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Abstract 

A model for radial diffusion caused by electromagnetic disturbances was published by 
Falthammar (1965) using a two-parameter model of the disturbance perturbing a background 
dipole magnetic field. Schulz and Lanzerotti (1974) extended this model by recognizing the two 
parameter perturbation as the leading (non-dipole) terms of the Mead-Williams magnetic field 
model. They emphasized that the magnetic perturbation in such a model induces an electric 
field that can be calculated from the motion of field lines on which the particles are ‘frozen’.  
Roederer and Zhang (2014) describe how the field lines on which the particles are frozen can 
be calculated by tracing the unperturbed field lines from the minimum-B location to the 
ionospheric footpoint, and then tracing the perturbed field (which shares the same ionospheric 
footpoint due to the frozen-in condition) from the ionospheric footpoint back to a perturbed 
minimum B location. The instantaneous change in Roederer L*, dL*/dt, can then be computed 
as the product (dL*/dphi)*(dphi/dt). dL*/dphi is linearly dependent on the perturbation 
parameters (to first order) and is obtained by computing the drift across L*-labeled perturbed 
field lines, while dphi/dt is related to the bounce-averaged gradient-curvature drift velocity. The 
advantage of assuming a dipole background magnetic field, as in these previous studies, is 
that the instantaneous dL*/dt can be computed analytically (with some approximations), as can 
the DLL that results from integrating dL*/dt over time and computing the expected value of 
(dL*)^2. The approach can also be applied to complex background background magnetic field 
models like T89 or TS04, on top of which the small perturbations are added, but an analytical 
solution is not possible and so a numerical solution must be implemented. In this talk, I discuss 
our progress in implementing a numerical solution to the calculation of DL*L* using arbitrary 
background field models with simple electromagnetic perturbations. 
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DREAM3D is a 3D diffusion code implemented as 
1D+2D diffusion with event-specific chorus wave 
amplitude, Emin boundary condition, and LCDS 

Initial condition uses TS04 
to create f(µ,K,L*,t0) 
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DREAM3D reproduces enhancement  
but not dropout (Tu et al GRL 2014) 

PSD[µ=1279 MeV/G, K=0.115 G1/2RE,L*,t] 

Van Allen Probes electron 
data (MagEIS, REPT) 
 
 
DREAM3D w/ event-specific 
Emin BC, LCDS, but w/o 
event-specific lowband 
chorus wave intensity 
 
 
DREAM3D w/ event-specific 
Emin BC, LCDS, and with 
event-specific lowband 
chorus wave intensity 
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(A few of the) limitations of previous 
work 
 VLF wave-particle interactions 

– Plasma trough density observed by EMFISIS lower than 
Sheeley trough model used in DREAM3D; will cause 
additional acceleration 

– Magnetic field intensity observed by EMFISIS significantly 
different from dipole; will affect acceleration, loss, and drift 
orbits  

 ULF wave-particle interactions 
– Magnetic field intensity observed by EMFISIS significantly 

different from dipole; will affect drift orbits 
 Goal of current work: incorporate non-dipole field models in 

DREAM3D to enable use of calculated drift shells and field 
intensity, enabling more accurate modeling of ULF/VLF wave-
particle interactions 
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Using the T89/TS04 empirical field model 
in DREAM3D: background 

 DREAM3D uses the (µ,K,L*) invariants 
 
 
 
 
 

 Geometric sampling in µ,K; uniform in L* 
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 For each time step in DREAM3D (dt=1/2 hour for 
outer-belt study),  
– For each dL=0.1 Re along a ray at 00 MLT 

– For each Kj 
– Trace drift shell to give (x,y,z,B) along the field line as a 

function of MLT 
– Compute L* for this drift shell 

– Rebin the drift-shells uniformly in L* so that one 
has L(MLT, K, L*) for each L* bin in the 
calculation 

– Use the drift-shell to compute drift-averaged 
quantitites 

 

Using the T89/TS04 empirical field model 
in DREAM3D 
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Computing the drift shells: trace initial 
field lines 

j
mB

j
mB

1. Trace field line to 100 km 
for each Lk=1.0+(0.1*(k+0.5)) 
along a ray pointed to 
midnight. 
 
2. For each field line, 
determine the mirror-point 
magnetic field Bm(Kj) for 
each Kj on the desired grid. 
 
3. Save the portion of the 
field line that mirrors at 
Bm(Kj) in the north and south. 
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Computing the drift shells: trace shell at 
constant K, Bm 

1. For each (Lk, Kj) trace out 
the drift shell by finding the 
field line at each MLT that 
has the same (Kj, Bm(Kj,Lk)). 
A drift shell is specified by          
(B(s,φ), x(s,φ),y(s,φ),z(s,φ)). 
 
2. Compute the Roederer L* 
for each drift shell. These L* 
values are not uniformly 
spaced. 
 

L*=3.880 
L*=4.721 
L*=5.498 

B=Bm(Kj,Lk) is 
constant on top 
and bottom 
contours 
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Computing the drift shells: resample 
onto uniform L* 

1. For each target L*k on the 
uniformly sampled grid in L*, 
and for each Kj, find the two 
drift shells that bracket the 
target L*.  

2. Interpolate the two drift shells at 
each (s,φ) using 
(B1(s,φ),x1(s,φ),y1(s,φ),z1(s,φ)) 
(B2(s,φ),x2(s,φ),y2(s,φ),z2(s,φ)) 

3. Now have a drift shell for each 
target grid point Kj,L*k 

L*=3.880 
Target=4.5 
L*=4.721 
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Drift shell inflation during a storm 
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For each ½ hour time interval, for the 
K~0 drift shell, find the distance to 
Bmin, LRe, for each MLT. Call this 
L(MLT,K~0,t) and plot below. 
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Naïve use of TS04 drift shells for radial 
diffusion makes substantial difference 
 DREAM3D old: assume L=L*  

 
 DREAM3D new: average over MLT 

Ratio of new to old at L*=4.2 vs time 
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Naïve use of drift-shells for radial diffusion 
has significant impact on DREAM3D output 
PSD[µ=1279 MeV/G, K=0.115 G1/2RE,L*,t] 
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Van Allen Probes electron  
data (MagEIS, REPT) 
 
 
DREAM3D PSD using old 
DLL(L=L*) 
 
 
DREAM3D PSD using MLT-
averaged DLL(L(MLT,K,L*)) 
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Naïve use of drift-shells for MLT-averaged 
DLL inadequate 
 Falthammar diffusion from magnetic perturbations 

–  ∆𝑟 2  ∝ 𝑟4Ω2

𝐵2
𝑆(Ω)  ∝ 𝑟10if S(f) ∝ 1

𝑓2
 

 We’re simply using inflated drift-shell radii for r in the 
formula above, but the derivation depends on many 
aspects of dipole field field 
– Constant drift velocity, Ω 
– Circular drift orbits 
– Magnetic field intensity dependence on r 
– L*=L 

 Need to start from scratch for non-dipole background 
field 
 



|  Los Alamos National Laboratory  | 

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA 15 

Start with Schulz and Lanzerotti 1974 
derivation for perturbations to a dipole 
 Magnetic perturbation 

A(t)b(x) causes the 
field lines on which 
particles are ‘frozen’ to 
move 

 Ionospheric footpoints 
of perturbed field lines 
are unchanged 

 Field line movement 
induces an electric 
field vd=ExB/|B|2  

Positive 
perturbation 
compresses 
field lines  

dr 
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Computation of unperturbed field line 
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Computation of perturbed field line 
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Field lines for ‘labeled’ drift shells are 
perturbed, but µ, K are conserved  

dr Bold Bnew 

Invariants µ, K are conserved, 
but Bm, KE and α are not. 
 
L* label stays the same if 
particle remains on this field 
line EVEN THOUGH the 
instantaneous Roederer L* 
changes (2nd order?). 
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Symmetric background field (dipole) and 
symmetric perturbation imply no diffusion 

Symmetric perturbation to a 
symmetric background field 
compresses field lines at different 
MLT the same.  
 
Particle drift causes particles to 
move onto field lines at different 
MLT with same L* label since 
dr(φ)=dr. 
 
Since L*(t) is constant, no radial 
diffusion. 

φ 
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Particle drift in MLT and asymmetry 
needed to change L* ‘label’ 

Asymmetric perturbation compresses field 
lines at different MLT differently, dr(φ).  
 
Particle drift causes particles to move onto 
field lines at different MLT with different L* 
labels. 
 
Since L*(t) is not constant, potential for 
radial diffusion. 
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Instantaneous change in L* label caused 
by particle drift and asymmetry 
 Drift is perpendicular to 

gradient of K: conservation of 
K 
 
 

 Change in L* label also given 
by conservation of K 
 
 

 Time rate of change in L* 
label: dL*/dt=(dL*/dφ)(dφ/dt) 
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Example dL*/dφ for K=0 

Perturbed L*1 contour of field line points 

Perturbed L*0 contour of field line points 

B1+A(t)dB(φ,L*
1) 

B1+A(t)dB(φ+∆φ,L*
1) 

B0+A(t)dB(φ,L*
0) 

B0+A(t)dB(φ+∆φ,L*
0) 

Drift at constant B 

∆φ 

Perturbation compresses field 
more at φ+∆φ than at φ, 
resulting in larger B for same 
drift-shell label, L*. Drift at 
constant B causes change in 
field label, hence ∆L* over ∆φ. 
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Example dL*/dφ: what about changing 
A(t)? 

Perturbed L*1 contour of field line points 

Perturbed L*0 contour of field line points 

B1+A(t)dB(φ,L*
1) 

B1+A(t)dB(φ+∆φ,L*
1) 

B0+A(t)dB(φ,L*
0) 

B0+A(t)dB(φ+∆φ,L*
0) 

Drift at constant B 

∆φ 

Changing A(t) causes drift at 
non-constant B, with the change 
identical to the change at the 
field line points labeled L*

0 and 
L*

1. 
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Schulz and Lanzerotti L* label is not 
instantaneous Roederer L* 

A(t) 

S&L L* doesn’t change abruptly at sharp changes in A(t) 

Instantaneous Roederer L* doesn’t change when A(t) is constant 
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Example for K=0: numerical evaluation  
of dL*/dφ 

 Given a ‘background’ field, B(x), for each (K, L*, φ) 
– Have field line mapped to ionosphere from drift-shell tracing 

 For time-varying perturbation A(t)b(x) 
– Perform integral that computes perturbation A(t)dr  

– equivalent to mapping field line for B(x)+A(t)b(x) from ionospheric footpoint 
to Bmin to 1st order 

– Compute dB=A(t){(δ|B|/δr)*dr+|bpar(x)|} 

 Using Bperturbed(K,L*,φ)=Bunperturbed+dB, trace drift at 
constant B to compute dL*/dφ=A(t)f(K,L*,φ) 
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Additional work to get DL*L* 

 For a particle starting at MLT (K, L*, φ0) 
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Additional work to get DL*L* 
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Summary 

 The work of Falthammar and Schulz & Lanzerotti uses 
1st-order approximations for the effect of a small, ultra-
low frequency electromagnetic perturbation to the 
magnetic field lines on a labeled drift shell. 

 Schulz and Lanzerotti showed that a change in the drift-
shell label, L*, can occur when the particle drifts from a 
field line associated with one label to another, and 
computed diffusion in the L* label for a dipole 
background field perturbed by a one-parameter model. 

 This approach can be applied to more complicated 
background field models (T89, TS04) using the same (or 
different!) perturbations and solved numerically. 
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