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1 Summary of the Basic Research Plan

The purpose of the proposed research was to identify unforced predictable components on 
decadal time scales, distinguish these components from forced predictable components, and 
to assess the reliability of model predictions of these components. The question of whether 
anthropogenic forcing changes decadal predictability, or gives rise to new forms of decadal 
predictability, also will be investigated.

2 Diagnosis of Decadal Predictability

Our work has established a scientific basis for decadal predictions by explicitly identify­
ing patterns in climate models that are predictable on decadal time scales and showing 
that these structures also are predictable in the observed climate system. Our research 
clearly demonstrates that certain patterns in climate models are predictable on decadal time 
scales. Specifically, we identified patterns that maximize Average Predictability Time in 
multiple pre-industrial control runs. Control runs have no interannual variations in climate 
forcing, hence the multidecadal variability found in such simulations are generated inter­
nally by the climate system irrespective of anthropogenic or natural forcing. The single 
most predictable component in CMIP5 models is shown in fig. 1a, which has loadings con­
centrated in the North Atlantic and North Pacific, consistent with previous studies. This 
pattern is discussed in more detail in Jia and DelSole (2012a), and is similar to the most 
predictable pattern in CMIP3 models (DelSole et al., 2011). The APT of this component is 
well separated from those of the other components and statistically significant in each model
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individually. The skill of predicting this component in pre-industrial control runs, using a lin­
ear regression model derived from independent control simulations, is shown in fig. 1b. As 
indicated in the figure, different models show widely different levels of predictability, with 
some models showing insignificant predictability after two years while others showing sig­
nificant predictability as long as 10 years. Thus, models agree that certain SST patterns are 
predictable on decadal time scales, but disagree on the magnitude of that predictability. The 
time series produced by projecting the component onto observational estimates of sea surface 
temperature from the Extended Reconstruction data set (ERSSTv3) is shown in fig. 1c. The 
figure shows that the time series fluctuates strongly on multidecadal time scales. This result 
is noteworthy because there is no guarantee that the most predictable component in climate 
models is predictable (or slowly varying) in observations. Fig. 1c also shows the observed 
Atlantic Multidecadal Oscillation (AMO) index. The strong correlation between the two 
time series confirms that the most predictable component in the CMIP5 models projects on a 
well documented component of multi-decadal variability in observations. The fact that this 
component can be predicted on decadal time scales in some models provides a scientific 
basis for decadal prediction of surface air temperature.

In total, we identify four robust SST patterns that are predictable on decadal time scales in 
climate models. The second and fourth patterns correspond to the Pacific Decadal Oscillation 
and ENSO, respectively, while the third pattern appears to be a mixture of the above patterns 
(not shown). In addition, a generalized version of APT analysis, in which a linear regression 
model is used to predict surface air temperature or precipitation over land, using SST as a 
predictor, was used to show that temperature is predictable for 3-6 yrs and that precipitation 
is predictable for 1-3 yrs, depending on continent (Jia and DelSole, 2011). Results of this 
research have been summarized in the invited review paper DelSole et al. (2015a).

The most predictable component of annual mean precipitation in the CMIP5 models is 
shown in fig. 2. In contrast to surface air temperature discussed above, the most predictable 
precipitation component has maximum loadings in the tropical pacific, and the models more 
or less agree that the predictability persists only for two or three years. Because this com­
ponent has been statistically optimized, these results demonstrate that predictability of 
annual mean precipitation is at most three years, and hence decadal predictability of 
precipitation is weak or non-existent in the CMIP5 models.

3 Optimal Determination of Time-Varying Climate Change Signals

We developed an optimization procedure that identifies components that maximize de­
tectability of forced responses. The resulting components are called most detectable com­
ponents and discussed in Jia and DelSole (2012b). The most detectable component of near­
surface air temperature in CMIP5 models is shown in fig. 3a. The pattern corresponds to 
temperature changes in the same direction nearly everywhere. Combining this fact with the 
increasing trend in each time series implies that the bulk of the detectability is due to twen­
tieth century warming. Note that the loadings are relatively uniform in the tropics, but are
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Figure 1: a) The most predictable component of annual mean near-surface air temperature 
over the ocean between 40°S and 60°N derived from eight CMIP5 control simulations; b) the 
squared multiple correlation of the most predictable component in each model; c) the (scaled) 
AMO index (red), and the time series produced by projecting the pattern onto observations 
(black). The dashed line in b) indicates the 5% significance level. The spatial structure shows 
the change in temperature (in degree kelvin per unit variate) relative to the climatological 
mean. The correlation coefficient between the two time series in c) is indicated in the top left 
of the panel.
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Figure 2: Most predictable component of annual mean precipitation derived from the pre­
industrial control runs of the CMIP5 data set (top), and the squared correlation skill of this 
component in individual models when predicted from a linear regression model using forty 
principal components as predictors.
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very weak in the North Atlantic, in contrast to the most predictable component shown in fig. 
1. These differences in spatial structure provide the basis for separating forced and unforced 
variability in observations (DelSole et al., 2011). The detectability of the pattern, measured 
by the forced-to-unforced variance ratio, is shown in fig. 3c. The leading component is de­
tectable in all models (i.e., all values for the first component lie above the upper significance 
threshold). In contrast, the second is not detectable in some models, and the degree of de­
tectability is model dependent: the ratio of the largest to smallest variance ratio for the first 
component exceeds ten. Time series of the most detectable component in independent twen­
tieth century runs are shown in fig. 3b. Each time series shows a clear trend, interrupted by 
sudden coolings coincident with major volcanic eruptions. The variability due to the trend 
greatly exceeds the variability of the pre-industrial control simulations (indicated by the error 
bar), demonstrating that this component is significantly detectable in the models. Note that 
the model ensembles become separated at the end of the twentieth century, indicating that a 
large fraction of the uncertainty in forced response comes from model differences.

Jia and DelSole (2012b) applied the above optimization procedure to determine the most 
detectable pattern in the CMIP3 models of precipitation over land. No single pattern of five- 
year mean JAS precipitation over land could be detected in all the models, indicating that 
the forced response of precipitation is not robust across state-of-the-art climate models. 
Because the procedure is optimal, we can claim that no five-year mean precipitation pattern is 
consistently detectable in models. It should be recognized, however, that this conclusion does 
not preclude detectability of other expressions of the signal, such as ones constructed from 
other time averages, statistics, or time-lag information. The amplitude of the climate change 
statistic in different twentieth century simulations is shown in fig. 4. The figure indicates that 
while most models show no detectability of precipitation (as evidenced by the fact that their 
time series lie within the 90% confidence interval for unforced variability), the models that do 
show detectability of five-year mean JAS precipitation exhibit two very different characters: 
a systematic trend, and enhanced frequency of extreme values. These results appear to be 
a significant advancement in detection capabilities, as previous attempts to identify forced 
precipitation patterns were restricted to zonal averages within certain latitudinal bands.

4 Empirical Decadal Prediction

The above studies demonstrate that temperature and precipitation are predictable on multi­
year time scales in the models, but they do not show that this model-derived predictability 
translates into skillful predictions of observed anomalies. To test whether these components 
are predictable in observations, DelSole et al. (2013) constructed a linear regression model 
from the pre-industrial control runs, and used this model to predict observations. In this new 
forecast system, the forced component is predicted using the most detectable component 
shown in fig. 3, with the amplitude determined by a least squares fit of this pattern for each 
year to the ensemble mean, multi-model mean of eight CMIP5 twentieth century simulations. 
These simulations were initialized at some random point from a pre-industrial simulation and
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Figure 3: a) The most detectable component, on average, of annual mean near-surface air 
temperature over the ocean between 40°S and 60°N derived from eight CMIP5 control sim­
ulations; b) the projection of the most detectable pattern on independent twentieth century 
simulations; c) the forced-to-unforced variance ratios of each discriminant component in 
each model. The error bar in b) indicates the 2.5 and 97.5 percentiles in the pre-industrial 
control simulations. For plotting b), each model time series has been normalized by the 
standard deviation of the pre-industrial control runs of the respective model, and ensemble 
members from the same model have the same color. The two lines in c) show the 2% confi­
dence interval of the variance ratio under the null hypothesis of equal variance. The spatial 
pattern has units of degree Kelvin per unit variate relative to the pre-industrial mean.
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Figure 4: Time series of the most detectable component, on average, of JAS mean precipita­
tion over six continents. Individual twentieth century runs are shown as thin black lines, and 
the ensemble mean is shown as the thick red curve. The time series were calculated from 19 
independent twentieth century runs. The horizontal dashed lines indicate the 5th and 95th 
percentiles estimated from independent control runs. The percentages in each panel gives 
the percent of twentieth century realizations that fall outside the 5th and 95th percentiles of 
the control run. The pre-industrial control mean of each respective model has been removed 
from the time series.
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then forced with anthropogenic and natural forcing characteristic of the twentieth century. 
As a result, all prediction skill from these simulations come from the forced response, not 
from observational initial condition information. The skill of the model-predicted forced 
component therefore provides a measure of how well the forced component is predicted by 
dynamical models. To predict the unforced component, we use a multivariate regression 
model that predicts the mean sea surface temperature in a given year based on the state of 
this field at an antecedent year. We avoid complex validation issues by constructing a single 
multivariate regression model trained on pre-industrial control simulations, which affords a 
much larger sample size is available for estimation, and also leaves the entire observational 
record to serve as independent verification data. On the other hand, a regression model 
trained on numerical simulations (instead of observations) may be unable to capture realistic 
SST variability. In a sense, the regression model represents a simplified version of the dy­
namical models from which it was trained, and hence provides a way to validate dynamical 
models without performing forecasts with the dynamical models themselves. To mitigate 
sensitivity to the choice of dynamical model, a single regression model is trained on control 
runs from eight different climate models. The resulting prediction model is exactly the same 
model used to derive the most detectable component in fig. 1.

To quantify prediction skill, we select three indices, namely the area-weighted average 
over the North Pacific, North Atlantic, and globe, and calculate one minus the ratio of the 
mean square prediction error to the climatological variance of these indices. The skill of the 
forced response estimate in predicting 20C observations is shown in fig. 5 as the blue line. 
The sum of forced and unforced temperature anomalies is predicted by adding the estimated 
forced response to the regression model prediction. The skill of the resulting predictions is 
shown as the black curve in fig. 5. The skill is positive at all lead times. However, the skill of 
the forced plus unforced prediction approaches the skill of the forced component alone. On 
the other hand, the skill generally exceeds the skill of a persistence forecast, demonstrating 
that the regression model “adds value” beyond mere persistence. The skill is largest for the 
global domain, reflecting the dominance of forced predictability on global space scales. The 
fact that the skill of the combined forced-unforced prediction is larger than the skill of the 
forced response prediction, especially in the first few lead years, demonstrates that initial 
condition information contributes to skill on multi-year time scales.

The above forecast system can skillfully predict SSTs on multi-year time scales, but it 
combines different patterns together so it is unclear whether its skill comes from the pre­
dictable patterns discussed in previous sections. To clarify this point, we show in fig. 6 the 
skill of our forecast system in predicting the first four predictable components. The skill 
is calculated by first forecasting the entire SST field, then projecting each predictable com­
ponent onto the forecast field and observations, then calculating the skill of the resulting 
indices. The figure shows that the skill of each predictable component exceeds the skill of 
the forced component alone, and exceeds the skill of a persistence forecast. In the case of 
the third predictable component, the skill of a persistence forecast is nearly the same as that 
of our model, implying that the skill of this component comes primarily from persistence. In 
contrast, our forecast model predicts the other components with more skill than a persistence
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Figure 5: The skill of predicting observed annual mean near-surface temperatures over the 
ocean in the North Atlantic (top), North Pacific (middle), and between 40°S and 60°N (bot­
tom) during 1910-2000, using an estimate of the forced component derived from twentieth- 
century simulations from eight CMIP5 models (blue line), and using this estimate of the 
forced response plus a multivariate regression model to predict unforced variability (black 
curve). The skill of a persistence forecast also is shown (red curve). Skill is measured by 
the squared error skill score (SESS), defined as one minus mean square error divided by the 
observed climatological variance.
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Figure 6: Same as fig. 5, except for predicting the first four predictable components obtained 
by maximizing APT.
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forecast. In fact, for the second and fourth predictable components, the skill of a persistence 
forecast is negative. This negative skill is consistent with our hypothesis that the predictabil­
ity in the Pacific comes from the interaction of components rather than persistence. These 
results are summarized in DelSole et al. (2015a).

5 Changes in Internal Variability Due to Anthropogenic Forcing

We also investigated how the variability of temperature will change due to global warming. 
There is growing evidence that the frequency and intensity of heat extremes will increase 
in response to increasing greenhouse gas concentrations. However, there is considerable 
disagreement as to whether these changes can be explained as a simple shift of the prob­
ability distribution of temperature, or whether the shape of the distribution (especially the 
variance) also is changing. LaJoie and DelSole (2015) quantified changes to internal vari­
ability of seasonal- and annual-mean 2m temperature in response to anthropogenic forcing 
using climate models driven by twenty-first century high emissions scenarios. The statistical 
significance of the spatially distributed changes to variance is tested using a new multivariate 
technique. All climate models examined predict significant changes to internal variability of 
temperature in response to anthropogenic forcing. The models consistently predict decreases 
to temperature variance in regions of seasonal sea-ice formation and across the Southern 
Ocean during the twenty-first century. While more than half the models predict significant 
changes in variance over ENSO regions and in the North Atlantic Ocean, the direction of 
this change is model dependent. Seasonal mean changes are remarkably similar to annual 
mean changes, but there are some model-dependent exceptions. Some models predict future 
variability that is more than double their preindustrial variability, raising questions about the 
adequacy of doubling uncertainty estimates to test robustness in detection and attribution 
studies. The results show that climate models agree that temperature variability will de­
crease over areas influenced by changing sea-ice, but they disagree about changes in 
other areas of the globe, especially the tropical Pacific, which is the center for El Nino 
phenomena.

6 Improved Estimates of Aerosol Cooling

We have developed a new framework for quantifying the detectability of anthropogenic 
aerosols. This new framework allows one to systematically explore a variety of variables 
and spatio-temporal details to maximize detection of anthropogenic aerosol forcing. Apply­
ing this methodology to CMIP5 simulations shows clearly that a combination of temperature 
and precipitation provides the maximum detectability of anthropogenic aerosols in a perfect 
model world (Yan et al., 2015). Surprisingly, the detectability does not require any spatial 
gradient information (i.e., aerosol forcing can be detected using only global mean tempera­
ture and precipitation) (DelSole et al., 2015b). Unfortunately, applying this approach to real
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observations is problematic because the errors in precipitation observations are large; for in­
stance, different observational estimates of global-mean, annual-mean precipitation are not 
significantly correlated with each other (DelSole et al., 2015b).

7 Contribution of Individual Collaborators

Timothy DelSole is the lead PI for this project and is responsible for all aspects of the pro­
posed research. He supervised research conducted by the PhD graduate students Emerson 
LaJoie, Xiaoxin Yan, and Liwei Jia (now graduated). Dr. Jia performed the analysis lead­
ing to Jia and DelSole (2012a), Jia and DelSole (2012b), DelSole et al. (2013). Emerson 
LaJoie performed the analysis leading to LaJoie and DelSole (2015). Xiaoxin Yan entered 
the PhD program in Fall 2011 and performed the analysis leading to Yan et al. (2015) and 
DelSole et al. (2015b). Dr. Jia has been working at GFDL since 2013. Michael Tippett has 
collaborated on all aspects of the proposed research.

8 Publications

The following papers generated as part of this research project have been published in peer- 
reviewed journals or books:

• Jia and DelSole (2012a)
• Jia and DelSole (2012b)
• DelSole etal. (2013)
• DelSole et al. (2015a)
• LaJoie and DelSole (2015)
• Yan etal. (2015)
• DelSole etal. (2015b)
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