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1 Introduction

Modeling of fracture of shales during drilling and hydraulic fracturing
is a major research area for gas and oil industries [1, 2, 3, 4].

Due to their laminate structure, shales exhibit an anisotropic me-
chanical response which has been ignored for long time. Yet, recently
there have been a few attempts to develop and use orthotropic models
for shales [5, 4].

The purpose of this report is to present the implementation of
a shale model in the Geodyn code, based on published rock mate-
rial models and properties that can help a petroleum engineer in his
design of various strategies for oil/gas recovery from shale rock for-
mation. Drilling strategies may include using explosives for fractur-
ing rock and injection of proppants for maintainting fractures open.
During drilling, borehole stability is an important concern, requiring
an understanding of natural shale layered structure, elastic moduli,
strength, pore fluid pressure, mineral content, etc

To account for the layered shale structure, which can be on a
very small scale, an anisotropic model is necessary to calculate rock
response to applied loading. Where explosives are used to break
up the rock, porosity and compaction need to be modeled, and the
model needs to be sensitive to relatively high strain rate. Far away
from the explosion site, the rock is subject to lower strain rates, so
that strain-rate sensitivity is not an issue.

A petroleum engineer has a variety of tools at his disposal in de-
veloping his strategy. These tools include measuring rock properties
(logging) at various depths, extracting rock samples for laboratory
measurements (e.g. triaxial tests). To evaluate borehole stability,
techniques may range, for example, from calculating borehole collapse
pressure using analytical models [6] to FEM codes that incorporate
constitutive models, such as [5]. Both types of techniques require
validation with experimental data. The focus of this report will be
mainly on constitutive models (used in FEM codes) using parameters
that can be calibrated to rock tests, and a collection of available data
for such tests. The Crook model [5] has been identified as a complete
anisotropic model that can be used as a good starting point.

In this report, we review several approaches to modeling shale and
then focus on the implementation of a particular model (the Crook
anisotropic model).

2 Models applied to blast loading

The first papers will illustrate capabilities and limitations of isotropic
models used to calculate rock behavior under explosive loading. Grady
and Kipp in [7], Kipp and Grady in [8], Kipp, Grady, Chen in [9] show
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good agreement between experimental and analytical results finding
that fracture stress and energy increase with strain rate while frag-
ment size decreases with strain rate, using only isotropic damage
models. However, Taylor, Chen, Kuszmaul in [10] find that isotropic
models with or without layering are only able to reproduce the peak
values of measured stress waves but not the release history.

Zhang, Hao, Lu in [11] argue that an anisotropic damage model is
needed but their results for fracture stress and fragment size are just
as good as those obtained by Grady et al, in the previous papers, for
the same data.

3 Models applied to triaxial tests

The next set of papers apply various anisotropic formulations to tri-
axial tests.

Nova [12] assumes linear transverse isotropic elasticity, with an
anisotropic yield, associative plastic flow, and strain-hardening, in
an extended cam-clay model, intended for soft rocks. While the
model gives good agreement with experiment for longitudinal stiff-
ness, triaxial test simulations do not agree well with experimental
data. Specifically, the model gives poor agreement with experiment
for stress-difference (S1-S3) vs. strain.

Niandou et al [13] were able to correct this deficiency in Nova’s
model by allowing for non-associative flow (with a plastic potential
distinct from the yield) in order to match their Tournemire shale data
[14].

Cazacu and Cristescu [15] developed a failure model, based on an
anisotropic Mises-Schleicher failure criterion, which agrees very well
with Tournemire data for the variation of failure stress with orienta-
tion and for various confining pressures, where the orientation angle
is defined for the principal stress system with respect with the ma-
terial symmetry structural system. They also present an anisotropic
model [2] in which they use extensive fitting to formulate elastic pa-
rameters and a yield surface. The expression for the yield surface is
initially unknown and is fully determined from experimental data.

Tien [16] studies the failure stress of artificially layered material.
He introduces a failure criterion based on two modes of failure: slid-
ing on a discontinuity across material layers and failure within a single
layer without sliding. Tien identifies an anisotropy parameter n de-
fined by:

n =
E

2G
− ν (1)

which is equal to 1 for isotropic material. E is Young’s modulus at
90 degrees with respect to the intrinsic material frame and G and ν
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are the shear modulus and Poisson’s ratio, in the same frame. For
Martinsburg shale, he finds that this parameter varies only from 3.5
to 4.6 over confining pressures ranging widely from 3.5 MPa to 100
MPa. He obtains good agreement for the Tournemire data.

Pietruszczak et al[17] develops an intricate anisotropic model with
microstructure without damage, which shows moderate agreement for
stress difference vs. volumetric strain for the Tournemire data.

Gao et al [18] present an anisotropic failure criterion, in which they
introduce a fabric tensor to achieve some success in the calculation
of the friction angle, giving clearly better results than an isotropic
model. Their model does quite well on Tournemire shale, predicting
correctly the variation in shear strength for various loading orien-
tations. They provide a calibration procedure for the parameters
introduced in the failure criterion. Note that they do not present the
entire model, but only the failure criterion.

Chen et al [19] also introduce a fabric tensor in their anisotropic
damage model, in which they couple plastic deformation with damage
induced by growth of microcracks. They also draw on the work of
Pietruszczak in their formulation. They obtain good agreement with
their model on the Tournemire shale data. This is an advanced model,
allowing for the yield to depend on stress, scalar measure of plastic
strain, density of microcracks, and a scalar anisotropy parameter,
which represents the projection of a microstructure tensor on the
current loading direction.

Chen et al [20] discuss the coupling between inherent and induced
anisotropy in sedimentary rocks, using a fabric tensor to characterize
anisotropic behavior.They obtain good agreement on shear stress vs.
strain for the Tournemire shale data. This is also a very advanced
model, which allows for friction coefficient and material cohesion for
a family of weakness planes.

Hu et al [21] add the effect of water content to the anisotropic mod-
eling. They provide calibration of model parameters and show good
agreement with Tournemire argilite data for triaxial tests, except for
volumetric strain vs. axial strain. Capillary pressure is introduced
to describe the effect of the water content, using the effective stress
concept. The model represents random microcracks by several fam-
ilies of parallel penny-shaped microcracks. The overall plastic strain
is defined as an average weighted by microcrack density.

Lisjak et al [22] addresses brittle failure of anisotropic Opalinus
Clay with a transversely isotropic constitutive model. Model param-
eters are calibrated with uniaxial compresive strength tests and Brazil
disc tests.Their model shows good agreement with experimental data
for maximum principal failure stress vs. confining pressure. With
their FEM-DEM method, they are able to calculate crack patterns
for various orientations.
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4 Sample properties from literature

Dewhurst et al [23] provide several interesting correlations of shale
properties from a variety of geographical locations. Figure 1 shows
correlation between unconfined compressive strength and porosity.
Figure 2 shows a tight correlation between P-wave velocity and poros-
ity.

Sone et al [24] provide properties of Barnett and Haynesville shale.
Figure 3 shows sample mineral composition, frictional coefficients,
unconfined compressive strengths. Figure 4 shows Young’s modulus
and Poisson’s ratio.

Li et al [25] give shale strength data for Haynesville site. Figure 5
shows the effect of confining pressure on shale strength.
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Figure 1: UCS vs. Porosity [23]

Figure 2: P-wave velocity vs. Porosity [23]
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Figure 3: Sample mineral composition and mechanical properties [24]

Figure 4: Sample Young’s modulus and Poisson ratio [24]

Figure 5: Effect of confining pressure on shale strength [25]Computational Geophysics group, LLNL
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Figure 6: Adjusting yield surface for anisotropic shale [5]

Figure 7: Equivalent stress vs. pressure for Modified Cam Clay model [5]

5 Crook Anisotropic Model

Crook et al [5] draw from the work of Cazacu and Pietruszczak
and present an anisotropic model based on extending the isotropic
modified Cam Clay critical state model to allow orthotropic elas-
ticity, an orthotropic pressure dependent yield surface, and harden-
ing/softening governed by the evolution of volumetric plastic strain.
Triaxial compression tests are used to validate the model. The model
is applied for prediction of equivalent stress q vs. axial/radial strain.
The model is successful in predicting peak values but has difficulty
with the subsequent release. Nevertheless, this model appears to be
a good candidate for a first implementation, given what is attempted
in the formulation, which avoids the complexity of Pietruszczak’s ap-
proach. The same model has also been used by Soreide et al [3]
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to evaluate borehole stability, using Abaqus to implement the model.
Crook et al realize that for induced anisotropy due to oriented growth
of microcracks, a fabric tensor with an evolution law are needed. This
is not included in their model. See the work of Chen [20] above. The
effect of pore fluid pressure will require using a formulation sensitive
to anisotropy, as described by Carroll [26] and by Chen and Nur [27]
. See also the work of Hu et al [21], above.

Crook et al have adapted the Modified Cam Clay model for shale.
Figure 6 shows the modified Cam Clay yield surface, and Figure 7
shows the corresponding representation for equivalent stress vs. pres-
sure, thus resulting in a good fit with experimental data. The mate-
rial parameters are calibrated by back-analysis of uniaxial and triaxial
tests. The elastic parameters are determined from conventional tri-
axial tests as follows. Young’s modulus normal to bedding plane and
out-of-plane Poisson’s ratio are determined from triaxial tests with
horizontal bedding planes. In-plane Young’s modulus and Poisson’s
ratio are determined from triaxial tests with vertical bedding planes.
Out-of-plane shear modulus is estimated from St. Venant’s formula
[14].

The modified Cam Clay yield surface requires four parameters:
pre-consolidation pressure pc, tensile intercept pt, slope of critical
state line M , and consolidation cap shape parameter β. The slope
M is determined from the ratio of equivalent stress to pressure at
constant plastic volume from triaxial compression and extension data.
The pressures pc and pt are the positive and negative intercepts of the
projection of the yield surface in pressure-equivalent stress space.
From triaxial data for various void volumes (i.e. plastic volumetric
strain), a linear fit is determined for the variation of pc and pt with
plastic volume. The parameter β is chosen based on previous work
with sandstone.

The transverse isotropic yield surface defines the failure criterion
and requires three parameters which are determined from unconfined
compressive strengths from triaxial tests with differing bedding plane
orientations. The model is calibrated to fit the experiment at orien-
tations of 0, 45, and 90 degrees.

Finally, a characteristic length scale is required in order to re-
produce the correct dependence of strength on specimen size. This
parameter is used to scale the inelastic strain and is typically the
grain size of the shale. Crook et al set this parameter to 0.05 ” in
their work on Pierre shale.

The next sections of this report describe the Crook model as im-
plemented in the Geodyn code. After describing the constitutive
coefficients for transversely isotropic material, we describe how to
transform the constitutive matrix from the intrinsic ”bedding” frame
to an arbitrary laboratory Eulerian frame and how to calculate wave
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speeds. Next, we show that, using these transformations, we recover
the correct Young’s modulus for loading either normal or parallel to
the isotropic bedding plane. The next two sections cover the elasto-
plastic model for isotropic and anisotropic yield criteria. The latter is
a simplified version of Crook’s anisotropic yield. A sample 1-zone cal-
culation is shown for tri-axial compression using the isotropic yield,
illustrating the role of volumetric plastic strain in the hardening or
softening of the yield strength. A porosity model is introduced based
on Wood’s model [28, 29], setting the stage for adding pore fluid pres-
sure later. A Newton-Raphson scheme is added, using radial return
to get a first estimate for the stress iterate, giving excellent satisfac-
tion of the yield criterion. Finally, we make some comments on the
implementation and describe both input parameters and output state
variables.
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Figure 8: Transverse Isotropy Frames: Bower (left) and Crook (right)

6 Elasticity relations

6.1 Trial elastic stress

For a given strain increment ∆ε and the transversely isotropic elastic-
ity matrix C, write the trial stress (including stress at previous time
step n and Jaumann stress flux) as (assume that stress is positive in
compression as usual in rock mechanics):

σ̃ = σn + C∆ε+ (Wn+1σn − σnWn+1)∆t (2)

6.2 Elasticity matrix

The elasticity stiffness matrix C is given by Bower in [30] (p. 84) with
respect to a Bower frame, as shown in Figure 8. In this Bower frame
(elsewhere referred to as the ”bedding” frame), the ”1-2” plane is the
isotropic bedding plane, while the ”3” axis is normal to the bedding
plane. Crook uses ”2-3” for the isotropic bedding plane and the ”1”
axis normal to the bedding plane. Write with respect to the Bower
frame:

σ̂α = Ĉαβ ε̂β (3)

in which α and β range from 1 to 6. The stress components are
represented as vectors, following Voigt ordering: [11 22 33 23 13 12].
The strain components follow the same ordering, except that:

ε̂4 = 2ε̂23 (4)

ε̂5 = 2ε̂31 (5)

ε̂6 = 2ε̂12 (6)

This is necessary for the constitutive matrix to be symmetric [31].
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With the Bower frame and the Voigt ordering, the elasticity matrix
for transverse isotropy has the structure given by Bower [30] as:

C =

(
ĈP O

O ĈG

)
(7)

in which the subscript ”P” refers to the part of the matrix relating
[11 22 33] components, the subscript ”G” refers to the part of the
matrix relating [23 13 12] components. Within the Bower frame,
elastic coefficients associated with the bedding plane will be labeled
with the subscript ”2” (interchangeable with subscript ”1”). The
subscript ”3” will be associated with the transverse axis normal to
the bedding (isotropic) plane. Then, ĈP is given by:

CP =

Ĉ11 Ĉ12 Ĉ13

Ĉ12 Ĉ11 Ĉ13

Ĉ13 Ĉ13 Ĉ33

 (8)

where:

Ĉ11 = AE2(1− ν23ν32) (9)

Ĉ12 = AE2(ν12 + ν23ν32)) (10)

Ĉ13 = AE2ν32(1 + ν12) (11)

Ĉ33 = AE3(1− ν212) (12)

A−1 = (1− ν12 − 2ν23ν32)(1 + ν12) (13)

In order for the stiffness matrix to be symmetric, the following must
hold:

ν32
E3

=
ν23
E2

(14)

ĈG is given by:

CG =

Ĉ44 O O

O Ĉ44 O

O O Ĉ66

 (15)

where:

Ĉ44 = G3 (16)

Ĉ66 = G2 =
E2

2(1 + ν12)
(17)

G3 is given by St. Venant’s formula [32] as:

1

G3
=

1

E3
+

1

E2
+ 2

ν32
E3

(18)
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The elasticity matrix coefficients will be written with respect to
the bedding frame and the Voigt order. The correspondence between
the bedding frame coefficients and the Crook frame (superscript ”C”)
is shown below:

E2 = EC2 (19)

E3 = EC1 (20)

ν12 = νC23 (21)

ν32 = νC12 (22)

ν23 = νC21 (23)

G2 = GC2 (24)

G3 = GC1 (25)

6.3 Coordinate transformation for strike orientation and
dip inclination

Figure 9 shows conventional definition of strike orientation and dip
inclination. Figure 10 shows basis vectors eS along strike axis at strike
angle θS relative to reference North direction (measured clockwise
from North) and associated vector eA perpendicular to eS. Figure 11
shows basis vector eB normal to the bedding plane, rotated by the
dip angle θD (measured counter-clockwise from the horizontal axis
eA) about the strike axis eS. Now proceed to derive the coordinate
transformation relating eS and eB to the Bower frame in Figure 8.
For this purpose, relabel the strike axis eS as ê1 and the bedding
normal eB as ê3. Within the isotropic bedding plane, the basis will
be completed with the vector ê2 = ê3 × ê1. From the geometry in
Figure 10 and Figure 11, we have:

êi = Qijej (26)

Q =

 sin(θS) cos(θS) 0
−cos(θD)cos(θS) cos(θD)sin(θS) sin(θD)
sin(θD)cos(θS) −sin(θD)sin(θS) cos(θD)

 (27)

Note: Since the strike angle is referred to the North axis (ê2), to align
the Bower frame with the bedding frame, set the dip angle θD = 0
and the strike angle θS = 90o .

6.3.1 Longitudinal wave speed

Thomsen [33] shows that the maximum longitudinal wave speed cor-
responds to a wave normal lying in the bedding plane, thus at 90
degrees with the normal axis to the bedding plane. For an equivalent
but clearer formulation see:
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Figure 9: Strike and Dip conventions

Figure 10: Basis vectors in horizontal plane
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Figure 11: Basis vectors in vertical dip plane

http://en.wikipedia.org/wiki/Transverse_isotropy

#Short_and_medium_wavelength_approximation

where the longitudinal wave speed is given by:

ρv2P (θ) =
1

2

(
Ĉ11sin

2(θ) + Ĉ33cos
2(θ) + Ĉ44 +

√
M(θ)

)
(28)

M(θ) =
[
(Ĉ11 − Ĉ44)sin2(θ)− (Ĉ33 − Ĉ44)cos2(θ)

]2
+ (Ĉ13 + Ĉ44)2sin2(2θ) (29)

where θ is the angle between the wave normal direction and the axis
ê3 perpendicular to the bedding plane. Thomsen [33] introduces two
parameters to characterize the degree of anisotropy:

ε =
Ĉ11 − Ĉ33

2Ĉ33

(30)

δ =
(Ĉ13 + Ĉ44)2 − (Ĉ33 − Ĉ44)2

2Ĉ33(Ĉ33 − Ĉ44)
(31)

For sufficiently small values of these parameters, the longitudinal
wave speed becomes:

vP (θ) = α0

(
1 + δsin2(θ)cos2(θ) + εsin4(θ)

)
(32)

α0 =

√
Ĉ33

ρ
(33)

For which the first and second derivatives are, respectively:

∂vP (θ)

∂θ
= α0

(
sin(2θ)(δcos(2θ) + 2εsin2(θ))

)
(34)

∂2vP (θ)

∂θ2
= α0

(
2cos(2θ)(δcos(2θ) + 2εsin2(θ)) + sin(2θ)(−2δsin(2θ) + 2εsin(2θ))

)
(35)
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An extremum occurs at 90 degrees. For a maximum, the second
derivative must be negative there, so that:

δ < 2ε (36)

Using the expressions for the transversely isotropic constitutive coef-
ficients, we can derive an expression to determine whether the second
derivative will be negative. From the values for moduli and Poisson
ratios used by Crook, we find that the second derivative is negative.

6.3.2 Effective shear modulus

Geodyn advances the solution of the conservation laws by performing
sweeps along each Eulerian direction (x, y, z). The Riemann solver
within Geodyn requires an effective shear modulus associated with
the tangential sound speed, interpreted here as the speed of the trans-
verse wave lying within the bedding plane. This speed is given by
Thomsen [33] as vSH by:

ρv2SH(θ) = Ĉ66sin
2(θ) + Ĉ44cos

2(θ) (37)

and the angle θ is the angle between the wave front normal and the
normal to the bedding plane. The wave front normal is interpreted
here as each Eulerian direction (e1, e2, e3) along which Geodyn sweeps
to advance the solution of the conservation equations. The angle θ
has therefore the three values (θ1, θ2, θ3) given by the direction cosines,
for i = 1, 2, 3:

cos(θi) = ei · ê3 (38)

From Eq. 26:

ei = QTij êj (39)

so that:

cos(θi) = ei · ê3 = QTi3 (40)

The effective shear modulus associated with each sweep is therefore
given by, for i = 1, 2, 3:

G(θi) = G2sin
2(θi) +G3cos

2(θi) (41)

6.3.3 Transformation of constitutive coefficients

In this section, we derive the transformation from the bedding frame
êi to the laboratory (Eulerian) frame ej, with a strike angle of 90, for
rotation θD about the e3 axis.

ê1 = cos(θD)e1 + sin(θD)e2 (42)

ê2 = −sin(θD)e1 + cos(θD)e2 (43)

ê3 = e3 (44)
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from which the required inverse transformation R is given by:

R =

1 0 0
0 cos(θD) −sin(θD)
0 sin(θD) cos(θD)

 (45)

The elastic stress-strain relation is given by:

σ = C : ε (46)

However, the stress and strain are given with respect to the Eule-
rian frame, while the constitutive matrix is given with respect to the
bedding frame. Therefore:

σijeiej = Ĉpqrsêpêqêrês : εklekel (47)

σij = RipRjqĈpqrsRkrRlsεkl (48)

Rip = ei · êp (49)

σij = Cijklεkl (50)

Cijkl = RipRjqĈpqrsRkrRls (51)

Mapping indices to Voigt space:

Cαβ = KαγĈγδK
T
γβ (52)

where K is given by [31]:

K =

(
K1 2K2

K3 K4

)
(53)

K1 =

R2
11 R2

12 R2
13

R2
21 R2

22 R2
23

R2
31 R2

32 R2
33

 (54)

K2 =

R12R13 R13R11 R11R12

R22R23 R23R21 R21R22

R32R33 R33R31 R31R32

 (55)

K3 =

R21R31 R22R32 R23R33

R31R11 R32R12 R33R13

R11R21 R12R22 R13R23

 (56)

K4 =

R22R33 +R23R32 R23R31 +R21R33 R21R32 +R22R31

R32R13 +R33R12 R33R11 +R31R13 R31R12 +R32R11

R12R23 +R13R22 R13R21 +R11R23 R11R22 +R12R21

 (57)

The above transformations are used only when prescribing boundary
stress conditions in a global frame. Otherwise, stresses and strains
are transformed between the Eulerian (laboratory) frame and the
bedding frame.
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6.3.4 Verify vertical modulus perpendicular to bedding plane

Consider the transversely isotropic material oriented such that the
normal to the bedding frame is aligned with the vertical direction.
In this section, we show that for uniaxial (unconfined) axial vertical
compression, with no lateral tractions, for this material orientation,
the vertical Young’s modulus is exactly E3, as defined in the bedding
frame. We have the elasticity equations:

σ̂α = Ĉαβ ε̂β (58)

subject to the conditions:

σ̂3 > 0 (59)

and, for α 6= 3:

σ̂α = 0 (60)

We now calculate the strains to satisfy these conditions and deter-
mine the modulus given by:

E =
σ̂3
ε̂3

(61)

to show that E = E3. Applying the conditions σ̂α = 0 for α = 1, 2 in
the elasticity equations gives the strains:

ε̂1 = ε̂2 = −ν32ε̂3 (62)

Substituting these strains in the elasticity equation for σ̂3

σ̂3 = Ĉ3β ε̂β (63)

gives the desired result.

σ̂3
ε̂3

= E3 (64)

6.3.5 Verify vertical modulus parallel to bedding plane

Now rotate the transversely isotropic material so that the bedding
plane is aligned with the vertical direction, along which an axial load
is applied, again with no lateral tractions. The dip angle is 90 degrees,
for a rotation about the e1 axis of the material with respect to the
fixed laboratory frame. Consequently, the transformation of basis
vectors from êα to eβ gives the relation:

eα = Rαβ êβ (65)
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where, with a strike angle of 90 degrees, we have:

R =

1 0 0
0 cos(θD) −sin(θD)
0 sin(θD) cos(θD)

 (66)

The uniaxial stress conditions are phrased with respect to the global
laboratory frame. The elasticity equations in the global frame are:

σα = Cαβεβ (67)

subject to the conditions:

σ3 > 0 (68)

and, for α 6= 3:

σα = 0 (69)

Since the constitutive coefficients are defined in the basis êα, they
need to be transformed to the basis eβ via:

C = KĈKT (70)

where K is given by Ting in terms of the rotation matrix R renamed
there as Ω. See Section 6.3.3 for more details. For this rotation of 90
degrees, the constitutive coefficients are transformed as follows:

C11 = Ĉ11 (71)

C12 = Ĉ13 (72)

C13 = Ĉ12 (73)

C22 = Ĉ33 (74)

C33 = Ĉ11 (75)

We now calculate the strains to satisfy these conditions and determine
the modulus given by:

E =
σ3
ε3

(76)

to show that E = E2. Applying the conditions σα = 0 for α = 1, 2 in
the elasticity equations gives the strains:

ε1 = M13ε3 (77)

ε2 = M23ε3 (78)

M13 = (−1)(
Ĉ13M23 + Ĉ12

Ĉ11

) (79)

M23 =
Ĉ13(Ĉ12 − Ĉ11)

Ĉ11Ĉ33 − Ĉ2
13

(80)
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Substituting these strains in the elasticity equation for σ3:

σ3 = Ĉ12ε1 + Ĉ13ε2 + Ĉ11ε3 (81)

or,

σ3 = (Ĉ12M13 + Ĉ13M23 + Ĉ11)ε3 (82)

so that:

E =
σ3
ε3

= Ĉ12M13 + Ĉ13M23 + Ĉ11 (83)

gives the desired result

σ3
ε3

= E2 (84)

For a particular calculation with the Geodyn driver, we must specify
strain rates which satisfy the constraints of zero lateral stresses. For
simplicity, we take ν12 = 0. This choice results in M23 = −ν23 and
M13 = 0. With E2 = 1.0 GPa, E3 = 0.5 GPa, ν23 = 0.25, and ε̇3 = −1.0
results in ν32 = 0.125, ε̇1 = 0, and ε̇2 = 0.25 , with strain rates per µsec.

6.3.6 Determining Poisson ratios

It is possible to determine Poisson ratios with respect to the bedding
frame. From the UCS test at zero degrees:

E3 =
σ3
ε3

(85)

ν32 = −ε1
ε3

(86)

From the UCS test at 90 degrees,

E2 =
σ3
ε3

(87)

(88)

and ν12 measure the ratio of lateral extensions due to axial compres-
sion:

ν12 = ν32
E2

E3

ε1
ε2

(89)

6.3.7 Issues with solution using stress decomposition

If we attempt to solve the above problem by first decomposing the
stress into a pressure and a deviatoric stress, we will show here that
we would require two different EOS forms, with different bulk moduli.
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Typically, this decomposition is couched so that deviatoric stress is
incremented. Therefore, we write:

σ̇ij = ṗδij + Ṡij (90)

where the deviatoric stress rate is the response to deviatoric strain
rate:

Ṡij = Cijkl(ε̇kl −
1

3
ε̇mmδkl) (91)

Conservation of mass requires (for strain positive in compression):

ρ̇ = ρε̇mm (92)

so that:

Ṡij = Cijkl(ε̇kl −
1

3

ρ̇

ρ
δkl) = Cijklε̇kl −

1

3

ρ̇

ρ
Cijmm (93)

The requirements for the lateral stresses to vanish become:

Ṡ11 = −ṗ (94)

Ṡ22 = −ṗ (95)

so that:

Ṡ11 = C11klε̇kl −
1

3

ρ̇

ρ
C11mm = −ṗ (96)

Ṡ22 = C22klε̇kl −
1

3

ρ̇

ρ
C22mm = −ṗ (97)

In Voigt notation, this becomes (after applying the rotation transfor-
mation):

Ṡ1 = Ĉ11ε̇1 + Ĉ13ε̇2 + Ĉ12ε̇3 −
1

3

ρ̇

ρ
(Ĉ11 + Ĉ12 + Ĉ13) = −ṗ (98)

Ṡ2 = Ĉ13ε̇1 + Ĉ33ε̇2 + Ĉ12ε̇3 −
1

3

ρ̇

ρ
(Ĉ12 + Ĉ13 + Ĉ33) = −ṗ (99)

In order to recover the same solution obtained using full stress, we
must have:

ṗ = K1
ρ̇

ρ
(100)

ṗ = K2
ρ̇

ρ
(101)

where:

K1 =
1

3
(Ĉ11 + Ĉ12 + Ĉ13) (102)

K2 =
1

3
(Ĉ12 + Ĉ13 + Ĉ33) (103)
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For the isotropic case:

K1 = K2 = K =
E

3(1− 2ν)
(104)

but for the transversely isotropic case, these two bulk moduli differ
since:

Ĉ11 = AE2(1− ν23ν32) (105)

Ĉ33 = AE3(1− ν212) (106)

A−1 = (1− ν12 − 2ν23ν32)(1 + ν12) (107)
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7 Anisotropic elasto-plastic response

7.1 Crook yield criterion

Crook draws on work by Hashagen and Borst [34] who elaborate on
the Hoffman criterion [35] and introduced nine anisotropic strength
coefficients: 3 for tension, 3 for compression, and 3 for shear. Crook
normalized these nine parameters α1 through α9. Hoffman uses a
frame with x-y in the isotropic bedding plane and the z-axis normal
to the bedding plane. This maps directly to the Bower frame with ”1-
2” corresponding to ”x-y” and ”3” corresponding to ”z”. However,
Hoffman does not use the Voigt order for stress, but instead σ∗ with
components ordered as [11 22 33 12 23 13] in the yield criterion given
below, in which:

F (σ, εPv ) =
1

M2
(F1(σ∗))2 +

1

b2
(F2(p, εPv ))2 − a(εPv )2 (108)

where M is the critical state line slope, and b = 1 if p ≥ (pt − a), and
b = β otherwise, β being a consolidation cap parameter. Crook found
that the circular form of the isotropic Cam-Clay Burland yield in the
π-plane did not agree with experimental data for weakly cemented
rocks (See Figures 6 and 7). Therefore, he introduced a lode angle
function g(θ) with a parameter ξ in the range 0.778 ≤ ξ ≤ 1.0, to obtain
better agreement with the data, thus defining F1 as:

F1(σ∗) =
g(θ)

2

√
1

2
σ∗TPorthσ

∗ (109)

θ =
1

3
Sin−1(

3
√

3

2

J ′3
(J ′2)3/2

) (110)

g(θ) = [(1 + 1/ξ)− (1− 1/ξ)sin(3θ)] (111)

Of the nine normalized strength parameters, the first three are used
in F2 according to the centering of the yield surface:

F2(p, εPv ) = α1σ11 + α2σ22 + α3σ33 − pt(εPv ) + a(εPv ) (112)

Since the yield surface is centered on the hydrostatic axis:

α1 = α2 = α3 =
1

3
(113)

F2(p, εPv ) = p− pt(εPv ) + a(εPv ) (114)

In the initial version of the code, the yield formulation has been
simplified so that:

β = 0 (115)

pt = 0 (116)

b = 1 (117)
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Then a and F2 have the form:

a = −pc(εPv ) (118)

F2(p, εPv ) = p− pc(εPv ) (119)

The yield in Eq. 108 thus takes the form:

F (σ, pc) = F 2
1 (σ) + (p− pc)2 − (pc)

2 (120)

F 2
1 (σ) = (

g(S)

2M
)2T (σ) (121)

where T (σ) is given by

T (σ) =
1

2
σTPV σ (122)

and g(S) is given by:

g(S) = [(1 + 1/ξ)− (1− 1/ξ)(
3
√

3

2

J ′3(S)

(J ′2(S))3/2
)] (123)

where PV is derived from Porth in Eq. 109 by rearranging only
the components of Γorth to follow Voigt order.
For the general orthotropic case, we have:

PV =

(
ΩV O
O ΓV

)
(124)

ΩV =

2(α4 + α6) −2α4 −2α6

−2α4 2(α4 + α5) −2α5

−2α6 −2α5 2(α5 + α6)

 =

 4α4 −2α4 −2α4

−2α4 2(α4 + α5) −2α5

−2α4 −2α5 2(α4 + α5)

(125)

ΓV =

6α8 0 0
0 6α7 0
0 0 6α9

 =

4(2α4 + α5) 0 0
0 6α7 0
0 0 6α7

(126)

For the transversely isotropic case:

α6 = α4 (127)

α9 = α7 (128)

α8 =
2

3
(2α4 + α5) (129)

and for the isotropic case:

α4 = α5 = α6 =
1

2
(130)

α7 = α8 = α9 = 1 (131)

in which case:

1

2
σTPV σ = 3J ′2 = q2 (132)
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Crook’s choices for alpha coefficients for Pierre 1 shale are given by:

α4 = 0.47 (133)

α5 = 0.53 (134)

α7 = 1.02 (135)

7.2 Statement of problem for transversely isotropic elasto-
plastic material

F (σ, pc) = (
g(S)

2M
)2T (σ) + (p− pc)2 − (pc)

2 (136)

g(S) = [(1 + 1/ξ)− (1− 1/ξ)(
3
√

3

2

J ′3(S)

(J ′2(S))3/2
)] (137)

T (σ) =
1

2
σTPV σ (138)

(139)

Given strain rate ε̇, time step ∆t, with old state (σn, εP (n), pnc ) satisfy-
ing:

F (σn, pnc ) ≤ 0 (140)

where pc(ε
P
v ) is defined in Section 8.3, and with trial stress state:

σ̃ = σn +C : ε̇∆t (141)

such that:

F (σ̃, pnc ) > 0 (142)

Find new state: (σn+1, εP (n+1), pn+1
c ) such that:

F (σn+1, pn+1
c ) = 0 (143)

with

σn+1 = σn + σ̇∆t (144)

σ̇ = C : (ε̇− ε̇P ) (145)

εP (n+1) = εP (n) + ε̇P∆t (146)

ε̇P = λ̇
∂F

∂σ
(147)

(148)

where λ̇ satisfies consistency dF = 0 i.e.:

∂F

∂σ
: σ̇ +

∂F

∂pc
ṗc = 0 (149)
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from which:

λ̇ =
N : C : ε̇

N : C : N − ∂F
∂pc

∂pc
∂εPv

tr(N)
(150)

N =
∂F

∂σ
(151)

7.3 Newton-Raphson scheme

The above system requires a Newton-Raphson solution scheme. Us-
ing the system of equations in Section 7.2 for the new state, we
construct such a Newton-Raphson solution scheme to solve for ∆λ
satisfying:

F (∆λ) = F (σn+1, pn+1
c ) = 0 (152)

The iteration scheme, with iteration index r is:

∆λ[r+1] = ∆λ[r] − F (∆λ[r])

F ′(∆λ[r])
(153)

F ′(∆λ) =
∂F

∂σ
:
∂σ

∂∆λ
+
∂F

∂pc

∂pc
∂εPv

∂εPv
∂∆λ

(154)

∂σ

∂∆λ
= −C :

∂F

∂σ
= −C : N (155)

∂F

∂pc
= −2p (156)

∂εPv
∂∆λ

= tr(N) (157)

Therefore:

F ′(∆λ) = −N : C : N − 2p
∂pc
∂εPv

tr(N) (158)

7.4 Calculation of gradients

The calculation of the gradient N will be defined with respect to the
stress components arranged in Voigt order, with the single index k
ranging from 1 to 6 corresponding to [11 22 33 23 13 12]. From Equ.
120

Nk =
∂F

∂σk
=

2

M2
F1
∂F1

∂σk
+ 2(p− pc)

∂p

∂σk
(159)

where, for k = 1, 2, 3:

∂p

∂σk
=

1

3
(160)
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and, for k = 4, 5, 6:

∂p

∂σk
= 0 (161)

Using Eq. 122, T becomes:

T =
1

2
(

3∑
i=1

3∑
j=1

σiΩijV σ
j +

6∑
i=4

6∑
j=4

σiΓ
(i−3)(j−3)
V σj) (162)

∂F1

∂σm
=

1

2
(
∂g

∂Sk
∂Sk

∂σm

√
T + g

∂
√
T

∂σm
) (163)

∂g

∂Sk
= −(1− 1/ξ)(

3
√

3

2
)((−3/2)J ′3(J ′2)−1/2

∂J ′2
∂Sk

+ (J ′2)−3/2
∂J ′3
∂Sk

) (164)

J ′2 = (1/2)(S2
1 + S2

2 + S2
3) + S2

4 + S2
5 + S2

6 (165)

J ′3 = S1S2S3 + 2S4S5S6 − S1S
2
4 − S2S

2
5 − S3S

2
6 (166)

For k = 1, 2, 3:

∂J ′2
∂Sk

= Sk (167)

For k = 4, 5, 6:

∂J ′2
∂Sk

= 2Sk (168)

For k = 1, 2, 3 with (k, l,m) a cyclic permutation of 1, 2, 3:

∂J ′3
∂Sk

= SlSm − (Sk+3)2 (169)

∂J ′3
∂Sk+3

= 2(Sl+3Sm+3 − SkSk+3) (170)

∂
√
T

∂σm
= (1/4)

Rm√
T

(171)

where, for m = 1, 2, 3:

Rm = 2

3∑
i=1

ΩmiV σi (172)

and for m = 4, 5, 6:

Rm = 2

6∑
j=4

Γ
(m−3)(j−3)
V σj (173)
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∂Sij
∂σkl

= (−1/3)δklδij + δikδjl (174)

from which:

Bkm =
∂Sk

∂σm
(175)

is given by:

B =

(
H O
O I

)
(176)

where:

H =

 (2/3) (−1/3) (−1/3)
(−1/3) (2/3) (−1/3)
(−1/3) (−1/3) (2/3)

 (177)
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8 Wood-Borja elasto-plastic porosity model

This porosity model sets the stage for later introducing pore fluid
pressure. This model assumes that the material consists of solid
grains separated by voids. The solid grains behave elastically as they
come into contact with each other. They may break, but this is out-
side the scope of this model. Thus, the material elastic response
results directly from the elasticity of the grains. The material plastic
response encompasses the evolving distribution of voids between the
grains, as the grains slide past each other under given loading. The
measure of plastic deformation is based only on this evolving void
distribution.

8.1 Wood’s measure of porosity

Given soil solid volume measure vs and soil void (pore) volume mea-
sure vp comprising total volume measure v, Wood [28] defines soil
void ratio e, porosity n, and a volumetric measure written here as
vWood thus:

e =
vp
vs

(178)

n =
e

(1 + e)
(179)

vWood = 1 + e (180)

By interpreting the void ratio at its differential limit, these volumet-
ric measures can be related to Rubin’s [36] corresponding measures.
Namely, Rubin defines porosity φ as:

φ =
dvp
dv

(181)

where

dv = dvp + dvs (182)

so that:

e =
dvp
dvs

=
φ

1− φ
(183)

n = φ (184)

vWood = 1 + e =
1

1− φ
(185)

However, Carroll [37] defined a measure of porosity α as:

α =
v

vs
=

1

1− φ
(186)
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Note that in both Wood’s soil model and Carroll’s porous model,
the solid material occupies a skeleton matrix. Therefore, interpreting
Carroll’s measure at the differential limit, Wood’s volumetric measure
reduces to:

vWood = α (187)

8.2 Wood’s porous elastic response

Wood [29] defines the soil elastic changes in porosity during unloading
and reloading as:

−dα
E

αE
=

κ

αE
dpe
pe

(188)

from which:

αE = αE0 − κ ln
(pe(αE)

pe(αE0 )

)
(189)

and where the effective pressure pe is given by:

pe =
1

3
σkk (190)

and κ is a soil parameter characterizing the slope of the elastic un-
load/reload line. For example, for Bay Mud, Borja [38] gives a value
of κ=0.054. Note that stress and strain are taken to be positive in
compression.

It is possible to show from Wood’s porous elastic relation that elas-
tic changes in porosity are directly related to the solid grain elastic
response. From Carroll [37], for dry (drained) material, with α = αE:

pe =
ps
α

(191)

so that:

(1− κ

α
)α̇ = −κṗs

ps
(192)

Now α > 1 and κ � 1 and Wood [29] defines a bulk modulus (inter-
preted here as the solid grain bulk modulus) as:

Ks =
αpe
κ

(193)

so that:

α̇ = − ṗs
Ks

(194)
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With an EOS for isotropic grain of the form:

ṗs = Ks
ρ̇s
ρs

(195)

we have:

α̇ = − ρ̇s
ρs

(196)

8.3 Wood-Borja porous plastic response

Wood [29] defines porosity changes due to changes in volumetric plas-
tic strain as:

−dα
P

αP
= dεPv (197)

from which:

αP (εPv ) = αP0 exp
(
−(
εPv − εPv0
Λ− κ

)
)

(198)

The total porosity accumulates changes from both the elastic porosity
αE and the plastic porosity αP .

Borja [38] defines the hardening law as:

ṗc =
pc

Λ− κ
ε̇Pv (199)

From which:

pc(ε
P
v ) = pc0 exp (

εPv − εPv0
Λ− κ

) (200)

The soil parameter Λ, introduced by Wood [28], is quoted the value
0.37 by Borja [38] for Bay Mud.

The volumetric plastic strain rate is determined from the flow rule:

ε̇P = λ̇N (201)

N =
∂F

∂σ
(202)

ε̇Pv = tr(ε̇P ) = λ̇tr(N) (203)

9 Application of Newton-Raphson solution scheme
to combined Crook-Wood-Borja model

9.1 Algorithm

In this section, we describe the application of the Newton-Raphson
solution scheme (see Section 7.3) to the plastic response, using a ”ra-
dial return” scheme to obtain an estimate of the first iterate. The
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Wood-Borja model is applied to update the elastic and plastic parts
of the porosity.

The iteration scheme, with iteration index r is:

∆λ(r+1) = ∆λ(r) − F (∆λ(r))

F ′(∆λ(r))
(204)

F ′(∆λ(r)) = −N : C : N − 2βpepctr(N) (205)

β =
1

Λ− κ
(206)

Before starting the iteration, we obtain an estimate for a starting
value for the iteration by applying radial return to calculate gradi-
ents evaluated at the stress state reduced from the trial value to a
value which satisfies the yield; i.e., we calculate a stress estimate σ∗

satisfying the yield criterion:

σ∗ = γσ̃ (207)

γ : F (γσ̃, pnc ) = 0 (208)

Note that if the pressure is outside the yield criterion ellipse (i.e., if
p < 0 or p > 2pc) or if the stress magnitude is negligibly small, then
we take the trial stress itself as a starting value. We then calculate
the gradients N to the yield surface at this stress estimate σ∗ or σ̃
and ∆λ at the same stress state, from the consistency condition for
the combined model as:

∆λ[0] =
N : C : ∆ε

N : C : N + 2βpepctr(N)
(209)

This starting value for the stress state is further refined by ap-
plying a procedure which will also be applied at each iteration, and
at the end of the iteration, and calculates the following in three steps:

1. New estimate for the corrected elastic stress:

σ[r+1] = σ̃ −∆λ[r]C : N [r] (210)

2. New estimates for increment in volumetric plastic strain and as-
sociated yield strength:

∆εP [r+1]
v = ∆λ[r]tr(N [r]) (211)

p[r+1]
c = pnc exp(β∆εP [r+1]

v ) (212)

3. New estimates for yield and associated gradients, at the corrected
elastic stress.
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9.2 Triaxial compression elasto-plastic response for isotropic
yield

Consider triaxial compression for transverse isotropic material so that
laboratory vertical axis coincides with normal to bedding plane. Ap-
ply Crook simplified yield with ξ = 1, and isotropic α coefficients for
ΩV and ΓV . We calculate the elasto-plastic response consisting of
three phases (see Figure 12):
(a) Phase 1 (elastic): pure increase in pressure from zero to virgin
strength
p∗ : 0 < p∗ < 2pc0 without deviatoric stress (Figure 13),

σ̇1 = σ̇2 = σ̇3 (213)

∆ε3 =
p∗

E3
(1− 2ν32) (214)

∆ε1 = ∆ε2 =
p∗

E2
(1− ν12 − ν23) (215)

followed by
(b) Phase 2 (elastic): pure increase in deviatoric stress (Figure 14),
keeping pressure fixed at p∗.

σ̇1 = σ̇2 (216)

σ̇3 = −2σ̇1 (217)

∆ε3 =
2

3

Mq∗

E3
(1 + ν32) (218)

∆ε1 = ∆ε2 = −1

3

Mq∗

E2
(2ν23 − ν12 + 1) (219)

q∗ =
√
p∗(2pc0 − p∗) (220)

ν23 = ν32
E2

E3
(221)

(c) Phase 3 (plastic): extending Phase 2 into the plastic regime.
As we continue to apply the strain rates from Phase 2, the material
yields (Figure 18), showing first softening (Figure 17), with negative
volumetric plastic strain rate (Figure 16), but as pressure increases,
volumetric plastic strain reaches a minimum and then increases as
material now hardens, showing increasing strength (Figure 17). Note
that ∆λ is always positive, as seen in Figure 15.

The evolution of Wood porosity is shown in two figures. Figure 21
shows the total porosity and the elastic porosity. The latter clearly
dominates over the plastic portion, shown in Figure 22.

For convenience in specifying strain rates in the Geodyn driver, all
Poisson’s ratios were zeroed and p∗ was taken to be 0.4pc0. With
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Figure 12: TXC stress path

pc0 = 0.025 GPa, p∗ = 0.01 GPa. The strain increments for reaching p∗

are spread over 100 time steps of 10−4 µsec. With the Young’s moduli
E2 = 2 GPa and E3 = 1 GPa, the resulting strain rates were specified
(per µsec) as:

ε̇1 = ε̇2 = 0.5 (222)

ε̇3 = 1.0 (223)

With these choices and setting the slope M = 1, gives a convenient
value for q∗ = 0.02 GPa, the value of q when the stress first reaches the
yield surface while the pressure is held fixed during Phase 2. From
these values, we obtain convenient values for the strain rates during
Phase 2 (spreading the strain increment 0.01 over 100 steps) as:

ε̇1 = ε̇2 = −1

3
(224)

ε̇3 =
4

3
(225)

For these TXC calculations , given a maximum number of 50 iter-
ations to reach 10−10 error in yield relative to the trial yield, Figure
19 shows that the required tolerance (as shown in Figure 20) was
reached in 7 iterations or less.
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Figure 13: TXC pressure

Figure 14: TXC q deviatoric stress
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Figure 15: TXC delta lambda

Figure 16: TXC volumetric plastic strain
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Figure 17: TXC yield strength Pc

Figure 18: TXC yield criterion

Computational Geophysics group, LLNL



Computational Geophysics group, LLNL

Figure 19: TXC Iterations Needed

Figure 20: TXC yield error vs. vol. plast. strain
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Figure 21: TXC total and elastic Wood porosity

Figure 22: TXC Plastic Wood porosity
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10 Implementation

The shale model has been implemented in C/C++ in the Geodyn
driver.

10.1 Conventions

Notice that while stress is positive in compression in the shale model,
the velocity gradient L is positive in tension, as specified in the Geo-
dyn input deck. Therefore, given the Geodyn velocity gradient, we
have to calculate the strain increment to be positive in compression
as follows:

D = −(1/2)(L+LT ) (226)

W = −(1/2)(L−LT ) (227)

∆ε = D∆t (228)

Furthermore, all symmetric tensor quantities will be represented as
a 6-component vector in Voigt order with the single index α ranging
from 1 to 6 corresponding to [11 22 33 23 13 12].

10.2 Model input parameters

Note: Geodyn parameter names are shown in square brackets.

10.2.1 Elasticity parameters

Young’s modulus normal to bedding plane, E3 [E3]
Young’s modulus within bedding plane, E2 [E2]
Poisson’s ratio out-of-plane, ν32 [nu32]
Poisson’s ratio within bedding plane, ν12 [nu12]
Strike angle (usually 90 degrees) [angle strike]
Dip angle (degrees) of bedding plane [angle dip]
Initial Wood porosity ≥ 1 [initial poro]
Wood porous elastic slope κ [soil kappa]

10.2.2 Derived elasticity parameters

Poisson’s ratio ν23 derived using Eq. 14.
Out-of-plane shear modulus G3 derived using Eq. 18.

10.2.3 Plasticity parameters

Cam-clay parameter (dimensionless), ξ [xi]
Critical state line slope (dimensionless), M [M ]
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Orthotropic parameters (dimensionless), α4, α5, α7 [alpha4, alpha5, alpha7]
Consolidation pressure pc0 (pressure units) [pc0]
Wood porous plastic slope, Λ , dimensionless [soil lambda]
Maximum number of iterations allowed in Newton-Raphson iteration
[maxiter]
Newton-Raphson tolerance on normalized yield required [NRtoler]

10.3 Model history variables

Note: Geodyn variable names are shown in square brackets.
Yield strength, Pc [Pc]
Plastic strain εPv [plastic strain]
Pressure p [p]
Yield Y [Y ]
Flow parameter λ [plastic lambda]
Stress σ11 etc... [TT11] etc ... positive in compression.
Strain ε11 etc... [EvT11] etc ... positive in compression
Anisotropic longitudinal sound speed [aniso sound speed]
Radial return fraction γ [scaling ratio]
Shear stress q [q]
Wood total porosity α [poroWood]
Wood elastic porosity αE [poroElas]
Wood plastic porosity αP [poroP las]
Number of iterations used r [iterused]
Yield error relative to trial yield [yieldError]

10.4 Model interaction with user EOS

Currently, the shale model as implemented does not apply a user-
specified EOS, such as Gruneisen EOS, because of the issues described
in Section 6.3.7. The pressure is determined only from the constitu-
tive model for the full stress, allowing for elastic behavior subject to
the yield criterion which constrains both the stress deviators and the
pressure p. This model must not be used for energetic materials.
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This work was performed under the auspices of the U.S. Depart-
ment of Energy by Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344.
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