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Ultrasound Imaging

▪ Major Advantages
• Non-invasive
• No ionizing radiation
• Portable
• Inexpensive
• Real-time

http://www.healthcare.philips.com▪ Challenges for High Image Quality
• Poor Contrast Resolution 

o Speckle noise, Off-axis clutter, Phase aberration, etc
• Limited Sensitivity

o Transmit power, Attenuation, Electronic noise, etc
• Limited Spatial Resolution

o Aperture size, Center frequency, Bandwidth, etc
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Imaging with Linear Array

• Infinitely long aperture 
- can focus all energy at a 

single location 

• Finite aperture size
- Limited by anatomy
- Hardware limitations
- Off-axis sidelobes unavoidable

Subaperture
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View
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th

Wire 
target

Point Spread
Function

Sidelobes

o Gold standard beamforming technique
o Applies time delays based on path length differences
o Coherent signals sum constructively while incoherent signals sum destructively

• Delay-and-sum(DAS) beamforming
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Apodization

▪ Weighting of channel RF signals across aperture
• Reduces sidelobes at the expense of broader mainlobe width 
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Grating Lobe: Friend or Foe?

Grating lobe Main lobe▪ Grating lobes:
• Mainlobe-like structures at certain 

angles from mainlobe 

▪ Grating lobes are 
undesirable:
• Reduced contrast
• Ghost images

▪ Grating Lobe 
Reduction Techniques:
• Smaller pitch
• Shorter TX pulses
• Random aperture

Foe?

Vs.
Dual Apodization with 

Cross-correlation (DAX)

Friend?
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DAX: How it works

Effective 
Pitch(2Ng)

1. On-axis Target

RX1
RX2

In phase!
Beamformed RF

2. Off-axis Target

Beamformed RF
Out of phase!
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DAX: How it works

• DAS:

• N-N:

Grating Lobe Angle

g = pitch
N = # of altern. elems

Beamplots

Grating lobe

Grating Lobes
Effective 

Pitch(2Ng) RX1
RX2

Target from 
grating lobe

RF from Grating Lobes

Normalized Cross-correlation180o phase difference 
between RX1 and RX2



Jun Shin

DAX: Simulation Examples

▪ Large suppression of sidelobes
▪ No trade-off in lateral resolution!

With an 8-8 Alternating Pattern:

No change in 
mainlobe width 

CNR:5.2

CNR:10.7 Contrast-to-Noise Ratio
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DAX: Advantages & Limitations

• Straightforward
• Computationally cheap
• Large CNR improvement 
• No loss in spatial/temporal 

resolution 
• Robust with weak-medium 

level aberrations

• Creates artifacts & reduced 
effectiveness with strong 
phase aberrations

• Limited performance in the 
presence of reverberation 
clutter

• Integrate with other imaging techniques
• Algorithm Modifications / Optimizations

Advantages Limitations

Possible Solutions
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Problem I: Phase Aberration

• Best spatial resolution
• Largest target amplitude

No errors

C = 1540 m/s 

MainlobeSidelobes/
clutter
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Problem I: Phase Aberration

• Best spatial resolution
• Largest target amplitude

No errors

• Wider main lobe
• Higher sidelobes
• Lower target amplitudewith errors

Soft tissue sound speed range: 
1350 m/s – 1725 m/s

MainlobeSidelobes/
clutter

C    1540 m/s 

v1
v2
v3



Jun Shin

Solution I: DAX + PAC

▪ Benefit from 2 independent contrast enhancement mechanisms
• PAC restores coherence lost due to aberration (1 iteration)
• DAX suppresses the remaining aberration effects 

• Phase Aberration Correction (PAC) + DAX

N= subaperture size

Aberrator estimate 
for each element

Slope of the linear 
componentLinear component + 

aberration estimate

Differential delay error
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DAX + PAC: Experimental Cyst Results
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DAX + PAC: Ex-vivo Pork Results
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Solution II: DAX + HI

Bod
yTx pulse Distorted 

Rx signalNon-linear 
Effects Frequency
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m

pl
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de BPF

Xdcr BW

f0 2f0

Tissue Harmonic Imaging (THI)

2nd Tx pulse 
(Inverted)

Bod
y

Pulse Inversion Harmonic Imaging (PIHI)

Frequency
A

m
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itu
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Xdcr BW

f0 2f0Distorted 
Rx signals

o One of the most important recent innovations 
o Default mode for many clinical applications (esp. cardiac)
o Due to nonlinear effects of body tissue

• Harmonic Imaging (HI)
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Why Harmonic Imaging?

▪ Sharper image with higher contrast
▪ Most acoustic noise dominated at f0
▪ Aberration effects suppressed
▪ No added computational burden

Advantages

DAX can benefit from this!
Radial Distance

Beam Profile

f0

2f0

Reduced 
beamwidth

Lower 
sidelobes
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DAX + HI: Experimental Cyst Results
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DAX + HI: CNR Summary

204 % 890 %

No DAX w/ DAX

No DAX w/ DAX
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Summary: Solutions to Phase Aberration Effects

% CNR Improvement 
(Phantom Experiment) Image Artifacts

No Aberrator 12-mm Pork
Fund+DAX 72 % 96 % Yes

PIHI 33 % 359 % No
PIHI+DAX 204 % 890 % No

% CNR Improvement Image 
Artifacts

TX
FiringsPhantom 

Experiment
Ex-vivo Pork 
Experiment

DAX 13 % 64.9 % Yes 1
PAC 135 % 11.3 % No 2

DAX+PAC 543 % 117 % No 2

• Solution II: DAX + HI

• Solution I: DAX + PAC
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Problem II: Reverberation Clutter

Reverberation
• 1 of the 2 primary sources of 

ultrasound image degradation 
(Aberration & Reverberation)

• Caused by near-field structures 
(tissue layers, ribs, etc)

• Dominant mechanism of image 
quality degradation for B-mode

Byram and Jakovljevic, 2014

Cardiac Apical 4-Chamber View

Dahl and Sheth, 2014

Human Bladder

http://folk.ntnu.no/stoylen/

Reverb clutter reduction is key for in-vivo imaging!
DAX grating lobes < -30 dB
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DAX vs. PAX

PAX: “Phase” Apodization with Cross-correlation
• Motivated by the concept of sinusoidal phase grating in Fourier Optics 

(Goodman, 2005)

Channel RF Data

▪ DAX: Two sets of RF data with 
complementary amplitude weightings

▪ PAX: Two sets of RF data with 
complementary sinusoidal time delays

PAXDAX

DAX PAX

1

DAS
Element Number

A
xi

al
 P

os
iti

on

6432



Jun Shin

PAX: Overview

▪ Rayleigh-Sommerfeld Diffraction Theory
• Describes complex pressure field at single frequency

Bessel function of 1st kind

Transmit Field Receive Field
Sinusoidal phase apodization

m/2 (rad)

D
iff

ra
ct

io
n 

Ef
fic

ie
nc

y

m : determines grating lobe magnitude
f0 : determines grating lobe location

Sinusoidal phase apodization 
• Deflects main beam energy out to multiple grating lobes
• Allows for more flexible manipulation of grating lobe locations & magnitudes

1st Grating lobe

Mainlobe

2nd Grating lobe
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From PAX to Multi-PAX (MPAX)

PAX RX1 RX2

Single apodization pair

MPAX

N apodization pairs

RX1i RX2i

1

2

N-1

N
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Beamplots: DAX vs. MPAX

Background | 11

DAX(4-4) MPAX

MPAX : uses multiple PAX beams with 
7~13 cycles (only 3 are shown)

➢ MPAX uses the average of multiple coefficients for more robust performance.  

❖ m = 3.6 rad (~ 0.6λ)
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Sponge Phantom Experiment

Copper wire: 
• Generates near-field reverb 

clutter similar to in vivo

Sponge: 
• Speckle-generating target

Wiry Copper Scouring Pad
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Sponge Results: DAX

Without Copper Wire

With Copper Wire
CNR:12.5CNR:6.0

Coeff Matrix

CNR:2.7 CNR:5.4

Coeff Matrix
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Sponge Results: MPAX

Without Copper Wire

With Copper Wire
CNR:6.0 CNR:15.5

Coeff Matrix

CNR:10.3CNR:2.7

Coeff Matrix
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In vivo Evaluation

Cardiac (Subxiphoid view)
CNR:7.2CNR:3.8 CNR:5.5 CNR:5.0

Cardiac (Apical 4-chamber view)
CNR:3.2CNR:2.1 CNR:5.0 CNR:3.3

CNR:3.1 CNR:4.5CNR:2.5 CNR:3.4

Abdominal Aorta (Long-axis view)
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Cardiac Imaging: In vivo Evaluation

Apical 4-chamber View

DAS MPAX

CN
R

End-
systole 2.1 6.7

End-
diastole 2.1 5.0
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Cardiac Imaging: In vivo Evaluation

Background | 11

Subxiphoid View

DAS MPAX

CN
R

End-
systole 3.9 7.2

End-
diastole 2.7 5.5
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MPAX: Conclusions

Sponge 
with 

reverb 
clutter

Sponge 
without 
reverb 
clutter

In vivo 
Abdominal 

Aorta

In vivo 
Cardiac
(Apical 

4-chamber)

In vivo 
Cardiac

(Subxiphoid)

MPAX: Summary
• Highest CNR in all cases 
• Robust with reverberation clutter 
• Less prone to artifacts 
• Better than or equivalent to other competing methods
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FX Prediction Filtering (FXPF)

• Frequency-space (F-X) domain filtering for random noise 
suppression

• Linear/quasilinear events in time-space (T-X) domain → 
superposition of harmonics in F-X domain

• Application to medical ultrasound imaging
• Coherent signals appear as linear events in the aperture domain
• Incoherent signals (i.e. random noise and clutter) appear as 

random or pseudorandom
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FXPF: Overview

Channel RF signals from a point target in T-X domain 

Signals appear as linear 
events across the aperture

For a specific frequency     , we obtain a 
linear recursion:

where

F-X Domain

AR model 
of order 1

where

RF signal from the xth 
element at time t.

Slope of a linear event in 
the aperture domain 

Pitch of the transducer array

T-X Domain
• Single linear event
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FXPF: Overview

• Superposition of p linear events in the T-X domain can be represented by an AR 
model of order p:

d = f * a

• Formulated as a convolutional form:

where a: prediction filter of length p

f: vector containing

d: vector containing

d = Fa
• Reformulated as a matrix vector form:

This equation is based on a clean signal model. 
In reality, the channel RF data are corrupted by random noise.
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FXPF: Overview

• Solve for the prediction filter a from noise corrupted observation d based on 
the minimum prediction error energy assumption.

• Minimizing the following objective function:

     We get:

• The estimated clean data can be expressed as:



Jun Shin

FXPF: Simulated Point Target Results

• SNR: 15dB

Lateral Beamplots

Channel RF data from x=0 mm

Beamformed Images
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FXPF: Sponge Phantom Results

CNR: 9.5CNR: 6.0

No Added Noise or Reverb Clutter

SNR: 15dB

CNR: 7.2CNR: 4.2 CNR: 2.6 CNR: 4.9

Reverb Clutter
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FXPF: In vivo Abdominal Results

• Gall bladder (Long-axis view)

CNR: 5.5CNR: 4.3

• IVC (Long-axis view)

CNR: 4.5 CNR: 4.9

IVC: Inferior 
vena cava
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Why FXPF?

• Why another contrast enhancement technique?
• FXPF improves image contrast by enhancing channel RF SNR. 
• FXPF does not need to create a weighting matrix.
• FXPF is based on a new mechanism. → Possibility for a hybrid 

approach

CNR: 4.5 CNR: 4.9 CNR: 5.7CNR: 5.4
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FXPF: Conclusions

In vivo 
Gall 

bladder

Sponge 
with 

noise

In vivo 
IVC

Sponge 
without 
noise

Sponge 
with 

reverb 
clutter

FXPF Summary
✓ Suppresses any incoherent 

signals in the aperture domain

✓ Highly effective and robust 

✓ Straightforward implementation
✓ Computationally efficient
✓ Does not create a weighting 

matrix as most other methods

✓ Can be applied iteratively
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• Origins
• J. Capon, “High-resolution frequency-wavenumber spectrum 

analysis,” Proc. IEEE, pp. 1408-1418, 1969.

• Adaptive Beamformer
• Data-dependent instead of predetermined aperture weights

• Main Benefits
• Improved lateral resolution
• Some sidelobe/clutter suppression

Minimum Variance Beamforming (MVBF)
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MVBF: Overview

• MVBF
• Given DAS beamformer output        :

Spatial covariance matrix

• Minimize the variance of         while forcing unit gain at the 
focal point:

Steering vector

andwhere

• The variance of         can be written as:
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MVBF: Overview

• MVBF
• The optimization problem has an analytical solution:

•           must be estimated by averaging in spatial and temporal 
domain:  

Temporal averaging over 2K+1 samples
Spatial averaging over M-L+1 subarrays

where

• The final MV amplitude estimate is:
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MVBF: Simulation Examples

Lateral beamplots at z=60mm
Simulated Point Targets

Lower clutter

Narrower 
mainlobe

Simulated Anechoic Cysts

CNR:6.1CNR:5.1
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Spiking Deconvolution

• Goal
• Aims to “sharpen” the channel RF signals by removing 

the effect of ultrasound pulse using an inverse filter 
estimated from the data itself. 

• Main Benefits
• Improved axial resolution
• Broader frequency spectrum
• Slightly enhanced contrast
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Spiking Deconvolution: Overview

Desired output

Actual output

• Define error between desired & actual outputs

Autocorrelation lags 
of the input

Cross-correlation lags 
between desired 
output & input

• Minimizing the error E, we get:

• Given the input series                            , find the inverse filter such that 
the desired output is a zero-lag spike                     :

• Filter the data using 
the inverse filter f
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Experimental Results: Beamplots
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Experimental Results: Contrast
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Breast Cancer Background

• One of the most common types of 
cancers in women

• Early detection → higher survival rate
• Gold standard for breast cancer 

screening: mammography
• Many recent studies are skeptical 

about the benefit of mammography

Breast Cancer Risks of mammography

https://thenypost.files.wordpress.com/

• Ionizing radiation
• Difficulty discerning benign vs. malignant
• Difficulty imaging dense breasts
• False-negative results miss cancer
• Discomfort, pain
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Breast Cancer Background

Characterizing tumors based on sound speed
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Breast Ultrasound Tomography

Ultrasound Bent-ray Tomography (USRT):

• USRT uses first arrival times of the 
transmission (and possibly reflection) 
signals for tomographic reconstruction .

Two parallel transducer arrays:
• Fits variable breast size
• Can image underarm region

Ultrasound Tomography System
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USRT: The Forward Problem
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USRT: Regularized Inversion

where
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Numerical Phantom Results 1

True Phantom

Tikhonov MTV

USRT Reconstruction
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Numerical Phantom Results 1

Axial Sound Speed profileLateral Sound Speed profile
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Numerical Phantom Results 2

True Phantom

Tikhonov MTV

USRT Reconstruction
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Numerical Phantom Results 2

Axial Sound Speed profileLateral Sound Speed profile
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USRT: Conclusions

✓ Developed USRT with MTV-regularization 
✓ Demonstrated improvement in sound speed reconstruction with 

simulated data
✓ Currently, the new algorithm is being is being validated with 

phantom and in vivo patient data

USRT Summary
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Overall Summary

I. Image Quality Enhancement in Ultrasound Imaging

a. Background
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