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This report is a progress report of the accomplishments of the research grant “Collaborative
Research: Separating Forced and Unforced Decadal Predictability in Models and Observa-
tions” during the period 1 May 2011- 31 August 2013. This project is a collaborative one
between Columbia University and George Mason University. George Mason University will
submit a final technical report at the conclusion of their no-cost extension.

1 Summary of the Basic Research Plan

The purpose of the proposed research is to identify unforced predictable components on
decadal time scales, distinguish these components from forced predictable components, and
to assess the reliability of model predictions of these components. Components of unforced
decadal predictability will be isolated by maximizing the Average Predictability Time (APT)
in long, multimodel control runs from state-of-the-art climate models. Components with
decadal predictability have large APT, so maximizing APT ensures that components with
decadal predictability will be detected. Optimal fingerprinting techniques, as used in detec-
tion and attribution analysis, will be used to separate variations due to natural and anthro-
pogenic forcing from those due to unforced decadal predictability. This methodology will
be applied to the decadal hindcasts generated by the CMIP5 project to assess the reliabil-
ity of model projections. The question of whether anthropogenic forcing changes decadal
predictability, or gives rise to new forms of decadal predictability, also will be investigated.

2 Diagnosis of Decadal Predictability

Our work has established a scientific basis for decadal predictions by explicitly identify-
ing patterns in climate models that are predictable on decadal time scales and showing
that these structures also are predictable in the observed climate system. In particu-
lar, DelSole et al. (2011) identified a pattern that maximized the average predictability time
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in multiple climate simulations of the CMIP3 data set. The simulations were from pre-
industrial control runs with no interannual variations in climate forcing, ensuring that the
multidecadal variability found in the models was generated internally by the climate system
and occurs irrespective of anthropogenic or natural forcing. The pattern that maximizes the
average predictability time in the CMIP5 pre-industrial control runs is shown (for the first
time) in fig. 1. This component has maximum loadings in the North Atlantic and North
Pacific and varies on multidecadal time scales in many models, and is remarkably similar to
the pattern shown in DelSole et al. (2011) derived from CMIP3 models. The similarity in
structure suggests that the basic spatial pattern of multidecadal predictability is robust across
a suite of models. It turns out that maximizing predictability over land and ocean separately
leads to essentially the same structure. The predictability for this component in different
models is shown in the bottom panel of fig. 1. As indicated in the figure, different models
show widely different levels of predictability, with some models showing insignificant pre-
dictability after two years while others showing significant predictability as long as 16 years.
The fact that this component can be predicted on decadal time scales in some models
provides a scientific basis for decadal prediction of surface air temperature.

The most predictable component of annual mean precipitation in the CMIP5 models is
shown in fig. 2. In contrast to surface air temperature discussed above, the most predictable
precipitation component has maximum loadings in the tropical pacific, and the models more
or less agree that the predictability persists only for two or three years. Because this com-
ponent has been statistically optimized, these results demonstrate that predictability of
annual mean precipitation is at most three years, and hence decadal predictability of
precipitation is weak or non-existent in the CMIP5 models.

The above results are summarized in Jia and DelSole (2012a).

3 Empirical Decadal Prediction

The above results demonstrate that temperature and precipitation are predictable on multi-
year time scales in the models, but whether this model-derived predictability translates into
skillful predictions of observed anomalies is a separate question. To test whether these com-
ponents are predictable in observations, we constructed a linear regression model from the
pre-industrial control runs, and used this model to predict observations. The skill of predict-
ing observed SST for the North Atlantic, after removing the forced component by regression
techniques, is shown in fig. 3. The figure shows that the statistical model can predict the
observed North Atlantic mean with positive skill for ten years. The correlation skill (not
shown) also is statistically significant up to ten years. The mean skill averaged over twenti-
eth century runs and control runs separately (solid red and blue lines) are virtually identical.
Recall that only the control runs were used to fit the model, so the twentieth century runs
provide independent validation data. The fact the skill is nearly identical in the two cases
suggests that the regression model does indeed predict North Atlantic temperature anoma-
lies with skill. The skill in individual forced and control runs, shown as dashed lines in
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fig. 3 for different realizations, varies considerably with model. For some models, the sta-
tistical model has no skill in the North Atlantic even after one year, but has skill as long
as ten years for other models. This fact reveals that different models give widely different
estimates of skill. These results demonstrate that predictable components identified in
CMIP3 models can be predicted with skill in observations on decadal time scales. A
paper summarizes these results for the CMIP3 data (DelSole et al., 2013). We are currently
extending these calculations to longer time periods and to the CMIP5 data set. We also are
analyzing projections of these components into the next decade.

4 Optimal Determination of Time-Varying Climate Change Signals

In the original proposal, we proposed to apply a form of discriminant analysis to diagnose
the forced response of individual models, and to use these results as part of a detection and
attribution procedure. During the course of the proposed research, we discovered that the
time-dependent climate change signals that maximize average detectability can be de-
rived by a minor modification of the original procedure. The new procedure is discussed
in Jia and DelSole (2012b). This procedure was applied to determine the most detectable
pattern in the CMIP3 models of precipitation over land. No single pattern of five-year mean
JAS precipitation over land could be detected in all the models, indicating that the forced
response of precipitation is not robust across state-of-the-art climate models. Moreover,
since the procedure is optimal, we can be make the sweeping (but defensible) claim that no
five-year mean precipitation pattern is consistently detectable in the models. It should be
recognized, however, that this conclusion does not preclude detectability of other expres-
sions of the signal, such as ones constructed from other time averages, statistics, or time-lag
information. The amplitude of the climate change statistic in different twentieth century
simulations is shown in fig. 4. The figure indicates that while most models show no de-
tectability of precipitation (as evidenced by the fact that their time series lie within the 90%
confidence interval for unforced variability), the models that do show detectability of five-
year mean JAS precipitation exhibit two very different characters: a systematic trend, and
enhanced frequency of extreme values. These results appear to be a significant advancement
in detection capabilities, as previous attempts to identify forced precipitation patterns were
restricted to zonal averages within certain latitudinal bands (Zhang et al., 2006). We intend
to investigate the most detectable forced patterns in the CMIP5 data set.

5 Contribution of Individual Collaborators

Timothy DelSole is the lead PI for this project and is responsible for all aspects of the pro-
posed research. He supervises research conducted by the PhD graduate students Emerson
LaJoie, Xiaoxin Yan, and Liwei Jia (now graduated). Dr. Jia performed the analysis leading
to Jia and DelSole (2012a), Jia and DelSole (2012b), DelSole et al. (2013). Xiaoxin Yan
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entered the PhD program in Fall 2011 and has been focused on her core graduate courses
in the first two semesters, which has involved significant training in the statistical analysis
described in the proposal. Since formally leaving this project, Dr. Jia has been writing up
papers based on her thesis work essentially “on the side.” Michael Tippett has collaborated
on all aspects of the proposed research. This collaboration has involved two-to-three phone
calls a week between Drs. Tippett and DelSole.

6 Publications

The following papers have been generated as part of this research project: Jia and DelSole
(2012a), Jia and DelSole (2012b) and DelSole et al. (2013).
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Figure 1: Most predictable component of annual mean surface air temperature derived from
the pre-industrial control runs of the CMIP5 data set (top), and the squared correlation skill
of this component in individual models when predicted from a linear regression model using
forty principal components as predictors.
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Figure 2: Most predictable component of annual mean precipitation derived from the pre-
industrial control runs of the CMIP5 data set (top), and the squared correlation skill of this
component in individual models when predicted from a linear regression model using forty
principal components as predictors.
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Figure 3: Skill of predicting observed annual mean, North Atlantic, unforced sea surface
temperature anomalies during 1976-2010 (black curve). Skill is measured by one minus
the mean square error divided by the total variance. The predictions were generated by a
linear regression model trained on CMIP3 pre-industrial control simulations. The unforced
SST field is calculated by regressing out the forced response pattern. Also shown is the
skill in control simulations (blue) and forced simulations during 1860-1999 (red) for both
multi-model (solid) and individual models (dashed). The horizontal dashed line indicates
zero skill.
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Figure 4: Time series of the most detectable component, on average, of JAS mean precipita-
tion over six continents. Individual twentieth century runs are shown as thin black lines, and
the ensemble mean is shown as the thick red curve. The time series were calculated from 19
independent twentieth century runs. The horizontal dashed lines indicate the 5th and 95th
percentiles estimated from independent control runs. The percentages in each panel gives
the percent of twentieth century realizations that fall outside the 5th and 95th percentiles of
the control run. The pre-industrial control mean of each respective model has been removed
from the time series.
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