of increased soil C under elevated CO₂ and decreased soil C under elevated O₃ and should be considered in models simulating the effects of Earth's altered atmosphere.

Other Responses

Soil respiration and fine root dynamics

Soil respiration responses paralleled aboveground results in the early years of the project, but not in later years. For example, during the first five years of the experiment, soil respiration increased with elevated CO₂, decreased with elevated O₃ and was fairly similar to the control for elevated CO₂+O₃. In later years, soil respiration was greater in the elevated CO₂ and CO₂+O₃ treatments for all three plant communities (Pregtizer et al. 2008), but was not affected by elevated O₃ alone. The treatment responses in soil respiration were correlated with fine root biomass, which, for the aspen community was actually stimulated by O₃, and especially CO₂+O₃. After 10+ years of exposure, the CO₂+O₃ treatment induced increases in belowground carbon allocation to fine roots in aspen, suggesting that the positive effects of elevated CO₂ on belowground net primary productivity were not offset by negative effects of O₃.

Aspen fine-root (< 1.0 mm) production rates were not affected by elevated carbon dioxide alone or elevated ozone alone. Fine-root (< 1.0 mm) mortality rates also were not affected by elevated CO_2 alone; however, they were enhanced by elevated ozone in 2003, but not in 2004. Overall, fine-root (< 1.0 mm) production and mortality showed no clear response to treatments, and thus fine-root (< 1.0 mm) survival was fairly consistent across treatments and years. As a result, differences among treatments in annual fine-root production and mortality, expressed on a mass basis, were controlled primarily by treatment differences in standing fine-root biomass. Root production was positively affected by elevated CO_2 alone and elevated O_3 alone and was greatest in the elevated CO_2 -O₃ treatment combination, a result that substantially differed from the initial response of fine root biomass to the treatments. Rates of biomass mortality were positively influenced by elevated O_3 , but varied from year to year. These results were driven by larger standing fine-root (< 1.0 mm) biomass in the elevated O_3 alone and elevated CO_2 -O₃ treatment combination. Seasonal soil respiration in 2005 was correlated to < 2 -mm root biomass (r = 0.87; P < 0.001) and < 1 -mm root biomass (r = 0.72; P = 0.008) for that year. The tendency for the elevated CO_2 -O₃ treatment combination to have the greatest values for biomass of fine roots < 1.0 mm

1.0 mm in diameter also occurred for seasonal soil C efflux.

Between the 10^{th} and 12^{th} year of the experiment, plants continued to expand their fine root system regardless of treatment, an indication that they had not yet fully exploited soil for growth-limiting resources. For example, averaged across CO_2 and O_3 treatments, fine-root biomass was 155 g/m^2 in 2005 and gradually increased over subsequent years to 168 g/m^2 by 2008. Similarly, fine root production increased from 344 g m⁻² y⁻¹ in 2006 to 362 g m⁻² y⁻¹ in 2008; however, increases in fine-root biomass and production from 2005 to 2008 were not statistically significant ($P_{biomass} = 0.108$; $P_{production} = 0.105$). Clearly, at the end our decade long experiment, these developing forests continued to increase the exploration of soil for growth-limiting nutrients.

Treatment-pest interactions

Insect populations have either increased, decreased or shown no response to elevated CO_2 , elevated O_3 and elevated CO_2+O_3 , depending on insect and/or tree species (Hillstrom and Lindroth 2008). For example, elevated CO_2 reduced abundance of phloem-feeding herbivores and increased abundance of chewing herbivores, although results were not statistically significant. Enriched CO_2 increased numbers of some parasitoids. The effects of O_3 on insect abundance were generally opposite those of CO_2 . No significant differences in arthropod family richness were found among treatments.

Changes in foliar tissue quality due to the independent and interactive effects of elevated CO₂ and O₃ have been more pronounced and have the potential to alter the performance outbreak insect herbivore species. Couture et al. (2012) and Couture and Lindroth (2012) examined the effects of aspen and birch phytochemistry changes at Aspen FACE on gypsy moth and forest tent caterpillar performance. Elevated CO₂ nominally affected foliar quality for both tree species. Elevated O₃ negatively affected aspen foliar quality, but only marginally influenced birch foliar quality. Elevated CO₂ slightly improved herbivore performance, while elevated O₃ decreased herbivore performance, and both responses were stronger on aspen than birch. Nitrogen, lignin, and C:N were identified as having strong influences on herbivore performance when larvae were fed aspen, but no significant relationships were observed for insects fed birch. Their results support the notion that herbivore performance can be affected by atmospheric change through altered foliar quality, but how herbivores will respond will depend on interactions among CO₂, O₃, and tree species.

Nabity et al. (2012) examined spatial patterns in chlorophyll fluorescence and the temperature of leaves damaged by leaf-chewing, gall-forming, and leaf-folding insects in aspen trees as well as by leaf-chewing insects in birch trees at Aspen FACE. Both defoliation and gall damage suppressed the operating efficiency of photosystem II in remaining leaf tissue, but the distance that damage propagated into visibly undamaged tissue was marginally attenuated under elevated CO₂. Elevated CO₂ also increased leaf temperatures, which reduced the cooling effect of gall formation and freshly chewed leaf tissue. These results suggest that elevated CO₂ may reduce the effects of herbivory on the primary photochemistry controlling photosynthesis.

Stomatal conductance and ecosystem water use

At the stand level, changes in leaf area have tended to offset the leaf level effects of the treatments on stomatal conductance and thus potential stand water use. Uddling et al. (2010) found stand canopy conductance was significantly increased by elevated CO₂ but not significantly affected by elevated O₃, demonstrating that short-term primary stomatal closure

responses to elevated CO₂ and O₃ were completely offset by long-term cumulative effects of these trace gases on tree and stand structure in determining canopy- and leaf-level conductance in pure aspen and mixed aspen-birch forest. In addition, leaves from trees grown in elevated CO₂ and/or O₃ exhibited weaker short-term responses of stomatal conductance to both an increase and a decrease in CO₂ concentration from current ambient level (Onandia et al. 2011). Potential plant water-savings and reduced stomatal air pollution uptake under rising atmospheric CO₂ may not hold for northern forests under concurrently rising tropospheric O₃ (Onandia et al. 2011). Thus, model assumptions of large reductions in stomatal conductance under rising atmospheric CO₂ are very uncertain for forests.

Bacterial and fungal responses

Lesaulnier et al. (2008) found that total bacterial and eukaryotic abundance did not change under elevated CO₂, but heterotrophic decomposers and ectomycorrhizal fungi did increase. Andrew and Lilleskov (2009) also found ectomycorrhizal sporocarp biomass was greatest under elevated CO₂, regardless of O₃ concentration, while it was generally lowest under elevated O₃ with ambient CO₂. Mycorrhizal community composition differed significantly among the treatments. These and other changes in soil biota suggest altered interactions between trembling aspen and the microorganisms in the surrounding soil, supporting the theory that greater plant detritus production under elevated CO₂ significantly alters soil microbial community composition.

During 2010 we completed processing and analysis of samples taken to assess fungal community composition and the activities of cellobiohydrolase and N-acetylglucosaminidase (NAG) after ten years of FACE exposure in aspen and aspen-birch forest ecosystems and compared these results to earlier results from the long-term experiment (Edwards and Zak 2011). NAG is an enzyme involved in the depolymerization of chitin, the second most abundant polysaccharide in nature, and an important source of organic N. The forest floor community was dominated by saprotrophic fungi, and differed slightly between plant community types, as did NAG activity. Elevated CO₂ and O₃ had small but significant effects on the distribution of fungal genotypes in this horizon, and elevated CO₂ also lead to an increase in the proportion of *Sistotrema* spp. within the community. Yet, although cellobiohydrolase activity was lower in the forest floor under elevated O₃, it was not affected by elevated CO₂. NAG was also unaffected.

The soil community was dominated by ectomycorrhizal species. Both CO₂ and O₃ had a minor effect on the distribution of genotypes; however, phylogenetic analysis indicated that under elevated O₃, *Cortinarius* and *Inocybe* spp. increased in abundance and *Laccaria* and *Tomentella* spp. declined. Although cellobiohydrolase activity in soil was unaffected by either CO₂ or O₃, NAG was higher (similar to 29%) under CO₂ in aspen-birch, but lower (similar to 18%) under aspen. Time series analysis indicated that CO₂ increased cellulolytic enzyme activity during the first 5 years of the experiment, but that the magnitude of this effect diminished over time. Unlike cellobiohydrolase, NAG activity tended to increase over time. Moreover, NAG activity was strongly stimulated by elevated CO₂, and was slightly lower under elevated O₃, early in the Rhinelander FACE experiment. By year 10 however, NAG response to elevated CO₂ differed between plant communities, being higher in aspen-birch and lower in aspen. Elevated O₃ appears to have variable stimulatory and repressive effects depending on the soil horizon and time point examined.

In our decade-long experiment, stratification of the fungal community between forest floor and soil horizons and differing plant communities had a greater influence on fungal community

composition and function than did elevated CO₂ and O₃. Nevertheless, our results demonstrate that plant exposure to elevated concentrations of CO₂ or O₃ can lead to small, but persistent changes in fungal community function, and that these may be related to concomitant changes in fungal community composition. Moreover our results further suggest that O₃ and CO₂ may affect different parts of the fungal community, and that their functional effect may decline or even change entirely over time.

Reproductive fitness

Treatment effects on whole-tree carbon balance also are affecting reproductive fitness in birch (Darbah et al. 2008). Elevated CO_2 has increased both the number of birch trees that flower and the quantity of flowers (260% increase in male flower production), increased seed weight, germination rate, and seedling vigor. In contrasts, elevated O_3 also increased flowering but decreased seed weight and germination rate. In the combination treatment (elevated $CO_2 + O_3$) seed weight was decreased (20% reduction), while germination rate was unaffected. These findings suggest that elevated CO_2 may have a largely positive impact on forest tree reproduction and regeneration while elevated O_3 will likely have a negative impact, at least for some species.

Wood decomposition processes

Although data suggest leaf and root litter decomposition have been affected by the treatments, we found little evidence for altered decomposition of wood grown under or placed in elevated CO₂ and/or elevated O₃ (Ebanyenle 2012). Tree species (aspen vs. birch) and aspen genotype had a much greater impact on the wood-decaying fungal community and initial wood decomposition rate than did growth or decomposition of wood in elevated CO₂ and / or O₃. Thus any changes in ecosystem wood decomposition under future atmospheres would occur via shifts in species and / or genotype composition and under future higher levels of CO₂ and O₃. In terms of wood quality, the effects of the treatments were minor (Ebanyenle 2012). Elevated CO₂ did not have significant effects on wood anatomical properties in trembling aspen, paper birch or sugar maple, except for marginally increasing $(P \le 0.1)$ the number of vessels per square millimeter. Elevated O₃ marginally or significantly altered vessel lumen diameter, cell wall area and vessel lumen area proportions depending on species and radial position. In line with the modifications in the anatomical properties, elevated CO₂ and O₃, alone, significantly modified wood density but effects were species and / or genotype specific. The effects of elevated CO₂ and O₃, alone, on wood anatomical properties and density were ameliorated when in combination. Based on these results, future higher levels of CO₂ and O₃ may have minor effects on wood quality of northern hardwoods, but for utilization purposes these would not be considered significant.

Brief History of Aspen FACE Funding, Publications and Operation

Initial funding for the experiment came from the NSF/DOE/NASA/USDA Joint Program on Terrestrial Ecology and Global Change (1995-2001) and the NSF Academic Research Infrastructure Program (1996), with additional funding and in-kind support from the National Council for Air and Stream Improvement, Brookhaven National Laboratory, Michigan Technological University, The US Forest Service Northern Global Change Program, and the US Forest Service North Central Experiment Station. Subsequent to 2001, the experiment was principally funded by the US DOE Program for Ecosystem Research, the US Forest Service, Michigan Tech University and Natural Resources Canada, Canadian Forest Service. In addition,

the USFS installed, maintained, and archived the extensive micrometeorological monitoring done at the Aspen FACE Project.

The project involved collaboration between scientists from 9 countries, and over the course of the experiment there were over 120 Aspen FACE scientific users. Key investigators from this group are listed in Table 1, but there are many additional scientists and students who participated in the research at the site. These scientists helped produce 75 publications during the most recent funding period (2008-2014) and 207 peer-reviewed publications (169 in refereed journals) since the beginning of the project. In addition to the publications listed in this report, there were numerous other published abstracts from scientific meetings and theses and dissertations from students work on the project.

The Aspen FACE infrastructure was constructed in 1996 and 1997. The development of the Aspen FACE site is detailed in Dickson et al. (2000) and the forthcoming Kubiske et al. (2014). In summary, a team of investigators had been conducting open-top chamber research with aspen and these two greenhouse gases independently in three different locations (Alberta, Michigan [Karnosky, Percy, Isebrands]; Pellston, Michigan [Pregitzer, Zak, Kubiske], and Madison, Wisconsin [Lindroth]. These investigators collaborated with George Hendrey and his Brookhaven National Lab (BNL) team to conceive and engineer the Aspen FACE project with the emphasis being to examine the impacts of these interacting greenhouse gases on the structure and functioning of northern forest ecosystems over their entire life history (Karnosky et al. 2003a).

The experiment consists of twelve 30-m diameter rings, assigned to factorial treatments of [CO₂] (ambient and 560 ppm) and [O₃] (ambient and approximately 1.5 x ambient). Treatments are arranged in a randomized complete block design (n = 3). In one half of each ring, we planted five trembling aspen (*Populus tremuloides*) genotypes of differing CO₂ and O₃ responsiveness. The other half of each ring was further divided into two quarters: one planted with aspen and maple (Acer saccharum) and the other planted with aspen and paper birch (Betula papyrifera). Each ring was planted in July 1997 at 1 m x 1 m spacing. Gases were tested in 1997 and full treatments have been run during daylight hours from aspen budbreak to aspen leaf drop from 1998 through mid-2009, except during periods of leaf wetness, when O₃ damage would have been excessive. For CO₂ generation and monitoring, the BNL system in use at the Duke FACE site (Hendrey et al. 1999) was modified. To accommodate fumigation with O₃, the gas delivery was modified to allow for a larger volume of gas to be emitted from the vertical vent pipes so that O₃ could be diluted to nontoxic concentrations. Extensions of the vertical vent pipes were made in 2000, 2002 and 2006. A system of east-west oriented elevated walkways across the aspen and aspen-birch quadrant were established in 2002 to accommodate canopy access. A man-lift was added in 2002 to adjust the slot openings in the vertical vent pipes. The ground and elevated walkways and man-lift were all supported by the USFS Capital Projects Program.

In 2007, a 2700 square foot laboratory building (dedicated in 2009 as the David F. Karnosky Laboratory) was constructed with \$450,000 from the USFS Capital Improvement Project Program), along with a new well and septic system, was constructed at the Aspen FACE site to accommodate Aspen FACE users.

Biomass harvests consisting of one aspen tree per clone per ring for each of the 5 clones for the aspen ring-half, one aspen and one birch from the aspen-birch community, and one aspen and one maple from the aspen-maple community were made with trees just outside the scientific core

area to examine effects of these greenhouse gases on NPP and to see if allometry of the trees was being changed by either CO₂ or O₃. These harvests were done in 2000, 2002, and 2007. A final detailed harvest and excavation of soil to 1 m depth was conducted during the growing season of 2009, with all remaining trees removed during the winter of 2009/2010.

Wood from the trees from rings with elevated CO₂ is depleted in ¹³C, allowing it to be used in tracer studies. As a result, wood from Aspen FACE is currently being used in two long-term decomposition studies, examining the environmental and biotic factors that control the movement of wood-derived C into soil carbon pools, and the stability of these C pools.

Table 1. Aspen FACE Investigators

NAME	FIELD	AREAS OF STUDY
C. Awmack (UK)	Ecological Entomologist	Insect biodiversity and community ecology
C. Blackwood (UMich)	Soil Microbiologist	Soil microorganism communities
A. Burton (MTU)*	Forest Ecologist	Carbon and nutrient cycling, physiological ecology of global change, belowground processes
C. Calfapietra (IBAF-CNR/Italv)	Physiologist	VOC emissions
B. Callan (CFS)	Pathologist	Foliar diseases, diagnostics
A. Chappelka (AuburnU)	Physiologist	Understory vegetation quality
R. Cox (CFS)	Ecologist	Passive O ₃ sampling
D. Ellsworth (UMich)	Ecophysiologist	Stomatal conductance, stomatal density
A. Friend (USFS)	Ecophysiologist	Nitrogen budgets
C. Giardina (USFS)	Ecophysiologist	Canopy dynamics
E. Gustafson (USFS)	Modeller	Scaling responses
W. Heilman (USFS)	Micrometeorologist	Characterization of micro climate inside and outside of FACE rings
G. Hendrey (QC-CUNY)	Ecologist	Engineering CO2 and O3 delivery systems
D. Herms (OSU)	Entomologist	Bronze birch borer occurance
B. Holmes (UMich)	Microbial	C and N cycling
J. Hom (USFS)	Ecologist	Ecosystem N dynamics, whole-canopy gas exchange
A. Hopkin (CFS)	Pathologist	Foliar pathogen occurrence and affects
G. Host (NRRI-UMinn-D)	Modeler/Ecologist	Growth process modeling - single tree to patch scale. Co-developer of ECOPHYS model. FACTS II Web Site Moderator
J. Jastrow (ANL)	Mycorrhizal specialist	C storage
E. Jepsen (WDNR)	Ecologist	O3 monitoring and O3 bioindication

S. Kaakinen (UHelsinki/Finland)	Wood Anatomist	Wood quality and chemistry
J. Kangasjarvi (UHelsinki/Finland)	Physiologist	Birch gene expression
D. Karnosky (MTU) deceased	Geneticist	Steering Committee. Project Director. Genetic interactions, gene expression, project operations.
J. King (NCSU)	Ecophysiologist	Soil respiration and soil carbon dynamics
E. Kruger (UWisc)	Physiologist	Ecosystem C flux, respiration
M. Kubiske (USFS)	Ecophysiologist	Responses of photosynthesis and plant water relations, science coordination
O. Kull (UTartu/Estonia) deceased	Ecologist	Gas exchange/Ozone uptake
K. Lewin (BNL)	Research Engineer FACE Specialist	Facility development and maintenance, equipment-manufacturer liaison
T. Lewis (EPA)	Physiologist	Humming bird behavior
E. Lilleskov (USFS)	Mycorrhizal specialist	Mycorrhizae
R. Lindroth (UWisc)	Entomologist Chemical Ecologist	Plant chemistry, insect herbivory, litter decomposition
S. Long (UIIlinois)	Physiologist	Modelling and scaling
J. MacDonald (CFS)	Physiologist	Crown architecture
B. Mankovska (Slovakian Acad. of Science)	Electron Microscopist	Impacts of gases on leaf surfaces
F. Martin (INRA/France)	Physiologist	Gene expression
W. Mattson (USFS) retired	Entomologist	Shoot boring insects, root feeders
E. McDonald (USFS) retired	Ecophysiologist	Canopy dynamics, competitive interactions
M. Miller (ANL)	Mycorrhizal Specialist	Carbon storage dynamics
E. Mondor (Georgia Southern Univ))	Forest Entomologist	Insect behavior
R. Muntifering (AuburnU)	Physiologist	Understory vegetation quality
J. Nagy (BNL)	Physicist	Facility development, software development, exposure controlling systems, technical consultant

N. Nelson (USFS) retired	Tree Physiologist	Steering Commitee. Gas Exchange Dynamics
A. Noormets (NCSU)	Ecophysiologist	Gas exchange dynamics, carbon gain
E. Oksanen (UEF/Finland)	Ecophysiologist	Biochemistry and gene expression for assimilation, rubisco, chlorophyll
K. Percy (Air Quality Effects Consulting, Ltd./Alberta, Canada)	Ecophysiologist	Steering Committee. Leaf surface structure, chemistry, and function; O3 distribution via passive samplers; O3 metrics
G. Podila (UAla-H) deceased	Molecular Biologist	Oversee biochemical and molecular studies of antioxidant gene expression
K. Pregitzer (Univ Idaho)*	Forest Ecologist	Steering Committee. Coordinate studies of roots and C and N cycling
D.Riemenschneider (USFS) retired	Quantitative Geneticist	Experimental analyses and interpretation
J. Riikonen (UKuopio/Finland)	Physiologist	Birch gas exchange
A. Rogers (BNL)*	Ecophysiologist	Steeing Committee. Gas exchange dynamics
P. Saranpaa (Finnish Forest Research Institute)	Physiologist	Wood quality and structure
T. Sharkev (UWisc)	Plant Physiologist	Volitile Organic Compounds (VOC) produced by Aspen
E. Singsaas (UWisc-SP)	Physiologist	Gas exchange
A. Sober (Estonia)	Physiologist	Gas exchange, O3 uptake
H. Tai (CFS)	Molecular Biologist	DNA dynamics
G. Taylor (USouthhampton/England)	Physiologist	Gene expression
R. Thakur (MTU)	Biotechnologist	Gene expression
T. Trier (GVSU)	Entomologist	Insect interaction
C.J. Tsai (UGeorgia)	Molecular Biologist	Genomics of CO2 and O3 responses in Aspen
<u>J. Uddling</u> (UGothenburg/Sweden)	Physiologist	Canopy-level transpiration
E. Vapaavuori (Finland Forest Institute)	Physiologist	Wood quality and chemistry
D. Weinstein (Boyce Thompson Institute)	Modeler	Scaling up AspenFACE results to the regional level

R. Wise (UWisc-O)	Physiologist	Leaf temperature dynamics
D. Zak (UMich)	Microbial Ecologist	Study mechanisms of C and N cycling; soil microorganisms

^{*} denotes steering committee members

Cited References (not listed in publications)

- Ågren GI (1983) Nitrogen productivity of some conifers. *Canadian Journal of Forest Research*, 13, 494-500.
- Ainsworth EA, Yendrek CR, Sitch S, Collins WJ, Emberson LD (2012) The effects of tropospheric ozone on net primary productivity and implications for climate change. *Annual Review of Plant Biology*, 63, 637-661.
- Brasseur, G.P., P. Artaxo, L.A. Barrie, R.J. Delmas, I. Galbally, W.M. Hao, R.C. Harriss, LS.A. Isaksen, D.J. Jacob,
- C.E. Kolb, M. Prather, H. Rodhe, D. Schwela, W. Steffen, D.J. Wuebbles. 2003. An integrated view of the causes and impacts of atmospheric changes. In: G.P. Brasseur, R.G. Prinn, A.A.P. Pszenny (eds.), The changing atmosphere: An integration and synthesis of a decade of tropospheric chemistry research. The International Global Atmospheric Chemistry Project (IGAC). The IGBP Global Change series. Springer-Verlag, Berlin Heidelberg New York.
- Coleman, M.D., J.G. Isebrands, R.E. Dickson, and D.F. Karnosky. 1995. Photosynthetic productivity of aspen clones varying in sensitivity to tropospheric ozone. Tree Physiology 15, 585-592.
- Drake JE, Davis SC, Raetz LM, & DeLucia EH (2011) Mechanisms of age-related changes in forest production: the influence of physiological and successional changes. Glob. Change Biol. 17, 1522-1535.
- Felzer, B., D. Kicklighter, J. Melillo, C. Wang, Q. Zhuang and R. Prinn. 2004 (page 1, paragraph 1) Effects of ozone on net primary production and carbon sequestration in the conterminous United States using a biogeochemistry model. Tellus 54B: 230-248.
- Heath, L.S. and J.E. Smith. 2004. Criterion 5, Indicator 26: Total forest ecosystem biomass and carbon pool, and if appropriate, by forest type, age class and successional change. 14 p. In: Darr, D.R., coord. Data report: A supplement to the national report on sustainable forests—2003. FS-766A. Washington, DC: U.S. Department of Agriculture. http://www.fs.fed.us/research/sustain/contents.htm.
- Körner C (2006) Plant CO₂ responses: an issue of definition, time and resource supply. *New Phytologist*, 172, 393-411.
- Langley, J.A., et al. 2009. Priming depletes soil carbon and releases nitrogen in a scrub-oak ecosystem exposed to elevated CO₂. Soil Biology & Biochemistry 41: 54-60.
- Reich PB (2012) Key canopy traits drive forest productivity. *Proceedings of the Royal Society B*, 279, 2128-2134.
- Sitch, S., P.M. Cox, W.J. Collins, and C. Huntingford. 2007. Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature Letters pp. 1-5.
- Smith M-L, Ollinger SV, Martin ME, Aber JD, Hallett RA, Goodale CL (2002) Direct estimation of aboveground forest productivity through hyperspectral remote sensing of

- canopy nitrogen. Ecological Applications 12, 1286-1302.
- USDA 2004. U.S. Agriculture and Forestry Greenhouse Gas Inventory: 1990-2001. Global Change Program Office, Office of the Chief Economist, U.S. Department of Agriculture. Technical Bulletin No. 1907. 165 pp.
- Zak, D.R., K.S. Pregitzer, P.S. Curtis, J.A. Terri, R. Fogel, and D.L. Randlett. 1993. Elevated atmospheric CO₂ and feedback between C and N cycles. Plant and Soil 151:105-117.

Aspen FACE Publications during the Final Project Period (alphabetical by year)

75 publications from 2008 through 2014

(Links to .pdf format on Aspen FACE website where available)

2014

- Couture, J.J., and R.L. Lindroth. 2014. Atmospheric change alters frass quality of forest canopy herbivores. Arthropod-Plant Interactions 8:33-47. DOI: 10.1007/s11829-013-9286-8
- Couture, J.J., L.M. Holeski, and R.L. Lindroth. 2014. Long-term exposure to elevated CO₂ and O₃ alters aspen foliar chemistry across developmental stages. Plant Cell and Environment 37:758-765. DOI: 10.1111/pce.12195
- Ebanyenle, E., A.J. Burton, A.J. Storer, D.L. Richter, and J.A. Glaeser. 2014. Effects of elevated tropospheric CO2 and O3 on wood decomposition and wood-decaying fungal community composition of northern hardwoods. Soil Biology and Biochemistry *in review*.
- Kubiske, M.E., A.J. Burton, A.R. Foss, W.S. Jones, K.F. Lewin, J. Nagy, K.S. Pregitzer, D.R. Zak, and D.F. Karnosky. 2014. The Aspen FACE Experiment: 13 years of global change research. USDA Forest Service General Technical Report *in review*
- Talhelm, A.F., K.S. Pregitzer, M.E. Kubiske, D.R. Zak, C.E. Campany, A.J. Burton, R.E. Dickson, G.R. Hendrey, J.G. Isebrands, K.F. Lewin, J. Nagy, and D.F. Karnosky. 2014. Elevated carbon dioxide and ozone alter productivity and carbon storage in northern temperate forests. Global Change Biology doi: 10.1111/gcb.12564 (published on-line May 26, 2014) *print version in press*.
- Top, S.M., and T.R. Filley. 2014. Effects of elevated CO₂ on the extractable amino acids of leaf litter and fine roots. New Phytologist 202:1257-1265. DOI: 10.1111/nph.12762

- Foss, A.R., W.J. Mattson, and T.M. Trier. 2013. Effects of elevated CO₂ leaf diets on gypsy moth (*Lepidoptera: Lymantriidae*) respiration rates. Environmental Entomology 42:503-514 DOI: 10.1603/EN12074
- Grant, R.F. 2013. Modelling changes in nitrogen cycling to sustain increases in forest productivity under elevated atmospheric CO₂ and contrasting site conditions. Biogeosciences 10:7703-7721. DOI: 10.5194/bg-10-7703-2013
- Gustafson, E.J., M.E. Kubiske, B.R. Sturtevant, and B.R. Miranda. 2013. Scaling Aspen-FACE experimental results to century and landscape scales. Landscape Ecology 28:1875-1800. DOI: 10.1007/s10980-013-9921-x

- Kostiainen, K., P. Saranpaa, S.O. Lundqvist, M.E. Kubiske, and E. Vapaavuori. 2014. Wood properties of Populus and Betula in long-term exposure to elevated CO₂ and O₃. Plant Cell and Environment 37:1452-1463. DOI: 10.1111/pce.12261
- Moran, E.V., and M.E. Kubiske. 2013. Can elevated CO₂ and ozone shift the genetic composition of aspen (*Populus tremuloides*) stands? New Phytologist 198:466-475. DOI: 10.1111/nph.12153
- Wei, H., J. Gou, Y. Yordanov, H. Zhang, W. Jones, R. Thakur, and A.J. Burton. 2013. Global transcriptomic profiling of aspen trees under elevated [CO₂] to identify potential molecular mechanisms responsible for enhanced radial growth. Journal of Plant Research 126:305-320. PDF

- Büker, P., T. Morrissey, A. Briolat, R. Falk, D. Simpson, J.P. Tuovinen, R. Alonso, S. Barth, M. Baumgarten, N. Grulke, P.E. Karlsson, J. King, F. Lagergren, R. Matyssek, A. Nunn, R. Ogaya, J. Penuelas, L. Rhea, M. Schaub, J. Uddling, W. Werner and L.D. Emberson. 2012.
 DO3SE modelling of soil moisture to determine ozone flux to forest trees. Atmospheric Chemistry and Physics 12:5537-5562. DOI: 10.5194/acp-12-5537-2012
- Couture, J.J., and R.L. Lindroth. 2012. Atmospheric change alters performance of an invasive forest insect. Global Change Biology 18:3543-3557. DOI: 10.1111/gcb.12014
- Couture, J.J., T.D. Meehan and R. L. Lindroth. 2012. Atmospheric change alters foliar quality of host trees and performance of two outbreak insect species. Oecologia 168:863-876. PDF
- Dunbar, J., S.A. Eichorst, L. Gallegos-Graves, S. Silva, G. Xie, N.W. Hengartner, R.D. Evans, B.A. Hungate, R.B. Jackson, J.P. Megonigal, C.W. Schadt, R. Vigalys, D.R. Zak and C.R. Kuske. 2012. Common bacterial responses in six ecosystems exposed to 10 years of elevated atmospheric carbon dioxide. Environmental Microbiology 14:1145-1158. DOI: 10.1111/j.1462-2920.2011.02695.
- Ebanyenle, E. 2012. Effects of Elevated Atmospheric CO₂ and O₃ on Wood Density, Anatomical Properties and Decomposition of Northern Hardwoods. Doctoral Dissertation, Michigan Technological University, Houghton, MI.
- Hopkins, F.M., M.S. Torn and S.E. Trumbore. 2012. Warming accelerates decomposition of decades-old carbon in forest soils. PNAS 10.1073/pnas.1120603109. PDF
- Mankovska, Blanka, Julius Oszlanyti, David F. Karnosky. 2012. Long term study of greenhouse gases influence on epicuticular waxes of *Populus tremuloides* Michx. Ekológia (Bratislava) 31,4, 355-369. PDF

- Nabity, P.D., M.L. Hillstrom, R.L.Lindroth and E.H. DeLucia. 2012. Elevated CO₂ interacts with herbivory to alter chlorophyll fluorescence and leaf temperature in *Betula papyrifera* and *Populus tremuloides*. Oecologia 169:905-913. PDF
- Rhea, L.K., and J.S. King. 2012. Depth-dependency of trembling aspen and paper birch small-root responses to eCO₂ and eO₃. Plant and Soil 355:215-229. DOI: 10.1007/s11104-011-1094-2
- Talhelm, A.F., K.S. Pregitzer, and C.P. Giardina. 2012. Long-term leaf production response to elevated atmospheric carbon dioxide and tropospheric ozone. Ecosystems 15:71-82. PDF
- Zak, D.R., K.S. Pregitzer, M.E. Kubiske, and A.J. Burton. 2012. Atmospheric CO2 and O3 alter intra- and interspecific competition for soil nitrogen in developing forests. Global Change Biology published on-line Dec 15, 2011 (print version in press) DOI: 10.1111/j.1365-2486.2011.02596.x

- Darbah, J.N.T., W.S. Jones, A.J. Burton, J. Nagy, and M.E. Kubiske. 2011. Acute O₃ damage on first year coppice sprouts of aspen and maple spouts in an open-air experiment. Journal of Environmental Monitoring 13:2436-2442. PDF
- Edwards, I.P. and D.R. Zak. 2011. Fungal community composition and function after long-term exposure of northern forests to elevated atmospheric CO₂ and tropospheric O₃. Global Change Biology 17:2184-2195. PDF
- Hofmockel, K.S., D.R. Zak, K.K. Moran, and J.D. Jastrow. 2011. Changes in forest soil organic matter pools after a decade of elevated CO₂ and O₃. Soil Biology & Biochemistry 43:1518-1527. PDF
- Norby, R.J., and D.R. Zak. 2011. Ecological lessons from free-air CO₂ enrichment (FACE) experiments. Annual Review of Ecology, Evolution & Systematics. 42:181-203.
- Onandia, G., A-K. Olsson, S. Barth, J.S. King, and J. Uddling. 2011. Exposure to moderate concentrations of tropospheric ozone impairs tree stomatal response to carbon dioxide. Environmental Pollution 159(10):2350-2354. PDF
- Weber, C.F.; D.R. Zak, B.A. Hungate, R.B. Jackson, R. Vilgalys, R.D. Evans, C.W. Schadt, J.P. Megonigal and C.R. Kuske. 2011. Responses of soil cellulolytic fungal communities to elevated atmospheric CO₂ are complex and variable across five ecosystems. Environmental Microbiology 13(10):2778-2793. PDF
- Zak, D.R., K.S. Pregtizer, M.E. Kubiske, and A.J. Burton. 2011. Forest productivity under elevated CO₂ and O₃: positive feedbacks to soil N cycling sustain decade-long net primary productivity enhancement by CO₂. Ecology Letters 14:1220-1226. DOI: 10.1111/j.1461-0248.2011.01692.

- Calfapietra, C., B. Gielen, D. Karnosky, R. Ceulemans, G. Scarascua Mugnozza. 2010. Response and potential of agroforestry crops under global change. Environmental Pollution 158:1095-1104. PDF
- Darbah, J.N.T., T.D. Sharkey, C. Calfapietra, and D.F. Karnosky. 2010a. Differential response of aspen and birch trees to heat stress under carbon dioxide. Environmental Pollution 158:1008-1014. PDF
- Darbah, J.N.T., M.E. Kubiske, N. Nelson, K. Kets, J. Riikonen, A. Sober, L. Rouse, and D.F. Karnosky. 2010b. Will photosynthetic capacity of forest trees acclimate after long-term exposure to elevated CO₂ and O₃? Environmental Pollution 158:983-991. PDF
- Hillstrom, M.L., L.M. Vigue, D.R. Coyle, K.F. Raffa, and R.L. Lindroth. 2010a. Performance of the invasive weevil Polydrusus sericeus is influenced by atmospheric CO₂ and host species. Agricultural and Forest Entomology 12:285-292. PDF
- Hillstrom, M., T.D. Meehan, K. Kelly, and R.L. Lindroth. 2010b. Soil carbon and nitrogen mineralization following deposition of insect frass and greenfall from forests under elevated CO₂ and O₃. Plant and Soil 336:75-85. PDF
- Kets, K., J.N.T. Darbah, A. Sober, J. Riikonen, J. Sober, and D.F. Karnosky. 2010. Diurnal changes in photosynthetic parameters of *Populus tremuloides*, modulated by elevated concentrations of CO₂ and/or O₃ and daily climatic variation. Environmental Pollution 158:1000-1007. PDF
- Kontunen-Soppela, S., J. Parviainen, H. Ruhanen, M. Brosche, M. Keinänen, R.C. Thakur, M. Kolehmainen, J. Kangasjärvi, E. Oksanen, D.F. Karnosky, and E. Vapaavuori. 2010. Gene expression responses of paper birch (*Betula papyrifera*) to elevated CO₂ and O₃ during leaf maturation and senescence. Environmental Pollution 158:959-968. PDF
- Lindroth, R.L. 2010. Impacts of elevated atmospheric CO₂ and O₃ on forests: Phytochemistry, trophic interactions, and ecosystem dynamics. Journal of Chemical Ecology 36:2-21. PDF
- Lenz, K.E., G.E. Host, K. Roskoski, A. Noormets, A. Sober, and D.F. Karnosky. 2010. Analysis of a Farquhar-von Caemmerer-Berry leaf-level photosynthetic rate model for *Populus tremuloides* in the context of modeling and measurement limitations. Environmental Pollution 158:1015-1022. PDF
- Matyssek, R., D.F. Karnosky, G. Wieser, K. Percy, E. Oksanen, T.E.E. Grams, M. Kubiske, D. Hanke, and H. Pretzsch. 2010. Advances in understanding ozone impact on forest trees:

- Messages from novel phytotron and free-air fumigation studies. Environmental Pollution 158:1990-2006. PDF
- McGrath, J.M., D.F. Karnosky, and E.A. Ainsworth. 2010. Spring leaf flush in aspen (*Populus tremuloides*) clones is altered by long-term growth at elevated carbon dioxide and elevated ozone concentration. Environmental Pollution 158:1023-1028. PDF
- Meehan, T.D., M.S. Crossley, and R.L. Lindroth. 2010. Impacts of elevated CO₂ and O₃ on aspen leaf litter chemistry and earthworm and springtail productivity. Soil Biology and Biochemistry 42:1132-1137. PDF
- Mondor, E.B., C.A. Awmack, and R. L. Lindroth. 2010. Individual growth rates do not predict aphid population densities under altered atmospheric conditions. Agricultural and Forest Entomology 12:293-299. PDF
- Mondor, E. and M. Tremblay. 2010. Global atmospheric change and animal populations. Nature Education Knowledge 1(8):23. PDF
- Noormets, A., O. Kull, A. Sôber, M.E. Kubiske, and D.F. Karnosky. 2010. Elevated CO₂ response of photosynthesis depends on ozone concentration in aspen. Environmental Pollution 158:992-999. PDF
- Rhea, L., J. King, M. Kubiske, N. Saliendra, and R. Teclaw. 2010. Effects of elevated atmospheric CO₂ and tropospheric O₃ on tree branch growth and implications for hydrologic budgeting. Environmental Pollution 158:1079-1087. PDF
- Riikonen, J., K.E. Percy, M. Kivimäenpää, M.E. Kubiske, N.D. Nelson, E. Vapaavuori, and D.F. Karnosky. 2010. Leaf size and surface characteristics of *Betula papyrifera* exposed to elevated CO₂ and O₃. Environmental Pollution 158:1029-1035. <u>PDF</u>
- Tai, H.H., K.E. Percy, and D.F. Karnosky. 2010. DNA damage in *Populus tremuloides* clones exposed to elevated O3. Environmental Pollution 158:969-976. PDF
- Uddling, J., A.J. Hogg, R.M. Teclaw, M.A. Carroll, and D.S. Ellsworth. 2010. Stomatal uptake of O₃ in aspen and aspen-birch forests under free-air CO₂ and O₃ enrichment. Environmental Pollution 158:2023-2031. PDF
- Vigue, L.M. and R.L. Lindroth. 2010. Effects of genotype, elevated CO₂ and elevated O₃ on aspen phytochemistry and aspen leaf beetle *Chrysomela crotchi* performance. Agricultural and Forest Entomology 12:267-276. PDF

Andrew, C. and E.A. Lilleskov. 2009. Productivity and community structure of ectomycorrhizal fungal sporocarps under increased atmospheric CO2 and O3. Ecology Letters 12:813-822. PDF

- Calfapietra, C., E.A. Ainsworth, C. Beier, P. De Angelis, D.S. Ellsworth, D.L. Godbold, G.R. Hendrey, T. Hickler, M.R. Hoosbeek, D.F. Karnosky, J. King, C. Körner, A.D.B. Leakey, K.F. Lewin, M. Liberloo, S.P. Long, M. Lukac, R. Matyssek, F. Miglietta, J. Nagy, R.J. Norby, R. Oren, K.E. Percy, A. Rogers, G. Scarascia Mugnozza, M. Stitt, G. Taylor, and R. Ceulemans. 2009. Challenges in elevated CO2 experiments on forests. Trends in Plant Science pp. 5-10. PDF
- Chakraborty, S., J. Luck, G. Hollaway, et al. 2008. Impacts of global change on diseases of agricultural crops and forest trees. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 3, No. 054:1-15.
- Cseke, L.J., C-J. Tsai, A. Rogers, M.P. Nelsen, H.L. White, D.F. Karnosky, and G.K. Podila. 2009. Transcriptomic comparison in the leaves of two aspen genotypes having similar carbon assimilation rates but different partitioning patterns under elevated [CO2]. New Phytologist 182: 891–911. PDF
- Liu L., J.S. King, F.L. Booker, C.P. Giardina, H. L. Allen, and S. Hu. 2009a. Enhanced litter input rather than changes in litter chemistry drive soil carbon and nitrogen cycling under elevated CO₂: a microcosm study. Global Change Biology 15:441–453. PDF
- Liu, L., J.S. King, C.P. Giardina, and F.L. Booker. 2009b. The influence of chemistry, production and community composition on leaf litter decomposition under elevated atmospheric CO₂ and tropospheric O₃ in a northern hardwood ecosystem. Ecosystems 12:401–416. PDF
- Percy, K.E., M. Nosal, W. Heilman, et al. 2009. Standards-based ozone exposure-response functions that predict forest growth. In A. H. Legge (Ed.), Relating Atmospheric Source Apportionment to Vegetation Effects: Establishing Cause and Effect Relationships. Elsevier Environmental Science Series Vol. 9, Chapter 11, pp. 269-293, Oxford, UK.
- Talhelm, A.F., K.S. Pregitzer, and D.R. Zak. 2009. Species-specific responses to atmospheric carbon dioxide and tropospheric ozone mediate changes in soil carbon. Ecology Letters 12:1219-1228. PDF
- Uddling, J., R.M. Teclaw, K.S. Pregitzer, and D.S. Ellsworth. 2009. Leaf and canopy conductance in aspen and aspen-birch forests under free air enrichment of carbon dioxide and ozone. Tree Physiology 29:1367-1380. PDF
- Wittig, V.E., E.A. Ainsworth, S.L. Naidu, D.F. Karnosky, and S.P. Long. 2009. Quantifying the impact of current and future tropospheric ozone on tree biomass, growth, physiology and biochemistry: A quantitative meta-analysis of the ozone literature. Global Change Biology 15(2):396-424. PDF

- Ainsworth, E.A., C. Beier, C. Calfapietra, R. Ceulemans, M. Durand-Tardif, D.L. Godbold, G.R. Hendrey, T. Hickler, J. Kaduk, D.F. Karnosky, B.A. Kimball, C. Korner, M. Koornneef, T. Lafarge, A.D.B. Leakey, K.F. Lewin, S.P. Long, R. Manderscheid, D.L. McNeil, T.A. Mies, F. Miglietta, J.A. Morgan, J. Nagy, R.J. Norby, R.M. Norton, K.E. Percy, A. Rogers, J.-F, Soussana, M. Stitt, H.-J. Weigel, J.W. White. 2008. Next generation of elevated [CO₂] experiments with crops: A critical investment for feeding the future world. Plant, Cell and Environment 31:1317-1324. PDF
- Calfapietra, C., G.S. Mugnozza, D.F. Karnosky, Francisco Loreto and T.D. Sharkey. 2008. Isoprene emission rates under elevated CO₂ and O₃ in two field-grown aspen clones differing in their sensitivity to O₃. New Phytologist 179: 55-61. PDF
- Carlson, J. 2008. Thinking like an ecologist. National Science Teachers Association Journal, The Science Teacher. 51-57. PDF
- Chakraborty, S., J. Luck, G. Hollaway, A. Freeman, R. Norton, K.A. Garrett, K. Percy, A. Hopkins, C. Davis, and D.F. Karnosky. 2008. Impacts of global change on diseases of agricultural crops and forest trees. CABI Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 3, No. 054:1-15. PDF
- Darbah, J.N.T., M.E. Kubiske, N. Nelson, E. Oksanen, E. Vaapavuori, D.F. Karnosky. 2008. Effects of decadal exposure to interacting elevated CO₂ and/or O₃ on paper birch (*Betula papyrifera*) reproduction. Environmental Pollution, 155:446-452. PDF
- Hillstrom, M.L. and R.L. Lindroth. 2008. Elevated atmospheric carbon dioxide and ozone alter forest insect abundance and community composition. Insect Conservation and Diversity 1:233-241. PDF
- Kostiainen, K., S. Kaakinen, E. Warsta, M.E. Kubiske, N.D. Nelson, J. Sober, D.F. Karnosky, P. Saranpaa and E. Vapaavuori. 2008. Wood properties of trembling aspen and paper birch after 5 years of exposure to elevated concentrations of CO₂ and O₃. Tree Physiology 28: 805-813. PDF
- Lesaulnier, C., D. Papamichail, S. McCorkle, B. Ollivier, S. Skiena, S. Taghavi, D.R. Zak, and D. van der Lelie. 2008. Elevated atmospheric CO₂ affects soil microbial diversity associated with trembling aspen. Environmental Microbiology 10:926-941. PDF
- Parsons, W.F.J., J.G. Bockheim and R.L. Lindroth. 2008. Independent, interactive, and species-specific responses of leaf litter decomposition to elevated CO₂ and O₃ in a northern hardwood forest. Ecosystems 11:505-519. PDF
- Pregitzer, K.S. 2008. Tree root architecture form and function. New Phytologist 180:562-564. PDF
- Pregitzer, K.S., A.J. Burton, J.S. King, and D. Zak. 2008. Soil respiration, root biomass, and root turnover following long-term exposure of northern forests to elevated atmospheric CO₂ and tropospheric O₃. New Phytologist 180(1):153-161. PDF

- Riikonen, J., K. Kets, J. Darbah, E. Oksanen, A. Sober, E. Vapaavuori, M.E. Kubiske, N. Nelson and D.F. Karnosky. 2008. Carbon gain and bud physiology in *Populus tremuloides* and *Betula papyrifera* under long-term exposure to elevated concentrations of CO₂ and O₃. Tree Physiology 28:243-254. PDF
- Rouse, L.J. 2008 Characterizing Ozone Tolerance in Trembling Aspen: Implications for Improving Carbon Sequestration Potential in *Populus*. MS Thesis. Michigan Technological University
- Taylor, G., M.J. Tallis, C.P. Giardina, K.E. Percy, F. Miglietta, P.S. Gupta, B. Gioli, C. Calfapietra, B. Gielen, M.E. Kubiske, G.E. Scarascia-Mugnozza, K. Kets, S.P. Long and D.F. Karnosky. 2008. Future atmospheric, CO₂ leads to delayed autumnal senescence. Global Change Biology 14: 264-275. PDF
- Uddling, J., R.M. Teclaw, M.E. Kubiske, K.S. Pregitzer, and D.S. Ellsworth. 2008. Sap flux in pure aspen and mixed aspen-birch forests exposed to elevated concentrations of carbon dioxide and ozone. Tree Physiology 28: 1231-1243. PDF

Aspen FACE Peer-Reviewed Journal Articles from 2007 and Earlier (alphabetical)

96 publications from 1995 through 2007

(links to .pdf format on Aspen FACE website where available)

- Agrell, J., B.J. Kopper, E.P. McDonald and R.L. Lindroth. 2005. CO₂ and O₃ effects on host plant preferences of the forest tent caterpillar (*Malacosoma disstria*). Global Change Biology 11:588-599. PDF
- Awmack, C.S., R. Harrington and R.L. Lindroth. 2004. Aphid Individual performance may not predict population responses to elevated CO₂ or O₃. Global Change Biology 10:1414-1423. PDF
- Awmack, C.S., E.B. Mondor and R.L. Lindroth. 2007. Forest understory clover populations in enriched CO₂ and O₃ atmospheres: Interspecific, intraspecific, and indirect effects. Environmental and Experimental Botany 59: 340-346. <u>PDF</u>
- Bandeff, J.M., K.S. Pregitzer, W.M. Loya, W.E. Holmes and D.R. Zak. 2006. Overstory community composition and elevated atmospheric CO₂ and O₃ modify understory biomass production and nitrogen acquisition. Plant and Soil 282: 251-259. PDF
- Bradley, K.L. and K.S. Pregitzer. 2007. Ecosystem assembly and terrestrial carbon balance under elevated CO₂. Trends in Ecology and Evolution 22(10):538-547. PDF
- Calfapietra, C., A.E. Wiberly, T.G. Falbel, A.R. Linskey, G.S. Mugnozza, D.F. Karnosky, F. Loreto and T. D. Sharkey. 2007. Isoprene synthase expression and protein levels are reduced under elevated O₃ but not under elevated CO₂ (FACE) in field-grown trees. Plant, Cell and Environment 30: 654-661. PDF
- Chapman, J.A., J.S. King, K.S. Pregitzer and D.R. Zak. 2005. Effects of elevated CO₂ and tropospheric O₃ on tree fine root decomposition. Tree Physiology 25:1501-1510. PDF
- Chung, H., D.R. Zak and E.A. Lilleskov. 2006. Fungal community composition and metabolism under CO₂ and O₃. Oecologia 147:143-154. PDF
- Coleman, M.D., J.G. Isebrands, R.E. Dickson, and D.F. Karnosky. 1995. Photosynthetic productivity of aspen clones varying in sensitivity to tropospheric ozone. Tree Physiology 15, 585-592. PDF
- Curtis, P.S., C.S. Vogel, X. Wang, K.S. Pregitzer, D.R. Zak, J. Lussenhop, M. Kubiske and J.A. Teeri. 2000. Gas exchange, leaf nitrogen, and growth efficiency of *Populus tremuloides* in a CO₂-enriched atmosphere. Ecological Applications 10: 3-17. <u>PDF</u>
- Darbah, J.N.T., M.E. Kubiske, N. Neilson, E. Oksanen, E. Vaapavuori and D.F. Karnosky. 2007. Impacts of Elevated Atmospheric CO₂ and O₃ on Paper Birch (*Betula papyrifera*): Reproductive Fitness. The Scientific World Journal. 7(S1): 240-246. PDF

- Davey, P.A., S. Hunt, G.J. Hymus, E.H. DeLucia, B.G. Drake, D.F. Karnosky and S.P. Long. 2004. Respiratory oxygen uptake is not decreased by an instantaneous elevation of [CO₂], but is increased with long-term growth in the field at elevated [CO₂]. Plant Physiology 134:520-527. PDF
- Dickson, R.E., M.D. Coleman, D.E. Riemenschneider, J.G. Isebrands, G.D. Hogan and D.F. Karnosky. 1998. Growth of five hybrid poplar genotypes exposed to interacting elevated CO₂ and O₃. Can. J. For. Res. 28:1706-1716. PDF
- Dickson, R.E., M.D. Coleman, P. Pechter and D. F. Karnosky. 2001. Growth and crown architecture of two aspen genotypes exposed to interacting ozone and carbon dioxide. Environmental Pollution 115:319-334. PDF
- Ellsworth, D.S., P.B. Reich, E.S. Naumburg, G.W. Koch, M.E. Kubiske and S.D. Smith. 2004. Photosynthesis, carboxylation and leaf nitrogen responses of 16 species to elevated pCO₂ across four free-air CO₂ enrichment experiments in forest, grassland and desert. Global Change Biology 10:1-18. PDF
- Finzi, A.C., R.J. Norby, C. Calfapietra, A. Gallet-Budynek, B. Gielen, W.E. Holmes, M.R. Hoosbeek, C.M. Iverson, R.B. Jackson, M.E. Kubiske, J. Ledford, M. Liberloo, R. Oren, A. Polle, S. Pritchard, D.R. Zak, W.H. Schlesinger and R. Ceulemans. Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temporate forest productivity under elevated CO₂. 2007. PNAS 104(35):14014-14019. PDF
- Giardina, C., M. Coleman, J. Hancock, J. King, E. Lilleskov, W.M. Loya, K.S. Pregitzer, M. Ryan, and C. Trettin. 2005. The response of belowground carbon allocation in forests to global change. Chapter 7 in D. Binkley and O. Menyailo (eds), The impacts of global climate change on plant soil interactions. NATO Science Series, Kluwer Academic Press, pp. 121-154. PDF
- Gupta, P., S. Duplessis, H. White, D.F. Karnosky, F. Martin and G.K. Podila. 2005. Gene expression patterns of trembling aspen trees following long-term exposure to interacting elevated CO₂ and tropospheric O₃. New Phytologist 167:129-142. PDF
- Holmes, W.E., D.R. Zak, K.S. Pregitzer and J.S. King. 2003. Soil nitrogen transformations under Populus tremuloides, Betula papyrifera and Acer saccharum following 3 years exposure to elevated CO₂ and O₃. Global Change Biology 9:1743-1750. PDF
- Holmes, W.E., D.R. Zak, K.S. Pregitzer and J.S. King. 2006. Elevated CO₂ and O₃ Alter Soil Nitrogen Transformations beneath Trembling Aspen, Paper Birch, and Sugar Maple. Ecosystems 9: 1354-1363. PDF
- Holton, M.K., R.L. Lindroth and E.V. Nordheim. 2003. Foliar quality influences tree-herbivore-parasitoid interactions: effects of elevated CO₂, O₃, and genotype. Oecologia 137:233-244. PDF

- Isebrands, J.G., E. P. McDonald, E. Kruger, G. Hendrey, K. Pregitzer, K. Percy, J. Sober and D.F. Karnosky. 2001. Growth responses of *Populus tremuloides* clones to interacting carbon dioxide and tropospheric ozone. Environmental Pollution 115:359-371. PDF
- Johnson, R.M. and K.S. Pregitzer. 2007. Concentration of sugars, phenolic acids, and amino acids in forest soils exposed to elevated atmospheric CO₂ and O₃. Soil Biology & Biochemistry 39:3159-3166. PDF
- Kaakinen, S., K. Kostiainen, F. Ek, P. Saranpää, M.E. Kubiske, J. Sober, D.F. Karnosky and E. Vapaavuori. 2004. Stem wood properties of *Populus tremuloides*, *Betula papyrifera* and *Acer saccharum* saplings after three years of treatments to elevated carbon dioxide and ozone. Global Change Biology 10:1513-1525. PDF
- Karberg, N., K.S. Pregitzer, J.S. King, A.L. Friend and J.R. Wood. 2005. Soil carbon dioxide partial pressure and dissolved inorganic carbonate chemistry under elevated carbon dioxide and ozone. Oecologia 142:296-306. PDF
- Karnosky, D.F., G.K. Podila, Z. Gagnon, P. Pechter, A. Akkapeddi, M. Coleman, R.E. Dickson and J.G. Isebrands. 1998. Genetic control of responses to interacting O₃ and CO₂ in *Populus tremuloides*. Chemosphere 36:807-812. PDF
- Karnosky, D.F., B. Mankovska, K. Percy, R.E. Dickson, G.K. Podila, J. Sober, A. Noormets, G. Hendrey, M.D. Coleman, M. Kubiske, K.S. Pregitzer and J.G. Isebrands. 1999. Effects of tropospheric O₃ on trembling aspen and interaction with CO₂: Results from an O₃-gradient and a FACE experiment. J. Water, Air and Soil Pollut. 116:311-322. PDF
- Karnosky, D.F., K.E. Percy, B. Xiang, B. Callan, A. Noormets, B. Mankovska, A. Hopkin, J. Sober, W. Jones, R.E. Dickson and J.G. Isebrands. 2002. Interacting elevated CO₂ and tropospheric O₃ predisposes aspen (*Populus tremuloides* Michx.) to infection by rust (*Melampsora medusae* f.sp. *tremuloidae*). Global Change Biology 8:329-338. PDF
- Karnosky, D.F. 2003. Impacts of elevated CO₂ on forest trees and forest ecosystems: Knowledge gaps. Environment International 29:161-169. PDF
- Karnosky, D.F., D.R. Zak, K.S. Pregitzer, C.S. Awmack, J.G. Bockheim, R.E. Dickson, G.R. Hendrey, G.E. Host, J.S. King, B.J. Kopper, E.L. Kruger, M.E. Kubiske, R.L. Lindroth, W.J. Mattson, E.P. McDonald, A. Noormets, E. Oksanen, W.F.J. Parsons, K.E. Percy, G.K. Podila, D.E. Riemenschneider, P. Sharma, R.C. Thakur, A. Sober, J. Sober, W.S. Jones, S. Anttonen, E. Vapaavuori, B. Mankovska, W.E. Heilman and J.G. Isebrands. 2003. Tropospheric O₃ moderates responses of temperate hardwood forests to elevated CO₂: A synthesis of molecular to ecosystem results from the Aspen FACE project. Functional Ecology 17:289-304. PDF
- Karnosky, D.F. 2005. Ozone effects on forest ecosystems under a changing global environment. Journal of Agricultural Meteorology 60(5):353-358. PDF
- Karnosky, D.F., K.S. Pregitzer, D.R. Zak, M.E. Kubiske, G.R. Hendrey, D. Weinstein, M. Nosal and K.E. Percy. 2005. Scaling ozone responses of forest trees to the ecosystem level in a changing climate. Plant, Cell and Environment 28:965-981. PDF

- Karnosky, D.F., J.M. Skelly, K.E. Percy and A.H. Chappelka. 2007. Perspectives regarding 50 years of research on effects of tropospheric ozone air pollution on US forests. Environmental Pollution 147:489-506. PDF
- Karnosky, D.F., M. Tallis, J. Darbah, and G. Taylor. 2007. Direct effects of elevated CO₂ on forest tree productivity. In: Freer-Smith, P.H., Broadmeadow, M.S.J. and Lynch, J.M. (eds), Forestry and Climate Change. CABI Publishing, Oxford, UK pp. 136-142. PDF
- Karnosky, D.F., H. Werner, T. Holopainen, K. Percy, T. Oksanen, E. Oksanen, C. Heerdt, P. Fabian, J. Nagy, W. Heilman, R. Cox, N. Nelson and R. Matyssek. 2007. Free-air exposure systems to scale up ozone research to mature trees. Plant Biology 9:181-190. PDF
- King, J.S., K.S. Pregitzer and D.R. Zak. 1999. Clonal variation in above- and belowground growth responses of Populus tremuloides Michaux: Influence of soil warming and nutrient availability. Plant Soil 217: 119-130. PDF
- King, J.S., K.S. Pregitzer and D.R. Zak. 2001. Correlation of foliage and litter chemistry of sugar maple, *Acer saccharum*, as affected by elevated CO₂ and varying N availability, and effects on decomposition. Oikos 94:403-416. PDF
- King, J.S., K.S. Pregitzer, D.R. Zak, J. Sober, J.G. Isebrands, R.E. Dickson, G.R. Hendrey and D.F. Karnosky. 2001. Fine root biomass and fluxes of soil carbon in young stands of paper birch and trembling aspen as affected by elevated atmospheric CO₂ and tropospheric O₃. Oecologia 128:237-250. PDF
- King, J.S., P.J. Hanson, E. Bernhardt, P. DeAngelis, R.J. Norby and K.S. Pregitzer. 2004. A multi-year synthesis of soil respiration responses to elevated atmospheric CO2 from four forest FACE experiments. Global Change Biology 10:1027-1042. PDF
- King, J.S., K.S. Pregitzer, D.R. Zak, W.E. Holmes and K. Schmidt. 2005. Fine root chemistry and decomposition in model communities of north-temperate tree species show little response to elevated CO₂ and varying soil resource availability. Oecologia 146:318-328. PDF
- King, J.S., M.E. Kubiske, K.S. Pregitzer, G.R. Hendrey, E.P. McDonald, C.P. Giardina, V.S. Quinn and D.F. Karnosky. 2005. Tropospheric O₃ compromises net primary production in young stands of trembling aspen, paper birch and sugar maple in response to elevated atmospheric CO₂. New Phytologist 168:623-636. PDF Corrigendum
- Kopper, B.J., R.L. Lindroth and E.V. Nordheim. 2001. CO₂ and O₃ effects on paper birch (Betulaceae: *Betula papyrifera* Marsh.) phytochemistry and white-marked tussock moth (Lymantriidae: *Orgyia leucostigma* J.E. Sm.) performance. Environmental Entomology 30(6):1119-1126. PDF
- Kopper, B.J., V.N. Jakobi, T.L. Osier and R.L Lindroth. 2002. Effects of paper birch condensed tannin on whitemarked tussock moth (Lepidoptera: Lymantriidae) performance. Environmental Entomology 31:10-14. PDF

- Kopper, B.J. and R.L. Lindroth. 2003a. Responses of trembling aspen (*Populus tremulo*ides) phytochemistry and aspen blotch leafminer (*Phyllonorycter tremuloidiella*) performance to elevated levels of atmospheric CO₂ and O₃. Agricultural and Forest Entomology 5:17-26. PDF
- Kopper, B.J. and R.L. Lindroth. 2003b. Effects of elevated carbon dioxide and ozone on the phytochemistry of aspen and performance of an herbivore. Oecologia 134:95-103. PDF
- Kubiske, M.E., D.R. Zak, K.S. Pregitzer and Y. Takeuchi. 2002. Photosynthetic acclimation of overstory Populus tremuloides and understory Acer saccharum to elevated atmospheric CO₂ concentration: interactions with shade and soil nitrogen. Tree Physiol. 22:321-329. PDF
- Kubiske, M.E., V.S. Quinn, W.E. Heilman, E.P. McDonald, P.E. Marquardt, R.M. Teclaw, A.L. Friend and D.F. Karnosky. 2006. Interannual climatic version mediates elevated CO₂ and O₃ effects on forest growth. Global Change Biology 12:1054-1068. PDF
- Kubiske, M.E., V.S. Quinn, P.E. Marquardt and D.F. Karnosky. 2007. Effects of Elevated Atmospheric CO₂ and/or O₃ on Intra- and Interspecific Competitive Ability of Aspen. Plant Biology 9: 342-355. <u>PDF</u>
- Larson, J.L., D.R. Zak and R.L. Sinsabaugh. 2002. Extracellular enzyme activity beneath temperate trees growing under elevated carbon dioxide and ozone. Soil Science Society of America Journal 66:1848-1856. PDF
- Lindroth, R.L., B.J. Kopper, W.F.J. Parsons, J.G. Bockheim, D.F. Karnosky, G.R. Hendrey, K.S. Pregitzer, J.G. Isebrands and J. Sober. 2001. Consequences of elevated carbon dioxide and ozone for foliar chemical composition and dynamics in trembling aspen (*Populus tremuloides*) and paper birch (*Betula papyrifera*). Environmental Pollution 115:395-404. PDF
- Lindroth, R.L., S.A. Wood and B.J. Kopper. 2002. Response of quaking aspen genotypes to enriched CO₂: foliar chemistry and insect performance. Agricultural and Forest Entomology 4:315-323. PDF
- Liu, L., J.S. King and C.P. Giardina. 2005. Effects of elevated atmospheric CO₂ and tropospheric O₃ on leaf litter production and chemistry in trembling aspen and paper birch ecosystems. Tree Physiology 15:1511-1522. PDF
- Liu, L., J.S. King and C.P. Giardina. 2007. Effects of elevated atmospheric CO₂ and tropospheric O₃ on nutrient dynamics: decomposition of leaf litter in trembling aspen and paper birch communities. Plant Soil 299:65-82. <u>PDF</u>
- Loranger, G.I., K.S. Pregitzer and J.S. King. 2004. Elevated CO₂ and O₃ concentrations differentially affect selected groups of the fauna in temperate forest soils. Soil Biol. & Biochem. 36:1521-1524. PDF
- Loya, W.M., K.S. Pregitzer, N.J. Karberg, J.S. King and C.P. Giardina. 2003. Reduction of soil carbon formation by tropospheric ozone under elevated carbon dioxide. Nature 425:705-707. PDF

- Majdi, H., K. Pregitzer, A-S. Morén, G.I. Ågren. 2005. Fine root turnover in forest ecosystems. Plant and Soil 276:1-8. PDF
- Mankovska, B., K. Percy and D.F. Karnosky. 1998. Impact of ambient tropospheric O₃, CO₂, and particulates on the epicuticular waxes of aspen clones differing in O₃ tolerance. Ekológia 18(2):200-210. PDF
- Mankovska, B., D.F. Karnosky, K. Percy, E. Yermakova and M.V. Frontasyeva. 2003. Chemical characteristics of key tree species (*Populus tremuloides* Michx., *Betula papyrifera* Marsh., *Acer saccharum* Marsh.) for three localities with different ozone levels. Ekológia (Bratislava) 22 (Supplement 1):168-181.
- Mankovska, B., K. Percy and D.F. Karnosky. 2003. Impact of greenhouse gases on epicuticular waxes of *Populus tremuloides* Michx.: Results from an open-air exposure and a natural O₃ gradient. Ekológia (Bratislava) 22 (Supplement 1):182-194. PDF
- Mankovska, B., K. Percy and D.F. Karnosky. 2005. Impacts of greenhouse gases on epicuticular waxes of *Populus tremuloides* Michx.: Results from an open-air exposure and a natural O₃ gradient. Environmental Pollution 137:580-586. PDF
- Martin, M.J., G.E. Host, K.E. Lenz and J.G. Isebrands. 2001. Simulating the growth response of aspen to ozone exposure: a mechanistic approach to scaling a leaf-level model of ozone effects on photosynthesis to a complex canopy architecture. Environmental Pollution 115:425-436. PDF
- Mattson, W.J., K. Kuokkanen, P. Niemela, R. Julkunen-Tiitto, S. Kellomaki and J. Tahvanainen. 2004. Elevated CO₂ alters birch resistance to lagomorpha herbivores. Global Change Biology 10:1402-1413. PDF
- Mattson, W.J., R. Julkunen-Tiitto and D.A. Herms. 2005. CO₂ enrichment and carbon partitioning to phenolics: do plant responses accord better with the protein competition of the growth-differentiation balance models? Oikos 111:337-347. PDF
- McDonald, E. P., E.L. Kruger, D.E. Riemenschneider and J.G. Isebrands. 2002. Competitive status influences tree-growth responses to elevated CO₂ and O₃ in aggrading aspen stands. Functional Ecology 16 (6), 792-801. PDF
- Mondor, E.B., M.N. Tremblay, C.S. Awmack and R.L. Lindroth. 2004. Divergent pheromone-mediated insect behaviour under global atmospheric change. Global Change Biology 10:1820-1824. PDF
- Mondor, E.B., M.N. Tremblay and R.L. Lindroth. 2004. Transgenerational phenotypic plasticity under future atmospheric conditions. Ecology Letters 7:941-946. PDF
- Mondor, E.B., M.N. Tremblay, C.S. Awmack and R.L. Lindroth. 2005. Altered genotypic and phenotypic frequencies of aphid populations under enriched CO₂ and O₃ atmospheres. Global Change Biology 11:1-7. PDF

- Monson, K., N. Trahan, T.N. Rosenstiel, P. Veres, D. Moore, M. Wilkinson, R.J. Norby, A. Volder, M.G. Tjoelker, D.D. Briske, D.F. Karnosky, and R. Fall. 2007. Isoprene emission from terrestrial ecosystems in response to global change: minding the gap between models and observations. 2007. Proc. Royal Society of London 365:1677-1695.
- Muller-Starck, B. Degen, H. Hattemer, D. Karnosky, A. Kremer, L. Paule, K. Percy, F. Scholz, X. Shen and G. Vendramin. 2000. Genetic response of forest systems to changing environmental conditions analysis and management. Forest Genetics 7:247-254. PDF
- Muntifering, R.B., A.H. Chappelka, D.F. Karnosky and G.L. Somers. 2006. Chemical composition and digestibility of Trifolium exposed to elevated ozone and carbon dioxide in a free-air (FACE) fumigation system. Functional Ecology 20:269-275. PDF
- Noormets, A., G. Krishna Podila and David F. Karnosky. 2000. Rapid response of antioxidant enzymes to O₃-induced oxidative stress in *Populus tremuloides* clones varying in O₃ tolerance. Forest Genetics 7:335-338. PDF
- Noormets, A., E.P. McDonald, E.L. Kruger, A. Sober, J.G. Isebrands, R.E. Dickson and D.F. Karnosky. 2001. The effect of elevated carbon dioxide and ozone on leaf- and branch-level photosynthesis and potential plant-level carbon gain in aspen. Trees 15:262-270. PDF
- Noormets, A., A. Sober, E.J. Pell, R.E. Dickson, G.K. Podila, J. Sober, J.G. Isebrands and D.F. Karnosky. 2001. Stomatal and non-stomatal limitation to photosynthesis in two trembling aspen (*Populus tremuloides* Michx.) clones exposed to elevated CO₂ and/or O₃. Plant, Cell and Environ. 24:327-336. PDF
- Norby, R.J., E.H. DeLucia, B. Gielen, C. Calfapietra, C.P.Giardina, J.S. King, J. Ledford, H.R. McCarthy, D.J.P. Moore, R. Ceulemans, P. De Angelis, A.C. Finzi, D.F. Karnosky, M.E. Kubiske, M. Lukac, K.S. Pregitzer, G.E. Scarascia-Mugnozza, W.H. Schlesinger and R. Oren. 2005. Forest response to elevated CO₂ is conserved across a broad range of productivity. Proceedings of the National Academy of Sciences 102:18052-18056. PDF
- Oksanen, E., J. Sober and D.F. Karnosky. 2001. Impacts of elevated CO2 and/or O3 on leaf ultrastructure of aspen (*Populus tremuloides*) and birch (*Betula papyrifera*) in the aspen FACE experiment. Environmental Pollution 115:437-446. PDF
- Oksanen, E., E. Häikiö, J. Sober and D.F. Karnosky. 2003. Ozone-induced H₂O₂ accumulation in field-grown aspen and birch is linked to foliar ultrastructure and peroxisomal activity. New Phytologist 161:791-799. PDF
- Paoletti, E., A. Bytnerowicz, C. Anderson, A. Augustaitis, M. Ferretti, N. Grulke, M.S.
 Gunthardt-Goerg, J. Innes, D. Johnson, D.F. Karnosky, J. Luangjame, R. Matyssek, S.
 McNulty, G. Muller-Starck, R. Musselman and K. Percy. 2007. Impacts of air pollution and climate change on forest ecosystems Emerging Research Needs. The Scientific World Journal 7(S1): 1-8. PDF

- Parsons, W.F.J., R.L. Lindroth and J.G. Bockheim. 2004. Decomposition of *Betula papyrifera* leaf litter under the independent and interactive effects of elevated CO₂ and O₃. Global Change Biology 10:1666-1677. PDF
- Percy, K.E., C.S. Awmack, R.L. Lindroth, M.E. Kubiske, B.J. Kopper, J.G. Isebrands, K.S. Pregitzer, G.R. Hendrey, R.E. Dickson, D.R. Zak, E. Oksanen, J. Sober, R. Harrington and D.F. Karnosky. 2002. Altered performance of forest pests under CO₂- and O₃-enriched atmospheres. Nature 420:403-407. PDF
- Percy, K.E. and D.F. Karnosky. 2007. Air quality in natural areas: interface between the public, science and regulation. Environ. Pollut. 149:256-267. PDF
- Percy, K.E., M. Nosal, W. Heilman, T. Dann, J. Sober, A.H. Legge and D.F. Karnosky. 2007. New exposure-based metric approach for evaluating O₃ risk to North American aspen forests. Environmental Pollution 147:554-566. PDF
- Phillips, R.L., D.R. Zak, W.E. Holmes and D.C. White. 2002. Microbial community composition and function beneath temperate trees exposed to elevated atmospheric carbon dioxide and ozone. Oecologia 131(2):236-244. PDF
- Pregitzer, K.S., J.S. King, E.G. O'Neill, A.J. Burton and S.E. Brown. 2000. Responses of tree fine roots to temperature. New Phytologist 147:105-115. PDF
- Pregitzer, K.S., D.R. Zak, D.J. Maziasz, J. DeForest, P.S. Curtis and J. Lussenhop. 2000. Interactive effects of atmospheric CO₂ and soil-N availability on fine roots of Populus tremuloides. Ecological Applications 10:18-33. PDF
- Pregitzer, K.S., W.M. Loya, M. E. Kubiske and D.R. Zak. 2006. Soil repiration in northern forests exposed to elevated atmospheric carbon dioxide and ozone. Oecologia 148: 503-516. PDF
- Sharma, P., A. Sober, J. Sober, G.K. Podila, M.E. Kubiske, W.J. Mattson, J.G. Isebrands and D.F. Karnosky. 2003. Moderation of [CO₂]-induced gas exchange responses by elevated tropospheric O3 in trembling aspen and sugar maple. Ekologia 22 (Supplement 1):304-317. PDF
- Takeuchi, Y., M.E. Kubiske, J.G. Isebrands, K.S. Pregitzer, G. Hendrey and D.F. Karnosky. 2001. Photosynthesis, light and nitrogen relationships in a young deciduous forest canopy under open-air CO₂ enrichment. Plant Cell Environ. 24:1257-1268. PDF
- Theseira, G.W., G.E. Host, J.G. Isebrands and F.D. Whisler. 2003. SOILPSI: A potential-driven three-dimensional soil water redistribution model: description and comparative evaluation. Environmental Software and Modeling 18:13-23. PDF
- Wustman, B.A., E. Oksanen, D.F. Karnosky, J. Sober, J.G. Isebrands, G.R. Hendrey, K.S. Pregitzer and G.K. Podila. 2001. Effects of elevated CO₂ and O₃ on aspen clones varying in O₃ sensitivity: Can CO₂ ameliorate the harmful effects of O₃? Environmental Pollution 115:473-481. PDF

- Zak, D.R., K.S. Pregitzer, P.S. Curtis, C.S. Vogel, W.E. Holmes and J. Lussenhop. 2000. Atmospheric CO₂, soil-N availability, and allocation of biomass and nitrogen by Populus tremuloides. Ecological Applications 10:34-46. PDF
- Zak, D.R., K.S. Pregitzer, P.S. Curtis and W.E. Holmes. 2000. Atmospheric CO₂ and the composition and function of soil microbial communities. Ecological Applications 10:47-59. PDF
- Zak, D.R., K.S. Pregitzer, J.S. King and W.E. Holmes. 2000. Elevated atmospheric CO₂, fine roots and the response of soil microorganisms: a review and hypothesis. New Phytologist 147:201-222. PDF
- Zak, D.R., W.E. Holmes, A.C. Finzi, R.J. Norby and W.H. Schlesinger. 2003. Soil nitrogen cycling under elevated CO₂: a synthesis of forest FACE experiments. Ecological Applications 13:1508-1514. PDF
- Zak, D.R., C.B. Blackwood and M.P. Waldrop. 2006. A molecular dawn for biogeochemistry. Trends in Ecology and Evolution 21(6):288-295. PDF
- Zak, D.R., W.E. Holmes, and K.S. Pregitzer. 2007. Atmospheric CO₂ and O₃ alter the flow of ¹⁵N in developing forest ecosystems. Ecology 88(10):2630-2639. PDF
- Zak, D.R., W.E. Holmes, K.S. Pregitzer, J.S. King, D.S. Ellsworth, and M.E. Kubiske. 2007. Belowground competition and the response of developing forest communities to atmospheric CO₂ and O₃. Global Change Biology 13:2230-2238. PDF

Aspen FACE Other Peer-Reviewed Articles from 2007 and Earlier (alphabetical)

38 publications from 1999 through 2007

- Dickson, R.E., K.F. Lewin, J.G. Isebrands, M.D. Coleman, W.E. Heilman, D.E. Riemenschneider, J. Sober, G.E. Host, D.F. Zak, G.R. Hendrey, K.S. Pregitzer and D.F. Karnosky. 2000. Forest atmosphere carbon transfer storage-II (FACTS II) The aspen free-air CO₂ and O₃ enrichment (FACE) project in an overview. USDA Forest Service North Central Research Station. General Tech. Rep. NC-214. 68 pp. PDF
- Ferretti, M., J. Bucher, A. Bytnerowicz, W. Prus-Glowacki, D. Karnosky and K. Percy. 2003. State of science and gaps in our knowledge to relation to air pollution. In: D.F. Karnosky, K.E. Percy, A.H. Chappelka, C. Simpson, and J.M. Pikkarainen (Eds.), Air Pollution, Global Change and Forests in the New Millennium. Elsevier Press, Amsterdam. pp. 437-446.
- Isebrands, J.G., R.E. Dickson, J. Rebbeck and D.F. Karnosky. 2000. Interacting effects of multiple stresses on growth and physiological processes in northern forests. In: Responses of Northern U.S. forests to environmental change. Ecological Studies 139. R.E. Mickler, R.A. Birdsey, and J. Hom(Eds.), Springer-Verlag pp. 149-180.
- Isebrands, J.G., G.E. Host, K.E. Lenz, G. Wu and H.W. Stech. 2000. Hierarchical, parallel computing strategies using Component Object Model for process modelling responses of forest plantations to interacting multiple stresses. In: (R.J.M. Cuelemans, F. Veroustraete, V. Gond, and J.B.H.F. Van Rensbergen eds.) Forest Ecosystem Modeling, Upscaling, and Remote Sensing, SPB Academic Publishing, The Hague, The Netherlands. pp 123-135.
- Isebrands, J.G., E.P. McDonald, E. Kruger, G. Hendrey, K. Percy, K. Pregitzer, J. Sober and D.F. Karnosky. 2003. Growth responses of aspen clones to elevated carbon dioxide and ozone. In: D.F. Karnosky, K.E. Percy, A.H. Chappelka, C. Simpson, and J.M. Pikkarainen (Eds.), Air Pollution, Global Change and Forests in the New Millennium. Elsevier Press, Amsterdam. pp. 411-435.
- Karnosky, D.F., K.E. Percy, B. Mankovska, R. E. Dickson, J.G. Isebrands and G.K. Podila. 1999. Genetic implications for forest trees of increasing levels of greenhouse gases and UV-B radiation. In: C. Matyas (Ed.) Forest Genetics and Sustainability. Kluwer. pp. 111-124.
- Karnosky, D.F. 2000. Impacts of air pollution and climate change on forest tree populations. Proc. XXI IUFRO World Congress, Kuala Lumpur, Malaysia. In: Forests and Society: The Role of Research Sub-Plenary Sessions, Vol. 1, pp. 133-139.
- Karnosky, D.F., G. Scarascia-Mugnozza, R. Ceulemans and J. Innes (Eds.) 2001. The impact of carbon dioxide and other greenhouse gases on forest ecosystems. CABI Publishing, New York 357 pp.
- Karnosky, D.F., E. Oksanen, R.E. Dickson and J.G. Isebrands. 2001. Impacts of interacting greenhouse gases on forest ecosystems. In: Karnosky, D.F., G. Scarascia-Mugnozza, R. Ceulemans, and J. Innes (eds.), The impact of carbon dioxide and other greenhouse gases on forest ecosystems. CABI Publishing, New York pp. 253-267.

- Karnosky, D.F., G. Gielen, R. Ceulemans, W.H. Schlesinger, R.J. Norby, E. Oksanen, R. Matyssek and G.R. Hendrey. 2001. Face systems for studying the impacts of greenhouse gases on forest ecosystems. In: Karnosky, D.F., G. Scarascia-Mugnozza, R. Ceulemans, and J. Innes (eds.) The impact of carbon dioxide and other greenhouse gases on forest ecosystems. CABI Publishing, New York pp. 297-324.
- Karnosky, D.F., G. Scaracia-Mugnozza, R. Ceulemans and J. Innes. 2001. Knowledge gaps in the study of the impacts of elevated atmospheric CO₂ and other greenhouse gases on forest ecosystems. In: Karnosky, D.F., G. Scarascia-Mugnozza, R. Ceulemans, and J. Innes (Eds.) The impact of carbon dioxide and other greenhouse gases on forest ecosystems. CABI Publishing, New York pp. 325-340.
- Karnosky, D.F., K.E. Percy, A.H. Chappelka, C. Simpson and J.M. Pikkarainen (Eds.). 2003. Air Pollution, Global Change and Forests in the New Millennium. Elsevier Press, Amsterdam. 469 pp.
- Karnosky, D.F., K.E. Percy, R.C. Thakur and R.E. Honrath, Jr. 2003. Air pollution and global change: A double challenge to forest ecosystems. In: D.F. Karnosky, K.E. Percy, A.H. Chappelka, C. Simpson, and J.M. Pikkarainen (Eds.), Air Pollution, Global Change and Forests in the New Millennium. Elsevier Press, Amsterdam. pp. 1-41.
- Karnosky, D.F., P. Sharma, R.C. Thakur, M. Kinouchi, J. King, M.E. Kubiske and R.A. Birdsey. 2003. Changing atmospheric carbon dioxide: A threat or benefit? In: D.F. Karnosky, K.E. Percy, A.H. Chappelka, C. Simpson, and J.M. Pikkarainen (Eds.), Air Pollution, Global Change and Forests in the New Millennium. Elsevier Press, Amsterdam. pp. 57-84.
- Karnosky, D.F., K. Percy, B. Mankovska, T. Prichard, A. Noormets, R.E. Dickson, E. Jepsen and J.G. Isebrands. 2003. Ozone affects the fitness of trembling aspen. In: D.F. Karnosky, K.E. Percy, A.H. Chappelka, C. Simpson, and J.M. Pikkarainen (Eds.), Air Pollution, Global Change and Forests in the New Millennium. Elsevier Press, Amsterdam. pp. 199-209.
- Karnosky, D.F., K.E. Percy, A.H. Chappelka and S.V. Krupa. 2003. Air pollution and global change impacts on forest ecosystems: Monitoring and research needs. In: D.F. Karnosky, K.E. Percy, A.H. Chappelka, C. Simpson, and J.M. Pikkarainen (Eds.), Air Pollution, Global Change and Forests in the New Millennium. Elsevier Press, Amsterdam. pp. 447-459.
- Karnosky, D.F. and R.C. Thakur. 2004. Genetic aspects of air pollution and climate change. In: J. Burley, J. Evans, and J. Youngquist (Eds.), Genetics and Genetic Resources, Encyclopedia of Forest Sciences. Academic Press. London, pp. 223-229.
- Karnosky, D.F., J. King, J. Darbah, J. Sober, A. Sober, M. Kubiske, N. Nelson, C. Giardina and K.E. Percy. 2005. Physiological and genetic responses to ozone in trees growing under elevated atmospheric CO₂. The International Forestry Review 7(5):89 (abstract)
- Karnosky, D.F. 2005. Genetic variation in response to global change. The International Forestry Review 7(5):93 (abstract)

- Karnosky, D.F., J.M. Skelly, K.E. Percy and A.H. Chappelka. 2005. Perspectives regarding 50 years of research on the effects of tropospheric ozone air pollution on North American forests. The International Forestry Review 7(5):283 (abstract)
- Karnosky, D.F. and K.S. Pregitzer. 2006. Impacts of elevated CO₂ and O₃ on northern temperate forest ecosystems: Results from the Aspen FACE experiment. In: Nösberger, J., S.P. Long, R.J. Norby, M. Stitt, G.R. Hendrey, H. Blum, Eds. "Managed Ecosystems and CO2: Case Studies, Processes and Perspectives." Springer-Verlag, Ecological Studies 187:213-229.
- Karnosky, D.F., M. Tallis, J. Darbah, and G. Taylor. 2007. Direct effects of elevated CO₂ on forest tree productivity. In: Freer-Smith, P.H., Broadmeadow, M.S.J. and Lynch, J.M. (eds), Forestry and Climate Change. CABI Publishing, pp. 136-142.
- Kostiainen, K., S. Kaakinen, E. Warsta, M.E. Kubiske, N.D. Nelson, J. Sober, D.F. Karnosky, P. Saranpaa, and E. Vapaavuori. 2007. Wood properties of trembling aspen and paper birch after five years of exposure to elevated CO₂ and O₃. In: K. Kostiainen (ed.), Wood properties of northern forest trees grown under elevated CO₂, O₃ and temperature. Academic Dissertation.
- Kubiske, M.E. and D.L. Godbold. 2001. Growth and function of roots and root systems. In: Karnosky, D.F., G. Scarascia-Mugnozza, R. Ceulemans, and J. Innes (Eds.) The impact of carbon dioxide and other greenhouse gases on forest ecosystems. CABI Publishing, New York pp. 147-191.
- Lindroth, R.L. and M.D. Dearing. 2005. Herbivory in a world of elevated CO₂. In: J.R. Ehleringer, T.E. Cerling, M.D. Dearing (eds.) A History of Atmospheric CO₂ and its Effect on Plants, Animals, and Ecosystems. Springer, New York, 468-486.
- Martin, M.J., G.E. Host, K.E. Lenz and J.G. Isebrands. 2003. Simulating the growth response of aspen to elevated ozone: a mechanistic approach from leaf-level photosynthesis to complex architecture. In: D.F. Karnosky, K.E. Percy, A.H. Chappelka, C. Simpson, and J.M. Pikkarainen (Eds.), Air Pollution, Global Change and Forests in the New Millennium. Elsevier Press, Amsterdam. pp. 175-197.
- Noormets, A., D. F. Karnosky, J.G. Isebrands and G.K. Podila. 1999. Stomatal versus mesophyll control of instantaneous photosynthesis in trembling aspen exposed to elevated CO₂ and/or O₃. Proc. Annual meeting of the American Society of Plant Physiologists, Plant Biology, p. 119.
- Percy, K.E., A.H. Legge and S.V. Krupa. 2003. Tropospheric ozone: A continuing threat to global forests? In: D.F. Karnosky, K.E. Percy, A.H. Chappelka, C. Simpson, and J.M. Pikkarainen (Eds.), Air Pollution, Global Change and Forests in the New Millennium. Elsevier Press, Amsterdam. pp. 85-118.
- Percy, K.E., D.F. Karnosky and J.L. Innes. 2000. Potential roles of global change in forest health during the 21st century. Proc. XXI IUFRO World Congress. Kuala Lumpur, Malaysia. In: Forests and Society: The Role of Research Sub-Plenary Sessions, Vol. 1, pp. 147-163.

- Percy, K.E., B. Mankovska, A. Hopkin, B. Callan and D.F. Karnosky. 2003. Ozone affects leaf surface pest interactions. In: D.F. Karnosky, K.E. Percy, A.H. Chappelka, C. Simpson, and J.M. Pikkarainen (Eds.), Air Pollution, Global Change and Forests in the New Millennium. Elsevier Press, Amsterdam. pp. 247-258.
- Percy, K.E., M. Nosal, W. Heilman, T. Dann, and D.F. Karnosky. 2007. Standards-based ozone exposure-response functions that predict forest growth. In: A.H. Legge (Ed.), Relating Atmospheric Source Apportionment to Vegetation Effects: Establishing Cause and Effect Relationships. Elsevier Environmental Science Series, Oxford, UK (In Press)
- Podila, G.K., A.R. Paolacci and M. Badiani. 2001. The impacts of antioxidants and foliar defence compounds. In: Karnosky, D.F., G. Scarascia-Mugnozza, R. Ceulemans, and J. Innes (Eds.) The impact of carbon dioxide and other greenhouse gases on forest ecosystems. CABI Press, pp. 57-125.
- Pregitzer, K.S. 2003. Carbon cycling in forest ecosystems with an emphasis on belowground processes. In: J.M. Kimble, L.S. Heath, R.A. Birdsey (Eds.), The Potential of U.S. Forest Soils to Sequester Carbon and Mitigate the Greenhouse Effect. CRC Press. pp. 93-107.
- Pregitzer, K.S., D.R. Zak, W.M. Loya, N.J. Karberg, J.S. King, and A.J. Burton. 2007. The contribution of root rhizosphere interactions to biogeochemical cycles in a changing world. In: Z. Cardon and J. Whitbeck (eds). The Rhizosphere -- An Ecological Perspective, Elsevier, Amsterdam. 7:155-178.
- Scarascia-Mugnozza, G.E., D.F. Karnosky, R. Ceulemans and J.L. Innes. 2001. The impact of CO2 and other greenhouse gases on forest ecosystems: An introduction. In Karnosky, D.F., G. Scarascia-Mugnozza, R. Ceulemans, and J. Innes (Eds.), The impact of carbon dioxide and other greenhouse gases on forest ecosystems. CABI Press pp. 1-16.
- Shriner, D.S. and D.F. Karnosky. 2003. What is the role of demographic factors in air pollution and forests? In: D.F. Karnosky, K.E. Percy, A.H. Chappelka, C. Simpson, and J.M. Pikkarainen (Eds.), Air Pollution, Global Change and Forests in the New Millennium. Elsevier Press, Amsterdam. pp. 43-55.
- Sober, A., A. Noormets, J.G. Isebrands, J.Sober and D.F. Karnosky. 2000. Hydraulic properties of aspen leaves as affected by leaf age and elevated concentrations of carbon dioxide and (or) ozone. Proc. Annual Meeting of the American Society of Plant Physiologists. Plant Biology 2000. pp. 97.
- Wustman, B., E. Oksanen, D.F. Karnosky, A. Noormets, J. Isebrands, K. Pregitzer, G. Hendrey, J. Sober and G.K. Podila. 2003. Effects of elevated CO₂ and O₃ on aspen clones of varying O₃ sensitivity: Can CO₂ ameliorate the harmful effects of O₃? In: D.F. Karnosky, K.E. Percy, A.H. Chappelka, C. Simpson, and J.M. Pikkarainen (Eds.), Air Pollution, Global Change and Forests in the New Millennium. Elsevier Press, Amsterdam. pp. 391-409.

Aspen FACE Other Publications from 2007 and Earlier (alphabetical)

41 publications from 1998 through 2007

- Anttonen, S., E. Vapaavuori, K. Kostiainen, J.G. Isebrands, E. McDonald, J. Sober and D.F. Karnosky. 2001. Effect of elevated CO₂ and O₃ on the chemical composition of wood in aspen clones: results after 3 years of exposure in the Aspen FACE project. In: Proceedings of the International Conference: Forest Research: A Challenge for an Integrated European Approach, (K. Radoglou, ed.) NAGREF, Thessaloniki, Greece. ISBN 960-869-47-3-6. 1:239-242.
- Badiani, M. and G.K. Podila. 2000. The good which came from evil: An outline of what we learned about air pollution and oxidative stress in plants. Proc. Air Pollution, Global Change and Forests in the New Millennium. The 19th International Meeting for Specialists in Air Pollution Effects on Forest Ecosystems, Houghton, Michigan USA (Abstract, p. 17).
- Chapman, J.A., J.S. King, K.S. Pregitzer and D.R. Zak. 2004. Decomposition of fine roots grown in an enriched CO₂ and O₃ environment: Relationships of soil microbial respiration and fine root biochemistry. Proc. 18th North American Forest Biology Workshop, July 12-15, 2004, Houghton, Michigan (Abstract, p. 45)
- Dickson, R.E., M.D. Coleman, P. Pechter and D.F. Karnosky. 2000. Growth and crown architecture of two aspen genotypes exposed to interacting ozone and carbon dioxide. Proc. Air Pollution, Global Change and Forests in the New Millennium. The 19th International Meeting for Specialists in Air Pollution Effects on Forest Ecosystems, Houghton, Michigan USA (Abstract, p. 29).
- Giardina, C.P., E. McDonald, P. Gupta, B. Parsons, M.E. Kubiske, R.L. Lindroth, D.F. Karnosky, K.S. Pregitzer and W. Loya. 2004. Interactions effects of elevated CO₂ and O₃ on forest canopies at the Aspen FACE experiment in northern Wisconsin. Proc. 36th Air Pollution Workshop, April 26-29, 2004, Rhinelander, Wisconsin. (Abstract, p. 2).
- Giardina, C., E. McDonald, M.E. Kubiske, W. Parsons, R.L. Lindroth, J. King, W.M. Loya, K.S. Pregitzer and D. Karnosky. 2004. The effects of elevated CO₂ and O₃ on litterfall in mixed aspen and birch stands at the Rhinelander FACE facility. Proc. 18th North American Forest Biology Workshop, July 12-15, 2004, Houghton, Michigan (Abstract, p. 70)
- Heilman, W.E. 2004. Trends in elevated CO₂ and O₃: Past and Present. Proc. 36th Air Pollution Workshop, April 26-29, 2004, Rhinelander, Wisconsin. (Abstract, p. 3).
- Heilman, W., R. Teclaw, J. Isebrands, D.F. Karnosky, G. Hendrey and K.S. Pregitzer. 2000. Impacts of elevated CO₂ and O₃ concentrations on forest microclimates: Initial observations from the FACTS II Aspen FACE facility. Proc. Air Pollution, Global Change and Forests in the New Millennium. The 19th International Meeting for Specialists in Air Pollution Effects on Forest Ecosystems, Houghton, Michigan USA (Abstract, p. 36).
- Host G.E., K.E. Lenz, G.W. Theseira, M.J. Martin, H. Stech, R.R. Regal and J.G. Isebrands. 2000. A high-performance computational approach to modeling interacting environmental

- stresses: the ECOPHYS FACE project. Proc. Air Pollution, Global Change and Forests in the New Millennium. The 19th International Meeting for Specialists in Air Pollution Effects on Forest Ecosystems, Houghton, Michigan USA (Abstract, p. 95).
- Isebrands, J.G., E.P. McDonald, E.L. Kruger, R.E. Dickson, G.R. Hendrey, K.S. Pregitzer and D.F. Karnosky. 1999. Effects of interacting elevated carbon dioxide and ozone on growth and physiological processes in Populus tremuloides. Proc. International Poplar Symposium. Orleans, France, September 13-17, 1999.
- Kaakinen, S., K. Kostiainen, M.E. Kubiske, J. Sober, D.F. Karnosky and E. Vapaavuori. 2004. Are changes in wood chemical properties maintained over five years of exposure to elevated CO₂ and O₃ in aspen clones? Proc. 36th Air Pollution Workshop, April 26-29, 2004, Rhinelander, Wisconsin. (Abstract, p. 23).
- Kaakinen, S., K. Kostiainen, F. Ek, P. Saranpää, M.E. Kubiske, J. Sober, D.F. Karnosky and E. Vapaavuori. 2004. Stem wood properties of Populus tremuloides, Betula papryifera and Acer saccharum after three years of exposure to elevated CO₂ and O₃. Proc. 36th Air Pollution Workshop, April 26-29, 2004, Rhinelander, Wisconsin. (Abstract, p. 4).
- Karnosky, D.F. and S. Long. 2004. Air pollution effects on forest and agricultural systems under a changing environment. Int. Symposium on Food Production and Environmental Conservation in the FACE of Global Environmental Deterioration. FPEC 2004. (Abstract p. 7)
- Karnosky, D.F., P. Gupta, J. Darbah, W.S. Jones, M. Kubiske, J. Pikkarainen and D.B. Karnosky. 2004. Impacts of elevated atmospheric CO2 and O3 on canopy dynamics of aggrading northern forest ecosystems. Proc. 36th Air Pollution Workshop, April 26-29, 2004, Rhinelander, Wisconsin. (Abstract, p. 25).
- Karnosky, D.F., A. Noormets, A. Sober, K. Percy, B. Mankovska, J. Sober, D.R. Zak, K.S. Pregitzer, W. Mattson, R.E. Dickson, D. Riemenschneider, G.K. Podila, G. Hendrey, K. Lewin, J. Nagy and J.G. Isebrands. 2001. Preliminary results from the FACTS 2 (ASPEN FACE) experiment: Interactions of elevated CO₂ and O₃. In: Shimizu, H. (Ed). Carbon Dioxide and Vegetation: Advanced International Approaches for Absorption of CO₂ and Responses to CO₂. The 13th Global Environment Tsukuba, Japan. CGER-I046. pp. 69-76.
- Karnosky, D.F., B. Gielen, R. Ceulemans, W.H. Schlesinger, R.J. Norby, E. Oksanen, R. Matyssek and G.R. Hendrey. 2000. Facing the future: Free air exposure systems for studying the impacts of greenhouse gases on forest ecosystems. Proc. Air Pollution, Global Change and Forests in the New Millennium. The 19th International Meeting for Specialists in Air Pollution Effects on Forest Ecosystems, Houghton, Michigan USA (Abstract, p. 96).
- Karnosky, D.F., J.N. Darbah, A. Sober, J. Riikonen, K. Kets, N. Nelson, M. Kubiske, K.E. Percy. 2005. Ozone effects on growth and productivity of Populus tremuloides Michx: A comparison of results from OTC, FACE, and ozone gradient studies with a common set of genetic materials. Proceedings on the workshop "Critical Levels of Ozone: Further Applying and Developing the Flux-based Concept", November 2005, Obergurgl, Tyrol, Austria. pp. 325-329.

- Karnosky, D.F., G. Podila, L. Cseke, and J. Tsai. 2006. Global change impacts on aspen gene expression: Genotypic variability in carbon sequestration potential. International Poplar Symposium IV. Nanjing, China. (Abstract, p. 142)
- King, J.S., P.J. Hanson, E. Bernhardt, P. DeAngelis, R.J. Norby and K.S. Pregitzer. 2004. A multi-year synthesis of soil respiration responses to elevated atmospheric CO₂ from four forest FACE experiments. Proc. 18th North American Forest Biology Workshop, July 12-15, 2004, Houghton, Michigan (Abstract, p. 45)
- Kubiske, M.E., E. McDonald, V. Quinn, P. Marquardt and D.F. Karnosky. 2004. Growth dynamics of tree communities exposed to elevated atmospheric CO₂ and O₃ for six years in the Aspen FACE experiment. 2004. Proc. 36th Air Pollution Workshop, April 26-29, 2004, Rhinelander, Wisconsin. (Abstract, p. 5).
- Lilleskov, E.A. 2004. Carbon dioxide and ozone affect sporocarp production and community structure of ectomycorrhizal fungal communities in the Aspen FACE experiment. Proc. 18th North American Forest Biology Workshop, July 12-15, 2004, Houghton, Michigan (Abstract, p. 79)
- Lindroth, R.L., B.J. Kopper and E.B. Mondor. 2004. Impacts of interacting CO₂ and O₃ on forest insects. Proc. 36th Air Pollution Workshop, April 26-29, 2004, Rhinelander, Wisconsin. (Abstract, p. 6).
- Liu, L., J.S. King and C. Giardina. 2004. Fluxes, decay rates, and mean residence times of carbon and nutrients in leaf litter of northern forests under elevated atmospheric CO₂ and tropospheric O₃. 2004. Proc. 18th North American Forest Biology Workshop, July 12-15, 2004, Houghton, Michigan (Abstract, p. 80)
- Mankovska, B., K. Percy and D.F. Karnosky. 2000. Evaluation of ozone injury by means of epicuticular wax in three aspen clones differing in O₃ tolerance. Proc. Air Pollution, Global Change and Forests in the New Millennium. The 19th International Meeting for Specialists in Air Pollution Effects on Forest Ecosystems, Houghton, Michigan USA (Abstract, p. 54).
- McDonald, E.P., E.L. Kruger, D.E. Riemenschneider and J.G. Isebrands. 2000. Consequences of elevated levels of atmospheric CO₂ and O₃ for growth of *Populus tremuloides* clones: The role of competition. Proc. Air Pollution, Global Change and Forests in the New Millennium. The 19th International Meeting for Specialists in Air Pollution Effects on Forest Ecosystems, Houghton, Michigan USA (Abstract, p. 58).
- Noormets, A., E. McDonald, E. Kruger, J. Isebrands, R. Dickson and D.F. Karnosky. 2000. Aboveground carbon budgets under elevated atmospheric CO₂ and/or O₃ for two aspen genotypes differing in O₃ tolerance. Proc. Air Pollution, Global Change and Forests in the New Millennium. The 19th International Meeting for Specialists in Air Pollution Effects on Forest Ecosystems, Houghton, Michigan USA (Abstract, p. 60).
- Oksanen, E. 2004. Interactions of O₃, CO₂ and nitrogen deposition in Finnish forest trees. Proc. 36th Air Pollution Workshop, April 26-29, 2004, Rhinelander, Wisconsin. (Abstract, p. 7).

- Oksanen, E., T. Holopainen, S. Kaakinen, D.F. Karnosky, J. Riikonen and E. Vapaavuori. 2004. Changes in anatomical and chemical structure of leaves in deciduous trees at elevated CO₂. Proc. 36th Air Pollution Workshop, April 26-29, 2004, Rhinelander, Wisconsin. (Abstract, p. 35).
- Oksanen, E., T. Holopainen, D.F. Karnosky, J. Riikonen and E. Vapaavuori. 2004. Ozone-caused H₂O₂ accumulation in mesophyll cells is linked to functional structure of leaves. Proc. 36th Air Pollution Workshop, April 26-29, 2004, Rhinelander, Wisconsin. (Abstract, p. 36).
- Oksanen, E., B. Wustman, G.K. Podila, J.G. Isebrands and D.F. Karnosky. 2000. CO₂/ozone interactions in trees. Proc. Air Pollution, Global Change and Forests in the New Millennium. The 19th International Meeting for Specialists in Air Pollution Effects on Forest Ecosystems, Houghton, Michigan USA (Abstract, p. 61).
- Parsons, W.F.J., J.G. Bockheim and R.L. Lindroth. 2000. Populus tremuloides and Betula papyrifera decomposition at Aspen-FACE (FACTS II): leaf litter production and decay under individual and interactive effects of elevated CO₂ and O₃. Proc. Air Pollution, Global Change and Forests in the New Millennium. The 19th International Meeting for Specialists in Air Pollution Effects on Forest Ecosystems, Houghton, Michigan USA (Abstract, p. 64).
- Percy, K. 2004. Implications of rising CO₂ and O₃ for forest health. Proc. 36th Air Pollution Workshop, April 26-29, 2004, Rhinelander, Wisconsin. (Abstract, p. 8).
- Percy, K.E., D. F. Karnosky and B. Mankovska. 1998. Epicuticular wax chemical composition as a bioindicator of predisposing ozone injury in three aspen clones growing along a natural gradient. Proc. IUFRO 18th International Meeting for Specialists in Air Pollution Effects on Forest Ecosystems. Edinburgh, UK. p. 98 (Abstract).
- Percy, K., D.F. Karnosky, B. Mankovska, J. Sober, J.G. Isebrands, G. Hendrey and K.S. Pregitzer. 2000. Interactive O₃ and CO₂ effects on leaf surface physiochemical characteristics in paper birch (*Betula papyrifera* Marsh.) and three aspen (*Populus tremuloides* Michx.) clones: Results from the Aspen FACE project (FACTS II). Proc. Air Pollution, Global Change and Forests in the New Millennium. The 19th International Meeting for Specialists in Air Pollution Effects on Forest Ecosystems, Houghton, Michigan USA (Abstract, p. 67).
- Percy, K., M. Nosal, W. Heilman, T. Dann, J. Sober, D. Karnosky. 2005. The North American ozone air quality standard: efficacy and performance with two northern hardwood forest tree species. Proceedings on the workshop "Critical Levels of Ozone: Further Applying and Developing the Flux-based Concept", November 2005, Obergurgl, Tyrol, Austria. pp. 85-90.
- Podila, G.K., B.A. Wustman, Y. Wang, D.R. Zak, J. Sober, G.R. Hendrey, J.G. Isebrands, K.S. Pregitzer and D.F. Karnosky. 1998. Effects of elevated CO₂ on the antioxidant potential of aspen clones varying in O₃ sensitivity: Results from a free air CO₂ exposure (FACE) project. Proc. 18th International meeting for specialists in air pollution effects on forest ecosystems. Edinburgh, Scotland (Abstract, p. 97).
- Sober, A., A. Noormets, J. Sober, J.G. Isebrands and D.F. Karnosky. 2000. Photosynthetic parameters and stomatal conductance of aspen under elevated CO₂ and O₃ as affected by leaf

- hydraulic properties. Proc. Air Pollution, Global Change and Forests in the New Millennium. The 19th International Meeting for Specialists in Air Pollution Effects on Forest Ecosystems, Houghton, Michigan USA (Abstract, p. 79).
- Takeuchi, Y. and M.E. Kubiske. 2000. Elevated CO₂ effects on N and photosynthesis of an aspen canopy. Proc. Air Pollution, Global Change and Forests in the New Millennium. The 19th International Meeting for Specialists in Air Pollution Effects on Forest Ecosystems, Houghton, Michigan USA (Abstract, p. 84).
- Tallis, M.J., F. Miglietta, N.R. Street, D.F. Karnosky, and G. Taylor. 2006. Elevated CO₂ delays autumnal senescence in Populus. International Poplar Symposium IV, Nanjing, China. (Abstract, p. 141)
- Vigue, L. and R. Lindroth. 2004. Effects of enhanced CO₂ and O₃ on aspen leaf beetle (Chrysomela crotchi) performance in a northern deciduous forest ecosystem. Proc. 36th Air Pollution Workshop, April 26-29, 2004, Rhinelander, Wisconsin. (Abstract, p. 42).
- Zhao, W., K.E. Lenz, G.E. Host and H. Stech. 2000. Analytic Solution and Implementation of a Coupled Photosynthesis Stomatal Conductance Model. Proc. Air Pollution, Global Change and Forests in the New Millennium. The 19th International Meeting for Specialists in Air Pollution Effects on Forest Ecosystems, Houghton, Michigan USA (Abstract, p. 92).