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Abstract

Bayesian calibration/inversion methods for uncertain input param-
eters to simulation codes have generated an increasing amount of in-
terest in the climate community in the recent years. This approach
uses multiple disparate observational datasets related to the output
of the simulator of interest to yield a probabilistic constraint on the
uncertain inputs (i.e. probability distribution). A major challenge in
applying Bayesian calibration methods to simulation codes is related
to the possible presence of a large structural error in the output fields
of interest; that is, the presence of discrepancy between the observed
and the simulated output that is neither explained by the uncertainty
in the inputs nor the observations. We present here methods to test for
and visualize structural error in an ensemble of input-perturbed simu-
lations. The methods are based on bootstrap (resmpling) test statistics
and well-known metrics to quantify the difference between two proba-
bility distributions. The proposed methods are demonstrated using
selected precipitation output fields of the Community Atmospheric
Model (CAM), which are compared to observations provided by the
Global Precipitation Climatology Project (GPCP). The methods are
found to be useful in identifying regions and seasons with a large struc-
tural error. The proposed structural error detection methodology can
be used to screen multiple observational datasets of interest for struc-
tural error, making it possible to retain only the datasets with a small
structural error for use in Bayesian calibration. In addition, informa-
tion about the amount of structural error can be valuable to model
developers.
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1 Introduction

Bayesian calibration of computer models (i.e., simulation codes) is a well-
established and tested technique for improving the fidelity of computer mod-
els that have uncertain and/or tuneable input parameters (e.g., Kennedy and
O’Hagan, 2001; Bayarri et al., 2007; Higdon et al., 2008). Not surprisingly,
Bayesian calibration methods have been adapted and applied to climate
models of various complexity with mixed results (e.g., Sanso and Forest,
2009; Bhat et al., 2012). The general framework behind this approach is
relatively simple and straightforward. Using the notation popularized by
Kennedy and O’Hagan (2001), let η(x,θ) be a simulation (scalar) output
quantity of interest, where x characterizes the output (e.g., spatial location,
time, and other simulation control parameters) and θ is a vector of uncer-
tain input parameters to the code. For example, in our application to the
Community Atmospheric Model (CAM), the atmospheric component of the
Community Earth System Model (CESM), discussed in in Section 4, η(x,θ)
might be the 5-year average daily precipitation in winter (Dec–Feb) in the
30◦ zonal band from 0-30◦N.

At the core of a Bayesian calibration of a computer model is the following
comparison of the computer simulation output η(x,θ) and the observation
y(x) modeled as:

y(x) = η(x,θ) + δ(x) + ε(x), (1)

where ε(x) is the error in the observation and δ(x) is a potential structural
error (bias) in the code that is not explained by the uncertain input pa-
rameters. That is, even if there where no uncertain inputs to the code,
there may still be a discrepancy between the simulation output η(x) and
the observation y(x) that is not explained by the observation error ε(x).

The work presented here was carried out under the Climate Science for
Sustainable Energy Future (CSSEF) Program and is motivated by questions
related to the role of the structural error (δ) versus uncertainty in the input
θ when assessing the prediction accuracy of important precipitation-related
metrics in CAM. If important precipitation-related metrics have a large
amount of structural simulation error in CAM, then there is little hope
of “matching” the observed metrics by tuning uncertain input parameters.
What we present here are statistics and tests to shed light on the following
question:

Can the difference between observations and simulations be ex-
plained by the uncertainty in the inputs and the observation error
alone?
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To rephrase: is the structural error small enough so that it is “hidden” in
the uncertainty induced by the parameters and the observation error?

In the next section we will briefly describe the input-perturbed CAM5
simulations created under CSSEF and the Global Precipitation Climatology
Project (GPCP) observations used in this study. We follow with a method
section (Section 3) outlining metrics and test statistics we investigate to test
for structural error. Finally, in Section 4 we demonstrate these techniques
using the CAM5 simulations and the GPCP observations.

2 Simulations and Observations

In the application in Section 4, we will use input-perturbed simulations
from CAM (version 5). The quantities of interest are daily precipitation
spatial averages at two different spatial scales in two seasons, as will be fur-
ther described below. The simulation-based precipitation statistics are then
compared to analogous aggregates computed using the Global Precipitation
Climatology Project (GPCP) dataset.

2.1 The Community Atmospheric Model Version 5 (CAM5)
Ensemble of Simulations

The CAM5 ensemble of simulations consists of 1145 5-years AMIP-style (i.e.,
prescribed sea-surface temperature) simulations spanning 5 years (2000–
2004), generated by perturbing 22 uncertain input parameters. These sim-
ulations where carried out at Lawrence Livermore National Laboratory as
part of the Climate Science for Sustainable Energy Future (CSSEF) effort.

The 22 input parameters selected for the study are all judged to be
potentially important to the hydrology cycle in CAM5 and are shown in
Table 1, which identifies the parameters by name, their default value and
the range over which they were varied.

The 1145 simulations are made up of five latin-hypercube (LH) sample
designs (Mckay et al., 2000), each of size 220, along with one batch of one-at-
a-time (low-default-high) simulations of size 45. The two last LH-sampled
batches of simulations had altered ranges for one of the 22 parameters.

2.2 The Global Precipitation Climatology Project (GPCP)
Data

The precipitation data used were obtained from the Global Precipitation
Climatology Project (GPCP). The GPCP data consist of average monthly
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Table 1: A summary of the input parameters perturbed in the LLNL en-
semble of CAM5 simulations, along with their default value and the assumed
uncertainty range.

precipitation at a 2.5◦ spatial resolution from 1979 to the present. The data
are created by fusing together precipitation gauge data, sounding data, and
satellite microwave data.

Figure 1 gives a spatial summary of the 5-year average daily precipitation
in the 1145 CAM5 simulations and the GPCP data at the 2◦ grid used in the
CAM5 simulations. Figures 2 and 3 compare the average daily precipitation
at a coarser spatial scale, in six 30◦ zonal bands in two seasons (Dec-Jan-Feb
and Jun-Jul-Aug) for 440 LH-sampled CAM5 simulations and the GPCP
data. As the plots in Figure 2 and the histograms in Figure 3 show, at first
glance, for some regions and seasons, the GPCP observation is not “covered”
by the spread provided by the ensemble of CAM5 simulations (the two
CAM5 LHS are those with a revisited range for one parameter). If that is the
case, then one would have no hope of calibrating the uncertain parameters
to “match” the observations, hinting at a large structural error in CAM5 for
this particular output quantity of interest (or possibly an uncertain input
parameter that was not sampled!).
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(a) CAM5 ensemble mean (b) CAM5 ensemble StDev

(c) GPCP (d) GPCP “absolute error” estimate

Figure 1: The two top maps summarize average daily precipitation (mm/-
day) from 1,100 input-perturbed CAM5 LH-sampled simulations, while the
bottom maps summarize the corresponding observed precipitation according
the the GPCP data.
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precipitation [mm/day]

1 2 3 4 5 6

90S−60S/DJF

60S−30S/DJF

30S−0/DJF

0−30N/DJF

30N−60N/DJF

60N−90N/DJF

90S−60S/JJA

60S−30S/JJA

30S−0/JJA

0−30N/JJA

30N−60N/JJA

60N−90N/JJA CAM
GPCP

Figure 2: The gray
lines show the re-
sults of 440 CAM5
simulation average
daily precipitation
(mm/day) in 6 30◦

zonal bands in Jun-
Jul-Aug (JJA) and
Dec-Jan-Feb (DJF).
The red line shows
the corresponding
observations from
GPCP.
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Figure 3:
Comparisons of
the CAM5 simu-
lations and GPCP
precipitation data
from Figure 2. Each
panel shows the
histogram of the
CAM5 ensemble
data for a given
zonal band and
season along with
the observed GPCP
datum (red dot).
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3 Methodology

We will introduce two different approaches to construct metrics and tests
to assess the size of the structural error. The first approach in inspired by
classical statistical test statistics and uses bootstrap methods (resampling
methods) to estimate p-values to reject the hypotheses of no (or small)
structural error. The second approach draws on metrics that measure the
difference between two distributions.

3.1 Bootstrap-based P-values for Structural Error Test Statis-
tics

Bootstrapping is a statistical resampling procedure that allows one to es-
timate the sampling distribution of nearly any statistic of interest using
relatively simple resampling methods (Efron and Tibshirani, 1993). We will
develop two flavors of bootstrap-based tests for structural error: (1) a test
for the presence of structural error in a single scalar output quantity of in-
terest and (2) a test for the presence of structural error in a given diagnostic
statistic. The first family of tests simply focuses on a given scalar output
quantity of interest, y(x), and compares it to the empirical distribution of
η(x,θ) + ε(x), similar to the comparison visualized in Figure 3. The met-
ric test, on the other hand, considers a particular diagnostic statistic, for
example, the expected root mean-squared-error between two spatial maps,
and compares the observed diagnostic statistic to the empirical distribution
induced by η(x,θ) + ε(x).

Let
Y ≡ η(θ) + ε, (2)

where we have dropped the dependence on x to simplify notation, but it
should be clear that Y , and hence η and ε, refer to a particular observa-
tion/output of interest. Then Y is a stochastic variable with its probability
distribution determined by the function η(·), and the two probability dis-
tributions p(dθ) and p(dε), where p(dθ) represents the prior uncertainty in
the inputs and p(dε) the uncertainty in the observations. In what follows,
we assume that θ and ε are independent random variables. Given a method
to generate realizations from both p(dθ) and p(dε), we can generate realiza-
tions from p(dY ). For a computationally expensive η(·), as is the case here,
we only have a limited number of realizations from p(dη) = p(η(dθ)), which
is our ensemble of simulations carried out for a sample of realizations of θ
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(i.e., our ensemble of CAM5 simulations). Let

ηi ≡ η(θi), for i = 1, . . . , n,

denote the ensemble of the simulated output quantity of interest for a given
set of realizations of θ; θ1, . . . ,θn. Given {ηi}, then

p̃(dη) ≡
n∑

i=1

wiI(ηi = η), (3)

is an empirical approximation to p(dη), where I(x = y) = 1 if x = y and
is otherwise 0, and wi = 1/n. Algorithm 1 outlines how one can generate
realizations from p̃(dη).

Assuming that the probability distribution of ε is known (e.g., a Gaus-
sian distribution with known mean and variance) and a method to generate
realizations of ε is available, we can generate realizations from p̃(dY ), an em-
pirical approximation of p(dY ), as outlined in Algorithm 1. These are the
fundamental building blocks we use to estimate p-values for test statistics
to assess the presence of a significant structural error.

Finally, we note that the general approach outlined for the scalar quan-
tity of interest can be generalized to an m-dimensional observation vector
y and the corresponding model output vector η(θ) and observation error
vector ε. A potential additional complication that may arise in generating a
realization of Y ≡ η(θ) + ε is that the observation errors may be correlated
(e.g. ε ∼ Gau(µm,Σm×m) and the m ×m covariance matrix Σm×m is not
diagonal and m is large).

Algorithm 1 Generate realizations from p̃(dη) and p̃(dY )

procedure Generate η∗ ∼ p̃(dη)
Generate i∗ ∈ {1, . . . , n} with weights w1, . . . , wn

return η∗ = ηi∗

end procedure

procedure Generate y∗ ∼ p̃(dY )
Generate η∗ ∼ p̃(dη)
Generate ε∗ ∼ p(dε)
return y∗ = η∗ + ε∗

end procedure
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Scalar Test

The scalar test is relatively straightforward. Under the H0 (null) hypothesis,
the observation of interest is a realization from the stochastic process Y =
η(θ) + ε. That is,

H0 : y ∼ p(dY ) where Y = η(θ) + ε. (4)

To assess the validity of H0, we estimate the probability pl ≡ Prob{Y ≤ y}
under this hypothesis; that is, the probability of encountering a realization
of Y that is smaller or equal to y, the actual observation. As we are generally
concerned with observing y in the “tails” of p(dY ), that is having either very
low pl or 1− pl (= Prob{Y > y}), we define

p0 ≡ min(pl, 1− pl).

Then p0 can be used to reject H0 using a given “α” level, for example, reject
H0 for any output that yields p0 < 0.01.

The resampling algorithm to estimate pl is trivial and given in Algo-
rithm 2.

Algorithm 2 P-value for a scalar quantity of interest.

1: procedure scalarPval(y)
2: Initialize c← 0
3: for b← 1, . . . , B do
4: Generate y∗ ∼ p̃(dY ) . (see Algorithm 1)
5: if y∗ ≤ y then increment c by 1
6: end for
7: p0 ← min(c,B − c)/B
8: return p0
9: end procedure

Diagnostic Statistic Test

The scalar test is well-suited for the setting with a single output quantity of
interest. For a multivariate output, such as a spatial map or a zonal profile
of precipitation, one could in principle compute the p-value for each grid
cell or zonal band and inspect the resulting “map” of p-values. While such
a map might be informative for regional/seasonal variation in the role of
the structural error term, it is non-trivial to combine the multiple p-values
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to form a single overall “metric” for the structural error for that particular
multivariate output.

An alternative approach is to define a single diagnostic test statistics that
measures the discrepancy between two output vectors, y = (y1, . . . , ym)T

and ŷ = (ŷ1, . . . , ŷm)T ,

T (y, ŷ) = a diagnostic discrepancy statistic,

where y is typically derived from the observations and ŷ from the model
output. Two examples of such diagnostic statistics are:

TRMSE(y, ŷ) ≡

√√√√ 1

m

m∑
j=1

vj(yj − ŷj)2,

TABS(y, ŷ) ≡ |y − ŷ|.

(5)

The first metric above is the commonly used weighted root mean-squared-
error metric with weights vi’s while the second one is a simple metric for the
absolute (L1) difference between two scalar quantities, which could be used
in place of the scalar test introduced previously.

For a given observed y, we define the expected T (y, ·) metric as

T (y) ≡ EY[T (y,Y)|y] =

∫
T (y,Y)p(dY),

where the distribution of Y is induced by the model Y = η(θ) + ε. Hence,
T (y) is simply the average value of the diagnostic statistic T (y, ŷ), averaged
over possible values of ŷ, assuming ŷ ∼ p(dY) (i.e., no structural error). The
null hypothesis of interest H0 is therefore given by

H0 : T (y) ∼ p(T (dY)) where Y = η(θ) + ε.

The test of this hypothesis is equivalent to answering the question: is the ob-
served T (y) a realization from a distribution of T (Y) that assumes no struc-
tural error? We can test the validity of H0 by computing p0 = Prob{T (Y) >
T (y)}, which is the probability of observing more extreme (larger) value
than T (y) when we assume no structural error (H0). Algorithm 3 gives a
resampling algorithm to estimate T (y) and p0.

3.2 Discrepancy Measures Between Two Probability Distri-
butions

The second approach we investigate to assess the presence of significant
structural error in a quantity of interest is centered on techniques to com-
pare two (univariate) probability distribution functions (PDFs). The two
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Algorithm 3 P-value for a diagnostic statistics of interest.

procedure diagnosticPval(y)
2: t0 ← getAveT(y) . (see below)

Initialize c← 0
4: for b← 1, . . . , B do

Generate y∗ ∼ p̃(dY) . (see Algorithm 1)
6: t∗ ← getAveT(y∗)

if t∗ > t0 then increment c by 1
8: end for

p0 ← c/B
10: return p0

end procedure

12: function getAveT(y)
for b← 1, . . . , B do

14: Generate y∗ ∼ p̃(dY) . (see Algorithm 1)
t(b) ← T (y,y∗)

16: end for
t← (

∑B
b=1 t

(b))/B
18: return t

end function
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PDFs we compare represent both information about the true underlying un-
observed process of interest, ξ(x), which we attempt to measure with y(x)
and simulate (i.e., predict) with η(x,θ), using the framework of Kennedy
and O’Hagan (2001):

y(x) = ξ(x) + ε(x),

ξ(x) = η(x,θ) + δ(x).
(6)

Under the hypotheses that the structural error δ(x) = 0, we have that the
“prior” distribution for ξ(x) is simply given by p(dη(x)), that is,

πo(dξ(x)) ≡ p(dξ(x)) ∝
∫
I(ξ(x) = η(x,θ))p(dθ),

which we simply approximate by the empirical distribution of the ensemble
of simulations, p̃(dη(x)) in (3). The second distribution is the “posterior”
distribution of ξ(x) given y(x) when assuming a “flat” prior and can be
expressed as

π(dξ(x)) ≡ p(dξ(x) | y) ∝
∫
I(ξ(x) = y + ε)p(dε).

To measure the discrepancy between πo and π we investigate three well-
known discrepancy measures:

Kullback-Leibler (KL) Divergence. The KL divergence measure is given
by Kullback and Leibler (1951)

DKL(P ||Q) ≡
∫

log

(
p(x)

q(x)

)
p(x)dx,

where p(·) is the “true” PDF and q(·) is its estimate. Note that if
q(x) = p(x) (almost surely with respect to p(·)), then DKL(P ||Q) =
0;n so the lower the value of this measure the better. Since we do
not have a notion of the “true” PDF in this setting, we consider the
symmetric version of the KL divergence, given by

D̄KL(P,Q) = (DKL(P ||Q) +DKL(Q||P ))/2 (7)

Bhattacharyya Coefficent (BC). The BC is given by (Bhattacharyya,
1943)

DB(p, q) =

∫ √
p(x)q(x)dx. (8)

Note that if there is no overlap between p(·) and q(·), thenDB(p, q) = 0
and if q(x) = p(x) then DB(p, q) = 1, so the higher the value of the
coefficient the better.
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Earth Mover’s Distance (EMD). The EMD can be described as the
smallest effort needed to move/transform one pile of 1D dirt, with its
profile given by p(·), into another pile, given by q(·). There is a well-
established algorithm to compute the EMD (the Hungarian algorithm
to solve the instant transportation problem). In our case, with two
PDFs of equal mass over the domain of interest, the EMD is equivalent
to the 1st Mallow’s distance and the 1st Weisserstein distance, and in
general, the EMD is known as the Weisserstein distance in mathemat-
ics (http://en.wikipedia.org/wiki/Earth_mover’s_distance).

In the application to CAM5 in Section 4, all three distance metrics de-
scribed above are estimated using realizations from the two PDFs to be
compered: π0 and π. This is done by using the same “bins” (break points)
when “binning” the realizations, that is, by using the same break points
when creating the empirical histogram of the realizations from the two tar-
get PDFs. For example, if pj is the empirical density of the j-th bin for p(x)
(i.e., the number of realizations in the j-th bin divided by the total number)
and similarly for q(x), then

DB(p, q) ≈
∑
j

√
pjqj
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4 Application to CAM5

We now give a demonstration of the methods presented in the previous sec-
tion to CAM5, using the ensemble of simulations and observations described
in Section 2.

4.1 Bootstrap Test Statistics for Structural Error

To demonstrate the value of the scalar-based test statistics for structural
error and the more general diagnostic-based test statistics, we will use the
5-year average daily precipitation observed and simulated in 6 30◦ zonal
bands in Dec–Feb (DJF) and Jun–Aug (JJA), resulting in a total of 12
quantities of interest (see Figures 2 and 3).

We present two cases. First, we assume that the error in the observations
is minimal relative to the spread in the ensemble of simulations and therefore
ignore it; that is, assume that ε = 0 or very small in (2). In the second case
we assume non-zero ε with a known error distribution, which we take to be
Gaussian with standard deviation equal to 10% of the expected value; that
is,

εj ∼ Gau(0, (σηj)
2), j = 1, . . . , 12, (9)

where σ = 0.1 and ηj = η(xj) is the true precipitation assuming no struc-
tural error. Hence, for a given ensemble member, η(xi,θ

∗), the expected
error distribution for the observation is Gau(0, (ση(xj ,θ

∗))2). This yields
a median standard deviation of 0.23 mm/day in {ση(xj ,θi)}, with the 1st
and 3rd quantiles at 0.14 and 0.31, respectively.

4.1.1 Tests Based on a Single Quantity of Interest

The procedure outlined in Algorithm 2 was used (with B = 5000) to obtain
separate p-values for each of the 12 zonal precipitation averages when as-
suming (a) no or little observation error and (b) 10% observation error (as in
(9)). The resulting p-values are shown in Figure 4. As expected, the p-values
without any observation error (left) are smaller than those with observation
error (right). In fact, when 0 observation error is assumed (left), 5 of the
12 p-values are identically equal to 0; that is, none of the 440 simulated
precipitation values is more extreme than the observed GPCP value. This
is not the case for any of the 12 p-values when we assume 10% observation
error (the smallest p-value is 0.016). Note that the smallest p-values are
found in the tropics (30◦S–30◦N).
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(a) Without observation error (b) With observation error
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Figure 4: Estimated p-values for rejecting, independently, the H0 hypothe-
ses of no structural error in 6 30◦ zonal (aka, latitudinal) bands for two
seasons, DJF and JJA. The left panel assumes no observation error, while
the right panel assumes 10% error (as in (9)).
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Figure 5: The em-
pirical densities of
η(x,θ) (gray) and
Y = η(x,θ) + ε
(blue) for the 6 zonal
bands in two sea-
sons. The GPCP
observation is shown
as a red circle.

Figure 5 compares the empirical densities of η(x,θ) and Y (x), that is
p̃(dη(x)) and p̃(dY (x)). Note that here x identifies the zonal band and season
that η and Y correspond to. This clearly shows the impact of adding the
observation noise to the ensemble spread, yielding a distribution with larger
support, and potentially making what initially appears to be an implausible
observation a plausible one.

4.1.2 Test Based on Diagnostic Statistics

The main motivation for the diagnostic test statistics was to test for struc-
tural error in a multivariate output of interest (a vector), but at the same
time, one can develop diagnostic statistic for a scalar quantity of interest,
for example, using the TABS diagnostic in (5). Figure 6 shows the p-values
estimated by Algorithm 3 (with B = 5000) for the scalar diagnostic statis-
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Figure 6: P-values for average daily precipitation in 6 30◦ zonal bands in
two seasons (DJF and JJA) based on the TABS diagnostic statistics.

tics TABS for precipitation in the 6 zonal bands in DJF and JJA. The TABS

p-values can be compared to those in Figure 4. As expected, they yield an
identical pattern, but with p-values roughly twice as big since the p-values
based on the TABS test statistics are “two sided”, while the p-values derived
with Algorithm 2 are “one-sided” (i.e., testing for observing something that
is more extreme than is actually observed in just one direction).

The main benefit of the diagnostic statistic method is that it provides
a measure of the discrepancy between two vectors, one corresponding to
the simulation output and another to the observations. Figure 7 shows the
H0 distribution of the TRMSE(·) under H0 and the observed value of the
statistics for y that is a vector of length 12 containing the daily average
precipitation in 6 30◦ zonal bands in seasons DJF and JJA (with the zonal
bands weighted according to area—i.e., the vj ’s in (5)). Without any obser-
vation error, the observed RMSE diagnostic statistics is outside the support
of its distribution under H0 (i.e. p-value = 0 as estimated by Algorithm 3).
However, as a result of adding observation error noise of 10%, the observed
RMSE statistics become plausible albeit somewhat in the upper tail of the
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(a) Without observation error (b) With observation error
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Figure 7: P-values for the TRMSE diagnostic statistics that measure the
difference in the daily precipitation in 6 30◦ zonal bands in two seasons (DFJ
and JJA).

null distribution.

4.2 Metrics for Comparing PDFs

To demonstrate the value of the PDF discrepancy measures introduced in
Section 3.2, consider the 2◦ gridded map of the annual average daily pre-
cipitation described in Section 2 and shown in Figure 1. The “prior” distri-
bution (π0) is given by the empirical distribution from the CAM5 ensemble
of 1100 simulations for each gridbox, while the “posterior” is obtained from
the distribution of the GPCP observations and the observation error process
ε(x). We simply take ε(x) ∼ Unif(−e(x), e(x)), where e(x) is the reported
“absolute error” estimate in the GPCP (see Figure 1(d)). Figure 8 gives
two examples of the empirical distribution of the annual average daily pre-
cipitation in two grid cells, as observed and simulated over 5 years (2000–
2004). The CAM5 empirical distribution (π0) is simply given by the 1100
CAM5 simulations, while π is obtained by generating 1100 realizations from
y(x) + Unif(−e(x), e(x)).

The three PDFs discrepancy measures were applied to the empirical
estimates of π0 (CAM5) and π (GPCP) in each gridbox of the CAM5 grid.
The resulting estimates are shown in Figure 9. There is good agreement
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Figure 8: Two examples of CAM5- and GPCP-derived PDFs (π0 and π) for
precipitation in two different grid cells. The empirical CAM5 distribution is
given by 1100 simulations, while the empirical GPCP distribution is derived
from 1100 realizations from y(x) + Unif(−e(x), e(x)).

between the three distance measures, although the Kullback-Leibler and
the Bhattacharyya visually appear to agree more. We observe the largest
discrepancy in the tropics.
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(a) Earth Mover’s Distance

(b) Bhattacharyya Coefficient

(c) Kullback-Leibler Divergence

Figure 9: The three
discrepancy metrics
discussed in the text
for comparing the
PDFs of annual av-
erage daily precip-
itation at the grid
box level. In all
three plots, red de-
notes larger discrep-
ancy between the
PDFs.
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5 Conclusion

We have presented multiple methods to detect structural error in simulating
output metrics of interest, given an ensemble of simulations created by sam-
pling uncertain input parameters. All the methods investigated here also
account for the observation error in the quantities of interest, in addition
to the input uncertainty. The first family of methods is based on resam-
pling techniques to test a statistical hypothesis, while the second family of
methods is based on metrics that quantify the difference between two PDFs.
All the methods presented yield both qualitative visual diagnostic plots and
p-values/metrics for a quantitative comparison.

All the investigated methods show a larger structural error in the tropics.
The manner in which the observation error is accounted for appears to be
important across all methods, as is seen in Figure 4.

Structural error tests can be used to screen a collection of important
output metrics for use in Bayesian calibration/tuning of uncertain input
parameters. Such screening would both focus on output metrics with small
structural error, as judged by the methods presented here, as well as on
output quantities that show large variation in the ensemble of simulations
compared to the observation error. In addition, information about the shape
and significance of the structural error can be valuable to model developers
for determining the source of the structural error.
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