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Energy and Infrastructure R&D at Los Alamos
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• Department of Energy
– Operations and control under uncertainty
– Co-optimization of interacting infrastructures
– Optimal resilient design for extreme events
– Machine learning for power systems
– …

• Department of Homeland Security
– Modeling and analysis of system resilience to extreme events
– Analysis and simulation of complex interacting infrastructures
– Restoration and recovery optimization
– Web-service tool deployment
– …
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Introduction and Motivation
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• Global Magnetic Disturbances (GMD) have the potential to disrupt power delivery
• May 1806 – June, 1807: Alexander von Humboldt, Berlin
• August 28 - September 2, 1859: United States and Europe
• March 13, 1989: Hydro-Québec blackout

• Motivates R&D of power system fragility
• Transformers
• Generators
• Control components

• Motivates R&D on mitigation and prevention
• Blocking devices (Overbye 2013, 2015)
• Generator dispatch, line switching, load shedding (this talk)

• Presentation Focus
• Modeling GMD effects in a power system
• Deriving constraints that ensure system protection
• Optimized decisions to meet these constraints
• Key application for advances in space weather modeling

• University of Michigan Center for Space Environment Modeling



Power Systems Basics: Components and Subsystems
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Transmission grid Distribution grid



Power Systems Basics: Distribution Grids
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• Tree-like topology
• Load served ~ 10’s of MW per network

• Impact is relatively small if entire network is lost
• Minor interaction between networks

• Less interaction with GMD and geo-
electric fields
• Spatial extent ~ 10 miles
• Relatively high network resistance

• …. Less attention paid to GMD 
effects on distribution



Power System Basics: Transmission Grids
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• Meshed topology
• Load served ~ 100,000 MW

• Large impact is relatively small if entire network is lost
• Significant interaction with GMD and geo-

electric fields
• Spatial extent ~ 100’s of miles
• Relatively low network resistance

• …. GMD effects on transmission have 
been a ongoing focus of regulators, 
utilities, national labs, academia



Normal AC Physics @ 60 Hz: Real and Reactive Power
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• Transmission lines impedance typically dominated by 
reactance

• “Real” Power (P)—Current in-phase with voltage
• Transmission impedance mostly creates a phase shift of voltage
• Voltage magnitude nearly fixed

• “Reactive” Power (Q)—Current out-of-phase with 
voltage 
• Transmission impedance mostly creates a change in voltage 

magnitude
• “Reactive” Power (Q) is used to control voltage

V1 V2
I12

I12 V1

I12

V1

V2

V2



GMD and Physics: DC-Source Terms
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GMD Physics: DC vs AC Network
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Simple AC Network—AC 
power flow is from left to 
right

Associated DC Network
• GMD induced DC currents 

circulate between the two 
grounded-wye transformers

• No DC current on the 
ungrounded delta side of the 
transformers

D Y DY



GMD Physics: AC and DC Networks are Independent
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D Y DY D Y DY

•AC Power Flow AC Power Flow

Circulating DC Circulating DC

Locations with high AC power flow are controlled by
• The AC network
• Generator outputs

Locations with high DC currents
• The DC network
• Strength and orientation of the GMD



GMD Physics: Real World Interpenetrating AC and DC 
Networks
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• AC and DC networks are not completely 
independent

• Interactions occur at the transformers via 
nonlinearities

• Size and interconnectivity of real-world 
networks make calculation and control of 
simultaneous of AC and DC flows complex
• Simulation tools are becoming mature, but 

require validation
• Simultaneous control of AC and DC is 

emerging R&D



AC and DC Interaction via Transformers
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• DC (GMD) current creates a DC bias to the flux, 
leading to periodic transformer core saturation
• Degree of saturation depends on core configuration 
• Single phase construction is favored for weight and 

sparing considerations
• Core saturation leads to:

• Stray flux that induces eddy currents in other parts of 
the transformer structure and housing

• “Spiky” saturation currents have 60 Hz component—
increased reactive (Q) power consumption

• Significant increase in harmonic generation



Impacts of Stray Flux
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• Stray flux—If severe enough and left unchecked, 
eddy current heating can cause permanent 
damage and subsequent transformer failure
• Damage accumulates over time
• Thermal time constants ~ 5-15 minutes



Impacts of Harmonics and Reactive Power 
Consumption
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• Increased reactive power consumption and harmonic generation can generate compounding 
effects
• Harmonics may be misinterpreted by protective relays as a fault or other dangerous condition
• Subsequent relay misoperation can lead to disconnection of supplemental reactive power support and voltage 

suppression
• Continued transformer saturation keeps reactive power loading high
• System is very susceptible to voltage collapse and cascading failure



Current State of Practice
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FERC (soon to be?) Standard TPL-007-1—A “Phase 1” approach
• Phase 1—Assess the risk by including GMD simulation studies in required 

transmission planning studies that evaluate system reliability
• Defines a risk screening process for a locally-adapted 1/100 year GMD event

Next Step: 
Mitigation
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Mitigation Models: Prior Work
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• Challenging mixed-integer, non-convex optimization problem
• Prior work (Overbye 2013, 2015)

– Siting of protective devices
• Blocks DC current
• Expensive

– Develop a proxy for safe operations
• Minimize induced reactive losses
• Ignores AC (normal) physics
• Advantages

– Mixed-Integer Linear Program
• Disadvantages

– Conservative
– Neglects thermal heating

– Our solution
• Incorporate AC (normal physics)
• Focus on utilizing existing control points

– Line switching, generator set points, load shedding
– Less expensive



Mitigation Model: Components
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• Modeled as a network
– Nodes
– Generators (producers of power)
– Loads (consumers of power)
– Inject or consume power

• Edges
– Power lines
– Transformers
– Transport power from one location to another

• GMD Events (E3)
– Introduce a DC current on the system
– Combination of existing AC current and extra 

DC current can cause problems

PhD Student Intern Project: Mowen Lu 



Mitigation Model: High Level
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10

Minimize generation cost and load shedding cost  

Subject to:

a) Power flow balance constraints
b) Power flow equations
c) Power loss equations
d) Magnitude of AC current flow equations
e) Operational limits constrains

f) GICs calculation equations
g) Magnitude of GICs  injection equations
h) Transformer thermal limits constraints
i) Reactive power losses equations
j) Topology decisions

AC-OTS with reactive power losses 
induced by GIC

DC-induced network by GMD

Los Alamos National Laboratory



Mitigation Model: Nomenclature
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Mitigation Model: AC Physics
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Minimize generation and load shedding costs

Power flow balance constraints

Real and Reactive Power Flow Equations with 
switching

Power loss equations

Apparent and Current Power Flow 
Equations

8/31/2016 |   24Los Alamos National Laboratory



Mitigation Model: Physical Constraints
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Thermal line limits

Current limits

Voltage limits

Phase angle limits

Generation limits



Mitigation Model: GIC Model
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GIC injections

GIC magnitudes and constraints

Transformer heating safety limits

Induced reactive losses

Computing Geomagnetically-Induced Current in 
the Bulk Power System, NERC, 2013

Zhu, Hao, and Thomas J. Overbye. Blocking device placement 
for mitigating the effects of geomagnetically induced currents. 
IEEE Transactions on Power Systems 30.4 (2015): 2081-2089

IEEE Guide for Establishing Power 
Transformer Capability while under 
Geomagnetic Disturbances, IEEE 
Power and Energy Society, 2015
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Convex Relaxtions
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Challenges
• Discrete variables

• Opening or closing a line
• Non-convex constraints

• Bi-linear terms, cosines, sines
• Solution: replace non-convex terms with convex 

envelopes (McCormick)
• See Coffrin, van Hentenryck, and Hijazi 2014, 2016

• Solution with convex envelope is a lower bound 
on the solution to the original problem
• Often tight in practice on power system problems

8/31/2016 |   29Los Alamos National Laboratory

Disclaimer: Picture is notational



Convex Relaxation Weaknesses
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• The convex envelopes yield 
good results when the upper 
and lower bounds on variables 
are tight

• GIC voltages and currents do 
not have tight bounds
– We still have a (weak) lower bound
– Sometimes “0”

• Global spatial branching 
solvers are also challenged

Disclaimer: Picture is notational



Bound Tightening
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Infer new bounds
1.Find a “local” solution to the original 

non-convex formulation
1. Gradient descent
2. This solution is an upper bound

2. Introduce a constraint that restricts 
solutions to have a value <= this upper 
bound

3.For each variable (i.e. GIC DC current) 
solve 2 problems with the convex 
formulation
1. Maximize the upper bound
2. Minimize the lower bound
3. Possible to iterate

4.This procedure deduces tighter variable 
bounds that tighten the convex 
envelopes and improve solution quality
– There exist other (better) ways to do this, but 

this simple approach worked rather well



Dynamic Spatial Branching

Discretize the bounds
1.Solve the convex relaxation problem
2.Split the bounds of the variables into 

valid ranges around the current solution
1. Applies different convex envelopes depending 

on the variable choice
2. Further tightens the relaxation

1. Drawback: introduces binary variables
3.Solve again
4.Further split the bounds for any variable 

whose value changes (xlocal) 
5.Repeat until solution does not change 

more than a small value

N=3

N=3

Note: This can be done with log discrete variables 
(Vielma et al 2010, and others) or SOS constraints



Results
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• Academic literature contains numerous problems with similar structure
– MINLPLIB

• Our algorithm (DTMC) out-performed existing state-of-the-art
– Commercial solver—Baron 
– 6 hour time limit

Nagarajan, Lu, Yamangil, and Bent, Tightening McCormick Relaxations for Nonlinear Programs 
via Dynamic Multivariate Partitioning, The 22nd International Conference on the Principles and 
Practice of Constraint Programming, 2016
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Case Study
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• Notional power system model
• 3 transformers (red)
• 5 nodes with generators (purple) -

transformers
• 5 nodes with load

• Uniform field strength applied at 
angle ɸ

Overloads without mitigation



Cost of Safe Operations
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No GMD 
Cost

With GMD 
Cost

Under modest GMD, minor 
adjustments can preserve 

equipment



Benefits of Switching
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5 V/mile 7 V/mile

The benefits of allowing line switching increases dramatically as event magnitude increases



Solution Structure
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5 V/mile

Switch off a 
cheap generator

Switch off a line 
and shed load

Start to recover 
load



Solution Times (Global Optimality)
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Strength Avg Min Max Std
5 2133 45.58 16351 4091
7 34489 132.48 147256 49576

Wall Time (seconds)

Getting a relaxed solution or local solution is considerably faster
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Conclusions
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• Contributions
– A model of GIC physics combined with AC power flow physics

• A model of power system component safety margins
• Optimization of operations that respect safety margins.

– Builds on previous work
• Focused on placing (expensive) blocking devices

– Minimized a safety metric (reactive power loading at transformers)
• Overbye et al., 2013, 2015

– To the best of our knowledge, we have the first model that builds in the safety margins directly
• A dynamic spatial branching algorithm 

• Publications
– H. Nagarajan, M. Lu, E. Yamangil, and R. Bent. Tightening McCormick Relaxations 

for Nonlinear Programs via Dynamic Multivariable Partitioning, 22nd International 
Conference on Principles and Practice of Constraint Programing, 2016.

– M. Lu, H. Hagarajan, E. Yamangil, R. Bent, and S. Backhaus. Optimal Transmission 
Line Switching under Geomagnetic Disturbances, in progress.



Future Work

8/31/2016 |   42Los Alamos National Laboratory

• Stochastic events
– We assume the characteristics of the event are known
– Connection to space weather, earth modeling and prediction
– Robust operations

• Modeling
– Improved algorithms
– Other GMD impacts (E1, controls, etc.)
– Real system studies

• Algorithm
– Extensions to other convex relaxations



Winter School and Conference
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New interdisciplinary R&D community for modernized infrastructure

2015 Grid Science Winter School and Conference
Physics, Control, Optimization, Computer Science, Statistics, Operations Research, Power Engineering

Lecturers: I. Hiskens, UMichigan; 
A. Conejo, OSU; F. Dorfler, ETH Zurich
M. Chertkov, LANL; D. Bienstock, Columbia
S. Low, Cal Tech; P. van Hentenryck, NICTA Australia 
K. Turitsyn, MIT; D. Callaway, UC Berkeley 

Students From: Columbia, Rutgers, MIT, CalTech, ETH Zurich, UC Berkeley, UCSD, UCSB, UTexas, 
UVermont, UMinnesota, UMichigan, UWashington, UConn, NICTA  Australia, Skolkovo Tech, LANL

“The uniqueness of this workshop is inarguable”
“I've never learnt that much in such a short time!”
“Great opportunity for interdisciplinary contact and collaboration”
“I learnt a lot of things from the school and will apply those right away 
in the coming weeks”

Held in January 2015, next event January 11-15, 2017 cnls.lanl.gov/2017gridscience

http://cnls.lanl.gov/2017gridscience
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