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Conversion Factors
Inch/Pound to SI

Multiply By To obtain

Length

mile (mi) 1.609 kilometer (km)
Area

square mile (mi2)  2.590 square kilometer (km2) 
Flow rate

cubic foot per second (ft3/s)  0.02832 cubic meter per second (m3/s)

Horizontal coordinate information is referenced to the North American Datum of 1983 (NAD 83)
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Abstract
A variety of individuals from water resource managers 

to recreational users need streamflow information for plan-
ning and decisionmaking at locations where there are no 
streamgages. To address this problem, two statistically based 
methods, the Flow Duration Curve Transfer method and the 
Flow Anywhere method, were developed for statewide appli-
cation and the two physically based models, the Precipitation 
Runoff Modeling-System and the Soil and Water Assessment 
Tool, were only developed for application for the Cedar River 
Basin. Observed and estimated streamflows for the two  
methods and models were compared for goodness of fit at  
13 streamgages modeled in the Cedar River Basin by using  
the Nash-Sutcliffe and the percent-bias efficiency values. 

Based on median and mean Nash-Sutcliffe values for the 
13 streamgages the Precipitation Runoff Modeling-System and 
Soil and Water Assessment Tool models appear to have per-
formed similarly and better than Flow Duration Curve Trans-
fer and Flow Anywhere methods. Based on median and mean 
percent bias values, the Soil and Water Assessment Tool model 
appears to have generally overestimated daily mean stream-
flows, whereas the Precipitation Runoff Modeling-System 
model and statistical methods appear to have underestimated 
daily mean streamflows. The Flow Duration Curve Transfer 
method produced the lowest median and mean percent bias 
values and appears to perform better than the other models.

Introduction
The U.S. Geological Survey (USGS) maintains approxi-

mately 148 real-time streamgages in Iowa where daily mean 
streamflow information is available. A variety of individuals 
from water resource managers to recreational users rely on 
streamflow information in their planning and decisionmaking. 
Often there is a need for daily mean streamflow information 

at locations where there are no streamgages. To address this 
problem, the USGS in cooperation with the Iowa Department 
of Natural Resources evaluated two statistically based meth-
ods and two physically based watershed models for estimating 
daily mean streamflow at ungaged locations within the Cedar 
River Basin, Iowa. The two statistically based methods are the 
Flow Duration Curve Transfer method and the Flow Any-
where method, and the two physically based models are the 
Precipitation Runoff Modeling-System (PRMS) and the Soil 
and Water Assessment Tool (SWAT). This report compares 
the results of these methods and models developed to esti-
mate daily mean streamflow at ungaged locations within the 
Cedar River Basin, Iowa. The two statistically based methods 
are presented in one report (Linhart and others, 2012), and 
the two physically based models are presented in two reports 
(Christiansen, 2012; Hutchinson and Christiansen, 2013). 
Although the two statistically based methods were developed 
for estimating daily mean streamflow at ungaged locations for 
the entire state of Iowa, the two physically based models were 
specifically developed for only the Cedar River Basin.

Study Area
The Cedar River Basin extends from its headwaters in 

southern Minnesota to its confluence with the Iowa River  
in southeastern Iowa .The Cedar River is the largest tributary 
to the Iowa River with a drainage area of approximately  
7,815 square miles (fig. 1) (Iowa Department of Natural 
Resources, 2006; Squillace and others, 1996). Four of the 10 
distinct landform regions in Iowa are present in the Cedar 
River Basin (Prior and others, 2009) (fig. 2). Corn and 
soybean row-crop agriculture is the dominate land use in 
the basin. The basin has extensive, artificial drainage which 
includes open ditches and subsurface drainage tile; both of 
which are designed to remove excess water from the land 
and soil subsurface (Iowa Department of Natural Resources, 
2006). Confined and unconfined livestock operations that 
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Figure 1. U.S. Geological Survey streamgages in the Cedar River Basin.
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Figure 2. Cedar River Basin landform regions.
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include beef and dairy cattle, hogs, sheep, and poultry are 
located throughout the basin (Iowa Department of Natural 
Resources, 2006). Designated uses for the Cedar River include 
primary contact recreation and drinking water supply (Iowa 
Department of Natural Resources, 2006). There are 14 USGS 
streamgages in the Cedar River Basin (fig. 1, table 1), 13 of 
which were used in this comparison. 

Comparison of Methods and Models
Observed and estimated streamflows for the two meth-

ods and two models were compared for goodness of fit at 
each of the streamgages (table 2) by using the Nash-Sutcliffe 
(NS) (Nash and Sutcliffe, 1970) and the percent bias (PBIAS) 
efficiency values (Gupta and others, 1999). The NS value is a 
measure of how well the method and model estimates match 
the observed values. NS values range from -∞ to 1. Values of 
0.0 or less indicate unacceptable model performance; a value 
of 1 indicates a perfect fit between observed and estimated val-
ues (Moriasi and others, 2007). The PBIAS value is a measure 
of the average tendency of the method or model estimates to 
be larger or smaller than the observed values, with an opti-
mal value of 0.0. Positive values indicate method or model 
underestimation bias and negative values indicate method or 
model overestimation bias. Method and model estimates can 
be considered satisfactory if NS is greater than 0.50 and the 
absolute value of PBIAS is less than 25 percent (Moriasi and 

others, 2007). For the Flow Duration Curve Transfer method, 
NS values ranged from 0.09 to 0.79 with median and mean 
values of 0.55 and 0.54, respectively; PBIAS values ranged 
from -13.2 to 20.0 with median and mean values of 4.6 and 
3.3, respectively. For the Flow Anywhere method, NS values 
ranged from 0.15 to 0.77 with median and mean values of 0.37 
and 0.43, respectively; PBIAS values ranged from 5.4 to 46.2 
with median and mean values of 14.8 and 18.7, respectively. 
For the PRMS model, NS values ranged from 0.04 to 0.87 
with median and mean values of 0.66 and 0.61, respectively; 
PBIAS values ranged from -27.5 to 19.8 with median and 
mean values of 6.6 and 4.6, respectively. For the SWAT model, 
NS values ranged from 0.44 to 0.78 with median and mean 
values of 0.63 and 0.62, respectively; PBIAS values ranged 
from -26.1 to 11.2 with median and mean values of -9.1 and 
-8.1, respectively. 

Method and Model Results
Observed and estimated hydrographs of the daily mean 

streamflow for the two methods and two models for the 
streamgage 05464000, Cedar River at Waterloo, Iowa (see 
location at fig. 1, map number 11) for the period October 1, 
2001, to September 30, 2009 are shown in figure 3. A visual 
comparison of the Flow Duration Curve Transfer hydrographs 
(fig. 3A) show the observed as compared to the estimated daily 
mean streamflows appear to be a combination of underes-

Table 1. U.S. Geological Survey streamgages used in the Cedar River Basin included in the comparison of the Flow Duration Curve 
Transfer method, the Flow Anywhere method, the Precipitation Runoff Modeling-System model, and the Soil and Water Assessment 
Tool model.

[USGS, U.S. Geological Survey; latitude and longitude in degrees, minutes, and seconds; mi2, square miles]

Map  
number 
(fig. 1)

USGS 
streamgage 

number
USGS streamgage name Latitude (north) Longitude (west)

Drainage area  
measured at 

streamgage (mi2)

1 05457000 Cedar River near Austin, Minnesota 43°38’14” 92°58’28” 399
2 05457700 Cedar River at Charles City, Iowa 43°03’44” 92°40’25” 1,054
3 05458000 Little Cedar River near Ionia, Iowa 43°01’60” 92°30’12” 306
4 105458300 Cedar River at Waverly, Iowa 42°44’14” 92°28’12” 1,547
5 05458500 Cedar River at Janesville, Iowa 42°38’54” 92°27’54” 1,661
6 05458900 West Fork Cedar River at Finchford, Iowa 42°37’46” 92°32’36” 846
7 05459500 Winnebago River at Mason City, Iowa 43°09’54” 93°11’33” 526
8 05462000 Shell Rock River at Shell Rock, Iowa 42°42’43” 92°34’58” 1,746
9 05463000 Beaver Creek at New Hartford, Iowa 42°34’22” 92°37’04” 347

10 05463500 Black Hawk Creek at Hudson, Iowa 42°24’28” 92°27’47” 303
11 05464000 Cedar River at Waterloo, Iowa 42°29’44” 92°20’03” 5,146
12 05464220 Wolf Creek near Dysart, Iowa 42°15’06” 92°17’55” 299
13 05464500 Cedar River at Cedar Rapids, Iowa 41°58’19” 91°40’01” 6,510
14 05465000 Cedar River near Conesville, Iowa 41°24’33” 91°17’25” 7,787

1Used only as a validation site for the Precipitation-Runoff Modeling System model. The site was not used for any of the other models.
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timated and overestimated streamflows computed from the 
method, but overall, the estimated daily mean streamflows 
from the method are underestimated. A visual comparison 
of observed and estimated daily mean streamflows using the 
Flow Anywhere method (fig. 3B) indicates that, for the most, 
part daily mean streamflows are underestimated. For the 
PRMS model (fig. 3C), daily mean streamflows are underesti-
mated, especially at low flows. For the SWAT model (fig. 3D), 
daily mean streamflows appear to be underestimated at very 
low streamflows and overestimated at higher streamflows; in 
general, the PBIAS results indicate daily mean streamflows 
are overestimated. On the basis of the NS values for the Cedar 
River at Waterloo, Iowa, streamgage 05464000, the PRMS 
model appears to provide the best estimates with the highest 
NS value of 0.87, whereas the Flow Duration Curve Transfer 
method appears to provide the poorest estimate with the low-
est NS value of 0.43. On the basis of the PBIAS values for 
the same streamgage, the PRMS model appears to provide the 
best estimates with the lowest absolute PBIAS value of 7.4 
and the SWAT model appears to provide the poorest estimates 
with the highest absolute PBIAS value of -26.1. On the basis 
of both the NS and PBIAS values, the PRMS model appears to 

provide the best prediction of streamflow for the Cedar River 
at Waterloo, Iowa, streamgage 05464000.

Conclusion and Discussion of Methods 
and Models

Based on median and mean Nash-Sutcliffe values for 
the 13 streamgages modeled in the Cedar River Basin; the 
Precipitation Runoff Modeling-System and the Soil and Water 
Assessment Tool models appear to have performed similarly 
and better than the Flow Duration Curve Transfer and Flow 
Anywhere methods. Based on median and mean percent bias 
values, the Soil and Water Assessment Tool model appears 
to have generally overestimated daily mean streamflows, 
whereas the statistical methods and Precipitation Runoff 
Modeling-System model appear to have underestimated daily 
mean streamflows. The Flow Duration Curve Transfer method 
produced the lowest median and mean percent bias values and 
appears to perform better than the Flow Anywhere method and 
the Precipitation Runoff Modeling-System and the Soil and 

Table 2. Comparison results between the two statistically based methods and the two physically based models of the observed and 
estimated daily mean streamflows, October 1, 2001, to September 30, 2009.

[PRMS, Precipitation Ruoff Modeling System; SWAT, Soil and Water Assessment Tool; NS, Nash-Sutcliffe Efficiency Value; PBIAS, percent bias.]

USGS 
streamgage 

number
USGS streamgage name

1Flow Duration 
Curve Transfer

Flow Anywhere 
method

PRMS SWAT

NS PBIAS NS PBIAS NS PBIAS NS PBIAS

05457000 Cedar River near Austin, Minnesota 0.27 20.0 0.15 14.2 0.29 -11.4 0.44 -10.1
05457700 Cedar River at Charles City, Iowa 0.71 4.9 0.37 9.4 0.04 -27.5 0.49 -10.9
05458000 Little Cedar River near Ionia, Iowa 0.73 -5.2 0.30 15.3 0.50 -0.5 0.6 -17.3
05458500 Cedar River at Janesville, Iowa 0.47 4.6 0.55 8.7 0.63 -8.1 0.67 -7.8
05458900 West Fork Cedar River at Finchford, Iowa 0.79 12.3 2NA 2NA 0.71 13.9 0.6 -12.8
05459500 Winnebago River at Mason City, Iowa 0.64 6.7 0.37 46.2 0.68 13.1 0.69 -2.4
05462000 Shell Rock River at Shell Rock, Iowa 0.72 -3.1 0.66 5.4 0.66 4.5 0.56 -23.1
05463000 Beaver Creek at New Hartford, Iowa 0.73 15.4 0.41 30.5 0.63 16.8 0.68 -0.6
05463500 Black Hawk Creek at Hudson, Iowa 0.53 14.4 0.35 27.8 0.63 19.8 0.66 11.2
05464000 Cedar River at Waterloo, Iowa 0.43 -13.2 0.77 7.5 0.87 7.4 0.48 -26.1
05464220 Wolf Creek near Dysart, Iowa 0.55 -5.4 0.34 22.4 0.66 19.2 0.63 7.7
05464500 Cedar River at Cedar Rapids, Iowa 0.35 -2.7 3NA 3NA 0.86 6.6 0.78 -9.1
05465000 Cedar River near Conesville, Iowa 0.09 -5.8 3NA 3NA 0.82 6.1 0.74 -4.6

Maximum 0.79 20.0 0.77 46.2 0.87 19.8 0.78 11.2
Minimum 0.09 -13.2 0.15 5.4 0.04 -27.5 0.44 -26.1
Median 0.55 4.6 0.37 14.8 0.66 6.6 0.63 -9.1
Mean 0.54 3.3 0.43 18.7 0.61 4.6 0.62 -8.1

1Model estimates of streamflow are missing for some days because observed streamflow values were outside the applicable computational range of the Flow 
Duration Curve Tranfer method.

2Reference streamgage for the Flow Anywhere method.
3Drainage areas are too large for the Flow Anywhere method.
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Water Assessment Tool models. It is likely that no one method 
or model out-performs other methods or models for all mag-
nitudes of streamflow (high, low, or mid-range streamflows). 
A more detailed study is needed to determine which methods 
or models will perform best at specific magnitudes of stream-
flows. For estimating very large streamflows with exceedance 
probabilities of less than 1 percent, the Flow Duration Curve 
Transfer method is not applicable because these streamflows 
are outside the computational range of the current model. The 
Flow Anywhere method is limited to estimating streamflow 
for basins less than 5,500 square miles (Linhart and others, 
2012). The Precipitation Runoff Modeling-System and the 
Soil and Water Assessment Tool models are limited to estimat-
ing streamflow for only the Cedar River Basin.
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