

LA-UR-15-29331

Approved for public release; distribution is unlimited.

Title:	Pyrocumulus Collapse: Unpredicted Wildfire Dangers		
Author(s):	Kim, Young-Joon		
Intended for:	rdcentral.lanl.gov/itg		

lssued: 2015-12-07

Disclaimer: Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Departmentof Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness. viewpoint of a publication or guarantee its technical correctness.

UNCLASSIFIED

NATIONAL LABO

Pyrocumulus Collapse: Unpredicted Wildfire Dangers

LA-UR-##-#####

This document is approved for public release; further dissemination unlimited

UNCLASSIFIED

UNCLASSIFIED

Pyrocumulus Collapse: Unpredicted Wildfire Dangers

LDRD

Understanding Unexpected Wildfire Risk Using Numerical Models

BACKGROUND & MOTIVATION

The Las Conchas Fire occurred in Santa Fe National Forest near Los Alamos, New Mexico, on June 26, 2011.

 The fire surprised everyone when it unexpectedly burned about 35,000 acres in less than 7 hours during its first night it was burning downhill

Las Conchas Fire seen from LANL

in sparse vegetation and under milder wind conditions than had been present on that afternoon.

• The physical mechanisms for the nighttime blow-up of the fire were unknown yet.

INNOVATION

We propose two potential physical mechanisms for the fire blow-up.

- 1.Downdrafts associated with the soot-laden pyro-cumulus column (pyro-cu) that towered above the fire, causing a sustained density current carrying fire at high speed.
- 2.Downslope windstorms due to the breaking of large-

amplitude mountain waves developed over

Jemez Mountains near Los Alamos.

We provide insights on these mechanisms and explore their possible effects on wildfire behavior dynamics.

DESCRIPTION

We validate our proposed mechanisms with the aid of numerical simulations using a mesoscale atmospheric model (WRF; Weather Research and Forecasting model) and LANL's local-scale dispersion model (HIGRAD; High-GRADient model).

High-resolution HIGRAD

rapid descent of heavier-

simulations illustrate that a

than-air gas mixture due to

could occur under certain

atmospheric and wildfire

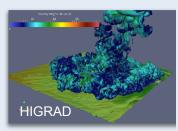
WRF simulations indicate significant mountain-wave

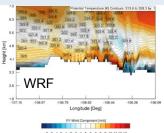
downslope windstorm and

topography in the fire area.

Stable Case w/ Heat Source (Fr¹=1.2) (f) Horizontal Winds

downstream of complex


breaking that induces


turbulent rotors in

conditions.

HIGRAD

its own weight (i.e., pyro-cu)

 High-resolution HIGRAD simulations with localized, idealized wildfire-like heat source is largely affected by topographically generated gusty winds and rotors, describing the blow-up of the fire complicated by reversed winds associated with rotors.

Current Technology Readiness Level (TRL): 4

 HIGRAD has been revised to properly simulate the atmosphere-topography-fire interaction in idealized cases.

UNCLASSIFIED

ANTICIPATED IMPACT

This research addresses important implications for wildfire research and wildfire/crisis management.

•Observed nominal atmospheric conditions from the first night of the Las Conchas Fire are likely to occur in a vast set of firesusceptible communities bordering mountains across the country. We can:

- Save lives and safeguard critical government and industrial facilities under similar environments.
- Support USDA Forest Service wildfire research and management missions.

PATH FORWARD

Continue Research

- Simulate realistic atmospheric and topographic conditions for Las Conchas Fire.
- Identify high-risk conditions for this combined atmospheric/fire behavior.
- Continually wok to:
 - Improve computational efficiency of HIGRAD, or
 - Develop simpler models using highresolution simulations, or
 - Develop fire-wind parameterization using high-resolution simulation.

Potential End Users:

• Wildfire modeling community, USDA FS, Laboratories, Insurance companies, etc.

Point of Contact: Young-Joon "YJ" Kim, EES Division, 505-667-8175, & yj.kim@lanl.gov

Penta Chart Name

Metadata (For FCI/ITG use only)

CONTACT INFORMATION

Please list the following contacts for the penta chart.

Principal Investigator (PI): Young-Joon Kim

Co PI(s): Rodman Linn

Responsible Group: EES-16

Responsible Line Manager (RLM): Carl Gable

Derivative Classifier (or DUSA category):

DISTRIBUTION RESTRICTIONS

Please select any known unclassified sensitive information that may be contained in your penta chart.

None – Make Publicly Available

X Penta chart does not contain any sensitive unclassified information and could be released for public distribution (LA-UR)

LANS Proprietary Information (LPI)*

- Prepublication
- Proposal/Competition Sensitive

____Patent (or Potentially Patent) Sensitive

Official Use Only (OUO) – Statutory*

____Export Controlled (ECI)

____CRADA Protected Information

____Company Proprietary

Official Use Only (OUO) – Discretionary*

----- Program/Sponsor Sensitive

Note: If your penta chart contains unclassified sensitive information please make sure it is marked appropriately. The templates page in ITG contains additional coversheets for most unclassified sensitive markings.

Penta charts cannot contain UCNI or classified information

INTENDED AUDIENCE

* Please specify audiences below that you are ok with your penta chart being shared.

LANL Employees

- Line Management & LANL Program Offices
- _X_ All LANL employees

Government

- _X_ Government Employees
 - Government Contractors (including other DOE Labs)

Academia Universities

- Industry
- ____Defense Contractors
- ____Companies

Public

_X_Publicly available

SPONSOR (FUNDING) INFORMATION

Current Sponsor(s):

Please select current sponsors that are funding development of the technology/capability described in your penta chart.

Previous Sponsor(s):

Please select previous sponsors that have funded development of the technology/capability described in your penta chart.

ARPA-E	DTRA	ARPA-E	DTRA
CDC	EPA	CDC	EPA
DARPA	Industry	DARPA	Industry
DHS	_ ^X _LDRD	DHS	LDRD
DOD	NASA	DOD	NASA
DOE	NIH	DOE	NIH
DOE (EERE)	NSF	DOE (EERE)	NSF
DOE (EPSCoR)	ONR	DOE (EPSCoR)	ONR
DOE (FE)	University	DOE (FE)	University
DOE (NE)	USDA	DOE (NE)	USDA
DOE (OSC)	Other	DOE (OSC)	Other
DoS		DoS	

<u>Do NOT specify a specific sponsor if doing so will make this document classified.</u>

Penta Chart Name

Metadata (For FCI/ITG use only)

RELEVANT LANL SCIENCE PILLARS

Please identify if the technology/ capability described in your penta chart is relevant to any of the LANL Science Pillars.

____ Materials for the Future

Information Science & __X_ Technology for Prediction

— Nuclear and Particle Futures

X Science of Signatures

CAPABILITY AREAS

Please select the most relevant LANL capability area(s) for the technology/capability described in your penta chart.

Complex Natural and _x_ Engineered Systems

- ____ Engineering
- Information Science and _____ Technology
- ____ Materials for the Future

Nuclear and Particle

- ____ Futures
- _X_ Science of Signatures

APPLICATION SPACE

Please select the most relevant application space(s) for the technology/capability described in your penta chart. (Select a maximum of 4)

- Advanced Manufacturing
- ___ Aerospace
- ____ Automotive & Transportation
- ____ Bio/Medical
- _X_ Climate & Meteorology
- Communications
- ____ Energy Non Nuclear
- ____ Energy Nuclear
- ____ Engineering, Electronics & Instrumentation
- ____ Explosives & Explosives Detection
- ____ Forensics
- ____ Information Technology
- _X_ Infrastructure & Infrastructure Systems
- ____ Large Data to Decision
- _X_ National Security (DoD, DHS, etc.)
- ____ Persistent Surveillance
- ____ Sensors & Sensor Technology
- ____ Space & Astronomy
- ____ Warfighter Support
- ____ Other

RELEVANT LANL PROGRAM OFFICE(S)

Please select the most appropriate LANL Program Offices for representing the technology/capability described in your penta chart. *(Select a maximum of 4)*

Global Security (GS):

- ___ Emerging Threats (GS-ET)
- ____ Feynman Center for Innovation (FCI) Industry/Non-Federal
- ____ FCI Other Federal Government (DHHS, NIH, Commerce)
- ____ Intelligence Defense & Counterterrorism (GS-IDC)
- ____ Nuclear Nonproliferation and Security (GS-NNS)

Science, Technology & Engineering:

Advanced Computing Solutions Program Office (ACS-PO) _ (cyber security)

- ____ Applied Energy (SPO-AE)
- ___ Civilian Nuclear Program (SPO-CNP)
- ___ National Security Education Center (NSEC)
- _x_ Office of Science Programs(SPO-SC)

Other Programs:

- _x_ Advanced Simulation & Computing Program (ASC)
 - __ Joint Munitions Program (JMP)
- ____ Other

Metadata (For FCI/ITG use only)

LDRD FUNDING

Please specify if the technology/capability described in your penta chart was the result of LDRD funding.

LDRD Project Number(s): 20130487ER

LDRD Project Name(s): Pyrocumulus Collapse: Unpredicted Wildfire Dangers

If the technology/capability described in your penta chart was not the result of LDRD funding, please delete the LDRD logo from your penta chart before submitting

INVENTION AND COPYRIGHT DISCLOSURES

Please specify if the technology/capability described in your penta chart has also been disclosed in an invention disclosure in LANL's IDEAS systems or a copyright disclosure in LANL's CODES system.

Inventions (IDEAS)

IDEAS Disclosure Number(s):

Disclosure Title(s):

Copyrights (CODES)

CODES Disclosure Number(s):

Disclosure Title(s):

KEY WORDS

Please list keywords that will help people search for your penta chart.

Key Words: wildfire; Las Conchas Fire; nighttime blow-up; pyrocumulus; mountain wave; heat source; topography; HIGRAD; WRF; numerical model; downdraft; downslope windstorm; rotor; USDA Forest Service; infrastructure protection

NOTES

Please provide notes for any additional guidance LANL staff should know prior to distributing or presenting this penta chart. If possible, include notes regarding previous interactions with sponsors and feedback previous sponsors have provided. Use additional pages if needed.

Notes/Distribution Guidance:

