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ABSTRACT 52 
The National Risk Assessment Partnership (NRAP) is developing a science-based toolset for the 53 
analysis of potential impacts to groundwater chemistry from CO2 injection 54 
(www.netldoe.gov/nrap). The toolset adopts a stochastic approach in which predictions address 55 
uncertainties in shallow groundwater and leakage scenarios. It is derived from detailed physics 56 
and chemistry simulation results that are used to train more computationally efficient models, 57 
referred to here as reduced-order models (ROMs), for each component system. In particular, 58 
these tools can be used to help regulators and operators understand the expected sizes and 59 
longevity of plumes in pH, TDS, and dissolved metals that could result from a leakage of brine 60 
and/or CO2 from a storage reservoir into aquifers.  This information can inform, for example, 61 
decisions on monitoring strategies that are both effective and efficient.   We have used this 62 
approach to develop predictive reduced-order models for two common types of reservoirs, but 63 
the approach could be used to develop a model for a specific aquifer or other common types of 64 
aquifers. 65 

In this paper we describe potential impacts to groundwater quality due to CO2 and brine leakage, 66 
discuss an approach to calculate thresholds under which “no impact” to groundwater occurs, 67 
describe the time scale for impact on groundwater, and discuss the probability of detecting a 68 
groundwater plume should leakage occur. To facilitate this, multi-phase flow and reactive 69 
transport simulations and emulations were developed for two classes of aquifers, considering 70 
uncertainty in leakage source terms and aquifer hydrogeology. We targeted an unconfined 71 
fractured carbonate aquifer based on the Edwards aquifer in Texas and a confined alluvium 72 
aquifer based on the High Plains Aquifer in Kansas, which share characteristics typical of many 73 
drinking water aquifers in the United States. The hypothetical leakage scenarios centered on the 74 
notion that wellbores are the most likely conduits for brine and CO2 leaks. Leakage uncertainty 75 
was based on hypothetical injection of CO2 for 50 years at a rate of 5 million tons per year into a 76 
depleted oil/gas reservoir with high permeability and, one or more wells provided leakage 77 
pathways from the storage reservoir to the overlying aquifer.  This scenario corresponds to a 78 
storage site with historical oil/gas production and some poorly completed legacy wells that went 79 
undetected through site evaluation, operations, and post-closure.  80 
For the aquifer systems and leakage scenarios studied here, CO2 and brine leakage are likely to 81 
drive pH below and increase total dissolved solids (TDS) above the “no-impact thresholds;” and 82 
the subsequent plumes, although small, are likely to persist for long periods of time in the 83 
absence of remediation. In these scenarios, however, risk to human health may not be significant 84 
for two reasons. First, our simulated plume volumes are much smaller than the average inter-well 85 
spacing for these representative aquifers, so the impacted groundwater would be unlikely to be 86 
pumped for drinking water. Second, even within the impacted plume volumes little water 87 
exceeds the primary maximum contamination levels. These observations point to: 88 

• The potential utility of the NRAP toolset to evaluate the risk of leakage and inform 89 
monitoring and corrective action plans of a potential site for long-term CO2 storage by 90 
capturing storage reservoir, leakage pathway, and aquifer heterogeneity. 91 

• The importance of establishing baseline groundwater chemistry that captures the pre-92 
injection variability of underground sources of drinking water (USDW) above the 93 
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reservoir because the EPA has adopted a “no net degradation” policy towards the 94 
protection of groundwater resources.  95 

• The need to test and develop spatially diverse monitoring techniques capable of detecting 96 
leakage early to employ effective mitigation strategies, and more importantly to add 97 
confidence to assessments used to evaluate the length of the post-injection site care. In 98 
our study, the probability of detecting plumes using existing wells to sample the 99 
groundwater chemistry was very low, because the plumes were relatively small in both 100 
aquifers. 101 

• The need to develop methodologies that prevent and/or directly detect leakage prior to 102 
reaching USDWs, because our simulations predict that even small amounts of CO2 and 103 
brine, when left unmitigated, can change USDW pH and TDS concentrations for long 104 
periods of time. 105 
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1. INTRODUCTION 106 
Deep underground storage of CO2 from stationary sources, such as power plants and industrial 107 
processes, is a promising strategy to limit the amount of CO2 emitted into the atmosphere and to 108 
mitigate the effects of global climate change (IPCC, 2005; NETL, 2012). Long-term storage of 109 
CO2 in deep underground reservoirs requires careful assessment of the reservoir integrity, well 110 
and fault susceptibility for potential leakage pathways, and consideration of the impact of leaks 111 
into the atmosphere or on shallow groundwater sources (Bachu, 2008; Herzog et al., 2003).  112 
Potential impacts to groundwater quality are a focus for both state and federal regulatory 113 
agencies, because leakage of brine and/or CO2 into groundwater resources and subsequent 114 
geochemical transformations may impact water quality. In the United States, the Class VI Rule 115 
sets minimum federal technical criteria that injection of supercritical CO2 in geologic reservoirs 116 
are protective of underground sources of drinking water (USDW) that have less than 10,000 mg 117 
L-1 dissolved solids. The Class VI Rule and related documents are available at 118 
http://water.epa.gov/type/groundwater/uic/wells_sequestration.cfm.  119 

The Class VI injection well permitting process requires baseline geochemical information on 120 
subsurface formations in the area of review (AoR) and the assessment of risk to water quality for 121 
all USDWs within the AoR prior to injection. Additionally, testing and monitoring for signs of 122 
leakage is required during the injection and post-injection phases above the confining zone and 123 
within overlying USDWs. The default period for post-injection site care (PISC) is currently set 124 
for 50 years, during which time operators are required to use periodic indirect (geophysical) and 125 
direct (well water) data to assess if USDWs have been or are likely to be compromised. Current 126 
guidelines on the duration of the PISC period are flexible and may be reduced if the operators 127 
can illustrate that CO2 and brine are contained and USDWs are protected.   128 
The National Risk Assessment Partnership (NRAP) is developing a science-based toolset for the 129 
analysis of potential impacts to groundwater chemistry from CO2 injection 130 
(www.netldoe.gov/nrap). The toolset adopts a stochastic approach in which predictions address 131 
uncertainties in shallow groundwater and leakage scenarios. It is derived from detailed physics 132 
and chemistry simulation results that are used to train more computationally efficient models, 133 
referred to here as reduced-order models (ROMs), for each component of the system. In 134 
particular, these tools can be used to help regulators and operators understand the expected sizes 135 
and longevity of plumes in pH, TDS, and dissolved metals that could result from a leakage of 136 
brine and/or CO2 from a storage reservoir into aquifers.  This information can inform, for 137 
example, decisions on monitoring strategies that are both effective and efficient.   We have used 138 
this approach to develop predictive reduced order models for two common types of reservoirs, 139 
but the approach could be used to develop a model for a specific aquifer or other common types 140 
of aquifers. 141 

The objectives of this publication are four fold: 142 

• Present summary findings that describe potential impacts to groundwater quality due to 143 
CO2 and brine leakage  144 
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• Discuss an approach to calculate 145 
thresholds under which “no impact” to 146 
groundwater occurs 147 

• Describe the time scale for impact on 148 
groundwater 149 

• Discuss the probability of detecting a 150 
groundwater plume should leakage 151 
occur 152 

To facilitate this, we compared the impact of 153 
CO2 and brine leakage on groundwater quality 154 
within two distinct classes of shallow aquifer 155 
systems given the same CO2 storage reservoir 156 
and leakage pathways. We focused on shallow 157 
USDWs because they are resources that are 158 
currently in use. We targeted two classes of 159 
aquifers, which share characteristics typical of 160 
many drinking water aquifers in the U.S.: an 161 
unconfined fractured carbonate aquifer and a 162 
confined alluvium aquifer (Figure 1).   163 
Multi-phase flow and reactive transport 164 
simulations and emulations were developed for 165 
these two classes of aquifers, considering 166 
uncertainty in leakage source terms and aquifer hydrogeology. The uncertain source term 167 
variables considered were: location and number of leaky wells, time-dependent brine/CO2 168 
leakage rates at each well, and total dissolved solids (TDS) and trace metal concentrations of the 169 
leaking brine. Two well-studied aquifers, the Edwards aquifer in Texas and the High Plains 170 
Aquifer in Kansas, were used to represent hydrogeologic characteristics of carbonate and 171 
alluvium aquifers, respectively. Uncertainty in hydrogeologic properties was considered, as well.   172 

Each simulation provided a spatially explicit, temporal evolution of a shallow groundwater 173 
plume. Due to dissolution of CO2 in groundwater and advective transport of brine, the plumes 174 
are lower in pH, and higher in TDS and trace metal concentrations relative to background 175 
conditions. Changes in trace metal concentration due to reactions, such as decreases due to 176 
adsorption or increases due to pH-related desorption or dissolution were ignored for the purpose 177 
of simplification. Two types of metrics were considered: the volume of the plume as defined by 178 
concentrations that exceed 1) drinking water standards or 2) “background” thresholds. The latter 179 
metric requires statistical analysis of ample background water chemistry sampling at the site. 180 

We created hypothetical leakage scenarios centered on the premise that abandoned wellbores are 181 
the most likely conduits for brine and CO2 leaks. Leakage uncertainty was based on hypothetical 182 
injection of CO2 for 50 years at a rate of 5 million tons per year into a depleted oil/gas reservoir 183 
with high permeability, and one or more wells provided leakage pathways from the storage 184 
reservoir to the overlying aquifer. The simulations capture variability within the storage 185 
reservoir, leakage pathway, and aquifer heterogeneity.  186 

 187 

a. 

 
b.  

 
Figure 1.  Locations of sand/carbonate (a, 
violet) and sand/gravel (b, cyan and yellow) 
shallow drinking waters mapped by the US 
Geological Survey.   
(http://water.usgs.gov/ogw/aquiferbasics/).   
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2. METHODS  188 
Ultimately, the NRAP toolset will allow a complete stochastic assessment of carbon storage sites 189 
using integrated assessment models (IAMs) that couple individual sub-models for potential 190 
storage reservoirs, leakage pathways (such as wellbores or fractures), and groundwater aquifers.  191 
Each of the underpinning stochastic models can be used separately to gain insights into the 192 
behavior of specific components in the storage-site system.  Although the IAMs are still under 193 
development, we anticipate that a user will be able to develop and substitute site-specific sub-194 
models as desired to assess various components of the storage-site system to plan the injection 195 
and post-injection site care activities.  In the current work, we focus on the behavior of USDW 196 
aquifers, using leakage-scenario inputs developed separately from specific reservoir and 197 
wellbore sub-models.   198 
Our analysis uses the results of between 500 and 700 high-fidelity reactive-transport simulations 199 
of the physical and chemical processes that are likely to change groundwater quality if CO2 200 
and/or brine were to leak from storage reservoirs to USDW aquifers, as well as statistical 201 
approximations generated by reduced-order models (ROMs) trained by detailed simulations. The 202 
simulated concentrations were used to quantify the size and location of the plumes relative to 203 
leakage sources (deep wellbores) and shallow groundwater receptors (drinking, agricultural, and 204 
industrial wells) to base discussions on monitoring and corrective action plans that are needed for 205 
the permitting of Class VI injection wells. The ROMs are needed to capture variability within the 206 
storage, leakage, and USDW aquifer systems through more thorough sampling of the parameter 207 
space and significantly faster simulation times to calculate the probability of a change in 208 
groundwater chemistry. We used an uncertainty quantification code called PSUADE (Tong, 209 
2005, 2010) to establish sampling points for the reactive-transport simulations, to conduct 210 
parameter sensitivity analysis, and to train ROMs.  211 

2.1 STORAGE RESERVOIR 212 
The reservoir ROM is a look up table for the spatial and temporal distribution of CO2 saturation 213 
and pressure as function of variable permeability, porosity, pore compressibility, and van 214 
Genuchten α and m for geologic layers in the storage and caprock formations (Table 1).  It was 215 
derived from 200 simulations of CO2 injection using a geologic model developed for a potential 216 
industrial-scale storage project in the Southern San Joaquin Basin near Kimberlina, California 217 
(Zhou and Birkholzer, 2011; Wainwright et al., 2012). The geological structure and 218 
hydrogeological parameters of various subsurface layers were determined from field data. The 219 
storage formation, based on field data from the Vedder sandstone, was divided into six sand and 220 
shale layers.  The parallel version of TOUGH2 (Zhang et al., 2008) was used to simulate 221 
CO2/brine migration and pressure buildup within the CO2 storage formation and 222 
overlying/underlying formations. The simulation time includes an injection period of 50 years 223 
with an injection rate of 5 Mt per year, and a post-injection period of 150 years.  224 
  225 
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Table 1: Reference parameter values: horizontal permeability kh, (±10) anisotropy ratio kv/kh, porosity Φ 226 
(±30%), pore compressibility βp (±5), van Genuchten α (±5) and m (±30%). 227 

	   Caprock	   Vedder	  Sand	   Vedder	  Shale	  

Kh, mD	   0.002	   Depth	  Dependent	  	   0.1	  

Kv/kh	   0.5	   0.2	   0.5	  

Φ	   0.338	   Depth	  Dependent	  	   0.32	  

βp,10-10 Pa-1	   14.5	   4.9	   14.5	  

α, 10-5 Pa-1	   0.42	  	   13	  	   0.42	  

m 0.457	   0.457	   0.457	  

 228 

2.2 WELLBORE LEAKAGE 229 

In all the scenarios considered in this study, abandoned legacy wells were presumed to be the 230 
most likely source of leakage. This scenario would be consistent with a storage site with legacy 231 
wells from previous oil and gas operations that were not identified or remediated during site 232 
characterization or through monitoring at the site. The intent was to allow leakage in order to 233 
understand how the aquifers would respond should a failure occur, recognizing that these 234 
assumptions would not be expected for sites using best practices and operated under current class 235 
VI regulations.  We did select “plausible” leakage scenarios under these conditions, such that the 236 
volumes of leaked brines and CO2 were physically realistic. 237 

Leaky wells were assumed to fully penetrate the caprock and connect the storage reservoir and 238 
the shallow aquifer. To generate a range of plausible wellbore leakage scenarios, simplified 239 
ROMs for the sequestration reservoir and leaky wellbore were linked. The predicted leak rates 240 
were then applied as a CO2/brine source at the base of the aquifer, as shown in Figure 2. The 241 
wellbore leakage ROM considered uncertainty in wellbore permeability and depth (Jordan et al., 242 
2013). This ROM used input from the storage reservoir ROM to link reservoir pressure and 243 
CO2/brine saturation to the leakage rates. In all cases, CO2 injection was assumed to cease after 244 
the first 50 years. 245 
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 246 
Figure 2: Schematic showing the links between reservoir, well leakage, and aquifer models using the High 247 
Plains Aquifer case study.  Links between reservoir, well leakage, and the Edwards Aquifer case study are 248 

identical.  249 
Assumptions about the location and number of leaky wells differed between the two simulation 250 
studies, but both studies considered a similar range of leakage rates and brine chemistry 251 
assuming wellbore permeability between 10-‐14	  to	  10-‐10	  m2 (Table 2).  Typical CO2 leakage rates 252 
were between 0.1 and 1 g s-1 and cumulatively, represent less than 0.4% of the total mass of CO2 253 
injected in the reservoir.  The rates are similar to those measured at Mammoth Mountain and 254 
Crystal Geyser (Lewicki et al., 2007; Wilson et al., 2007).  A typical time-varying leakage 255 
scenario is shown in Figure 3. 256 

For the High Plains Aquifer study, the location of possible leaky wells was pre-determined using 257 
a database of 165 well locations. For each realization, between 1 and 5 leaky well location were 258 
selected randomly from those 48 wells located within a 5,000-meter radius of the injector. This 259 
percentage of wells (2–10%) spans the percentage (5%) of wells observed to have sustained 260 
casing pressure in the Canadian oil fields which was reported by Watson and Bachu (2009), who 261 
offered this as an expected rate should legacy wells in an oil/gas region be left unchecked. 262 

For the Edwards aquifer study, only one leaky well was considered, with a fixed location. This 263 
assumption allowed very fine grid resolution at the location of the leak. And like the High Plains 264 
study, consideration of variation in reservoir and leaky wellbore properties allowed a large 265 
number of leakage rates to be considered. 266 

We also considered uncertainty in brine chemistry. A brine chemistry database 267 
(www.natcarbviewer.org) was used to evaluate the possible range of sodium and chloride 268 
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concentrations in the brine, and an experimental study was used to evaluate the possible range of 269 
three trace metals (As, Pb, and Cd) (Karamalidis et al., 2013).  270 

 271 

 272 
Figure 3: Example CO2 and brine leakage rates as functions of time. 273 

 274 
Table 2: Variable parameters and ranges sampled in the High Plains and Edwards studies 275 

Parameter	  
High	  Plains	   Edwards	  

Unit	  
Minimum	   Maximum	   Minimum	   Maximum	  

CO2	  leakage	  rate
1	  	   0.0	   168	   .00001	   311	   [g	  s-‐1]	  

Cumulative	  CO2	  mass1	   0.0	   995	   .00124	   1840	   kton	  

Brine	  leakage	  rate1	   0.0	   56	   .0018	   36	   [g	  s-‐1]	  

Brine	  mass1	   0.0	   324	   .0112	   291	   kton	  

NaCl	   0.001	   6.7	   0.1	   6.7	   [mol	  L-‐1]	  

Arsenic2	  	   10-‐7.98	   10-‐5.87	   10-‐7.76	   10-‐5.94	   [mol	  L-‐1]	  

Cadmium2	   10-‐8.87	   10-‐6.43	   10-‐8.76	   10-‐6.94	   [mol	  L-‐1]	  

Lead2	   10-‐8.12	   10-‐4.74	   10-‐8.02	   10-‐6.19	   [mol	  L-‐1]	  

1Time	  dependence	  of	  CO2	  and	  brine	  leakage	  rates	  and	  masses	  were	  calculated	  from	  variations	  in	  wellbore	  276 
permeability	  (10-‐14	  to	  10-‐10	  m2).	  	  277 
2Trace	  metal	  concentrations	  were	  sampled	  independently	  from	  NaCl	  concentrations	  for	  the	  High	  Plains	  study.	  For	  the	  278 
Edwards	  study	  trace	  metals	  were	  varied	  as	  a	  constant	  ratio	  of	  Cl	  (molar	  concentrations).	  	  279 
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2.3 MULTI-PHASE REACTIVE TRANSPORT OF CO2 AND BRINE IN AQUIFERS 280 
The two classes of aquifers studied were an unconfined fractured carbonate aquifer based on the 281 
Edwards Aquifer, Texas, and a confined aquifer with variable lenses of high permeable sands 282 
and low permeable silts based on the High Plains Aquifer, Kansas. We simulated the response of 283 
representative portions of these aquifers to CO2 and brine leakage through wells from a CO2 284 
storage reservoir using multi-phase and multi-component reactive transport codes and calculated 285 
changes in pH, TDS, As, Cd, and Pb concentrations under a wide range of hydrogeologic 286 
conditions. 287 

Computer codes NUFT (Nitao, 1998; Hao et al., 2012) and FEHM (Zyvoloski et al., 2011) were 288 
used for the confined alluvium aquifer and the unconfined carbonate aquifer, respectively. Both 289 
codes are highly flexible for modeling non-isothermal, multi-phase flow and reactive transport 290 
and have been extensively verified and used for a variety of subsurface flow and transport 291 
problems, including nuclear waste disposal, groundwater remediation, CO2 sequestration and 292 
hydrocarbon production. 293 

The reactive transport simulations include a limited amount of chemistry to account for changes 294 
in groundwater pH due to CO2 dissolution, as well as dissolved sodium and chloride as indicators 295 
of TDS. The dissolution of CO2 in groundwater promotes the following sets of reactions: 296 

         (1) 297 

                (2) 298 

       (3) 299 

These reactions promote the acidification of the system, which is then buffered by calcite 300 
dissolution. We did not include reactions that might affect trace metal concentrations in the 301 
aquifer, such as decreases due to adsorption or increases due to pH-related desorption were 302 
ignored for the purpose of simplification. The trace metal plumes described below, therefore, 303 
only describe the fate of trace metals originating in the brine. 304 

2.3.1 Unconfined Carbonate Aquifer 305 
We studied the impact of possible leakage from sequestration reservoirs on water quality in 306 
carbonate aquifers, because a large percentage of the U.S. drinking water supply is derived from 307 
carbonate aquifers. To guide our numerical model construction, we selected a particularly well-308 
characterized example: the carbonate Edwards Aquifer located in south-central Texas (Figure 4).  309 
This aquifer covers an area of more than 105 km2 (Painter et al., 2007).  We focused on an 310 
unconfined portion of the aquifer near San Antonio. The San Antonio segment is one of the most 311 
productive karst aquifers in the world, and is the sole source water supply for more than 2 312 
million people (Musgrove et al., 2010). Water levels and groundwater chemistry data from 313 
USGS reports for the San Antonio area were used to establish the local hydrologic gradient and 314 
background chemistry (Lindgren et al., 2004; Musgrove et al., 2010). The aquifer is composed of 315 
carbonate rocks of the Georgetown Formation and the Edwards Group (or their stratigraphic 316 
equivalents), which range in thickness from 121–152 m.  317 
  318 

CO2 (g)!CO2 (aq)

CO2 (aq)+H2O!HCO3
" +H +

CaCO3(calcite)+H
+ !Ca2+ +HCO3

"
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 319 

 320 
Figure 4: Location of unconfined portion of the Edwards Aquifer in south-central Texas. 321 

 322 
The numerical model consisted of hydrostatic lateral boundaries, a water table equal to the local 323 
hydrologic gradient of 7.5 Pa m-1 and a thickness of 150 m, which matched the upper end of the 324 
aquifer’s observed thickness. The lateral extent of the model, 8,000 km × 5,000 km, was 325 
selected pragmatically to be as small as possible (to allow very small grid blocks), yet much 326 
larger than any simulated groundwater plume. The computational mesh had variable grid spacing 327 
consisting of small cells near the well (Δx = Δy = 9 m, Δz = 6 m), gradually increasing to larger 328 
cells in the far field (Δx = 200 m, Δy = 300 m, Δz = 20 m) to capture CO2 buoyancy physics. 329 
Using the range of model parameters described in Table 1, plumes never approached the lateral 330 
boundaries of the model. 331 
Aquifer heterogeneity in the Edwards is controlled by large and unpredictable variations in karst 332 
features (Lindgren, 2006). We assumed random Gaussian variations in permeability, using mean, 333 
variance, and correlation lengths determined for this aquifer by Painter et al. (2007) and 334 
Lindgren  (2006). Stochastic fields of heterogeneous permeability were generated using the pilot 335 
point method and random Gaussian interpolation (Deutsch and Journel, 1992; Dai et al., 2007; 336 
Harp et al., 2008). All nodes were assumed to have anisotropic intrinsic permeability. Models 337 
allowed porosity to vary spatially along with permeability: 338 

! = !∅!             (4) 339 

where, k [m2] is permeability, ∅   is porosity, and   !   and ! are coefficients (a=4.84×10-10 and 340 
b=3) (Bernabe et al., 2003; Deng et al., 2012).  Ranges for uncertain rock parameters listed in 341 
Table 3 represent our current understanding of system variability and could be redefined over an 342 
alternate range to better describe characterization data from another site.  343 
 344 

 345 
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Table 3: Uncertain parameters and their ranges for unconfined carbonate aquifer simulation 346 

	   Parameter	   Minimum	   Maximum	   Unit	  

1	   Permeability	   Variance	   0.017	   0.79	  	   [km2]	  

2	   Correlation	  length	  	   1	   3.95	   [km]	  

3	   Anisotropy	   1.1	   49.1	   [-‐]	  

4	   Mean	   -‐13.5	   -‐10.6	   Log10[m
2]	  

5	   Mean	  porosity	   	   0.05	  	   0.34	  	   [-‐]	  

	  347 

2.3.2 Confined Alluvium Aquifer 348 
The High Plains Aquifer is representative of a sedimentary aquifer that might overlay a CO2 349 
storage reservoir. The aquifer, also known as the Ogallala aquifer, is one of the largest aquifers 350 
in the world covering about 450,000 km2 and spanning eight states in the Great Plains (Figure 5). 351 
The aquifer accounts for approximately 27% of all irrigated land in the United States and about 352 
30% of all groundwater used for irrigation (USGS, 2011). It is comprised mainly of 353 
unconsolidated or partly consolidated silt, sand, gravel and clay rock debris deposited in the late 354 
Miocene to early Pliocene period when the Rocky Mountains were tectonically active (Gutentag 355 
et al., 1984). 356 
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 357 
Figure 5: Location of alluvial High Plains Aquifer in Kansas.  358 

 359 
The top 300 m of the aquifer was used to develop a lithological model for the geological 360 
realizations of the numerical model. Lithologic descriptions were obtained from the Kansas 361 
Geological Survey’s Water Well Completion Record (WWC5) database (KGS, 2011). All 362 
simulations were based on a 10 km × 5 km domain that lies primarily in Haskel County and was 363 
selected due to the relatively higher density of lithological picks needed to represent the model 364 
depth of 240 m. A total of 468 lithological picks from 48 domestic, feedlot, irrigation, public 365 
water supply and oil field water supply wells were used to develop the geostatistically derived 366 
indicator models using the TPROGS software (Carle, 1999). Correlation lengths were derived 367 
from the transition probability approach. The correlation lengths in the x- and y-direction varied 368 
uniformly from 200–2500 m and the correlation length in z-direction varied uniformly from 369 
0.50–25.0 m. A total of 1,000 conditional geostatistical realizations were developed based on 370 
randomly selected material-volume fraction and correlation lengths using the PSUADE 371 
uncertainty quantification software package (Tong, 2005, 2010).  372 

The 3-D numerical model domain captured the unsaturated and saturated zones of the 373 
heterogeneous High Plains Aquifer. The model domain extended to 10,000 m × 5,000 m × 240 m 374 
with 1 to 5 leakage sources placed at 198 m depth at known well locations. The orthogonal 375 
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numerical grid contained fixed cell widths in the x (Δx = 100.0 m), y (Δy = 100.0 m), and z (Δz 376 
=4.8 m) directions. The grid dimensions were 100, 50, and 50 nodes in the x, y, and z directions, 377 
respectively, for a total of 250,000 nodes.	  Isothermal conditions were assumed with a generic 378 
temperature of 17°C in the entire domain. The uppermost portion of the model was set as 379 
atmospheric allowing for both saturated and unsaturated conditions. The east (minimum x) and 380 
west (maximum x) model boundaries were fixed in time. Hydrostatic-pressure gradients were 381 
achieved by changing the gravity vector. No-flow boundaries were assumed at the southern 382 
(minimum y), northern (maximum y) and bottom (minimum z) boundaries. A constant-pressure 383 
boundary condition was set on ground surface and at the aquifer bottom to maintain a hydrostatic 384 
initial condition with saturated and unsaturated zones. Regional groundwater flow was 385 
maintained by a 0.3% hydraulic gradient. Since the regional groundwater flow of the Great 386 
Plains Aquifer in southwestern Kansas flows eastward, the mesh is structured to accommodate 387 
flow in the predominant x-direction. The leakage source term was estimated from reservoir and 388 
wellbore ROMs (Jordan et al., 2013; Wainwright et al., 2012). Each simulation was executed for 389 
~20–60 hours using the high performance computing facility at Lawrence Livermore National 390 
Laboratory (LNNL).  391 

Ranges for uncertain rock parameters are listed in Table 4. Physical parameters, including 392 
porosity, density, permeability and van Genuchten unsaturated parameters, were taken from the 393 
USDA Rosetta database (Schaap et al., 2001).  394 

Table 4: Uncertain parameters and their ranges for alluvium aquifer simulation. 395 

	   1Parameter	   Minimum	   Maximum	   Unit	  

1	   Sand	  volume	  fraction	  of	  aquifer	   0.35	   0.65	   [-‐]	  

2	   Correlation	  length	  of	  aquifer	  in	  x	   200.0	   2500.0	   [m]	  

3	   Correlation	  length	  of	  aquifer	  in	  z	   0.50	   25.0	   [m]	  

4	   Sand	  permeability	  of	  aquifer	   -‐13	   -‐10	   Log10[m
2]	  

5	   Clay	  permeability	  of	  aquifer	   -‐18	   -‐15	   Log10[m
2]	  

1Mean	  values	  for	  correlation	  length	  in	  y	  =	  1350	  m,	  sand	  and	  shale	  porosity	  of	  0.38	  and	  0.47,	  sand	  and	  shale	  396 
van	  Genuchten	  m	  of	  0.66	  and	  0.19,	  sand	  and	  clay	  van	  Genuchten	  α	  =	  5.6234	  ×10-‐5	  and	  1.5136	  ×10-‐5	  Pa-‐1,	  and	  397 
CO2	  diffusivity	  10

-‐9	  m2s-‐1)	  398 

2.4 IMPACT THRESHOLDS 399 

The simulations were used to calculate the volume of groundwater within the shallow aquifers 400 
that exceeds certain water quality thresholds. We considered two thresholds in this study, as 401 
defined in Table 5 and developed by Last et al. (2013): “no impact” and maximum contaminant 402 
level (MCL) thresholds. The no-impact thresholds represent the lowest detectable concentrations 403 
above the background water chemistry that could be used to quantify a change in groundwater 404 
chemistry due to CO2 or brine leakage, and were calculated as the 95%-confidence, 95%-405 
coverage tolerance limit from data sets specific to each aquifer type. A key feature of the data 406 
presented in Table 5 is that the no-impact thresholds are much closer to the initial water 407 
chemistry in the carbonate aquifer case than the sands aquifer case. This may reflect differences 408 
in site-specific data used to define the initial model chemistry and the data used to estimate the 409 
no-impact thresholds. For the carbonate aquifer, the background thresholds were based on 410 
temporal data within or immediately adjacent to the model domain for the unconfined portion of 411 
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the Edwards Aquifer (Musgrove et al., 2010). For the confined alluvium aquifer, the background 412 
thresholds were based on a 2010 USGS groundwater survey of 30 wells within the High Plains 413 
Aquifer from an area outside of the lithologic model site. The high no-impact threshold for the 414 
High Plains Aquifer reflects spatial and temporal variability sampled by the survey. It was 415 
necessary to use these data because spatial and temporal data were not available from within the 416 
model domain.  417 

The MCL threshold refers to concentrations that exceed primary or secondary maximum 418 
contaminant levels designated by the U.S. EPA (2009). Primary drinking water standards are for 419 
trace metals (such as As, Cd, Cr, Cu, and Pb, among others) and are legally enforced for the 420 
protection of public health by limiting the levels of contaminants in drinking water. Secondary 421 
drinking water standards (which include standards for Fe, Mn, and Zn) are non-enforceable 422 
guidelines regulating contaminants that may cause cosmetic or aesthetic effects in drinking 423 
water.  424 

Table 5: Initial aquifer concentrations used in the simulations, no-impact and MCL (EPA, 2009) thresholds 425 
reported in Last et al. (2013). 426 

Analyte	  

Unconfined	  Carbonate	  Aquifer	  	  
(Edwards	  Acquifier)	  

Confined	  Unconsolidated	  Sands	  
Aquifer	  

(High	  Plains	  Acquifier)	  

U.S.	  EPA	  
Regulatory	  
Standard	  

Initial	  
Model	  

No-‐Impact	  
Thresholda	  

Initial	  Model	   No-‐Impact	  
Thresholda	  

MCL	  Thresholda	  

pH	   6.9	   6.6	   7.6	   6.625f	   6.5	  

Total	  
Dissolved	  
Solids	  

330	   420	  mg	  L-‐1	   570	  mg	  L-‐1	   1300	  mg	  L-‐1b	   500	  mg	  L-‐1c	  

Arsenic	   0.31	   0.55	  μg	  L-‐1	   1.5	  μg	  L-‐1	   9.3	  μg	  L-‐1	   10	  μg	  L-‐1	  

Cadmium	   0.00	   0.04	  μg	  L-‐1	   0.059	  μg	  L-‐1	   0.25	  μg	  L-‐1	   5	  μg	  L-‐1	  

Lead	   0.06	   0.15	  μg	  L-‐1	   .086	  μg	  L-‐1	   0.63	  μg	  L-‐1	   15	  μg	  L-‐1	  
(a)	   95%-‐confidence,	  95%-‐coverage	  tolerance	  limit	  based	  on	  log	  values	  except	  for	  pH,	  which	  is	  already	  a	  log	  value.	  427 
(b)	   Threshold	  value	  exceeds	  regulatory	  standard,	  however	  using	  the	  regulatory	  standard	  may	  result	  in	  widespread	  428 

false	  positives	  under	  field	  conditions.	  429 
(c)	   Value	  is	  about	  0.5	  pH	  units	  lower	  than	  no-‐impact	  threshold	  estimated	  by	  Last	  et	  al.	  (2013)	  because	  ROMs	  at	  430 

higher	  threshold	  produced	  non-‐physical	  results.	  	  431 
 432 
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3. CHANGES TO GROUNDWATER QUALITY  433 
CO2 and brine leakage into shallow aquifer resources can change the groundwater chemistry to 434 
values above the no-impact and MCL thresholds. pH and TDS plume distributions over the 200-435 
year simulation period were, in large part, controlled by the distinct lithology of the respective 436 
aquifers, as is illustrated for single realizations for the High Plains and Edwards aquifers in 437 
Figures 6 and 7. This is especially true for the pH plume because it is tied to the transport of CO2 438 
gas in the aquifer systems through chemical solubility (Equations 1–3). The unconfined nature of 439 
the carbonate Edwards Aquifer allows buoyant CO2 gas to transport vertically from the leakage 440 
source term to the atmosphere with some advection in the direction of groundwater flow. Once 441 
the plume reaches the water table, the flux rate of CO2 across the water table rapidly reaches 442 
steady-state and matches the flux of CO2 from the leaking wellbore (Figure 8). In contrast, 443 
variable lenses of permeable sands and impermeable shale, characteristic of the High Plains 444 
Aquifer, limit the vertical transport of CO2 gas and yield plumes that are largely relegated to the 445 
lower permeable sand units within the aquifer, where only a small fraction of the CO2 leaked into 446 
the aquifer is transported to the vadose zone above the water table (0.01 and 0.1%).   447 
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 448 
Figure 6: Color contour plots of pH and TDS at 200 years in plan view (XY) and cross section (XZ) (a,b,d,e) 449 
and the no-impact thresholds projected against shallow well locations (black dots) for a single simulation of 450 

the Edwards Aquifer (c,f). Groundwater flow is in the Y direction (North to South).  451 
  452 
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 453 
Figure 7: Color contour plots of pH and TDS at 200 years in plan view (XY) and cross section (XZ) (a,b,d,e) 454 

and the no-impact thresholds projected against shallow wellbore locations (black dots) for a single simulation 455 
of the High Plains Aquifer (c,f). Groundwater flow is in the X direction (East). 456 

 457 

 458 
Figure 8: Correlation of CO2 leakage rate in and out of the water table for the Edwards Aquifer. 459 

  460 
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 461 
Figure 9: Unconfined carbonate (Edwards) aquifer: Comparison of plume volumes after 200 years of 462 

wellbore leakage for the MCL and no-impact thresholds for (a) As, (b) Cd, (c) Pb, (d) pH, and (e) TDS.  463 
  464 
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 465 
Figure 10: Confined alluvium (High Plains) aquifer: Comparison of plume volumes after 200 years of 466 

wellbore leakage for the MCL and no-impact thresholds for (a) As, (b) Cd, (c) Pb, (d) pH, and (e) TDS. 467 
 468 
  469 



Key Factors for Determining Groundwater Impacts Due to Leakage from Geologic Carbon Sequestration Reservoirs 

20 

Images, such as those shown in Figures 6 and 7, highlight the role that aquifer characteristics 470 
play on the spatial and temporal distribution of groundwater plumes, but only for a single 471 
realization. In total, more than 500 and 700 detailed reactive transport simulations were 472 
performed to fully capture knowledge gaps and natural system variability for the Edwards and 473 
High Plains aquifers, respectively. The results measure our current understanding of the 474 
contribution of CO2 and brine leakage on groundwater quality given the inherent uncertainty in 475 
the storage reservoir, leakage pathways, and dilute aquifer for these model systems. Figures 9 476 
and 10 plot the cumulative distribution of emulated plume volumes at representative time 477 
intervals for CO2 injection (40 years) and post injection (200 years) for pH and TDS thresholds 478 
for the unconfined carbonate (Edwards) and confined alluvium (High Plains) aquifers when 479 
exposed to the same leakage scenarios (MCL TDS for the alluvium aquifer was below the 480 
baseline value and is not plotted). The unconfined aquifer plot extends to smaller plume volumes 481 
(102 m3) because of the smaller grid size and consequent ability to resolve smaller plumes.  482 
We use the results and probability of occurrence ranges to forecast the likelihood that leakage 483 
will impact groundwater quality over 200 years (Figure 11).  We use 105 m3 as the lowest 484 
volume threshold so that the results of the two models can be compared, regardless of grid size. 485 
The probability of occurrence is shown against the no-impact and the MCL thresholds for each 486 
aquifer. There is a higher probability of exceeding the no-impact threshold for the unconfined 487 
carbonate aquifer than the alluvium aquifer because the thresholds in these examples are much 488 
lower and closer to the initial model chemistry for the Edwards aquifer than for the High Plains 489 
aquifer. Leakage is likely to result in a statistically significant change of the trace metal 490 
concentrations pH and TDS for the Edwards example. Whereas, leakage is only likely to cause a 491 
statistically significant change to groundwater pH for the High Plains example; changes in TDS 492 
and Pb have an even chance of occurring, and changes in Cd and As concentrations are unlikely. 493 
Forecasts of groundwater quality measured against no-impact thresholds are site specific and 494 
cannot be transferred to similar aquifer sites, because the site threshold depends on spatial and 495 
temporal variability as well as the absolute concentration.   496 
Groundwater impacts to unconfined carbonate and confined alluvium aquifers are comparable 497 
when measured against MCL thresholds, with leakage likely to change pH and TDS 498 
concentrations above the thresholds. Of importance for this MCL-based metric is that probability 499 
of occurrence for trace metal impacts is unlikely to extremely unlikely to occur. Furthermore, 500 
detailed geochemical modeling of the aquifers that included inputs from both the reservoir and 501 
USDW showed trace metal concentrations could be reduced by uptake onto the aquifer 502 
sediments (Bianchi et al., 2013; Bacon, 2013). 503 

The likelihood ranges are useful, because they forecast the gross performance of the storage 504 
system, but they do not convey information on the size or the evolution of the plume with time. 505 
We refer the reader back to the emulated volumes shown in Figures 9 and 10 to discuss the time 506 
scale of groundwater impacts if leakage were to occur. Recall that all emulated groundwater 507 
plumes result from the injection of 5 million tons of CO2 per year for 50 years in which leakage 508 
is allowed to occur in up to 10% of the wells with variable permeability (10-14 to 10-10 m2) with 509 
no option to mitigate the leak if it were detected. The pH plumes continue to increase because of 510 
buoyancy driven CO2 transport and because smaller more acidic pH plumes are diluted through 511 
natural recharge and dispersion towards the more neutral thresholds, as are the TDS plumes. The 512 
emulations show a 10-fold increase in plume volume between the injection and post injection 513 
periods, on average, from 40 to 200 years. Because impacts to shallow groundwater chemistry, 514 
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as measured changes in pH and TDS above pre-injection values, can be sustained for long 515 
periods of time, it is important to detect and mitigate leakage sources as early as possible.  516 

 517 
Figure 11: Comparison of the probability of occurrence of emulated plumes for the leakage scenarios 518 

investigated for the High Plains alluvium and Edwards carbonate aquifers that exceed the no-impact (a) and 519 
MCL (b) thresholds for pH, TDS, As, Cd, and Pb for volumes greater than 105 m3 against the likelihood 520 

ranges for expressing the probability of occurrence. 521 
Figure 12 plots pH and TDS plume volumes for no-impact thresholds against the cumulative 522 
mass of CO2 and brine leaked into the unconfined carbonate and confined alluvium aquifers at 523 
40 and 200 years after the initiation of CO2 injection.  Plume volume is largely dependent on the 524 
mass of CO2 or brine that leaks into the aquifer (where TDS concentration is also important).  Up 525 
to one million tons of CO2 and brine leaked into the aquifers and produced plume volumes as 526 
large as 100 million cubic meters (108m3).  In both the Edwards and High Plains models, the 527 
amount of leaked CO2 and brine comprised a very small fraction (≤ 0.4%) of the CO2 injected 528 
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into the storage reservoir (250 million tons) and reservoir brine in the area of review even after 529 
200 years of simulation.  530 

We use the data in Figure 12 to estimate leakage bounds that do not result in a measureable 531 
change in the groundwater composition (defining plume volume > 105m3). The lower bound for 532 
pH plume volumes is about 100–1,000 tons of CO2 for the unconfined carbonate or confined 533 
alluvium aquifer examples.  Similar lower bounds on CO2 leakage for the two different aquifers 534 
can be explained by buffering capacity of carbonate minerals in both systems and by the nearly 535 
identical no-impact thresholds for each system. There is a more marked difference for the lower 536 
bounds for brine leakage for the two aquifers, largely because the no-impact thresholds differ 537 
significantly. The simulated results indicate that leakage as small as 1–10 tons could result in a 538 
measurable change in the carbonate aquifer with a TDSno impact threshold = 420 mg L-1. Whereas the 539 
lower bound for the alluvial aquifer was about 100–1,000 tons of brine because this particular 540 
aquifer has a higher no-impact threshold (TDSno impact threshold = 1300 mg L-1). Establishing a given 541 
aquifer’s leakage tolerance requires a thorough assessment of the pre-injection chemistry at the 542 
site that accounts for variability of current land use practices.  In some cases, a high-density of 543 
data may be available within the model domain, as was the case for the Edwards aquifer used as 544 
the basis for the unconfined aquifer in this study. However this was not the case for the High 545 
Plains aquifer where the no-impact threshold was based on data collected over a very large 546 
region and consequently sampled greater variability. 547 
 548 
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 549 
Figure 12: pH (a, b) and TDS (c, d) no-impact plume volumes plotted versus cumulative mass of CO2 and 550 

brine leaked into the unconfined carbonate aquifer (a, c) and the confined alluvium aquifer (b, d), where red 551 
and blue symbols indicated plume volumes 40 and 200 years after CO2 injection has started.   552 

 553 
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4. DETECTION OF GROUNDWATER PLUMES  554 
Figures 9, 10, and 12 suggest that relatively small amounts of CO2 and brine leaked from the 555 
storage reservoir can result in a measureable change to the shallow aquifer chemistry. Despite 556 
the nominally large range of plume volumes, our computations show the probability of detecting 557 
the plumes using the available shallow water infrastructure is extremely to very unlikely over the 558 
entire 200-year period (Table 6).  This determination was made using the simulated results 559 
because it allowed individual leakage source points to be compared with individual shallow 560 
groundwater receptors. Our conceptual model contains 165 deep wells, of which 49 serve as 561 
potential leakage source terms because they penetrate the area of review. Actual shallow 562 
groundwater receptors consist of 128 drinking wells in the carbonate aquifer; and 48 drinking, 563 
agricultural, and industrial wells for the confined alluvial aquifer.  Receptor density is about 2.6 564 
wells per km for the carbonate aquifer’s model domain and 1 well per km for the alluvial 565 
aquifer’s model domain. The analysis assumes that shallow wells are screened from the top to 566 
the bottom of the aquifer could detect a plume at any depth. 567 

Table 6: Percent probability that any of the shallow aquifer wells will contain groundwater above the no-568 
impact thresholds over the 200-year period. Actual shallow well locations are specific to the Edwards and 569 

High Plains areas shown in Figure 5 and 6. Deep well locations are the same for both systems. 570 

Aqueous	  Component	   Unconfined	  Carbonate	  
Aquifer	  	  (Edwards)	  

Confined	  Alluvium	  
Aquifer	  (High	  Plains)	  

pH	   4.3%	   9.6%	  

Total	  Dissolved	  Solids	   3.8%	   5.0%	  

Arsenic	   1.7%	   1.7%	  

Cadmium	   1.4%	   0.6%	  

Lead	   2.8%	   0.7%	  

Clearly, to increase the likelihood of detecting changes in groundwater chemistry a much higher 571 
density of shallow wells would be needed. Moreover, groundwater sampling is unlikely to be a 572 
reliable early leak detection strategy. Alternatives should be considered, including geophysical 573 
techniques such as electrical resistance (ER) data that samples regions in between monitoring 574 
wells using surface arrays of electrodes. Trainor-Guitton et al. (2013) computed an ER 575 
sensitivity index for a suite of groundwater simulations to assess ER’s sensitivity to plume and 576 
non-plume results, where the sensitivity index is a mean log ratio of the electrical response at 577 
two different times. In other words, the ratio is the electrical response at a time after CO2 578 
injection scaled by the electrical response at time = 0 (before CO2 injection). In general, Trainor-579 
Guitton et al. found that the sensitivity of electrical resistivity depends on both the aspect ratio 580 
(the plume’s dimension versus depth) and plume’s TDS concentration. The study demonstrates 581 
the trade-off introduced when using a geophysical technique: it provides better areal coverage 582 
(between wells) without the expense of drilling boreholes, but there is a possibility of “false 583 
negatives” or “false positives” of plume occurrence because the groundwater is not sampled 584 
directly. This is demonstrated in Figure 13, where plume length (plume defined as TDS ≥ 1500 585 
mg L-1) is plotted versus the ER sensitivity index. Ambiguity in the remote sensing data exists 586 
because samples with no plume (green) yielded a positive index. Both plume and non-plume 587 
simulations can produce the same ER sensitivity as seen in the area between the dashed lines 588 
corresponding to the 50th and 95th percentile of ER sensitivity for non-plumes. A reasonable 589 
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threshold for detectability would be for all plumes with ER sensitivity ≥ 0.0012 (to the right of 590 
the 95th percentile - cyan line) corresponding to plumes between 100 and 3,000 m in length. 591 
Although this technique may not be able to resolve the diffuse boundary defined by the no-592 
impact threshold, it would be able to detect more concentrated brines within the plume. Once 593 
detected, monitoring wells could be drilled to target the plume and assess the ability to mitigate 594 
the leak and the need for corrective actions.  595 

 596 
Figure 13: Plot of ER sensitivity index versus the plume length. Vertical lines represent the 50th and 95th 597 

percentile of the ER sensitivity index for simulations with non-plumes. ER will identify with high likelihood 598 
plumes that are ≥1,000 m in length (all samples to the right of the cyan vertical line). The samples between 599 

these two lines represent the most ambiguity in the ER signal.  600 
Above-zone pressure measurements have also been suggested as an effective means to detecting 601 
leakage because pressure signals travel fast and can be collected continuously at relatively low 602 
cost. Leakage simulations into shallow groundwater suggest that leakage rates comparable to 603 
those studied here can lead to small changes in down-hole pressure (1–5 psi) and can be detected 604 
at wellbore spacing between 100 and 500 m away from the leaking well (Sun et al., 2013; Sun 605 
and Nicot, 2013). Continuous pressure testing of monitoring wells may provide early detection 606 
of leakage into shallow groundwater.  607 
 608 
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5. IMPLICATIONS FOR MONITORING  609 
The U.S. EPA Class VI well permitting process for CO2 storage requires that the area of review 610 
and risk to overlying USDW resources be assessed. Simulation and emulation studies that 611 
capture the storage reservoir, leakage pathways, and aquifer heterogeneity can be used to 612 
evaluate effective monitoring strategies of a potential storage site. Identification of possible 613 
leakage rates, coupled with predictions of plume volumes, can be used to identify potential 614 
monitoring and corrective action strategies should leakage from the storage reservoir occur. In 615 
the case of our two aquifer examples, the models assumed a fixed 50-year injection period, 616 
variable wellbore leakage pathways to either an unconfined carbonate aquifer or a confined 617 
alluvium aquifer, and that no corrective actions were made to the leaking wells for the 200-year 618 
simulation period. In the discussion that follows, we refer to results measured against the no-619 
impact thresholds, as they represent the earliest point at which a detectable change in 620 
groundwater quality can be measured in the aquifer systems studied here.  621 
The U.S. EPA has adopted a no net degradation policy for managing groundwater resources. 622 
Therefore, it is extremely important to establish a given USDW’s baseline chemistry, as this 623 
baseline data can be used to develop no-impact threshold values for the site. The no-impact 624 
thresholds calculated as part of this study were demonstrated to be site specific. Key differences 625 
in the calculated values between the two sites were due to a combination of aquifer properties, as 626 
well as by the availability of existing spatial and temporal groundwater data on which the no-627 
impact threshold was based. In the case of the Edwards aquifer, sufficient data were available 628 
from wells located within the model domain. However this was not the case for the High Plains 629 
aquifer, where the no-impact threshold values were based on data collected over a very large 630 
region. If no-impact thresholds are used to define plumes, aquifers with substantial temporal and 631 
spatial variability in water quality will have smaller plumes that will be more difficult to detect. 632 
Despite vertical transport of CO2 out of the unconfined carbonate aquifer, the probability of 633 
impact to groundwater quality is higher than for the unconfined carbonate aquifer because the 634 
pre-injection chemistry is lower and the natural variability is smaller. 635 
Although CO2 and brine leakage are likely to drive pH below and increase TDS above the no-636 
impact thresholds for both aquifers evaluated, the size of the plumes is small relative to spacing 637 
of the current network of wells in both the unconfined (2.6 wells/km2) and confined (1 well/km2) 638 
aquifers. There is a very low probability that the plumes would intersect USDW wells in the two 639 
study areas and in other areas with similar receptor density, based on our initial simulations and 640 
current understanding of parameters for both shallow aquifer systems. This result points to the 641 
need to test and develop spatially diverse, yet robust, monitoring techniques capable of detecting 642 
leakage early, which can be used to add confidence to data generated through typical 643 
groundwater assessments.  644 

Some period of post-injection site care is required. Our simulations predict that even small 645 
amounts of CO2 and brine, when left unmitigated, can change USDW pH and TDS 646 
concentrations for long-periods of time. The difficulty is deciding the time period, because it 647 
could take many years to directly observe the impacted waters in monitoring wells. The focus of 648 
this study was on using simulations to predict potential impacts within shallow USDWs, not on 649 
identifying methods for early leakage detection. Future efforts will focus on understanding how 650 
early detection and mitigation of leaks impacts plume volume and the time required for the 651 
aquifer chemistry to rebound to pre-leakage conditions.   652 
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