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Executive Summary

Two of the most important and pervasive greenhouse gases driving global change and impacting 
forests in the U.S. and around the world are atmospheric CO2 and tropospheric O3. As the only 
free air, large-scale manipulative experiment studying the interaction of elevated CO2 and O3 on 
forests, the Aspen FACE experiment was uniquely designed to address the long-term ecosystem 
level impacts of these two greenhouse gases on aspen-birch-maple forests, which dominate the 
richly forested Lake States region. The project was established in 1997 to address the 
overarching scientific question: “What are the effects of elevated [CO2] and [O3], alone and in 
combination, on the structure and functioning of northern hardwood forest ecosystems?”

From 1998 through the middle of the 2009 growing season, we examined the interacting effects 
of elevated CO2 and O3 on ecosystem processes in an aggrading northern forest ecosystem at a 
free-air carbon dioxide enrichment (FACE) facility near Rhinelander, Wisconsin to compare the 
responses of early-successional, rapid-growing shade intolerant species (trembling aspen 
[Populus tremuloides Michx.] and paper birch [Betulapapyrifera Marsh.]) to those of a late 
successional, slower growing shade tolerant species (sugar maple [Acer saccharum Marsh.]). 
Three replicate FACE rings were established in 1997 for a factorial combination of four 
treatments (CO2, O3, CO2+O3 and control) in a randomized block design. Rooted cuttings from 
five aspen clones previously characterized for O3 and CO2 sensitivities were planted 1 .0  m apart 
in one-half of each FACE ring. The other half was divided into equal size plots of aspen/sugar 
maple and aspen/paper birch, again at 1 m x 1 m spacing. Fumigations with elevated CO2 (560 
ppm during daylight hours) and O3 (approximately 1.5 x ambient) were conducted during the 
growing season from 1998 to 2008, and in 2009 through harvest date.

Response variables quantified during the experiment included growth (height, diameter, biomass, 
leaf area, root production, and fine root mortality), competitive interactions and stand dynamics, 
physiological processes (photosynthesis, respiration, stomatal conductance, and chlorophyll 
content), plant nutrient status and uptake (nitrogen), tissue biochemistry (carbohydrates, phenolic 
glycosides, and anti oxidants), litter quality and decomposition rates, hydrology, soil respiration, 
microbial community composition and respiration, VOC production, treatment-pest interactions, 
and treatment-phenology interactions. From mid-June to mid-August in 2009, we conducted a 
detailed harvest of the site. The harvest included detailed sampling of a subset of trees by 
component (leaves and buds, fine branches, coarse branches and stem, coarse roots, fine roots) 
and excavation of soil to a depth of 1 m. An excavator and commercial soil sieve were used to 
recover coarse roots, with additional cores from pit faces used to capture fine root biomass.

Throughout the experiment, aspen and birch photosynthesis increased with elevated CO2 and 
tended to decrease with elevated O3, compared to the control. In contrast to aspen and birch, 
maple photosynthesis was not enhanced by elevated CO2. Elevated O3 did not cause significant 
reductions in maximum photosynthesis in birch or maple. In addition, photosynthesis in ozone 
sensitive clones was affected to a much greater degree than that in ozone tolerant aspen clones. 
Altered photosynthesis had direct effects on net primary productivity (NPP), including 
production of foliage, which created a positive feedback that led to even greater enhancement of 
C assimilation under elevated CO2 for aspen and birch and further reduction of C assimilation 
under elevated O3 for aspen.

Treatment effects on photosynthesis contributed to CO2 stimulation of aboveground and 
belowground growth that was species and genotype dependent, with birch and aspen being most



responsive and maple being least responsive. The positive effects of elevated CO2 on net 
primary productivity NPP were sustained through the end of the experiment, but negative effects 
of elevated O3 on NPP had dissipated during the final three years of treatments. The declining 
response to O3 over time resulted from the compensatory growth of O3-tolerant genotypes and 
species as the growth of 0 3 -sensitive individuals declined over time. As a result, annual NPP by 
the end of the project was similar under ambient and elevated O3 . Project results suggest that the 
changing atmospheric composition could shift the genotypic composition and average pollutant 
responses of tree populations over moderate timescales. Given the degree to which O3 has been 
projected to decrease global NPP, the compensatory growth of O3 tolerant plants in our 
experiment, as they replaced senescing O3 sensitive plants, should be considered in future 
simulations.

Cumulative NPP over the entire experiment was 39% greater under elevated CO2 (P < 0.001) 
and 10% lower under elevated O3 (P = 0.026). Enhanced NPP under elevated CO2 was sustained 
by greater root exploration of soil for growth-limiting N, as well as more rapid rates of litter 
decomposition and microbial N release during decay. Overall, our observations indicate that 
elevated CO2 has altered SOM cycling at this site to favor C and N accumulation in less stable 
pools, with more rapid turnover. Results from our long-term measurements at Aspen FACE 
clearly indicate that plants growing under elevated carbon dioxide, regardless of community type 
or ozone level, obtained significantly greater amounts of soil N. These results indicate that 
greater plant growth under elevated carbon dioxide has not led to “progressive N limitation”. In 
no case did we find significant interactions among plant community, CO2, or O3, indicating that 
NPP in the three plant communities in our experiment responded similarly to both CO2 and O3 .
If similar forests growing throughout northeastern North America respond in the same manner, 
then enhanced forest NPP under elevated CO2 may be sustained for a longer duration than 
previously thought, and the negative effect of elevated O3 may be diminished by compensatory 
growth of O3-tolerant plants as they begin to dominate forest communities.

By the end of the experiment, elevated CO2 increased ecosystem C content by 11%, whereas 
elevated O3 decreased ecosystem C content by 9%. Total ecosystem C content in the interaction 
treatment (elevated CO2 and O3) did not significantly differ from that of the control. Total 
ecosystem C content responded similarly to the treatments across the three forest communities. 
The treatment effects on ecosystem C content resulted from differences in tree biomass, 
particularly woody tissues (branches, stem, and coarse roots), and lower C content in the near­
surface mineral soil. For tree C, the negative effect of elevated O3 was smaller (-15%) than the 
positive effect of elevated CO2 (+44%).

During its duration, the Aspen FACE project involved collaboration between scientists from 9 
countries, and over the course of the experiment there were over 120 Aspen FACE scientific 
users. These scientists helped produce 75 publications during the most recent funding period 
(2008-2014) and 207 peer-reviewed publications (169 in refereed journals) since the beginning 
of the project. Numerous additional findings beyond those highlighted above or described in this 
report can be found in the publications listed.
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Final Technical Report Grant No. DE-FG02-95ER62125

Project: Impacts of Interacting Elevated Atmospheric C 0 2 and 0 3 on the 
Structure and Functioning of a Northern Forest Ecosystem: Operating and 
Decommissioning the Aspen FACE Project

The Aspen FACE project occurred due to the vision of efforts of the late Dr. David F. Kamosky 
and colleagues in the early 1990s. Dr. Kamosky was the Principal Investigator for this project 
from its initiation until his death in 2008. Without his efforts, Aspen FACE would not have 
happened, and this report is dedicated in his memory.

Background

Human activities have greatly accelerated rates of global environmental change. Understanding 
the consequences of these changes for forest ecosystems is a pressing challenge, given the 
importance of forests in global net primary production (NPP), carbon sequestration, human 
economies, and as repositories of biodiversity. There is growing recognition that global change 
and long-range transport of air pollutants have the potential to significantly affect global air 
quality in the coming decades (Brasseur et al. 2003). Two of the most important and pervasive 
greenhouse gases driving global change and impacting forests in the U.S. and around the world 
are [C 02] and tropospheric O3 (Felzer et al. 2004, Sitch et al. 2007).

As the only free air, large-scale manipulative experiment studying the interaction of atmospheric 
[CO2] and [O3] on forests, the Aspen FACE experiment was uniquely designed to address the 
long-term ecosystem level impacts of these two greenhouse gases on aspen-birch-maple forests, 
which dominate the richly forested Lake States region (USDA 2004, Heath and Smith 2004).
The Aspen FACE Project was established in 1997 to address the overarching scientific question:

“What are the effects of elevated [CO2] and [O3], alone and in combination, on the stmcture and 
functioning of northern hardwood forest ecosystems?”

Data gathered over the decade-long experiment was intended to improve our ability to predict 
how forest ecosystem productivity, health and composition will respond as the concentrations of 
both CO2 and O3 increase in the future and address the overall hypothesis that: Genetic 
differences regulating C assimilation, growth and C allocation are the fundamental controls on 
changes in ecosystem composition andfunction as atmospheric CO2  and O3 rise. Under this 
hypothesis, ecosystem responses to CO2 and O3 are mediated through the life history traits of the 
dominant plants, and responses to CO2 and O3 cascade through ecosystems in a predictable 
manner.

Among the scientific questions the Aspen FACE Experiment was intended to address are:
Where is the missing carbon from global carbon models? Is it being sequestered by forests? 
Will more or less CO2 be sequestered by forest trees as CO2 levels rise?
Are forests net carbon sources or sinks? Do they change over time?
Is carbon sequestered by trees stored for long time periods in the soil?
Will elevated CO2 alleviate other stresses (e.g. ozone, drought, low fertility)?
Will our forests become more or less productive over time under elevated CO2?
How will elevated CO2 affect insect and disease interactions with trees?
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How do CO2 and the greenhouse gas ozone interact?

This report will focus primarily on results from the last years of treatment and final harvest to 
answer these questions, but will also describe results from earlier work conducted under this 
project and others from the entire duration of Aspen FACE, to help explain the changes over 
time the led to the overall final results of the experiment.

Experimental Design

From 1998 through the middle of the 2009 growing season, we examined the interacting effects 
of elevated CO2 and O3 on ecosystem processes in an aggrading northern forest ecosystem. This 
study utilized a free-air carbon dioxide enrichment (FACE) facility near Rhinelander, Wisconsin 
to compare the responses of early-successional, rapid-growing shade intolerant species 
(trembling aspen [Populus tremuloides Michx.] and paper birch [Betulapapyrifera Marsh.]) to 
those of a late successional, slower growing shade tolerant species (sugar maple [Acer 
sacchamm  Marsh.]). Three replicate FACE rings were established in 1997 for a factorial 
combination of four treatments (CO2, O3 , CO2+O3 and control) in a randomized block design. 
Rooted cuttings from five aspen clones previously characterized for O3 and CO2 sensitivities 
were planted 1.0 m apart in one-half of each FACE ring (Fig. 1). The other half was divided into 
equal size plots of aspen/sugar maple and aspen/paper birch, again at 1 m x 1 m spacing, to 
examine interactions between shade tolerant and intolerant species. The close spacing simulated 
a naturally regenerating forest. Fumigations with elevated CO2 (560 ppm during daylight hours) 
and O3 (approximately 1.5 x ambient) were conducted 
over 165, 144, 145, 150, 137, 143, 154, 143, 140, 125 and 
140-day growing seasons from 1998 to 2008, 
respectively, and in 2009 through harvest date.

Measurements made included growth (height, diameter, 
biomass, leaf area, root production, and fine root 
mortality), competitive interactions and stand dynamics, 
physiological processes (photosynthesis, respiration, 
stomatal conductance, and chlorophyll content), plant 
nutrient status and uptake (nitrogen), tissue biochemistry 
(carbohydrates, phenolic glycosides, and antioxidants), 
litter quality and decomposition rates, hydrology, soil 
respiration, microbial community composition and 
respiration, VOC production, treatment-pest interactions, 
and treatment-phenology interactions. Many of these 
measurements were not directly supported by this grant, 
but this grant did provide the infrastructure and site 
operations that made possible all of the long-term 
collaborative research at the Aspen FACE facility.
Additional details regarding the experimental design, 
treatments and measurements can be found in Dickson 
(2000) and the forthcoming Kubiske et al. (2014).

From mid-June to mid-August in 2009, we conducted a
detailed harvest of the site using protocols developed collaboratively between Michigan Tech, 
the USFS Northern Research Station (Rhinelander), the University of Michigan, and the

Fig. 1. Aerial views o f  the FACTS II FACE 
Experiment. Pictured in panel A is the entire FACE 
array. Panel B illustrates the division o f  the FACE 
rings into sections containing aspen, aspen-birch and 
aspen-maple.
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University of Nevada, Reno. Portions of the above- and belowground components of the 
experiment were harvested by block after the entire canopy had developed. Fumigation within a 
ring was continued to within one week of the harvest. The harvest included detailed sampling of 
a subset of trees by component (leaves and buds, fine branches, coarse branches and stem, coarse 
roots, fine roots) and excavation of soil to a depth of 1 m. An excavator and commercial soil 
sieve were used to recover coarse roots, with additional cores from pit faces used to capture fine 
root biomass. The destructive harvest produced detailed information on above- and 
belowground biomass, tree allometry, and soil C and N  that far exceeded that which had been 
obtained by less intensive sampling during the experiment. In addition to the primary 
measurements and samples for our core scientists, we provided samples and/or data from the 
final harvest in response to more than 25 requests from researchers with universities and 
government agencies from five countries.

Findings:

Canopy Gas Exchange

Throughout the experiment, photosynthesis increased 
with elevated CO2 and tended to decrease with 
elevated O3, compared to the control (Fig. 2, Fig. 3; 
see Kamosky et al. 2003, Darbah et al. 2010b,
McGrath et al. 2010 and earlier reports). Responses 
were species and genotype specific. In contrast to 
aspen and birch, maple photosynthesis was not 
enhanced by elevated CO2 (Fig. 2). Elevated O3 did 
not cause significant reductions in maximum 
photosynthesis in birch or maple. In addition, 
photosynthesis in ozone sensitive clones was affected 
to a much greater degree than that in ozone tolerant 
clones (Noormets et al. 2001).

Darbah et al. (2010b) examined two of the aspen 
clones for evidence of photosynthetic acclimation to the treatments over the first eleven years of 
exposure and found no evidence indicating changes over time in the positive (CO2) or negative 
(O3) responses to the treatments (Fig. 3). The effects of O3 and CO2 on photosynthesis have 
varied with diumal and seasonal patterns of environmental stress (drought, high air temperature). 
The positive impact of CO2 on net photosynthesis was more pronounced on days with 
environmental stress but relatively less pronounced during midday depression, while the negative 
impact of ozone tended to decrease in both cases (Kets et al. 2010).

Altered photosynthesis had direct effects on net primary productivity (see next section), 
including production of foliage (Fig. 4, Talhelm et al. 2012) which created a positive feedback 
that led to even greater enhancement of C assimilation under elevated CO2 for aspen and birch 
and further reduction of C assimilation under elevated O3 for aspen (Kamosky 2003).

Elevated CO2 also conferred increased thermotolerance for both aspen and birch trees while 
isoprene production in aspen conferred further thermotolerance in aspen (Darbah et al. 2010a). 
This has potential climatic change implications, as isoprene-emitting trees may have a 
competitive advantage as temperatures rise.

Control CO, CO, CO, + 0 ,

Fig. 2. Light-saturated C 02 assimilation rates 
of aspen, birch and maple gi ing under 
experimental atmospheric C u2 and 0 3 
treatments. Data represent the mean and SE of 
three trees from each of three replicates for 
three to five measurement times over the 1999 
and 2000 growing seasons. Elevated C 02 
significantly (P < 0.05) increased Amax in aspen 
and birch, while elevated 0 3 significantly 
decreased Amax in aspen. The figure is from 
Kamosky et al. 2003 (Fig. 4).
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Fig. 3. Average seasonal maximum 
assimilation rate (Amax) for the growing 
seasons 2004 through 2008 in aspen clones 
42E and 271, showing significant differences 
among years within each of the four treatments. 
Measurements were taken from the same trees 
each year at the Aspen FACE site,
Rhinelander, WI, USA. Within a treatment, 
letters indicate significant differences (P <
0.05) among years. Elevated C 02 significantly 
increased Amax in all years. Elevated 0 3 
significantly reduced Amax in all years except 
2007, when 0 3 treatment was halted for over a 
month due to equipment failure. Figure is from 
Darbah et al. 2010b (Fig. 1).
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Fig. 4. Annual leaf litter mass (g m"2) in the three 
community types for the ambient (filled circles, filled 
bar), +C02 (empty circles, empty bar), + 0 3 (solid 
triangles, filled hatched bar), and +C02+ 0 3 (empty 
triangle, empty hatched bar). Bar graphs are means over 
the entire collection period. Error bars are ±1 SE. 
Reported ANOVA P values are from repeated measures 
analyses within each community. Letters denote 
significant differences in pair-wise comparisons (P < 
0.05) among the treatments within a community. Figure 
is from Talhelm et al. 2012 (Fig. 1).

Net Primary Productivity

Treatment effects on photosynthesis have contributed to CO2 stimulation of aboveground and 
belowground growth that was species and genotype dependent, with birch and aspen being most 
responsive and maple being least responsive. The positive effects of elevated CO2 on net 
primary productivity (NPP) were sustained through the end of the experiment, but negative 
effects of elevated O3 on NPP had dissipated during the final three years of treatments (Fig. 5 
and Zak et al. 2011).

Relative to NPP under ambient CO2, NPP was significantly enhanced under elevated CO2 by 
40% in 2006 (P = 0.009), 14% in 2007 (P = 0.013), and 25% in 2008 (P = 0.009), which
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corresponded to the 1 0 th to 1 2 th years of the experiment.
Despite elevated Og-induced reductions in plant growth 
that occurred early in the experiment, elevated O3 had no 
effect on NPP during the 10th to 12th years of exposure 
(Fig. 5; P  = 0.128 to 0.887). In no case did we find 
significant interactions among plant community, CO2, or 
O3, indicating that NPP in the three plant communities in 
our experiment responded similarly to both CO2 and O3.
If similar forests growing throughout northeastern North 
America respond in the same manner, then enhanced 
forest NPP under elevated CO2 may be sustained for a 
longer duration than previously thought, and the negative 
effect of elevated O3 may be diminished by 
compensatory growth of 0 3 -tolerant plants as they begin 
to dominate forest communities.

The treatments are clearly affecting NPP through their 
effects on photosynthesis and leaf area, and evidence 
suggests they also may also be affecting NPP by altering 
growing season phenology. Taylor et al. (2008) reported 
a significant delay in the decline of autumnal canopy leaf 
area index in elevated CO2 . Leaf level photosynthetic 
activity and carbon uptake during the senescence period 
were enhanced under elevated CO2 . The findings reveal a direct effect of rising atmospheric 
CO2, independent of temperature, in delaying autumnal senescence. Riikonen et al. (2008) also 
observed delayed autumnal senescence under elevated CO2, as well as accelerated senescence 
and delayed spring leaf development under elevated O3, and McGrath et al. (2009) have found 
that found spring leaf flush is suppressed by elevated O3 in aspen and stimulated by elevated 
CO2 . For birch, accelerated senescence under elevated O3 was associated with decreased 
expression of photosynthesis- and carbon fixation-related genes, and increased expression of 
senescence-associated genes (Kontunen-Soppela et al. 2009).

Year-to-year variation in treatment growth responses has occurred at Aspen FACE, and the long­
term nature of the project has enabled the research team to explain much of this variation. 
Kubiske et al. (2006) found the photosynthetically active radiation and temperature during 
specific times of the year explained 20-63% of the annual variation in growth response to 
elevated CO2 and O3 . Cloudy summers and cool autumns were responsible for several years 
with a decreased CO2 growth response. Climatic variation has also played a role in predisposing 
trees to deleterious effects of other stressors. For example, three to five times as many birch in 
the O3 treatments succumbed to drought stress in 2005, due to subsequent infestation with bronze 
birch borer, which does not infect healthy birch trees.

Following the final harvest, estimates of cumulative NPP for the entire experiment were made 
(Talhelm et al. 2014) in order to understand the magnitude and temporal dynamics of the 
treatment effects on NPP and to test the hypothesis that the relationship between ecosystem C 
content and NPP had not been altered by elevated CO2 and/or O3. Previous NPP estimates at 
Aspen FACE included only the first six years (1998-2003; King et al. 2005) or last three years of 
the experiment (2006-2008; Zak et al. 2011) and had been constructed using different allometric

2000 -I Q  Ambient c o 2

1500  -

b  e
<3 CD 2 0 0 0

Elevated CO

_J Ambient O

Elevated O

2006 2007 2008

Fig. 5. Net primary productivity (NPP) 
during the last three years of the 
Rhinelander FACE experiment. NPP 
has been sustained under elevated C 02 
and NPP has recovered under elevated 
0 3 due to compensatory growth of 0 3 
tolerant genotypes and species.
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equations and assumptions. Thus, estimating 
combination of the earlier analyses. NPP was 
small roots ( 1 - 2  mm diameter), coarse roots 
groundcover vegetation, and other plant litter 
publications on the production of leaves, 
fine roots, and groundcover plants (e.g. 
Bandeff et al. 2006, Pregitzer et al. 2008, 
Talhelm et al. 2012) and estimates of tree 
biomass created from annual stem diameter 
measurements and allometric equations 
created from trees harvested in 2 0 0 0 , 2 0 0 2 , 
and 2009.

Cumulative NPP was 39% greater under 
elevated CO2 (P < 0 .0 0 1 ), 1 0 % lower under 
elevated O3 (P = 0.026), and varied by more 
than 27% across communities (P < 0.001) 
(Fig. 6  and Talhelm et al. 2014).
Interactions were not significant between 
treatments (P = 0.661) or between the 
treatments and communities (P > 0.65) for 
cumulative NPP. The O3 effect on annual 
N PP gradually disappeared during the final 
7 years of the experiment (dashed line in 
Fig. 6 b). Specifically, the O3 effect on tree 
productivity (N PPtree) declined from a peak 
o f -95 g m"2 in 2002 (P = 0.002) to -17 g m"
2 in 2008 (P = 0.554; linear r2  = 0.66, P = 
0.026). Over a similar period, the absolute 
effect of elevated CO2 on NPPtree was fairly 
consistent, changing from +189 g m"2 in 
2 0 0 1  to + 2 0 0  g m "2 in 2008 (linear r2  =
0.24, P  = 0.223). The declining response to
03  over time resulted from the 
compensatory growth of O3-tolerant 
genotypes and species as the growth of 0 3 - 
sensitive individuals declined over time (see 
next section), thereby causing annual NPP 
to attain equivalent levels under ambient 
and elevated O3. Given the degree to which 
O3 has been projected to decrease global 
NPP, the compensatory growth of O3 
tolerant plants in our experiment, as they 
replaced senescing O3 sensitive plants, 
should be considered in future simulations. 
Depending on the generality of this 
response, this effect could dramatically

cumulative NPP (1998-2008) was not a simple 
considered to include fine roots ( < 2  mm diameter), 
( > 2  mm diameter), stems, branches, leaves,
. The NPP estimates were derived from previous

A m bien t

+COj+03
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5+00

A m bien t 
+CO 
+0
+co,+o

1998 2000 2002 2004 2006 2008
Year

Fig. 6. (a) NPP, (b) NPP effect sizes, (c) canopy N 
(elevated/ambient, 1 = no effect), and (d) the modeled 
marginal N productivity ([NPPtree(eievatedl - NPPtree(ambientl]/ 
[Canopy N(eievatedl -  Canopy N(ambientl]). In (b), symbols are 
shown only when NPP effects are significant (P < 0.05). Bars 
are ±1 standard error. Figure is from Talhelm et al. 2014.
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diminish the predicted negative effect of elevated O3 on NPP and C storage on land as well as 
projected feedbacks to atmospheric CO2 and climate warming.

Sustaining soil N  availability

The inability of maple to respond positively to elevated CO2 was at least partly due to a superior 
ability of aspen to acquire N under elevated CO2 (Zak et al. 2012). Enhanced net primary 
productivity (NPP) under elevated CO2 was sustained by greater root exploration of soil for 
growth-limiting N, as well as more rapid rates of litter decomposition and microbial N release 
during decay (Zak et al. 2011, 2012). Results from our long-term measurements at Aspen FACE 
clearly indicate that plants growing under elevated carbon dioxide, regardless of community type 
or ozone level, obtained significantly greater amounts of 15N tracer as well as soil N. These 
results indicate that greater plant growth under elevated carbon dioxide has not led to 
“progressive N  limitation”.

This is in agreement with accumulating evidence suggesting that elevated CO2 can supplement 
the supply of soil N to plants by increasing the production of root exudates, which, in turn, 
facilitate the decay of soil organic matter and the subsequent release of inorganic N for plant 
uptake (Zak et al. 1993, Langley et al 2009, Drake et al 2011). This mechanism has sustained 
enhanced NPP under elevated CO2 in a loblolly pine (Pinus taeda) forest (Drake et al. 2011) as 
well as a scrub-oak forest (Langley et al. 2009), and several lines of evidence indirectly indicate 
it may have contributed to the greater plant acquisition of soil N under elevated CO2 at Aspen 
FACE. In our experiment, soil organic matter is accumulating at a slower pace under elevated 
CO2, despite the fact that both above- and belowground litter production have significantly 
increased under elevated CO2 (Talhelm et al. 2009). This observation indicates that the decay of 
soil organic matter is occurring at a more rapid rate under elevated CO2, a response that has 
occurred in parallel with the increased rate of forest floor N cycling. These findings support the 
idea that greater belowground plant growth under elevated CO2 has accelerated organic matter 
decay and increased the supply of N to plants, thereby sustaining the enhancement of NPP under 
elevated CO2 . This finding differs from those of short-term decomposition studies at Aspen 
FACE (Liu et al. 2009a,b), highlighting the importance of long-term field measurements for 
separating true responses from transient effects.

After a decade, NPP remained enhanced under elevated CO2 and has recovered under elevated 
O3 by mechanisms that remain un-calibrated or not considered in coupled climate- 
biogeochemical models simulating interactions between the global C cycle and climate warming.

Competitive Interactions

The long-term nature of the experiment has enabled assessment of treatment effects on 
competitive interactions among the tree species and among the aspen clones. Kubiske et al. 
(2007) utilized trends in species' importance, calculated as an index of volume growth and 
survival, as indications of shifting community composition. For the pure aspen community, 
different clones emerged as having the highest change in relative importance values. In the 
control and elevated CO2 treatments, clone 42E was rapidly becoming the most successful clone 
while under elevated O3, clone 8 L emerged as the dominant clone. For the mixed aspen-birch 
community, importance of aspen and birch changed by -16% and +62%, respectively, in the 
control, with the presence of elevated O3 hastening the conversion of stands to paper birch, 
whereas the presence of elevated CO2 delayed it. Relative importance of aspen and maple
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changed by -2% and +3%, respectively, after seven years in the control treatments. Elevated 03 
slightly increased the rate of conversion of aspen stands to sugar maple, but maple was placed at 
a competitive disadvantage to aspen under elevated CO2 . Project results suggest that the 
changing atmospheric composition could shift the genotypic composition and average pollutant 
responses of tree populations over moderate timescales (Moran and Kubiske 2013).

Differences among the aspen clones in performance under elevated O3 are explained in part by 
reduced early season stomatal conductance and O3 uptake in clone 8 L under elevated O3, 
allowing it to avoid damaging exposure (Rouse 2008). Differences in isoprene emissions also 
may be important, due to the role of isoprene in protection against oxidative stress from O3 
exposure. Working at Aspen FACE, Calfapietra et al. (2008) found isoprene emissions 
decreased significantly under both elevated CO2 and elevated O3 in 0 3 -sensitive aspen, but only 
slightly in O3-tolerant aspen. The ability of 
O3-tolerant clones to maintain higher 
amounts of isoprene emission may be an 
important factor in strengthening their 
existing ability to minimize O3 uptake 
through lower stomatal conductance. Finally, 
variation in cellular responses to DNA 
damage between aspen clones may contribute 
to O3 tolerance or sensitivity. Tai et al.
(2009) found that exposure to O3 and CO2 in 
combination with O3 increased DNA damage 
levels above background. Ozone-tolerant 
clones 271 and 8 L showed the highest levels 
of DNA damage under elevated O3 compared 
with ambient air, but clone 8 L also 
demonstrated the highest level of excision 
DNA repair.

Effects o f  Canopy Development on NPP

We fit several stand-level models that predict 
NPPtree based on canopy development metrics 
(leaf area, canopy N, etc.) and canopy 
productivity (e.g., produc tivity per leaf area).
This allowed us to test the hypotheses that 
both canopy development and canopy 
productivity would be stimulated by elevated 
CO2 and depressed by elevated O3 in these 
young forests (Norby & Zak 2011, Ainsworth 
et al. 2012). We expected that developmental 
effects would diminish as all stands reached 
maximum leaf area index (Korner 2006,
Norby & Zak 2011). Through this analysis, 
we also hoped to gain further insight into the 
diminishing effect of O3 on NPP.
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Fig. 7. Cumulative canopy N in relation to (a) cumulative tree 
productivity and (b) N productivity, with lines displayed 
representing mixed model estimates of these relationships 
(community effects not shown for simplicity). Slopes in (b) do 
not differ, but intercepts differ by community (P = 0.031) and 
between ambient C 02 and elevated C 02 (P < 0.001). Ozone 
effects on the slopes and intercepts were not significant (P > 
0.25). Figure is from Talhelm et al. 2014.



We evaluated several canopy attribute stand productivity models using the cumulative NPP data. 
We tested (1) the N  Productivity Model (Agren 1983), which describes increasing NPPtree with 
canopy N  but a diminishing return as foliar biomass accumulates; (2) the Reich model (Reich 
2012), which predicts productivity based upon stand leaf area index (LAI, m2 m"2), foliar N  
concentration, and their interaction (LAI x N); and (3) a model developed from remote sensing 
(Smith et al. 2002) that predicts a base rate of p roductivity (an intercept) and greater rates of 
productivity as foliar N  concentration increases. We used corrected AIC (AICc) for model 
selection. In the selected model for NPPtree, stands with more cumulative canopy N  (g foliar N 
m"2 of ground area) had greater cumulative NPPtree (Fig. 7a), but N  productivity (NPPtree per 
canopy N) decreased as canopy N  accrued (Fig. 7b). Cumulative canopy N, leaf area (m2 m"2), 
and canopy leaf mass (g m"2) were correlated with each other (n = 36, r > 0.80, P  < 0.001; not 
shown). Likewise, annual canopy N  (Fig. 6 c), leaf area, and canopy leaf mass (Talhelm et al., 
2012) responded similarly to the treatments through time. However, canopy N  was the best 
predictor of NPPtree-

Neither CO2 nor O3 affected the rate at which N productivity decreased with canopy N accrual 
(i.e., slopes in Fig. 7b were not different: P > 0.25). Cumulative NPPtree was greater under 
elevated CO2 because of increases in both canopy N content (+28%, P < 0.001) and the 
maximum rate of N productivity (N productivitymax, the y-intercept in Fig. 7b; +28%, P < 0.001). 
Communities also differed in both of these traits (P < 0.035). In contrast, the negative effect of 
elevated O3 on cumulative NPPtree resulted from decreased canopy N (-2 1 %, P < 0 .0 0 1 ), as there 
was no meaningful impact on cumulative N productivitymax (-2%, P  = 0.659).

Because NPPtree was a function of canopy N, the disappearance of the O3 effect on annual NPP 
(Fig. 6 b) despite the consistent negative effect on canopy N (Fig. 6 c) might seem to indicate a 
weakening physiological impact of O3. For further insight, we fit the NPPtree model to annual 
data and then applied the annual models for elevated stands to the matching ambient stands (18 
pairs at the ring-section level). This allowed us to estimate the marginal increase in NPPtree 
caused by differences in canopy N between the treatments (ANPPtree/AN). This analysis revealed 
that marginal N productivity decreased by more than a factor of 10 during the experiment (Fig. 
2 d), meaning that differences in canopy N created by elevated CO2 or O3 had gradually smaller 
impacts on NPP. Notably, the annual O3 effects on NPP predicted by differences in canopy N 
closely matched the observed O3 effects (r = 0.82, P  = 0.002; not shown). Thus, the diminishing 
impact of O3 on NPP was due to a declining relative impact of canopy N differences rather than a 
physiological acclimation to O3.

Ecosystem C Content

Prior to the experiment, we hypothesized that ecosystem C content would be enhanced by 
elevated CO2 and decreased by elevated O3. We further hypothesized that CO2 and O3 would 
have counteracting effects on ecosystem C content. We observed that the two gases had opposite 
and nearly equal effects on ecosystem C content (Fig. 8 , Talhelm et al. 2014): elevated CO2 

increased ecosystem C content by 11%, whereas elevated O3 decreased ecosystem C content by 
9%. Total ecosystem C content in the interaction treatment (elevated CO2 and O3) did not 
significantly differ from that of the control (Fig. 8 ). Total ecosystem C content responded 
similarly to the treatments across the three forest communities (Treatment x  Community: P > 
0.25). There were also no significant interactions between CO2 and O3 for any of the largest C 
pools (P > 0.1). The treatment effects on ecosystem C content resulted from differences in tree

9



biomass, particularly woody tissues (branches, stem, and coarse roots), and lower C content in 
the near-surface mineral soil (Fig. 8 ). For tree C, the negative effect of elevated O3 was smaller 
(-15%) than the positive effect of elevated CO2 (+44%)

Fine Roots 
Organic Soil

11000  - Pool Significant Effects
Ecosystem C02 (+11%), 0 3 (-9%)

0000
Foliage 0O2 (+29%)

Stems & Branches

Dead Wood, Dead 
Roots, & Groundcover 
Plants
Coarse Roots

■Mineral Soil

C02 (+50%), 0 3 (-17%)

E
a>
c
-I  5000
egO
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0 1 -0.2 m C02 (-18%)

1000

0
Ambient Elevated

co2
Elevated

o 3
Elevated
co2 + 0 3

0.2 - 0.3 m 

0.3 - 0 4 m
0.4 - 0.5 m C02 (-44%)
0.5- 1.0 m 

Total Mineral Soil —

0 . 0 - 0 1  m 0 3 (-11%)

C02 (+36%)

Fig. 8. Ecosystem carbon content at the Aspen FACE experiment. Data are averaged across the three forest 
community types and include soil to 1 m in depth. The height of each bar segment represents mean size of each pool 
and the total bar height is represents ecosystem C content for each treatment. Significant (P < 0.05) effects of the 
treatment gases and the size of these effects (%) are shown to the right of the figure. Pools without significant 
treatment effects are denoted with The figure is from Talhelm et al. 2014.

We also assessed tree C at the species level. The two species within the aspen-birch community 
responded similarly to the treatments and the proportion of tree C represented by aspen within 
the community was not influenced by CO2 or O3 (44 ± 4% aspen; P > 0.69). However, there was 
not a uniform treatment response within the aspen-maple community: elevated CO2 increased 
aspen tree C by 76% and decreased maple tree C by 32% (CO2 x species: P < 0 .0 0 1 ), while 
elevated O3 decreased aspen tree C by 2 2 % and changed maple tree C by <1% (O3 x species: P < 
0.001). In interpreting the treatment effects on maple, it should be noted that the faster growing 
aspen represented 87% (± 2%) of tree C within this community and was taller throughout the 
experiment than the slower growing maple. In comparison, height differences were not 
significant between aspen and birch until the final full year of the experiment.

Neither CO2 nor O3 affected the total amount of C in the top 1 m of mineral soil. However, each 
gas significantly decreased mineral soil C content in one of the two depth increments nearest to
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the surface: soil C within the top 0.1 m of mineral soil was lower under elevated O3, whereas soil 
C from 0.1 to 0.2 m in depth was lower under elevated CO2 (Fig. 8 ). Soil C was also lower under 
elevated CO2 at 0.4 to 0.5 m in depth (Fig. 8 ), but there were no additional treatment effects on 
soil C.

After 11 years, there were no significant main effects of CO2 or O3 on surface soil (0-20 cm) C 
content across all three communities, but within the aspen community, elevated CO2 caused a 
significant decrease in soil C content (Talhelm et al. 2009). Overall, our observations indicate 
that elevated CO2 has altered SOM cycling at this site to favor C and N  accumulation in less 
stable pools, with more rapid turnover (Hofmockel et al. 2011). Elevated O3 had the opposite 
effect, significantly reducing cPOM N by 15% and significantly increasing the C:N ratio by 7%. 
Our results demonstrate that CO2 can enhance SOM turnover, potentially limiting long-term C 
sequestration in terrestrial ecosystems; plant community composition is an important determinant 
of the magnitude of this response. In addition, an initial reduction in the formation of new 
(fumigation-derived) soil C by O3 under elevated CO2 (Loya et al. 2003) proved to be only a 
temporary effect, mirroring trends in fine root biomass. These results contradict predictions of 
increased soil C under elevated CO2 and decreased soil C under elevated O3 and should be 
considered in models simulating the effects of Earth's altered atmosphere.

Other Responses

Soil respiration andfine root dynamics

Soil respiration responses paralleled aboveground results in the early years of the project, but not 
in later years. For example, during the first five years of the experiment, soil respiration 
increased with elevated CO2, decreased with elevated O3 and was fairly similar to the control for 
elevated CO2+O3. In later years, soil respiration was greater in the elevated CO2 and CO2 +O3 
treatments for all three plant communities (Pregtizer et al. 2008), but was not affected by 
elevated O3 alone. The treatment responses in soil respiration were correlated with fine root 
biomass, which, for the aspen community was actually stimulated by O3, and especially CO2+O3. 
After 1 0 + years of exposure, the CO2+O3 treatment induced increases in belowground carbon 
allocation to fine roots in aspen, suggesting that the positive effects of elevated CO2 on 
belowground net primary productivity were not offset by negative effects of O3.

Aspen fine-root (< 1.0 mm) production rates were not affected by elevated carbon dioxide alone 
or elevated ozone alone. Fine-root (< 1.0 mm) mortality rates also were not affected by elevated 
CO2 alone; however, they were enhanced by elevated ozone in 2003, but not in 2004. Overall, 
fine-root (< 1 .0  mm) production and mortality showed no clear response to treatments, and thus 
fine-root (< 1.0 mm) survival was fairly consistent across treatments and years. As a result, 
differences among treatments in annual fine-root production and mortality, expressed on a mass 
basis, were controlled primarily by treatment differences in standing fine-root biomass. Root 
production was positively affected by elevated CO2 alone and elevated O3 alone and was greatest 
in the elevated CO2-O3 treatment combination, a result that substantially differed from the initial 
response of fine root biomass to the treatments. Rates of biomass mortality were positively 
influenced by elevated O3, but varied from year to year. These results were driven by larger 
standing fine-root (< 1.0 mm) biomass in the elevated O3 alone and elevated CO2-O3 treatment 
combination. Seasonal soil respiration in 2005 was correlated to < 2-mm root biomass (r = 0.87; 
P < 0.001) and < 1-mm root biomass (r = 0.72; P  = 0.008) for that year. The tendency for the 
elevated CO2-O3 treatment combination to have the greatest values for biomass of fine roots <
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1.0 mm in diameter also occurred for seasonal soil C efflux.

Between the 10th and 12th year of the experiment, plants continued to expand their fine root 
system regardless of treatment, an indication that they had not yet fully exploited soil for growth- 
limiting resources. For example, averaged across CO2 and O3 treatments, fine-root biomass was 
155 g/m2 in 2005 and gradually increased over subsequent years to 168 g/m2 by 2008. Similarly, 
fine root production increased from 344 g m"2 y ' 1 in 2006 to 362 g m"2 y ' 1 in 2008; however, 
increases in fine-root biomass and production from 2005 to 2008 were not statistically significant 
(Pbiomass = 0.108; Pproduction = 0.105). Clearly, at the end our decade long experiment, these 
developing forests continued to increase the exploration of soil for growth-limiting nutrients.

Treatment-pest interactions

Insect populations have either increased, decreased or shown no response to elevated CO2, 
elevated O3 and elevated CO2+O3, depending on insect and/or tree species (Hillstrom and 
Lindroth 2008). For example, elevated CO2 reduced abundance of phloem-feeding herbivores 
and increased abundance of chewing herbivores, although results were not statistically 
significant. Enriched CO2 increased numbers of some parasitoids. The effects of O3 on insect 
abundance were generally opposite those of CO2. No significant differences in arthropod family 
richness were found among treatments.

Changes in foliar tissue quality due to the independent and interactive effects of elevated CO2 

and O3 have been more pronounced and have the potential to alter the performance outbreak 
insect herbivore species. Couture et al. (2012) and Couture and Lindroth (2012) examined the 
effects of aspen and birch phytochemistry changes at Aspen FACE on gypsy moth and forest tent 
caterpillar performance. Elevated CO2 nominally affected foliar quality for both tree species. 
Elevated O3 negatively affected aspen foliar quality, but only marginally influenced birch foliar 
quality. Elevated CO2 slightly improved herbivore performance, while elevated O3 decreased 
herbivore performance, and both responses were stronger on aspen than birch. Nitrogen, lignin, 
and C:N were identified as having strong influences on herbivore performance when larvae were 
fed aspen, but no significant relationships were observed for insects fed birch. Their results 
support the notion that herbivore performance can be affected by atmospheric change through 
altered foliar quality, but how herbivores will respond will depend on interactions among CO2, 
O3, and tree species.

Nabity et al. (2012) examined spatial patterns in chlorophyll fluorescence and the temperature of 
leaves damaged by leaf-chewing, gall-forming, and leaf-folding insects in aspen trees as well as 
by leaf-chewing insects in birch trees at Aspen FACE. Both defoliation and gall damage 
suppressed the operating efficiency of photosystem II in remaining leaf tissue, but the distance 
that damage propagated into visibly undamaged tissue was marginally attenuated under elevated 
CO2 . Elevated CO2 also increased leaf temperatures, which reduced the cooling effect of gall 
formation and freshly chewed leaf tissue. These results suggest that elevated CO2 may reduce the 
effects of herbivory on the primary photochemistry controlling photosynthesis.

Stomatal conductance and ecosystem water use

At the stand level, changes in leaf area have tended to offset the leaf level effects of the 
treatments on stomatal conductance and thus potential stand water use. Uddling et al. (2010) 
found stand canopy conductance was significantly increased by elevated CO2 but not 
significantly affected by elevated O3, demonstrating that short-term primary stomatal closure

12



responses to elevated CO2 and O3 were completely offset by long-term cumulative effects of 
these trace gases on tree and stand structure in determining canopy- and leaf-level conductance 
in pure aspen and mixed aspen-birch forest. In addition, leaves from trees grown in elevated 
CO2 and/or O3 exhibited weaker short-term responses of stomatal conductance to both an 
increase and a decrease in CO2 concentration from current ambient level (Onandia et al. 2011). 
Potential plant water-savings and reduced stomatal air pollution uptake under rising atmospheric 
CO2 may not hold for northern forests under concurrently rising tropospheric 03 (Onandia et al. 
2011). Thus, model assumptions of large reductions in stomatal conductance under rising 
atmospheric CO2 are very uncertain for forests.

Bacterial andfungal responses

Lesaulnier et al. (2008) found that total bacterial and eukaryotic abundance did not change under 
elevated CO2, but heterotrophic decomposers and ectomycorrhizal fungi did increase. Andrew 
and Lilleskov (2009) also found ectomycorrhizal sporocarp biomass was greatest under elevated 
CO2, regardless of O3 concentration, while it was generally lowest under elevated O3 with 
ambient CO2. Mycorrhizal community composition differed significantly among the treatments. 
These and other changes in soil biota suggest altered interactions between trembling aspen and 
the microorganisms in the surrounding soil, supporting the theory that greater plant detritus 
production under elevated CO2 significantly alters soil microbial community composition.

During 2010 we completed processing and analysis of samples taken to assess fungal community 
composition and the activities of cellobiohydrolase and N-acetylglucosaminidase (NAG) after 
ten years of FACE exposure in aspen and aspen-birch forest ecosystems and compared these 
results to earlier results from the long-term experiment (Edwards and Zak 2011). NAG is an 
enzyme involved in the depolymerization of chi tin, the second most abundant polysaccharide in 
nature, and an important source of organic N. The forest floor community was dominated by 
saprotrophic fungi, and differed slightly between plant community types, as did NAG activity. 
Elevated CO2 and O3 had small but significant effects on the distribution of fungal genotypes in 
this horizon, and elevated CO2 also lead to an increase in the proportion of Sistotrema spp. 
within the community. Yet, although cellobiohydrolase activity was lower in the forest floor 
under elevated O3, it was not affected by elevated CO2. NAG was also unaffected.

The soil community was dominated by ectomycorrhizal species. Both CO2 and O3 had a minor 
effect on the distribution of genotypes; however, phylogenetic analysis indicated that under 
elevated O3, Cortinarius and Inocyhe spp. increased in abundance and Laccaria and Tomentella 
spp. declined. Although cellobiohydrolase activity in soil was unaffected by either CO2 or O3, 
NAG was higher (similar to 29%) under CO2 in aspen-birch, but lower (similar to 18%) under 
aspen. Time series analysis indicated that CO2 increased cellulolytic enzyme activity during the 
first 5 years of the experiment, but that the magnitude of this effect diminished over time. Unlike 
cellobiohydrolase, NAG activity tended to increase over time. Moreover, NAG activity was 
strongly stimulated by elevated CO2, and was slightly lower under elevated O3, early in the 
Rhinelander FACE experiment. By year 10 however, NAG response to elevated CO2 differed 
between plant communities, being higher in aspen-birch and lower in aspen. Elevated O3 

appears to have variable stimulatory and repressive effects depending on the soil horizon and 
time point examined.

In our decade-long experiment, stratification of the fungal community between forest floor and 
soil horizons and differing plant communities had a greater influence on fungal community
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composition and function than did elevated CO2 and O3 . Nevertheless, our results demonstrate 
that plant exposure to elevated concentrations of CO2 or O3 can lead to small, but persistent 
changes in fungal community function, and that these may be related to concomitant changes in 
fungal community composition. Moreover our results further suggest that O3 and CO2 may affect 
different parts of the fungal community, and that their functional effect may decline or even 
change entirely over time.

Reproductive fitness

Treatment effects on whole-tree carbon balance also are affecting reproductive fitness in birch 
(Darbah et al. 2008). Elevated CO2 has increased both the number of birch trees that flower and 
the quantity of flowers (260% increase in male flower production), increased seed weight, 
germination rate, and seedling vigor. In contrasts, elevated O3 also increased flowering but 
decreased seed weight and germination rate. In the combination treatment (elevated CO2 + O3) 
seed weight was decreased (20% reduction), while germination rate was unaffected. These 
findings suggest that elevated CO2 may have a largely positive impact on forest tree reproduction 
and regeneration while elevated O3 will likely have a negative impact, at least for some species.

Wood decomposition processes

Although data suggest leaf and root litter decomposition have been affected by the treatments, 
we found little evidence for altered decomposition of wood grown under or placed in elevated 
CO2 and/or elevated O3 (Ebanyenle 2 0 1 2 ). Tree species (aspen vs. birch) and aspen genotype 
had a much greater impact on the wood-decaying fungal community and initial wood 
decomposition rate than did growth or decomposition of wood in elevated CO2 and / or O3. Thus 
any changes in ecosystem wood decomposition under future atmospheres would occur via shifts 
in species and / or genotype composition and under future higher levels of CO2 and O3. In terms 
of wood quality, the effects of the treatments were minor (Ebanyenle 2012). Elevated CO2 did 
not have significant effects on wood anatomical properties in trembling aspen, paper birch or 
sugar maple, except for marginally increasing (P < 0.1) the number of vessels per square 
millimeter. Elevated O3 marginally or significantly altered vessel lumen diameter, cell wall area 
and vessel lumen area proportions depending on species and radial position. In line with the 
modifications in the anatomical properties, elevated CO2 and O3, alone, significantly modified 
wood density but effects were species and / or genotype specific. The effects of elevated CO2 
and O3, alone, on wood anatomical properties and density were ameliorated when in 
combination. Based on these results, future higher levels of CO2 and O3 may have minor effects 
on wood quality of northern hardwoods, but for utilization purposes these would not be 
considered significant.

Brief History of Aspen FACE Funding, Publications and Operation

Initial funding for the experiment came from the NSF/DOE/NASA/USDA Joint Program on 
Terrestrial Ecology and Global Change (1995-2001) and the NSF Academic Research 
Infrastructure Program (1996), with additional funding and in-kind support from the National 
Council for Air and Stream Improvement, Brookhaven National Laboratory, Michigan 
Technological University, The US Forest Service Northern Global Change Program, and the US 
Forest Service North Central Experiment Station. Subsequent to 2001, the experiment was 
principally funded by the US DOE Program for Ecosystem Research, the US Forest Service, 
Michigan Tech University and Natural Resources Canada, Canadian Forest Service. In addition,
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the USFS installed, maintained, and archived the extensive micrometeorological monitoring 
done at the Aspen FACE Project.

The project involved collaboration between scientists from 9 countries, and over the course of 
the experiment there were over 120 Aspen FACE scientific users. Key investigators from this 
group are listed in Table 1, but there are many additional scientists and students who participated 
in the research at the site. These scientists helped produce 75 publications during the most recent 
funding period (2008-2014) and 207 peer-reviewed publications (169 in refereed journals) since 
the beginning of the project. In addition to the publications listed in this report, there were 
numerous other published abstracts from scientific meetings and theses and dissertations from 
students work on the project.

The Aspen FACE infrastructure was constructed in 1996 and 1997. The development of the 
Aspen FACE site is detailed in Dickson et al. (2000) and the forthcoming Kubiske et al. (2014). 
In summary, a team of investigators had been conducting open-top chamber research with aspen 
and these two greenhouse gases independently in three different locations (Alberta, Michigan 
[Kamosky, Percy, Isebrands]; Pellston, Michigan [Pregitzer, Zak, Kubiske], and Madison, 
Wisconsin [Lindroth], These investigators collaborated with George Hendrey and his 
Brookhaven National Lab (BNL) team to conceive and engineer the Aspen FACE project with 
the emphasis being to examine the impacts of these interacting greenhouse gases on the stmcture 
and functioning of northern forest ecosystems over their entire life history (Kamosky et al. 
2003a).

The experiment consists of twelve 30-m diameter rings, assigned to factorial treatments of [CO2] 
(ambient and 560 ppm) and [O3] (ambient and approximately 1.5 x ambient). Treatments are 
arranged in a randomized complete block design (n = 3). In one half of each ring, we planted five 
trembling aspen (Populus tremuloides) genotypes of differing CO2 and O3 responsiveness. The 
other half of each ring was further divided into two quarters: one planted with aspen and maple 
(Acer sacchamm) and the other planted with aspen and paper birch (Betulapapyrifera). Each 
ring was planted in July 1997 at 1 m x 1 m spacing. Gases were tested in 1997 and full 
treatments have been ran during daylight hours from aspen budbreak to aspen leaf drop from 
1998 through mid-2009, except during periods of leaf wetness, when O3 damage would have 
been excessive. For CO2 generation and monitoring, the BNL system in use at the Duke FACE 
site (Hendrey et al. 1999) was modified. To accommodate fumigation with O3, the gas delivery 
was modified to allow for a larger volume of gas to be emitted from the vertical vent pipes so 
that O3 could be diluted to nontoxic concentrations. Extensions of the vertical vent pipes were 
made in 2000, 2002 and 2006. A system of east-west oriented elevated walkways across the 
aspen and aspen-birch quadrant were established in 2002 to accommodate canopy access. A 
man-lift was added in 2002 to adjust the slot openings in the vertical vent pipes. The ground and 
elevated walkways and man-lift were all supported by the USFS Capital Projects Program.

In 2007, a 2700 square foot laboratory building (dedicated in 2009 as the David F. Kamosky 
Laboratory) was constmcted with $450,000 from the USFS Capital Improvement Project 
Program), along with a new well and septic system, was constmcted at the Aspen FACE site to 
accommodate Aspen FACE users.

Biomass harvests consisting of one aspen tree per clone per ring for each of the 5 clones for the 
aspen ring-half, one aspen and one birch from the aspen-birch community, and one aspen and 
one maple from the aspen-maple community were made with trees just outside the scientific core
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area to examine effects of these greenhouse gases on NPP and to see if allometry of the trees was 
being changed by either CO2 or O3 . These harvests were done in 2 0 0 0 , 2 0 0 2 , and 2007. A final 
detailed harvest and excavation of soil to 1 m depth was conducted during the growing season of 
2009, with all remaining trees removed during the winter of 2009/2010.

Wood from the trees from rings with elevated CO2 is depleted in 13C, allowing it to be used in 
tracer studies. As a result, wood from Aspen FACE is currently being used in two long-term 
decomposition studies, examining the environmental and biotic factors that control the 
movement of wood-derived C into soil carbon pools, and the stability of these C pools.
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Table 1. Aspen FACE Investigators

NAME FIELD AREAS OF STUDY

C. Awmack (UK) Ecological
Entomologist Insect biodiversity and community ecology

C. Blackwood (UMich) Soil Microbiologist Soil microorganism communities

A. Burton (MTU)* Forest Ecologist
Carbon and nutrient cycling, physiological 
ecology of global change, belowground 
processes

C. Calfaoietra fIBAF-CNR/ltalv) Physiologist VOC emissions

B. Callan fCFS) Pathologist Foliar diseases, diagnostics

A. Chaooelka (AuburnU) Physiologist Understory vegetation quality

R. Cox (CFS) Ecologist Passive Os sampling

D. Ellsworth (UMich) Ecophysiologist Stomatal conductance, stomatal density

A. Friend fUSFS) Ecophysiologist Nitrogen budgets

C. Giardina fUSFS) Ecophysiologist Canopy dynamics

E. Gustafson (USFS) Modeller Scaling responses

W. Heilman fUSFS) Micrometeorologist
Characterization of micro climate inside and 
outside of FACE rings

G. Hendrey (QC-CUNY) Ecologist Engineering C 02 and 0 3  delivery systems

D. Herms fOSU) Entomologist Bronze birch borer occuranee

B. Holmes (UMich) Microbial C and N cycling

J. Horn fUSFS) Ecologist Ecosystem N dynamics, whole-canopy gas 
exchange

A. Hookin fCFS) Pathologist Foliar pathogen occurrence and affects

G. Host fNRRI-UMinn-D) Modeler/Ecologist
Growth process modeling - single tree to patch 
scale. Co-developer of ECOPHYS model. 
FACTS II Web Site Moderator

J. Jastrow (ANL) Mycorrhizal
specialist C storage

E. Jepsen (WDNR) Ecologist 03 monitoring and 03 bioindication
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S. Kaakinen OJHelsinki/Finland) Wood Anatomist Wood quality and chemistry

J. Kangasjarvi 
(UHelsinki/Finland) Physiologist Birch gene expression

D. Karnosky (MTU) deceased Geneticist
Steering Committee. Project Director. Genetic 
interactions, gene expression, project 
operations.

J. Kina (NCSU) Ecophysiologist Soil respiration and soil carbon dynamics

E. Kruaer (UWisc) Physiologist Ecosystem C flux, respiration

M. Kubiske (USFS) Ecophysiologist Responses of photosynthesis and plant water 
relations, science coordination

O. Kull (UTartu/Estonia) 
deceased Ecologist Gas exchange/Ozone uptake

K. Lewin (BNL)
Research Engineer 

FACE Specialist
Facility development and maintenance, 
equipment-manufacturer liaison

T. Lewis (EPA) Physiologist Humming bird behavior

E. Lilleskov (USFS) Mycorrhizal
specialist Mycorrhizae

R. Lindroth (UWisc) Entomologist 
Chemical Ecologist

Plant chemistry, insect herbivory, litter 
decomposition

S. Lena (UIllinois) Physiologist Modelling and scaling

J. MacDonald (CFS) Physiologist Crown architecture

B. Mankovska (Slovakian Acad, 
of Science)

Electron
Microscopist Impacts of gases on leaf surfaces

F. Martin (INRA/France) Physiologist Gene expression

W. Mattson (USFS) retired Entomologist Shoot boring insects, root feeders

E. McDonald (USFS) retired Ecophysiologist Canopy dynamics, competitive interactions

M. Miller (ANL) Mycorrhizal
Specialist Carbon storage dynamics

E. Mondor (Georaia Southern 
Univ)) Forest Entomologist Insect behavior

R. Muntiferina (AuburnU) Physiologist Understory vegetation quality

J. Naav (BNL) Physicist
Facility development, software development, 
exposure controlling systems, technical 
consultant
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N. Nelson (USFS) retired Tree Physiologist Steering Commitee. Gas Exchange Dynamics

A. Noormets (NCSU) Ecophysiologist Gas exchange dynamics, carbon gain

E. Oksanen 
(UEF/Finland) Ecophysiologist Biochemistry and gene expression for 

assimilation, rubisco, chlorophyll

K. Percv (Air Quality Effects 
Consulting, Ltd./Alberta, 

Canada)
Ecophysiologist

Steering Committee. Leaf surface structure, 
chemistry, and function; 0 3  distribution via 
passive samplers; 0 3  metrics

G. Podila (UAIa-H) deceased Molecular Biologist Oversee biochemical and molecular studies of 
antioxidant gene expression

K. Preaitzer (Univ Idaho)* Forest Ecologist Steering Committee. Coordinate studies of 
roots and C and N cycling

D.Riemenschneider (USFS) 
retired

Quantitative
Geneticist Experimental analyses and interpretation

J. Riikonen (UKuooio/Finland) Physiologist Birch gas exchange

A. Roaers (BNL)* Ecophysiologist Steeing Committee. Gas exchange dynamics

P. Saranoaa (Finnish Forest 
Research Institute) Physiologist Wood quality and structure

T. Sharkey (UWisc) Plant Physiologist Volitile Organic Compounds (VOC) produced 
by Aspen

E. Sinasaas (UWisc-SP) Physiologist Gas exchange

A. Sober (Estonia) Physiologist Gas exchange, Os uptake

H.Tai (CFS) Molecular Biologist DNA dynamics

G. Taylor 
(USouthhamoton/Enaland) Physiologist Gene expression

R. Thakur (MTU) Biotechnologist Gene expression

T. Trier (GVSU) Entomologist Insect interaction

C.J. Tsai (UGeoraia) Molecular Biologist Genomics of C 02 and 03  responses in Aspen

J. Uddlina 
(UGothenbura/Sweden) Physiologist Canopy-level transpiration

E. Vaoaavuori (Finland Forest 
Institute) Physiologist Wood quality and chemistry

D. Weinstein (Boyce Thompson 
Institute) Modeler Scaling up As pen FACE results to the regional 

level
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R. Wise fUWisc-O) Physiologist Leaf temperature dynamics

D. Zak fUMich) Microbial Ecologist Study mechanisms of C and N cycling; soil 
microorganisms

* denotes steering committee members
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