
LLNL-TR-678645

Unforced, Forced and
Resonance-Forced Waves in a
Spherical Atmosphere

C. Covey

October 27, 2015



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 

 
 

 

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore 
National Laboratory under Contract DE-AC52-07NA27344. 
 



Curt Covey <covey1@llnl.gov>
Program for Climate Model Diagnosis and Intercomparison
Lawrence Livermore National Laboratory
October 2015

Unforced, Forced and Resonance-Forced Waves in a Spherical 
Atmosphere

This technical report discusses a longstanding issue of atmospheric tides in weather-prediction and 
general circulation models (GCMs). Tidal signatures consistent with observations have appeared in the 
surface pressure output of GCMs since their inception (Hardy 1968, Hunt and Manabe 1968). Such 
models, however, are sufficiently complicated that the possibility of “getting the right answer for the 
wrong reasons” arises. Lindzen et al. (1968, hereafter LBK) showed that wave reflection at the upper 
boundary of a GCM can artificially enhance the tides. Covey et al. (2011, 2014) found that tidal output 
from a number of modern GCMs is surprisingly independent of their forcing. This finding is consistent 
with earlier suggestions that a compensating effect occurs in some models: lowering the model top 
reduces the forcing (solar heating of the ozone layer) but also enhances spurious wave reflection 
(Zwiers and Hamilton 1986, Hamilton et al. 2008).

The linear calculations below assess the possibility of this compensating effect in modern GCMs, given 
modern upper boundary conditions. I follow classical tidal theory (Chapman and Lindzen 1970) with 
modern notation (Forbes 1995), first recapitulating LBK’s main points, then briefly considering how they 
might apply to modern GCMs.

Classical theory of unforced waves

First, linearize the equations of motion about an isothermal and motionless background state with 
perturbations proportional to $%(s '() t) where s = 1, 2, 3, ..., ' = longitude and t is time. Eliminating 
variables gives a single second-order partial differential equations in one variable; the conventional 
choice is geopotential height perturbation Φ as a function of latitude , and altitude z*. Due to the symme-
try of the background state, the equation is separable. Writing

Φ(,, z-) = Θ(, )G(z-) $z-  2 H

(*1*)

and introducing a separation constant h gives two ordinary differential equations:

Ls,)[Θ] +
(2Ω a)2

g h Θ = 0
(*2*)

      [= Eq. (4) in LBK]
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                              [= Eq. (7) in LBK]

In these equations, Ω and a are planetary rotation rate and radius respectively, 6 = R cp ( ≈ 2 ;7 for 
diatomic molecules, but from basic thermodynamics always < 2 ;5), and the scale height H is propor-
tional to the assumed constant background temperature. The operator Ls,) involves derivates with 
respect to ,. It is called Laplace’s tidal operator and Eq. (2) is called Laplace’s tidal equation. Waves in 
a global ocean of depth h obey Laplace’s tidal equation, but here h is just a separation constant. Eq. (3) 
is called the vertical structure equation. Here x ≡ z- ;H, the approximate altitude in scale heights, but z* 
cannot be physical altitude if geopotential height is already a dependent variable. To be precise, 
z- ≡ H log(p ;ps) where ps is the constant global mean of surface pressure (as in Holton 1975, Section 
2.4.1).
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Free oscillations (normal modes) occur when the solar heating term Eq. (3) vanishes; in this case its 
general solution is:

G[x_] := %&μ x + A %+μ x;
(*4*)

Since Ls,) is a self-adjoint (Hermitian) operator, its eigenvalues are all real; hence 92 is real and 9 is 
either real or pure imaginary. Without loss of generality, define 9 as the positive or positive-imaginary 
square root (depending on the sign of 92) so that A in Eq. (4) is the coefficient of the positive or positive-
imaginary exponential.

Normal modes exist at particular values of 9 (eigenvalues) that allow G(x) to satisfy appropriate bound-
ary conditions. Note from Eq. (3) that determining 9 is equivalent to determining h ;H. Therefore, after 
solving the vertical structure equation (3) to get a separation constant h, one may solve Laplace’s tidal 
equation as a second eigenvalue problem: given a value of g h(2Ω a)2, each choice of zonal wavenum-
ber s generates a series of normal-mode frequencies ) (Longuet-Higgins 1968).

For an atmosphere, the lower boundary condition on Eq. (3) is that physical vertical velocity (not the 
pressure-coordinate vertical velocity w- ≡ d z- ;d t) vanish. Linearizing this condition gives a homoge-
neous equation relating Φ and w- at z- = 0. In the unforced case, a second homogeneous equation 
relating Φ and w- is provided by the thermodynamic energy equation: w- ∝ >Φ;>z- ∝ >G $z-  2 H>z-. 

Eliminating w-, the end result (Holton 1975, Section 2.4.1) is d G
d x + 

1
2 ( 6G = 0 at x = 0. The same result 

may be deduced from Chapter 9 of Lindzen (2005; note he prefers to eliminate Φ rather than w-). 
Substituting the functional form of G(x) from Eq. (4) then determines A as a function of 9 and 6 :

A !
1 " 2 κ " 2 μ

"1 + 2 κ " 2 μ

(*5*)

The next step is to apply the upper boundary condition, which depends on whether the atmosphere is 
bounded or unbounded in the vertical dimension.

(a) Unbounded atmospheres
If the atmosphere extends infinitely upward, the upper boundary condition for normal modes is that 
energy per unit volume decrease with height. Recalling the factor $z-  2 H in Eq. (1) and noting that 
energy per unit mass ∝Φ2 while mass per unit volume ∝ $(z- H, it follows that the upper boundary 
condition requires that ∥G ∥  decrease with height. Thus 92 > 0 and A = 0 in Eq. (4). (A radiation bound-
ary condition -- in which 92 < 0 and the sign of Im(9) is chosen to make energy propagation upward at 
the top boundary -- is unphysical in the absence of forcing.) Eq. (5) then implies 9 =

1
2 ( 6, or in terms of 

h :
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H

1 " κ

(*6*)

This condition on h is identical to Eq. (20) in Forbes (1995) and is consistent with the lower boundary 
condition given by Eq. (8) in LBK.

Note that only one equivalent depth exists for normal modes of an unbounded isothermal atmosphere. 
(If the background atmospheric temperature varied in height, an additional term d H ;d x would appear in 
the expression for 92 in Eq. (3) and additional h values could exist.) Taking H = 7.5 km gives h = 10.5 km 
and (2Ω a)2 g h = 8.4 for Earthlike conditions. The resulting normal modes include low frequency 
westward-propagating oscillations traditionally called “Rossby-Haurwitz waves.”

(b) Bounded atmospheres
If a top exists at x = xT , the upper boundary condition for normal modes is fundamentally different. As 
LBK point out, “there are an infinite number of h’s for which [Eq. (3)] has nontrivial solutions ... These 
constitute the free oscillations of the atmosphere; they include Rossby-Haurwitz waves. In an infinite 
atmosphere these are all associated with a single h ... [but] bounded models will have other Rossby-
Haurwitz waves associated with the spurious h’s.” This can lead to problems in numerical atmospheric 
models.

LBK work out the details by solving Eq. (3) with a nonzero solar heating and looking for resonances. 
This technique will reliably get normal mode oscillations (e.g. Covey and Schubert 1982) but it’s simpler 
to stay with the unforced problem, and impose upon Eq. (4) the lower boundary condition (5) together 
with a new upper boundary condition. Here I follow LBK, assuming that the pressure-coordinate vertical 
velocity w- ≡ d z- ;d t vanishes at x = xT . Physically this assumption corresponds to a “free surface” for 
which dp ;dt = 0; it was applied at p = 0 in the early GCMs mentioned above (Leith 1965, Hunt and 
Manabe 1968). Although it is not a rigid lid, this boundary introduces spurious normal modes that don’t 
exist in a more realistic, unbounded atmosphere. For example, the equations describing gravity waves 
in the simplest Boussinesq approximation have no unforced solutions satisfying either the radiation 
condition or boundedness as z B∞, but they have an infinite number of unforced solutions satisfying 
dp ;dt = 0 at finite z (Lindzen 2005, Chapter 8).

Spurious normal modes also appear in the current problem. Again the thermodynamic energy equation 
simplifies in the absence of forcing, so the upper boundary condition is just 
w- ∝ >Φ;>z- ∝ >G $x ; 2>x = 0. Substituting in the functional form of G(x) from Eq. (4) and the value of 
A from Eq. (5), it follows that the expression

2 !xT"2 2 κ + 4 μ2 ' 1 sinh(μ xT) + 4 κ μ cosh(μ xT)

'4 κ + 4 μ + 2

must vanish. The exponential factor in the numerator is never zero, and the denominator is also 
nonzero because 9 is either pure imaginary, or real and by definition positive (so 9 ≠ 6 (

1
2  for thermody-

namically valid values of 6, which must always be < 2 ;5). Thus the result of imposing the upper and 
lower boundary conditions is a simple equation relating 9 to 6 and xT :
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2 κ + 4 μ2 ' 1 sinh(μ xT) + 4 κ μ cosh(μ xT) + 0

(*7*)

In a bounded atmosphere, 9 can be either real or imaginary. The physical meaning of imaginary 9 is 
that waves are propagating vertically, and reflection at the top of the model can produce a resonant 
standing wave. In this case it is convenient to set 9 = % 9  so that at sinh(9 xT) = % sin( 9 xT) and 
cosh(9 xT) = cos( 9 xT). Dividing by %, Eq. (7) then becomes

'4 Imμ2 + 2 κ ' 1 sin(Imμ xT) + 4 Imμ κ cos(Imμ xT) + 0

(*8*)

I separately solve Eq. (7) for real 9 and Eq. (8) for imaginary 9. In either case the right-hand side is an 
odd function, so no information is lost by continuing to define 9 as the positive (or positive-imaginary) 
square root of 92. Setting 6 = 2 ;7 and solving Eqs. (7)-(8) gives a relationship between the top height xT  
and the eigenvalue 9. The result is shown in the diagram below: provided that xT > 8 ;3, there is one real 
9 (blue curve) and an infinite number of imaginary 9’s (orange curves) for each choice of xT . This can 
be checked against LBK’s figures for model tops at 200 and 10 mb; corresponding xT  values are 
marked by the two horizontal black dashed lines (the vertical red dashed lines will be discussed in the 
next section).

In the diagram, as 9 B 0 the blue line merges with the lowest orange line and both approach xT = 8 ;3. 
Therefore, if the top is low enough, the one solution with real 9 cannot exist. In effect it is replaced by 
the lowest-order solution with imaginary 9. This situation occurs, for example, when the model top is at 
200 mb (lower dashed line). For this case LBK find a number of gross qualitative differences between 
the bounded- and unbounded-atmosphere models. Fortunately, modern climate models place their tops 
much higher, at or above the 10 mb pressure level.

For the model top at 10 mb (upper dashed line) LBK find that “the first free oscillation in the bounded 
models occurs at h ≈ 10 km [9 ≈ 0.2 in the figure], which is quite near the correct value.” As noted 
above, the correct value for an unbounded atmosphere is  9 =

1
2 ( 6 = 0.214. This corresponds to horizon-

tally propagating acoustic waves that decay exponentially in the vertical, e.g. the so-called Lamb wave 
that has been observed with a period of 5 days. But imaginary-9 solutions appear nearby, and the 
bounded continuous model “exhibits spurious free oscillations for h = 2.65, 0.98, 0.37 [sic], ... km, etc.” 
These h-values agree with the diagram’s 9-values except for 0.37 km, which should actually be 0.47 km 
(“0.37” in LBK’s text is a typo, as can be seen by inspecting their Fig. 4).

What happens as xT B∞? Physically we should get back to the unbounded-atmosphere case, with just 
one normal-mode oscillation corresponding to a vertically evanescent wave, i.e. the vertical wavenum-
ber 9 should be real and negative. But mathematically we are retaining a boundary condition that allows 
imaginary as well as real values of 9. As noted above, early GCMs applied this boundary condition at 
p = 0. Although the mathematics is ambiguous (with no defined limit to Eq. (8) as xT B∞) the imaginary 
9’s show no sign of disappearing from the figure above as xT  is increased -- and as LBK point out, a top 
at p = 0 “as a result of inevitable finite-difference errors ... is equivalent to having the top at some small, 
finite p.”

Thus imaginary values of 9 and the corresponding spurious h’s can cause problems for numerical 
simulations of the tides. As noted above, resonance will occur if any of the spurious h’s matches an h 
that arises when thermal forcing is applied. A brief discussion of nonzero forcing is therefore appropri-
ate. As a first approximation, I consider only the unbounded atmosphere problem when forcing is 
nonzero.
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Classical theory of forced waves

This is approached in reverse order to the unforced problem: we first solve Laplace’s tidal equation (2) 
with ) and s specified. “Migrating” tides that follow the apparent motion of the Sun across the sky have 
) = ((2E;24 hours)×s, s ∈ {1, 2, 3, ...} giving {diurnal, semidiurnal, terdiurnal, ...} harmonics. For each 
harmonic, solving Eq. (2) produces a set of eigenvalues hn

s (equivalent depths) and eigenfunctions Θn
s 

(Hough functions). Only then, for each h, do we solve the vertical structure equation (3) with nonzero 
forcing on the right-hand side, obtaining tidal amplitude as a function of height. (As noted above, the 
boundary conditions on Eq. (3) are somewhat more complicated than those presented for the unforced 
problem.) The forcing term in the vertical structure equation for hn

s comes from projecting solar heating 
onto the Hough function Θn

s(J).

Obviously the diurnal harmonic dominates the day-to-night cycle of solar heating, but the semidurnal 
harmonic is also appreciable. For example, a retified sine wave -- at night, zero amplitude; by day, 
proportional to the cosine of the solar zenith angle at the Equator -- has semidiurnal amplitude a bit less 
than half (42%) its diurnal amplitude.

Results of the forced problem are  discussed by Lindzen (2005, Chapter 9) and Chapman and Lindzen 
(1970) as well as compactly summarized by Forbes (1995, Table 1 and Figs. 5-7). These results agree 
fairly well with observations of surface-pressure tides without needing to “tune” the background atmo-
spheric state. Most of the forcing comes from ozone absorption of solar UV around the stratopause (K
30-70 km altitude) because the right-hand side in Eq. (3) is proportional to heating per unit mass, and 
the higher the energy absorption occurs, the greater the response at all levels. For the diurnal harmonic, 
solar heating projects mainly onto Hough functions Θ(2

1 (J) and Θ1
1(J) with corresponding equivalent 

depths h(2
1 = (12.2703 km and h1

1 = 0.6909 km respectively. For the semidiurnal harmonic, the corre-
sponding eigenfunctions and eigenvalues are Θ2

2(J), Θ4
2(J) and Θ6

2(J) with h2
2 = 7.8519 km, 

h4
2 = 2.1098 km and h6

2 = 0.9565 km respectively. Associated 9 values are

forcedMuList =

1

4
&
(2 , 7) (7.5 km)

h
,. h - {&12.2703, 0.6909, 7.8519, 2.1098, 0.9565} km

{0.651642, 0. + 1.68865 ', 0. + 0.151358 ', 0. + 0.875025 ', 0. + 1.41078 '}

Thus the first diurnally forced mode Θ(2
1 (J), with real 9, suffers vertical trapping with an $-folding depth 

(9(2
1 

(1
≈ (0.65)(1scale heights or 12 km, while the second diurnally forced mode Θ1

1(J) propagates 
vertically with a wavelength no greater than the depth of ozone forcing, leading to destructive interfer-
ence: 2E Im 91

1
(1

≈ 2E (1.69)(1scale heights ≈ 28 km. Consequently, very little of the diurnal harmonic 
response to ozone heating reaches the surface. Instead, the diurnal surface-pressure tide is mostly 
generated by forcing near the surface -- particularly latent heat release and water vapor absorption of 
solar near-IR -- where atmospheric heating per unit mass is relatively small. In contrast, all three of the 
leading semidiurnally forced modes Θ2

2(J), Θ4
2(J) and Θ6

2(J) propagate vertically, and the wavelength of 
the first mode is very long: 2E Im 92

2
(1

≈ 2E (0.15)(1 scale heights ≈ 300 km. The semidiurnal harmonic 
is mainly (~2/3) a response to ozone heating and dominates the surface-pressure tide, with nearly twice 
the amplitude of the diurnal harmonic. Within the middle atmosphere and lower thermosphere, however, 
the diurnal harmonic generally dominates.
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Forcing at resonance?
LBK point out that if “for some ) and s the resulting hn is equal to that for free oscillations, then we will 
obtain an infinite response.” This can occur if a model top happens to be placed to make a spurious-
resonance wavenumber Im(9) coincide with one of the prominent eigenvalues that arise from solar 
heating. To see where this happens, include the solar-forced Im(9) values listed above in the diagram:

 

The red dashed vertical lines are associated (from left to right) with solar-forced Hough modes Θ2
2(J), 

Θ4
2(J), Θ6

2(J) and Θ1
1(J). Forcing at resonance occurs for a particular value of xT  if the associated horizon-

tal line intersects both a orange curve and one of the vertical lines. This happens once in the diagram 
above: a model top placed at 10 mb ( K 30 km altitude) is close to matching the vertical wavelength from 
semidiurnal forcing of the third meridinally symmetric Hough mode Θ6

2(J): 33.4 km for an isothermal 256 
K background atmosphere. But before jumping to conclusions, one must examine the actual top bound-
ary conditions in modern climate models. These are not as simple as the dp ;dt = 0 condition applied to 
the early GCMs.

According to online documentation for the Climate Model Intercomparison Project (http://compare.es-
doc.org), top boundary conditions in modern GCMs involve either a sponge-layer treatment or a radia-
tion condition. The actual situation is more complicated. For example, the online documentation says 
that the model NorESM1-M uses a radiation condition, but this model’s original documentation says it 
closely follows CCSM4/CAM4 (Bentsen et al. 2013) and the documentation for CAM4 says “diffusion 
near the model top is used as a simple sponge to absorb vertically propagating planetary wave energy” 
(Neale et al. 2010). Similarly, the online documentation says the GISS model family uses a radiation 
condition, but the original documentation says it employs Rayleigh friction at the top (Schmidt et al. 
2014). Models can, of course, use a combination of sponge layer and radiation boundary condition. 
Adding to the complication, the top itself is placed at “infinity” (p = 0) in about half of modern GCMs and 
at finite altitude (from roughly 40 to 150 km) in the other half, though some of the “infinite domain” 
models keep thermodynamic variables -- including solar heating -- up to only 30 km (Covey et al. 2014, 
Table 1).
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2014). Models can, of course, use a combination of sponge layer and radiation boundary condition. 
Adding to the complication, the top itself is placed at “infinity” (p = 0) in about half of modern GCMs and 
at finite altitude (from roughly 40 to 150 km) in the other half, though some of the “infinite domain” 
models keep thermodynamic variables -- including solar heating -- up to only 30 km (Covey et al. 2014, 
Table 1).

In practice, further progress on the issue of spurious wave reflection requires a focus on just one GCM 
family, probably CCSM4/CAM4 including its vertically extended version WACCM4 (Marsh et al. 2013). 
This report will serve as a theoretical foundation for such future work.
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