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Project synopsis

This project has sought to develop a new scheme for forming consensus among alternative climate 

models, that  give widely divergent projections as to the details of climate change,  that is more intelligent 

than simply averaging the model outputs, or averaging with ex post facto weighting factors.    The method 

under development effectively allows models to assimilate data from one another in run time with 

1 This report primarily describes U. Colorado’s  research, some done in conjunction with KNMI  and with U. Bergen 
(unfunded collaborating institutions), and the status of the multi-model development at NCAR.  The information 
provided about travel, presentations, etc. is for U. Colorado only.

2 Activities and findings from the previous funding period that were included in the previous report are briefly 
summarized here.
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weights that are chosen in an adaptive training phase using 20th century data, so that the models 

synchronize with one another as well as with reality.  

Results and Primary Activities

I. Summary

The project takes a hierarchical approach.  The supermodeling scheme was first studied exhaustively with 

simple systems of ordinary differential equations.  Results were described in detail in the previous report. 

The principal findings were that 1) for highly non-linear systems, such as Lorenz-63, including systems 

which describe phenomena on very different (atmosphere/ocean) times scales, supermodeling is far 

superior to any form of output-averaging; 2) negative coefficients can be used to advantage in situations 

where all models err in the same way, but to different degrees;  3) an interesting variant of supermodeling, 

“weighted supermodeling”, is the limiting case where inter-model nudging coefficients in the originally 

conceived “connected supermodel” become infinite, but with fixed ratios, corresponding to a direct 

combination of the tendencies that appear in corresponding equations for the alternative models;  4) noise 

is useful for avoiding local optima in training the inter-model coefficients in the supermodel.   

The supermodeling scheme was then investigated with simple quasigeostrophic (QG) models.  As 

described in the previous report, it was found that QG models on a sphere can be coupled most 

efficaciously by working in a basis which captures the most variance, rather than the most instability, a 

somewhat unexpected result that still deserves scrutiny in a broader context.  Further studies (since the 

last report) with QG channel models addressed the central question of when supermodeling is superior to 

output averaging in situations where nonlinearites are less extreme than with the ODEs initially studied. It 

was found that for realistic variations in a parameter in the QG model, output averaging is sufficient to 

capture all but the most subtle quantitative and qualitative behavior.  Supermodeling helps when 

qualitative differences between the models result from unrealistically large parameter differences, or 

when very detailed spatial structure of the modes of variability are of interest.  Therefore, the scheme may 

still be useful in the case of full climate models with qualitatively different parametrization schemes.

A supermodel was constructed from the intermediate-complexity SPEEDO model, a primitive equation 

model with ocean and land.  Versions defined by different parameter choices, in a realistic range, were 

connected and the coefficients trained.  Some improvement was found as compared to output averaging.
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The learning algorithm used thus far gives sub-optimal, but still useful results when the CO2 level and 

other parameters are varied.  Spatial structure remains to be studied.

The first use of supermodeling with full climate models has been with variants of the ECHAM model that 

use different convection schemes.  As yet the models are only connected at the ocean-atmosphere 

interface, where weighted combinations of fluxes from the two atmospheres are passed to a common 

ocean, and the weights adapted during a training period.  The supermodel was surprisingly successful at 

avoiding unrealistic features such as the double-ITCZ (Intertropical Convergence Zone), a problem that 

arises in both of the two models run separately.

The supermodels constructed thus far have not identified dynamical regime shifts in future climate. Thus 

the planned connection with the work of Tsonis on the relationship between regime shifts and 

synchronization/de-synchronization among the major climate modes (see U. Wisconsin report) has not yet 

been made.  However the network analysis of the climate system, in observations and models, that was 

done in conjunction with that study, shows that models differ strongly from one another and from 

observations in regard to the dynamical structure described by correlation networks [Steinhaeuser and 

Tsonis 2013], providing a further justification for supermodeling.

Toward a general software framework for supermodeling, three versions of CAM (the Community 

Atmosphere Model)  at NCAR were configured for inter-model nudging using the DART (Data 

Assimilation Research Testbed) capability to stop and re-start models in synchrony.  It was clearly 

established that the inter-model nudging adds almost no computational burden to the runs, but there 

appears to be a problem with the re-initialization software that is still being debugged.

Publications:  Several papers were published on the basic idea of the interactive multi-model 

(supermodel) including demonstrations with low-order ODEs.  The last of these, a semi-philosophical 

review paper on the relevance of synchronization generally, encountered considerable resistance but was 

finally published in Entropy [Duane 2015].  A paper on the ECHAM/COSMOS supermodel, containing 

the most promising results so far [Shen et al. 2015] is presently under review.

Details of the QG channel model study, the initial SPEEDO supermodel results, the ECHAM/COSMOS 

supermodel results, and the work with the CAM supermodel are presented in separate sections following.
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II.  Supermodeling vs. Output-Averaging with QG Channel Models 

If nonlinearities are strong enough so as to cause bifurcations in the climate systems as GHGs increase, it 
can be argued that output averaging will be insufficient to capture the effects and that supermodeling 
would be beneficial.   However, there is little evidence for bifurcations of this type in model studies. But 
even without bifurcations, simple nonlinearity can still make the supermodel superior to an average of 
model outputs. This is perhaps most easily seen in the case where diagnostic properties depend 
non-monotonically on system parameters. Suppose we have two models of the form: 

   dx/dt = F(x,p1)

dx/dt = F (x, p2)                         (1) 

where F is linear in the parameter p, and consider some diagnostic P(p), e.g. mean temperature. Further 
suppose that P(p1) = P(p2), but that for some intermediate value pi, p1 < pi < p2, P(pi) > P(p1) = P(p2). Then 

any weighted average of model outputs will only give the first value P(p1). A weighted supermodel, on the 
other hand, could readily reproduce the correct dynamics, that is F (x, pi) = w1F (x, p1) + w2F (x, p2) for 

appropriately chosen weights w1 and w2, since F is linear in p. It is hypothesized that a connected 
supermodel could also give the correct result. 

Consider specifically a quasigeostrophic model of a re-entrant channel on a β plane given by:

Dqi/Dt  ≡ qi /t + J(ψi,qi) = Fi+Di                                                                                                       (2)

where the layer i=1,2, ψ is streamfunction, and the Jacobian J(ψi,qi) gives the advective contribution to 

the Lagrangian derivative D/Dt (Vautard et al , 1988; Vautard and Legras , 1988). The forcing F is a 
relaxation term designed to induce a jet-like flow near the beginning of the channel: 

Fi =μ0 (qi
∗ 
−qi )                                                                                                                                    (3) 

for qi
∗ corresponding to a streamfunction ψ∗ that defines a jet . The dissipation terms D, boundary 

conditions, and other parameter values are given in (Duane and Tribbia , 2004). 

The QG channel model vacillates between two dynamical regimes corresponding to “blocked” and 
“zonal” flow, as illustrated in Fig. 1. The response of the blocking activity to the forcing parameter μ0 in 
(2) provides a simple example of non-monotonic behavior. For zero forcing, blocking frequency is zero 
due to damping by the dissipative terms. For large forcing, the flow is consistently jet-like, and again 
there is no blocking. Typical flow fields for these two cases are shown in Fig. 2a,b. (The zero-forcing 
flow in Fig. 2a is turbulent, but of low amplitude, and includes no blocks.) 
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a)      b)  
Figure 1: Streamfunction (in dimensional units of 1.48×109m2s−1) describing a typical zonal flow 
state (a), and a typical blocked flow state (b) in the twolayer quasigeostrophic channel model. 
Parameter values are as in (Duane and Tribbia , 2004). An average streamfunction for the two 
vertical layers i = 1,2 is shown.

A weighted supermodel formed from the two individual models illustrated in Fig. 2 can reproduce the true 
dynamics exactly for any value of the forcing coefficient μ0 between μ0 = 0 and μ0 = 3. For the typical 

value μ0 = 0.3 used previously, the behavior is as illustrated in Fig. 3. The supermodel flow spends much 

time in the blocked regime, unlike the flows in the individual models or any weighted average thereof. (If 
the actual flow fields of the individual models are averaged, instead of the blocking frequencies, the same 
conclusion is reached.) 

The learning task for the weights is equivalent to that for determining the single parameter μ0 directly. A 

previous algorithm for parameter learning in models that synchronize with identical parameters (Duane et 
al , 2007), for instance, is effective in the present context. While the argument applies exactly to a 
weighted supermodel, it seems likely that a connected supermodel could also be formed from the two 
individual models illustrated in Fig. 2 that would approximate the “true” behavior for arbitrary forcing 
coefficient. 

a)          b) 

Figure 2: Typical flows in the QG channel model with very small forcing coefficient (μ0 = 0) (a), 

and very large forcing coefficient (μ0 = 3.0) (b). (The spatial domain in each panel includes two 

channels with flows in opposite directions). 
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a)    b) 

Figure 3: Typical flow in the QG channel model with a “realistic” forcing coefficient (μ0 = 0.3) (a), 

and the history of vacillation of the flow in the bottom half of the domain between zonal and 
blocked regimes, sampled at low temporal resolution over the course of a simulation (b), using 
the blocking diagnostic defined in (Duane and Tribbia , 2004).  The typical flow is also the exact 
solution to an appropriately weighted supermodel.

While a supermodel is clearly superior to an output average in the example given above, and in extreme 
cases generally, more linear behavior is expected for smaller inter-model differences as might occur in a 
realistic suite of models, such as the IPCC set. To construct a realistic experiment with toy models, a 
correspondence is needed between parameter differences among the toy models on the one hand, and 
differences among models or parameters used in actual climate projection on the other. Considering the 
forcing coefficient μ0 in the QG models as representative of forcing generally, the question is about the 

relative magnitude of differences in forcing among the different models. External forcing in the different 
models is about the same, but the effective forcing, when differences in internal dynamics are included, 
varies significantly. The differences are manifest as differences in climate sensitivity - mean temperature 
change for given increase in greenhouse gas levels. Sensitivities of the climate models in the IPCC suite 
were determined from IPCC data [IPCC, 2007]. They were seen to vary by about ±1/3 of the average 
value. We take the QG forcing coefficient as analogous to these sensitivities, and introduce differences 
between the coefficients in the different models of the same relative magnitude. So we use models with 
μ0 = 0.2 and μ0 = 0.4 to form a supermodel. 

Typical flow fields for the three values of the forcing coefficient μ0 = 0.2, 0.3, 0.4 are shown in Fig. 4, 

along with blocked/zonal vacillation behavior. Unlike the case discussed above, it appears that if the two 
individual models err in their forcing coefficients only to a degree that seems realistic, a weighted average 
of their blocking frequencies could reproduce the “true” behavior. At least in regard to blocking 
frequency, the advantage of supermodeling is lost in this less extreme case. 

If one pays more attention to the detailed modes of variability, a subtle advantage remains.   It is known 
that there is a very weak anticorrelation between blocking activity in the Atlantic and in the Pacific 
[Duane and Tribbia ‘04].  That effect could not possibly occur in an output-average of models with 
Atlantic and Pacific forcing separately. It is thought that supermodeling will give improved predictions of 
other global multi-variable patterns of variability, where the relationships are stronger, as well.

6



a)        b) 

c)         d)

e)        f) 

Figure 4: Typical flows in the QG channel model for realistically low forcing μ0 = 0.2 (a), the 

“true” value μ0 = 0.3 (c), and realistically high forcing μ0 = 0.4 (e), with corresponding 

blocked/zonal vacillation histories (b),(d),(f).  The “true” case is well approximated by an 
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average of the other two.

III.  The SPEEDO Supermodel

To provide input for the state-of-the-art climate models with regard to connection strategies, we used the 
climate model of intermediate complexity SPEEDO [Severijns and Hazeleger , 2009]. The atmospheric 
component is the SPEEDY model that solves the primitive equations on a sphere using a spectral method. 
The spectral expansion is truncated at total wavenumber 30 which corresponds to a spatial resolution at 
the equator of about 500 km. It has 8 vertical levels and simple parameterizations for radiation, 
convection, clouds and precipitation The solar radiation follows the seasonal cycle but the diurnal cycle is 
not imposed. Instead daily mean solar radiation fluxes are prescribed. The total number of degrees of 
freedom is 38025: 31680 for the spectral coefficients of divergence, vorticity, temperature, specific 
humidity and log of surface pressure plus 6345 to describe the land temperature, land moisture and snow 
cover in the 2115 land points. The land component uses a simple bucket model to close the hydrological 
cycle over land and a heat budget equation that controls the land temperatures.

The ocean component is the CLIO model [Goosse and Fichefet, 1999]. The CLIO model is a 
primitive-equation, free-surface ocean general circulation model coupled to a thermodynamic-dynamic 
sea-ice model. The ocean component includes a relatively sophisticated parameterization of vertical 
mixing. A three-layer sea-ice model, which takes into account sensible and latent heat storage in the 
snow-ice system, simulates the changes of snow and ice thickness in response to surface and bottom heat 
fluxes. In the computation of ice-dynamics, sea ice is considered to behave asa viscous-plastic continuum. 
The horizontal resolution of CLIO is 3 degrees in latitude and longitude and there are 20 unevenly spaced 
vertical layers in the ocean. The CLIO model has a rotated grid over the North Atlantic ocean in order to 
circumvent the singularity at the pole. The total number of degrees of freedom is on the order of 200,000. 

Three SPEEDY atmospheres, with different parameters chosen to reflect the typical range of behavior of 
different atmospheric models, were coupled to the same ocean and the same land, and also to one another, 
by adding inter-atmosphere coupling terms to the dynamical equations for each atmosphere. The modified 
equation for the temperature field for model i (i = 1 . . . 3), for instance, is:

∂Ti/∂t = (RTi 


/cp)(σ  i /σi − ∂σ  i /∂σi − ∇ ∙ Vi)  + Σjs Cij
s(Tj − Ti) (x − xδ s)                                 

(4) 

where all variables are evaluated at position x and {xs} is a set of discrete coupling points. In (4), R is the 
gas constant, cp is the specific heat at constant pressure, σ is a vertical pressure coordinate scaled with 

surface pressure,   σ      its time-derivative, V is the horizontal wind velocity, and Cij is a connection 
coefficient linking the temperature fields between models i and j at position xs. Dynamical equations for 
the other independent variables, u (east-west velocity), v (north-south velocity), and q (humidity) are 
similarly modified to include coupling terms linking the different models. 

In the present situation, regarding the PDE as a very high-order ODE, the general rule for adaptation of 

parameters, as applied to the connection coefficients Cij, gives: 

dCij /dt = a  dx (Tj(x) − Ti(x))( Tt(x) −⅓ Σk Tk(x))                                                      (5) 

where Tt is the true value of T, and a is an arbitrarily chosen learning rate. We assume spatially uniform 
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connections Cij that are independent of position s. Analogous rules are written to adapt the connections 
linking the other dynamical variables, with learning rates appropriate for their dynamics.  The algorithm 
was tested by choosing one of the models to be a perfect replica of the “true” system; appropriate binary 
values for the connections did indeed result. All models are nudged to truth as the learning progresses; for 
the configuration studied, it was found that nudging to truth in the u field gave truth-model 
synchronization error rates that were useful in discriminating between good and bad models, so that the 
learning algorithm was effective.

Note that the last term in (4), connecting the models, tends to vanish as the models synchronize. This is 
desirable, so that each model satisfies its own physically motivated dynamical equation, without the 
influence of artificial coupling terms. Of, course, for each i, the parameters and hence the equations are 
different, so that the models cannot possibly synchronize completely. Typically, the differences in 
behavior are in small-scale processes that are not important for the large-scale behavior of interest. 

The system was tested with the three arbitrarily chosen imperfect models of a “true” SPEEDO system, 
assuming ongoing nudging of the models to the “true” system, as in weather prediction. The “true” 
system also provided the land and ocean components for each of the imperfect models. Results are shown 
for the simple case of two identical models and a different third model in Fig. 5. It is seen that after 3 
months, the truth-supermodel error, with adapted coefficients, is less than the error for each of the 
individual models, and less than the error for the supermodel with a choice of uniform connection 
coefficients that are not adapted. 

Then the coefficients were frozen and atmospheric CO2 was doubled in the “true” system and in each of 
the models. Other parameters were also varied slightly. Results are shown in Fig.  6 .  It is seen that the 
supermodel gives reduced error after three months as compared to the weighted averages of the separate 
models, but the coefficients learned from the single-CO2 runs are less than optimal.  That is, a simple 
choice of uniform coefficients gives slightly better results than the learned coefficients.  

It is thought that an improved learning algorithm may result from consideration of the detailed spatial 
structure of the various fields, with a view toward reproducing the qualitative features of the “true” 
dynamics.   The spatial structure of the fields remains to be studied.

Additionally, the models could only be run for three months because of a “memory leak” in the software 
that is still being debugged.  Longer adaptation periods might produce better results.

IV.  A Weakly Connected Supermodel Formed From Full Climate Models Connected Only At the 
Ocean-Atmosphere Interface

Investigations with full climate models have thus far reached a stage in which different atmosphere 
models are connected to a common ocean, as in the early work of Kirtman (2003) but not directly 
connected to each other. Yet even without the direct connections, the supermodel has been shown to be 
superior to any weighted combination of outputs of the individual models. 

A climate model was built based on COSMOS (ECHAM5/MPIOM, developed at the Max-Planck-Institut 
fur Meteorologie, Germany [Jungclaus et al. 2006], and involved two atmospheric general circulation 
models (AGCMs). The two models differed in their cumulus parameterization schemes, Nordeng (1994) 
and Tiedtke (1989), to represent typical model diversity because cumulus convection schemes normally 
have a strong impact on the climate state [Kim et al. 2011;  Klocke, Pincus, and Quaas 2011; Mauritsen et  
al. 2012]. The ocean model continuously interacts with the Nordeng atmosphere and Tiedtke atmosphere. 
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AGCMs are problematic in representing real air-sea fluxes to different degrees of accuracy. Some may be 
better in representing momentum flux (i.e. wind stress on the ocean) and some in energy (heat) flux 
[Kirtman et al. 2003]. Here we used different weights for the energy, momentum, and mass (i.e. 
precipitation) fluxes felt by the common ocean, with the sum of the weights over the two models, for each 

a)

b)

c)

Figure 5: Truthmodel synchronization error in surface temperature (in ◦C) for a) three SPEEDO 
models with parameters perturbed away from their values in a “true” SPEEDO model to which 
the imperfect models are nudged via the u variable (with two of the models identically perturbed) 
and various weighted combinations of their outputs; b) a supermodel formed by connecting the 
three SPEEDO models through their dynamical equations according to Eq.(4) (for termperature) 

and analogous equations for u, v, and q, with constant and uniform connection coefficients Cij; 
and (c) the same supermodel but with connections adapted according to (5) and analogous 
equations for the u, v, and q connections. 
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a)

b)

c)

d)

Figure 6: Truthmodel synchronization error in surface temperature (in ◦C) a) for three SPEEDO 
models as in Fig. 5, but with doubled CO2 in both truth and models, for various weighted 
combinations of model outputs (colored lines), a supermodel with uniform connections (thick 
black line), and a supermodel using the connection strengths from the presentCO2 run (Fig. 5c) 
at final time (dashed line).  Corresponding results are shown for error in zonal wind u at 850 mb 
(b), error in meridional wind v at 850 mb (c), and error in humidity q (d).
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Figure 7: The climatology seasurface temperature (SST) (left panel, scale in ◦C) and 
precipitation (right panel, scale in mm/day) in the Tropical Pacific from observation and from 
various models. The SST is from HadISST (19481979, the period used as a training set) and 
precipitation is from GPCP (19792012, due to the available data). Because the SST state over 
the equator is improved in the supermodel (SUMO), there is one ITCZ in SUMO. 
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type of flux, equal to unity. Each atmosphere feels only its own fluxes. 

A machine learning technique, the Nelder-Mead method [Nelder and Meade 1965] was applied to 
optimize the weights for each of the fluxes. The Nelder-Mead method is also known as the simplex 
method, which is used to find a local minimum in multi-dimensional domain without having to compute 
gradients of a cost function. We used a performance index [Reichler and Kim 2008] computed over the 

Pacific region (160◦E − 90◦W, 10◦S − 10◦N), as a metric because there is partial synchronization over the 
tropical Pacific in this configuration; hence it is reasonable to expect that improvement can only be 
achieved over this area. The assessment was started from equal weights and followed the weights 
suggested by the simplex method. Each case was spun up for ten years and run for another 30 years to get 
a reasonable climatology. Over 300 cases were tested along the path to optimality and the performance 

index (error) was reduced to a value at which the averaged SST bias over the metric area is only 0.48 ◦C 
and the correlation between zonal wind stress anomaly of two AGCMs is increased. Note that the 
variability of AGCMs tends to cancel over non-synchronized areas, thus reducing the ocean variability as 
well. 

The behavior predicted by the supermodel was dramatically improved as shown in Figure 7, in which 
both the SST and precipitation have better agreement with observations. The cold tongue is stopped 
around the International Date Line, which suggests that a west-Pacific warm pool was formed in the 
supermodel, unlike the situation in COSMOS(N), COSMOS(T), or their averaged output, COSMOS(E), 
in all of which the cold tongue crossed the International Date Line to the western Pacific and the 
variability of SST is much larger (not shown). The supermodel differs from both component models in 
these regards because one of the weights is negative. The reduction of the SST bias in the supermodel 
implies that the whole dynamic is more realistic, suggesting that a much more realistic low level wind 
system exists in the supermodel, leading to a better latitudinal position of the Inter-tropical Convergence 
Zone (ITCZ). But it is still too wet in the South Pacific convergence zone. 
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Figure 8:  (a) The Bjerknes feedback (left panel), describing the relationship  between the east 
Pacific SST anomaly (over 5oS5oN, 150oW90oW, Niño 3 region) and the remote wind stress 
over the west Pacific (5oS5oN, 160oE150oW, Niño 4 region); (b) the thermodynamic damping 
(right panel) over the Niño 3 area. Coefficients of regression and correlation are included in the 
legend.

The key to improved supermodel performance in this case appears to be in better representation of the 
air-sea feedbacks.  In Figure 8, we show the Bjerknes feedback and the thermodynamic feedback for the 
supermodel (SUMO), the individual models, and observations.  The Bjerknes feedback in the supermodel 
is almost perfect and the thermodynamic feedback is much improved.

It can be shown that the supermodel is superior to any weighted combination of the two model outputs. In 
Fig. 9, we present a Taylor diagram that shows the correlation between model and observations, as well as 
the normalized standard deviation of the model field, for the various models. It is seen that the 
supermodel has almost the same standard deviation of SST as in the observed data, unlike any of the 
models, and the correlation coefficient is higher. 

An objection to supermodeling in the meteorological community is that ensembles of model runs (where 
the models are the same or different) are usually used to estimate spread as an indication of error. One 
loses this information with supermodeling if the models synchronize nearly completely. However, the 
ensemble of models in the usual practice can be replaced by an ensemble of weights. One can examine 
the learning history, or simply look at the performance metric for a random sample of weights, to infer a 
plateau in weight space along which the performance is close to optimal. Then weights on that plateau can 
be used to define an ensemble of supermodels. Results of this procedure, shown in Fig. 10 give a 
plausible ensemble of SST fields. The models effectively “agree to disagree”. 
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Figure 9: Taylor diagram showing the correlation between observed and modeled SST 
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over the Tropical Pacific, as well as the normalized standard deviation, for 
COSMOS(N), COSMOS(T), their equalweighted combination COSMOS(E), all other 
weighted combinations (thick line), and the supermodel (SUMO). SUMO is clearly 
closer to observations (Ref) than any weighted average. 

Figure 10:  SST fields for an ensemble of supermodels defined by examining the learning 
history to select combinations of weights that give near optimal performance, each of which 
defines a different supermodel, giving a plausible spread in results. 

The atmospheric models do not synchronize, unlike the SPEEDO models described in the previous 
section, except in a narrow region where indeed the supermodel results are superior. That is because the 
two atmospheres are connected only indirectly, through interactions with a common ocean. It is thought 
that direct connections between the atmospheres, suitably adapted, will further improve the supermodel 
performance. 

V.  A General Software Framework for Connecting Alternative Climate Models

In the previous stage of the project, it was hoped to extend NCAR’s  Data Assimilation Research Testbed 
(DART)  to allow models to assimilate date from each other, as well as from reality, thus forming a 
supermodel.  Subsequently, to provide a more accessible framework for interpretation and debugging of 
interactive ensembles formed from full climate models, it was decided to move the function of 
inter-model nudging to external interpreted scripts.    These scripts were used in conjunction with existing 
DART/CESM software that time-evolves an ensemble consisting of multiple models or model versions 
(not just multiple instances of the same model as in ensemble Kalman filtering.)  This strategy was 
applied to three versions of CAM:  

  MODEL-1: CAM3-Aquaplanet

 MODEL-2: CAM4-Aquaplanet

 MODEL-3: CAM5-Aquaplanet 26 levels
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The 

software 
configuration is 
schematized in 
Figure 11.

Figure 11:  Three 
CESM models 
with different 

versions of the atmospheric component CAM are nudged to each other, and to observations in 
a training phase (during which the nudging coefficients are adapted).

   

Figure 12:   Temperature at 850 mb for a) CAM3 as nudged by other models in a supermodel,   
b) freerunning CAM3, and c) the difference between the two cases, after 3 days.

At this stage of development inter-model connections are held fixed and uniform.  At a later stage 
ancillary software would be added to adapt the coefficients in run time, during a training phase, based on 
a comparison with observed data.  First results with the multi-CAM supermodel are shown in Fig. 12. 
Notably, the speed of the python scripts themselves is not an issue, compared to the speed of DART. If 
speed becomes an issue, we plan to use MPI modules for python to run the scripts distributed parallel. 
The scripts are built on top of CESM scripts, and so any component model that is part of CESM can be 
run this way. Further, any model that could be run from the scripts, with output that can be read by the 
scripts could be used as well (we are using a general python module for reading the datasets that can read 
multiple file formats). Therefore the current software, when fully tested and debugged, can be extended to 
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be transparent to users, so that models that are plugged into DART/CESM are automatically available for 
supermodeling as well.

Toward the goal of incorporating models very different from CESM, we have been collaborating with 
Ben Kirtman at U. Miami (unfunded) to develop wrappers that would allow non-CESM models to be 
plugged into the supermodel framework.  A coupling wrapper has been constructed that has been fully 
tested with a data model, and is currently being tested with ECHAM and the US Navy NoGAPS models.

At time of this writing, there remains a problem with the model re-initialization software that appears to 
use default values inappropriately.  We are still trying to determine whether the problem lies with the 
DART/CESM software or with the newly written scripts.
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15) G.S. Duane, M.-L. Shen, and N. Keenlyside: “Supermodeling climate by synchronization of 
alternative models”,  seminar at COLA/George Mason U., July, 2013.
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17) G.S. Duane: “Improved climate modeling by synchronization of alternative models”,  SUMO 
Summer School, Ohrid, Macedonia, September 2013

18) lead convener of session: “Unification of Alternative Models in Climate and Geophysics via 
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b) M.-L. Shen, N. Keenlyside, F. Selten, W. Wiegerinck, G.S. Duane:  “Reducing model 
systematic error through super-modeling; The tropical Pacific”

c) A. A. Tsonis and K. Steinhaeuser: “A climate model inter-comparison at the dynamics level”

d) E. Kluzek,  G. Duane, J. Tribbia, M. Vertenstein: “Software engineering designs for 
supermodeling different versions of CESM models using DART”     (poster)

19) lead convener of session: “Ensemble Methods for Combining Alternative Models of Climate 
Change”, EGU (European Geosciences Union) General Assembly, Vienna, April 2014, with 
presentations:
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b) M.-L. Shen, N. Keenlyside, F. Selten, W. Wiegerinck, G.S. Duane: “Reducing Model 
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e) W. Wiegerinck and G.S. Duane, “Comparing error reduction in interactive and non-interactive 
ensemble approaches” (poster)

20) G.S. Duane: “Fusion of alternative models by synchronization: results with realistic models” (poster),  
DOE Climate Modeling PI Meeting,  Potomac, May 2014

21) G.S. Duane, N. Keenlyside, M.-L. Shen: “Interactive ensembles with spread information”,  AOGS 
11th Annual Meeting, Sapporo, Japan,  Jul-Aug 2014

22) G.S. Duane, M.-L. Shen, and N. Keenlyside: “Supermodeling climate by synchronization of 
alternative models”, seminar at UCLA, Los Angeles,  August 2014

23)  G.S. Duane, M.-L. Shen, N. Keenlyside, and F. Selten: “Supermodeling climate by synchronization 
of alternative models”, seminar at Weizmann Inst.,  Rehovot, Israel,  June 2015

24) G.S. Duane, M.-L. Shen, N. Keenlyside, and F. Selten: “Supermodeling an objective process by 
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Travel

Travel to all of the above meetings and presentations (some with external funding)  and additionally:

1)  collaboration with Jurgen Kurths, Potsdam Institute, Germany, January 2011

2) meeting with Ben Kirtman, U. Miami co-PI, regarding  plan for software development and the use of 
``wrappers” ; and  regarding division of labor with NCAR and with European collaborators.  Dec. 
2011.

3) travel for Frank Selten, for collaboration in Boulder, August, 2011 (jointly sponsored by U. Colorado 
and NCAR).

4) travel for Frank Selten to AGU Fall Meeting, Dec. 2011 (jointly sponsored by U. Colorado and 
NCAR).

5) travel for Daniel Trpevski (student of Kocarev) to Boulder to work with Alicia Karspeck on software 

development for the revised DART,  April 2012.

6) travel for PI to Utrecht for collaboration with Frank Selten, July 2012. (local expenses only)

7) travel for PI to Milwaukee for collaboration with co-PI Tsonis, August 2012.

8)  travel for PI to Utrecht for collaboration with Frank Selten on quasigeostrophic models, August 2012. 

9) travel for PI to Potsdam for meeting with Juergen Kurths and Frank Selten, March 2013.
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10)  travel for  PI to Miami for collaboration with co-PI Kirtman regarding software development, 

December 2013.
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