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Modeling the Water-Quality Effects of Changes to the
Klamath River Upstream of Keno Dam, Oregon

By Annett B. Sullivan, I. Ertugrul Sogutlugil2, Stewart A. Rounds?, and Michael L. Deas?

Significant Findings

The Link River to Keno Dam (Link-Keno) reach of the
Klamath River, Oregon, generally has periods of water-quality
impairment during summer, including low dissolved oxygen,
elevated concentrations of ammonia and algae, and high pH.
Efforts are underway to improve water quality in this reach
through a Total Maximum Daily Load (TMDL) program
and other management and operational actions. To assist in
planning, a hydrodynamic and water-quality model was used
in this study to provide insight about how various actions
could affect water quality in the reach. These model scenarios
used a previously developed and calibrated CE-QUAL-W?2
model of the Link-Keno reach developed by the U.S.
Geological Survey (USGS), Watercourse Engineering Inc.,
and the Bureau of Reclamation for calendar years 2006—09
(referred to as the “USGS model” in this report). Another
model of the same river reach was previously developed by
Tetra Tech, Inc. and the Oregon Department of Environmental
Quality for years 2000 and 2002 and was used in the TMDL
process; that model is referred to as the “TMDL model” in
this report.

This report includes scenarios that (1) assess the
effect of TMDL allocations on water quality, (2) provide
insight on certain aspects of the TMDL model, (3) assess
various methods to improve water quality in this reach,
and (4) examine possible water-quality effects of a future
warmer climate. Results presented in this report for the first
5 scenarios supersede or augment those that were previously
published (scenarios 1 and 2 in Sullivan and others [2011],

3 through 5 in Sullivan and others [2012]); those previous
results are still valid, but the results for those scenarios in this
report are more current.

U.S. Geologial Survey

2\Watercourse Engineering, Inc.

Significant findings from this study include:
« When comparing two sets of potential water-quality

improvements, one in which Upper Klamath Lake
attained its TMDL target and another in which
Klamath River point and nonpoint sources between
Link and Keno Dams met TMDL allocations, it
was found that the first had a larger beneficial effect
on Link-Keno reach water quality compared to

the second. For example, June to October average
dissolved-oxygen concentrations increased 2.4—

3.6 mg/L (54-126 percent), depending on the year,
when the upstream inflow from Upper Klamath
Lake was simulated at its TMDL target. In contrast,
when Klamath River point and nonpoint sources
met TMDL allocations, June to October average
dissolved-oxygen concentrations increased by
0.1-0.24 mg/L (2—4 percent). This comparison was
similar for most water-quality constituents, although
both sets of improvements had notable effects on
decreasing orthophosphorus concentrations in the
Link-Keno reach.

Under base case conditions 2006-09, digressions less
than the State of Oregon dissolved-oxygen criteria
occurred most frequently in summer in the Link-Keno
reach. Considering the three dissolved-oxygen criteria
that must be met, the 30-day criteria were most
difficult to attain. The dissolved-oxygen criteria were
met for the longest period in the upstream reach nearer
Link River, with non-attainment periods increasing in
the downstream direction toward Keno Dam, due in
part to the decay of algae and organic matter through
the reach.

Simulations with Upper Klamath Lake at its TMDL
water quality target overall were more effective at
reducing the number of days when dissolved-oxygen
criteria were not met, compared to simulations in
which Klamath River point and nonpoint sources were
assumed to meet the Klamath River TMDL allocations.
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Setting the point and nonpoint sources at TMDL
allocations was predicted to help meet the dissolved-
oxygen criteria when Upper Klamath Lake also was at
its TMDL target.

» Under base case conditions, the Link-Keno reach
exceeded the State of Oregon maximum pH criterion
of 9.0 in summer at certain times and locations,
especially in areas where algal blooms were present.
Algal populations were greatest in the upstream
portion of the reach, which led to more frequent pH
criterion exceedances in that part of the river.

« Although the TMDLs addressed factors such as total
nitrogen, total phosphorus, and biochemical oxygen
demand (BOD) for inflows and point and nonpoint
sources, other water-quality constituents such as pH
and total inorganic carbon (TIC) likely would change
as TMDL responses are implemented, but it is more
difficult to predict these future levels because they
are affected by watershed conditions that lie outside
the Link-Keno model domain. Simulations of Upper
Klamath Lake and Link-Keno sources at TMDL
targets and allocations indicated that Link-Keno
model pH predictions were sensitive to boundary and
point and nonpoint source estimates of pH and total
inorganic carbon.

+ Under base case conditions, the acute ammonia
toxicity criteria were simulated to be exceeded from
0 to 27 days per year, depending on location and
year. The chronic ammonia toxicity criteria were
simulated to be exceeded more frequently, between 11
and 158 days per year. Because the ammonia criteria
are pH-dependent, these criteria were sensitive to
the formulation of pH and TIC in the boundaries of
model scenarios.

A qualitative comparison of the USGS and TMDL
model pH simulations indicated that the USGS model
more closely simulated the measured seasonal patterns
in pH for years 2006-09. This is due in part to (1) the
enhanced buffering capabilities added to the USGS
model, which includes pH buffering by organic matter,
orthophosphorus, and ammonia and (2) the inclusion
of macrophytes in the USGS model.

« Shunting, or diverting, particulate matter so that
it remained in the Klamath River instead of being
removed through four Klamath Project diversion
canals, was predicted to worsen water quality in
the Link-Keno reach as measured by the predicted
concentrations of dissolved oxygen, ammonia, and
chlorophyll a.

» Model results indicated that removal of large algae

and particulate organic matter at the Link River inflow
could improve water quality in the Link-Keno reach,
greatly increasing dissolved oxygen and decreasing
nutrients and chlorophyll a. However, the downstream
pH may remain high in summer. Removing material
for the entire year had only a small additional benefit
compared to treatment for the primary growth period
of June—October. A significant fraction of the algae
and particulate material would need to be removed

to bring the river closer to compliance with the
dissolved-oxygen criteria.

« Routing river water through wetlands adjacent

to the Klamath River was simulated to remove
particulate inorganic and organic matter, algae,

and labile dissolved organic matter from the river
water, leading to increases in dissolved oxygen and
decreases in nutrient, organic matter, and chlorophyll a
concentrations downstream of the wetland. Wetlands
farther upstream in the Link-Keno reach are potentially
more advantageous, as they could treat the higher
levels of particulate material and algae found there.

* Reducing Link River flows by 200 ft3/s and routing

that water through the Klamath Project and back to
the Klamath River through the Lost River Diversion
Channel, the Klamath Straits Drain, or both was
predicted to have only modest effects on water quality
in the Link-Keno reach, with some improvements and
some degradation depending on location and time

of year.

« Scenarios that examined the effects of reaeration

and dissolved-oxygen injection revealed that these
treatments are likely to be effective at increasing
dissolved-oxygen concentrations in the reach,
although it was predicted that such actions would
have negligible short-term effects on other water-
quality constituents.

In scenarios that focused on reducing concentrations of
particulate organic matter or algae, the point of greatest
improvement in dissolved oxygen was typically farther
downstream of the treatment location, and may even
be downstream of the lower boundary of the model

at Keno Dam. In contrast, in a scenario that directly
injected dissolved oxygen, the point of greatest
improvement was immediately downstream of the
treatment location.



« Simulations of increased riparian shade along the Link-
Keno reach produced cooling of less than 0.6°C as a
reach average for June—October. Less solar radiation
reaching the river also led to minor effects on other
water-quality constituents that are affected by water
temperature and photosynthesis.

» Simulations of a future warmer climate with
air temperature increases of 0.86-3.25°C were
predicted to increase annual average water
temperatures by 0.6-2.4°C in the Link-Keno reach.
Warmer temperatures would lead to lower dissolved
oxygen solubility and the simulations predicted
dissolved-oxygen concentration decreases on the order
of 0.3 mg/L as an annual average with the maximum
air temperature increase of 3.25°C.

Results from these model scenarios demonstrate that
large changes in river water quality can be achieved through
one or more management strategies that target the most
important inputs and (or) instream water-quality processes
of the upper Klamath River. Future tests and refinements
of the model based on research, targeted monitoring, and
pilot studies of potential management actions are likely
to further improve the accuracy and value of these model
predictions. As potential management plans are refined, the
model can be used to provide further insights about likely
water-quality outcomes.

Introduction

The Klamath River flows about 255 mi (410 km) from
the outlet of Upper Klamath Lake through southern Oregon
and northern California to the Pacific Ocean. The first 20 mi
of the river, just downstream of Upper Klamath Lake, are
bounded by Link River and Keno Dam (fig. 1). Water quality
in this reach has been classified as “very poor” by the State of
Oregon (Mrazik, 2007) and was designated as “water quality
limited” for exceeding ammonia toxicity and dissolved-
oxygen criteria year-round, and pH and the chlorophyll a
criterion in summer (Oregon Department of Environmental
Quality, 2007). A Total Maximum Daily Load (TMDL) for
the Klamath River including this reach (Oregon Department
of Environmental Quality, 2010) was approved by the
Environmental Protection Agency in May 2012. The TMDL
specifies load decreases of total nitrogen, total phosphorus,
and 5-day biochemical oxygen demand (BODS) for the
nonpoint sources Lost River Diversion Channel and Klamath
Straits Drain and for point sources including the Klamath
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Falls and South Suburban wastewater treatment plants. At
the time of this study, the temperature section of the upper
Klamath River TMDL was not approved and was undergoing
additional analysis.

Most nutrient loads in the Link River to Keno Dam
(Link-Keno) reach came from Upper Klamath Lake through
Link River with additional input by nonpoint and point sources
in the Link-Keno reach (table 1). Total phosphorus loads
in Link River consisted of phosphorus in algae, particulate
organic matter, dissolved organic matter, and orthophosphorus.
Total nitrogen loads in Link River were comprised of algae,
particulate organic matter, dissolved organic matter, nitrate,
and ammonia. The relative contribution of those various
nutrient sources varied through the year (fig. 2).

A TMDL for Upper Klamath Lake, just upstream of
the study reach was approved by the U.S. Environmental
Protection Agency in 2002. That TMDL specifies decreases
in inflow loads and provides an in-lake phosphorus target
(Oregon Department of Environmental Quality, 2002).
Changes of water quality in Upper Klamath Lake would affect
water quality in Link River, the upstream boundary of the
Link-Keno model.

In addition to TMDL actions, other management options
are being considered that may improve water quality in the
Link-Keno reach. Running scenarios based on a calibrated
water-quality model of the reach allows the effects of
such options to be predicted and fully considered so that
management and restoration efforts can focus on strategies
with the highest likelihood of success. Only the water-quality
effects of potential management actions are discussed here;
other aspects of water-quality improvement options, such
as cost or implementation timeframes, are not included in
this report.

Model Background

River water quality can be affected by hydrology, weather
and climate atmospheric conditions, inputs and withdrawals,
chemical reactions, and biota. Mechanistic computer models
such as CE-QUAL-W?2 (Cole and Wells, 2008) include many
of these processes and are regularly used to make predictions
about the potential water quality response to system changes.
Models commonly are used in constructing TMDLs, and the
upper Klamath River TMDL was based in part on results from
a CE-QUAL-W2 model that used conditions from years 2000
and 2002 (Rounds and Sullivan, 2009; Tetra Tech, Inc., 2009;
Rounds and Sullivan, 2013). That model from Tetra Tech,

Inc. and the Oregon Department of Environmental Quality
(ODEQ) is referred to as the “TMDL model” in this report.
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Figure 1. Location of the Link River to Keno Dam reach of the Klamath River, Oregon. (WWTP, wastewater treatment plant.)



Table 1.

Link-Keno reach base case model, Klamath River, Oregon, 2006—09.

Introduction

Total phosphorus and total nitrogen loads for upstream inflow, point, and nonpoint sources in the

Total phosphorus (metric tons per calendar year)

Site name Site type
2006 2007 2008 2009
Link River Upstream inflow 188 128 128 114
Klamath Falls wastewater treatment plant Point source 13 11 11 8
South Suburban wastewater treatment plant ~ Point source 11 10 9 8
Lost River Diversion Channel Nonpoint source 66 17 19 10
Columbia Forest Products Point source 0.003 0.001 0.000 0.000
Klamath Straits Drain Nonpoint source 76 31 32 30

Total nitrogen (metric tons per calendar year)

Site name Site type
2006 2007 2008 2009
Link River Upstream inflow 2,488 1,819 1,948 1,746
Klamath Falls wastewater treatment plant Point source 65 54 53 49
South Suburban wastewater treatment plant ~ Point source 43 39 36 33
Lost River Diversion Channel Nonpoint source 617 142 158 70
Columbia Forest Products Point source 0.038 0.009 0.003 0.001
Klamath Straits Drain Nonpoint source 506 285 319 278
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Figure 2. Components of total phosphorus and total nitrogen
loads for Link River, Oregon, during model year 2007. Total
phosphorus consists of phosphorus in algae, particulate
organic matter (POM), dissolved organic matter (DOM), and
orthophosphate (PQ,). Total nitrogen consists of nitrogen in
algae, POM, DOM, nitrate (NO,), and ammonia (NH,). Values are

weekly moving averages of hourly model input.
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In an effort to improve the understanding of instream
processes in this river reach and create a more accurate
predictive model, the U.S. Geological Survey (USGS),
Watercourse Engineering Inc. (Watercourse), and Bureau
of Reclamation (Reclamation) collaborated in a research,
monitoring, and modeling study that produced a calibrated
CE-QUAL-W?2 version 3.6 model of the Link-Keno reach
for conditions during 2006-09 (Sullivan and others, 2011).
This new model was based on extensive field data, with
additional field research on issues of flow, suspended matter
settling, and dissolved oxygen and organic matter dynamics
(Sullivan and others, 2008, 2009, 2010; Poulson and Sullivan,
2010; Deas and Vaughn, 2011) to better define model
parameters and rates. Subsequently, this calibrated model
was updated to include macrophytes and improvements to
the simulation of pH (Sullivan and others, 2013). This
USGS-Watercourse-Reclamation model (referred to as the
“USGS model”) can simulate stage, flow, water velocity, ice
cover, water temperature, specific conductance, inorganic
suspended sediment, total nitrogen, particulate nitrogen,
nitrate, ammonia, total phosphorus, orthophosphorus,
particulate carbon, dissolved organic carbon, organic matter
in the sediment, three algal groups, three macrophyte groups,
dissolved oxygen, and pH.

CE-QUAL-W?2 is a two-dimensional model, simulating
variability from upstream to downstream and from the river
surface to the channel bottom. The third dimension, from bank
to bank, is laterally averaged. As such, the model is well suited
for the simulation of conditions in long, narrow waterbodies
such as rivers and reservoirs that tend to stratify thermally;
in such waterbodies, the vertical variability of water quality
tends to be more distinct than any lateral variability. The main
branch of the Link-Keno model grid consists of 102 segments
that connect together in the direction of flow (fig. 3); segments
average 1,009 ft (308 m) in length. Each segment represents
a cross-sectional shape of the river channel, with stacked
layers of varying width from the river surface to the channel
bottom. A side view of the model grid is available in Sullivan
and others (2011). Vertical layers in the USGS model grid
were 0.61 m in height. The model keeps track of all simulated
constituents in all layers of every segment, and can output
results at selected locations and time intervals, often hourly.

Although the Link-Keno model was constructed and
calibrated for conditions in the years 2006-09, the mechanistic
nature of the models allows for useful predictions of
hydrodynamic, thermal, and water-quality changes resulting
from altered conditions. However, all model predictions have
some uncertainty. Results from model scenario runs are most

useful in providing insights regarding changes to the system
through comparative analysis, rather than in providing high
certainty regarding the values of predicted concentrations. For
example, scenario results can be used to evaluate decisions
about which treatment or restoration processes might be most
effective at improving water quality by assessing the predicted
changes in key constituent concentrations.

These scenarios were developed by the USGS and
Watercourse in cooperation with Reclamation. Scenario
results will inform local and regional managers who need
information about potential approaches to improve water-
quality conditions while efficiently managing the system for
multiple uses.

Purpose and Scope

The purpose of this study was to predict the potential
water-quality effects of management strategies and other
system changes through the application of the USGS model
of the upper Klamath River from the mouth of Link River to
Keno Dam. Most model scenarios were superimposed on the
wide range of conditions that occurred for the years 2006-09,
thus allowing simulation of a range of climatic, hydrologic,
and water-quality conditions. These model scenarios were
formulated and run to:

1. Assess the effect of TMDL total phosphorus, total
nitrogen, and BOD?5 targets and allocations on upper
Klamath River water quality (scenarios 1-2), and compare
those results to the relevant Oregon dissolved oxygen, pH,
and ammonia toxicity criteria (scenario 3);

2. Evaluate the importance of differences in the formulations
of the USGS and TMDL models (scenario 4);

3. Assess various water quality improvement options
related to particulate material, wetland treatment, flow
management, shading, and oxygen injection (scenarios 5,
6,7,8,9);

4. Examine the possible effects of a warmer climate on river
water quality (scenario 10).

Preliminary results from model scenarios 1 through 5
were published previously (Sullivan and others, 2011, 2012).
The results presented in this report expand upon or augment
those results; the previous results are still valid, although the
results in this report are more current.
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Figure 3. Model segments in the main branch of the Link-Keno model, Klamath River, Oregon. The first
segment downstream of Link River is model segment 2 and the last model segment, at Keno Dam, is
model segment 103. Segment widths vary according to river width.
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Model Scenarios

To assess changes in water quality, scenario-specific
results were compared to results from the base case (current
conditions) model documented in Sullivan and others
(2013) for calendar years 2006-09. After each scenario was
constructed and run, the model water-surface elevation at
Keno Dam was assessed to ensure that it was unchanged
from the base case model. This allowed base case and model
scenario results to be directly compared without confounding
traveltime or storage effects from water stage differences.
Some of the scenarios that examine treatment options are
exploratory in nature and include end member cases, to
examine the range of possible effects. Methodology and
results from all scenarios (table 2) are discussed in this report
in numerical order.

Scenarios 1 and 2. Water-Quality Conditions
Before and After TMDL Implementation

The Klamath River TMDL specifies total nitrogen, total
phosphorus, and BOD?5 allocations for point and nonpoint
tributary sources along the Link-Keno reach. The Upper
Klamath Lake TMDL specifies an in-lake total phosphorus
target; the water quality of Upper Klamath Lake affects the
Klamath River’s upstream inflow at Link River. Scenarios 1
and 2 were formulated to assess the water-quality changes in
the upper Klamath River if the upper Klamath River TMDL
tributary source allocations and Upper Klamath Lake TMDL
target were met, both separately (scenarios 1b, 2a) and
together (scenario 2b) (table 2).

Methods

Methods to construct scenarios 1 and 2 were described
in Sullivan and others (2011). The model runs in this study
were similar, but used updated and recalibrated USGS models,
which included macrophytes and enhanced pH-buffering
calculations (Sullivan and others, 2013) that were not
included in the previous USGS model runs (Sullivan and
others, 2011). Because the new pH buffering algorithms
apportion some alkalinity to organic matter, ammonia, and
orthophosphorus, recalculation of the total inorganic carbon
(TIC) concentrations in the boundary input files was necessary
(see Sullivan and others, 2013). This TIC recalculation applied
to all boundary inputs, including Link River, point sources
(Klamath Falls and South Suburban wastewater treatment
plants) and nonpoint sources (Lost River Diversion Channel,
Klamath Straits Drain).

In addition to recalculating TIC for base case conditions,
inflow TIC for the upstream and point and nonpoint sources
was recalculated for scenarios in which inflow concentrations

of organic matter, ammonia, and (or) orthophosphorus

were decreased to be consistent with TMDL allocations. If
concentrations of nutrients, organic matter, and (or) algae
were decreased in the inflows by changes that affected the
watershed ecosystem of those sources, the pH of those waters
could have changed as well; pH affects the calculation of
TIC. Predicting pH changes that might occur outside the
model boundary is more difficult, so some sensitivity analyses
explored the ramifications of boundary pH changes during
2007. For this bracketing, TIC was calculated twice: first using
measured pH and second using an estimated pH that might
have occurred in the presence of a smaller algal population
(low-bloom condition). Considering winter background pH
of inflows (pH approximately 7.0—8.0) with some minor
primary production in summer, might lead to maximum pH
values of approximately 8.5. Thus, the low-bloom pH was
estimated by setting any inflow pH values greater than 8.5 to
8.5. Under the base case, current conditions, the measured pH
for some inputs were greater than 9.5 for some periods during
the year. Separate model runs were conducted for each of
these conditions.

Results

Scenario 1 and 2 results from the updated model were
similar to scenario results from the original model as discussed
in Sullivan and others (2011). Inflow nutrient decreases
in Link River (to meet the Upper Klamath Lake TMDL
target) and in the two wastewater treatment plants, Lost
River Diversion Channel and Klamath Straits Drain (to meet
Klamath River TMDL allocations) together (scenario 2b)
were effective at improving water quality in the Link-Keno
reach of the upper Klamath River, as measured by increased
dissolved-oxygen concentrations, decreased ammonia
concentrations, and improvements in other water-quality
parameters (fig. 4; tables Al, A2).

The predicted improvement in water quality caused by
the attainment of the Upper Klamath Lake TMDL target,
as reflected by improved Link River inflow quality, was
more than the improvement in water quality associated with
the TMDL attainment of all other inflows combined. For
instance, the Link-Keno volume-average dissolved-oxygen
concentration for June through October was predicted to
increase 2.4-3.6 mg/L (54-126 percent) depending on model
year, when Link River water quality reflected attainment of
the Upper Klamath Lake TMDL target (scenario 2a) compared
to base case (scenario 1a) conditions (fig. 4; table A2). In
contrast, the dissolved-oxygen concentration was predicted to
increase by much less, 0.1-0.2 mg/L (2-4 percent), through
the attainment of all Klamath River TMDL allocations at the
two wastewater treatment plants, the Lost River Diversion
Channel, and the Klamath Straits Drain (scenario 1b),
compared to base case conditions.



Model Scenarios

Table 2. Summary of model scenarios for the Link-Keno Reach, Klamath River, Oregon.

[Scenario 3 is based on further analyses of scenarios 1 and 2. Most scenarios were run for calendar years 2006-09;
scenario 10 was run based on calendar year 2007. Abbreviations: TMDL, total maximum daily load; DO, dissolved
oxygen; OM, organic matter; ft%/s, cubic foot per second; m, meter]

Scenario

number Description

Scenario 1: Base case and sources at TMDL allocations

la Base case (current conditions)

1b Sources at TMDL allocations

Scenario 2: Link River at Upper Klamath Lake TMDL target

2a Link River at Upper Klamath Lake TMDL target

2b Link River at Upper Klamath Lake TMDL target and sources at TMDL allocations
Scenario 3: Compliance with dissolved oxygen, pH, and ammonia toxicity criteria

3(nc) Reference conditions, without anthropogenic effect

3(1a) Base case (current conditions)

3(1b) Sources at TMDL allocations

3(2a) Link River at Upper Klamath Lake TMDL target

3(2b) Link River at Upper Klamath Lake TMDL target and sources at TMDL allocations
Scenario 4: Compare U.S. Geological Survey model and TMDL model results

4 Apply 2006-09 data to TMDL model

Scenario 5: Particulate matter shunting

5a Shunt, Lost River Diversion Channel and Klamath Straits Drain at current conditions
5b Shunt, Lost River Diversion Channel and Klamath Straits Drain at intermediate conditions

Shunt, Lost River Diversion Channel and Klamath Straits Drain at zero OM, nutrients, and

S algae, DO at saturation

Scenario 6: Decrease particulate organic matter and blue-green algae in Link River
6a 25 percent decrease, June 15-October 31

6b 50 percent decrease, June 15-October 31

6C 90 percent decrease, June 15-October 31

6d 25 percent decrease, entire year

6e 50 percent decrease, entire year

6f 90 percent decrease, entire year

Scenario 7: Route Klamath River water through treatment wetlands
Ta Segment 28, 50 percent decrease, entire river

b Segment 28, 50 percent decrease, 250 ft®/s

7c Segment 28, 90 percent decrease, entire river

7d Segment 54, 50 percent decrease, entire river

Te Segment 54, 50 percent decrease, 250 ft®/s

7f Segment 54, 90 percent decrease, entire river

Scenario 8: Altered flow: Import/export to/from the Klamath Project
8a Flow to Lost River Diversion Channel

8b Flow to Klamath Straits Drain

8c Flow to Lost River Diversion Channel and Klamath Straits Drain
Scenario 9: Augment dissolved oxygen or add riparian shade

9a DO saturation, segment 7 (Railroad Bridge)

9b DO saturation, segment 21 (Highway 97)

9c DO saturation, segment 38 (Miller Island)

9d DO supersaturation, segment 7 (Railroad Bridge)

% DO supersaturation, segment 21 (Highway 97)

of DO supersaturation, segment 38 (Miller Island)

99 Riparian shade, 10 m trees

9h Riparian shade, 20 m trees

Scenario 10: Climate change effects on water quality

10a Minimum future temperature increase

10b Median future temperature increase

10c Maximum future temperature increase
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Figure 4. Simulated dissolved-oxygen
concentration under the base case and for
scenarios 1b, 2a, 2b in the Link-Keno reach,
Klamath River, Oregon, on August 1, 2007.
Scenario 1b represents Link-Keno reach point
and nonpoint sources meeting Klamath River
Total Maximum Daily Load (TMDL) allocations.
Scenario 2a represents results considering
the Upper Klamath Lake TMDL target was met.
Scenario 2b is a combination of scenarios 1b and
2a. Values are daily average, segment volume-
average concentrations.

Similarly, water quality improvements for ammonia,
chlorophyll a, particulate organic carbon, dissolved organic
carbon, total phosphorus, and total nitrogen were notably
greater when Link River inputs reflected attainment of
the Upper Klamath Lake TMDL target compared to when
the other inflows met Klamath River TMDL allocations
(tables A1, A2). Decreases in orthophosphorus concentration,
on the other hand, were notable both when Link River
reflected Upper Klamath Lake TMDL attainment (scenario 2a)
and when the in-reach inflows met Klamath River TMDL
allocations (scenario 1b): June—October orthophosphorus
concentrations decreased 0.04—0.07 mg/L with the first
condition and 0.02—0.03 mg/L under the second compared
to base case conditions (scenario 1a) (table A2). Upper
Klamath Lake inflows are a dominant factor in determining
water quality in the Link-Keno reach of the Klamath River,
particularly during summer. Other sources of water to the
reach can be important in affecting certain constituents such
as phosphorus, but significant changes to water quality in this
reach are unlikely without alterations in the quality of Upper
Klamath Lake inflows.

Scenario 3. Compliance with Dissolved Oxygen,
pH, and Ammonia Toxicity Criteria

Scenario 3 extended scenarios 1 and 2 by comparing
those results to the relevant Oregon dissolved oxygen,
pH, and ammonia toxicity criteria. Chlorophyll a results
from the model were not compared to the State of Oregon
action level in this study because the TMDL was not
written to demonstrate compliance with the chlorophyll a
criterion; rather, it was assumed that achieving compliance
with the dissolved-oxygen and pH criteria would be more
directly protective of aquatic life (Oregon Department
of Environmental Quality, 2010). Water temperature was
not included in this analysis because water temperature
allocations to point and nonpoint sources were determined
based on basin-specific rule language instead of instream
analysis (oral commun., Daniel Turner, Oregon Department of
Environmental Quality).

Water Quality Criteria

The relevant numeric dissolved oxygen, pH, and
ammonia toxicity criteria for the Link-Keno reach were based
on State of Oregon standards specific to the Link-Keno reach
of the Klamath River (Oregon Department of Environmental
Quality, 2011). During the modeling and analysis process
to determine TMDL allocations, ODEQ examined water
quality criteria compliance at seven locations in the Link-
Keno reach: at the inflow locations of the Klamath Falls
wastewater treatment plant (USGS model segment 4), South
Suburban wastewater treatment plant (segment 8), Lost River
Diversion Channel (segment 19), and Klamath Straits Drain
(segment 69), as well as at monitoring sites Miller Island
(segment 38), KRS12a (segment 78), and Keno (segment 95)
(figs. 1 and 3). Prior analysis demonstrated that these selected
locations were representative of dissolved oxygen conditions
in the reach (Sullivan and others, 2012).

Dissolved Oxygen

The dissolved-oxygen standard for the Link-Keno reach
of the Klamath River defines the numeric criteria as ““...the
dissolved oxygen may not fall below 6.5 mg/L as a 30-day
mean minimum, 5.0 mg/L as a 7-day minimum mean, and
may not fall below 4.0 mg/L as an absolute minimum...”
when sufficient data are available to compute these statistics,
as is the case with continuous monitor data or model results
(Oregon Department of Environmental Quality, 2011). All
three of these numeric criteria must be attained to achieve
compliance. The “30-day mean minimum” is defined as the
minimum of the 30 consecutive-day floating average of the



calculated daily mean, and the daily mean is computed such
that “concentrations in excess of 100 percent of saturation are
valued at the saturation concentration.” The “7-day minimum
mean” is defined as the minimum of the 7 consecutive-day
floating average of the daily minimum concentration. The
“4.0 mg/L as an absolute minimum” is an instantaneous
criterion and was checked with hourly results. The State
of Oregon standards do not specify whether the numeric
criteria were based on depth-averaged or volume-averaged
concentrations. ODEQ used depth-averaged dissolved-
oxygen concentrations to compare to these dissolved-oxygen
criteria. A previous modeling study (Sullivan and others,
2012) determined that dissolved oxygen depth-average
concentrations in the upper Klamath River typically were
lower than volume-average concentrations. Depth averaging
gave relatively higher weight to small-volume areas near
the channel bottom that often had lower dissolved-oxygen
concentration. The current modeling study used volume-
average dissolved-oxygen concentrations because that
result was more representative of average dissolved-oxygen
concentration when the entire cross section was considered.
Additional rule language for sources in this reach states
that “no measurable reduction of dissolved oxygen” shall
result, where “measurable reduction” is defined as “...no
more than 0.20 mg/L for all anthropogenic activity.” This
0.20 mg/L rule was one of the primary measures used during
the determination of allocations for point and nonpoint sources
for the Klamath River TMDL (oral commun., Daniel Turner,
Oregon Department of Environmental Quality).

pH

The relevant Oregon pH standard for this reach of the
Klamath River defines the numeric criteria as “...pH values
may not fall outside the range of 6.5-9” (Oregon Department
of Environmental Quality, 2011). ODEQ compared model
results to the criteria at a depth of 1.1 m from the surface on
an hourly basis at the seven compliance locations. The same
approach was used in this study.

Ammonia Toxicity

Ammonia occurs in natural waters as either ammonium
(NH,*) or un-ionized ammonia (NH,). Un-ionized ammonia is
the predominant form when the pH is greater than about 9.3,
and is the form that is toxic to fish. The un-ionized form of
ammonia increases as pH and temperatures increase. The State
of Oregon ammonia toxicity criteria, based on that of the U.S.
Environmental Protection Agency (EPA), are set according
to concentrations of the un-ionized ammonia form and are a
function of water temperature (T) and pH (U.S. Environmental

Model Scenarios 1

Protection Agency, 1986). The numeric criteria equations take
different forms depending on whether salmonids and other
coldwater species are present; the upper Klamath River TMDL
used equations that assumed that coldwater species were
present (Oregon Department of Environmental Quality, 2010).
The acute ammonia toxicity criteria were designed to protect
fish against acute toxic effects such as loss of equilibrium,
hyperexcitability, increased breathing, cardiac output,
convulsions, coma, or death (U.S. Environmental Protection
Agency, 1986). The chronic ammonia toxicity criteria were
designed to protect fish from lower level concentration

effects such as reduction in hatching success or growth, and
pathological changes in gill, liver, and kidney tissues (U.S.
Environmental Protection Agency, 1986).

The acute criteria, in milligrams per liter as NH,, are
calculated as 0.52/FT/FPH/2, and the chronic criteria are
calculated as 0.80/FT/FPH/Ratio. The equation parameters are
defined as:

FT = 100.03(20-TCAP) - TCAP <T<30
FT = 100.03(0-T) » 0<T<TCAP
FPH = 1; 8<pH<9

FPH = (1 + 10(7:4-pH)/1.25: 6.5<pH<8
Ratio = 16; 7.7<pH=<9
Ratio = (24 * 107-7-PH))/(1 + 104-PH)) ;  6.5<pH<7.7

TCAP = 20°C for acute criteria and 15°C for chronic
criteria, when salmonids or other sensitive cold water
species are present.

The acute criteria were applied using 1-hour average
concentration of un-ionized ammonia. The chronic criteria
were applied based on the 4-day average un-ionized
ammonia concentrations. The EPA states that the equations
should not be applied outside the pH range of 6.5t0 9.0 or a
water temperature range of 0 to 30°C (U.S. Environmental
Protection Agency, 1986). Because alternate equations were
not provided for conditions outside this pH range, and because
ODEQ applied these equations to all upper Klamath River
conditions without modification, this study mirrored that
approach. ODEQ applied the criteria during model analysis
at a depth of 1.1 m from the surface at the seven compliance
locations. The same method was followed for this study.

The EPA criteria in the equations above are for un-ionized
ammonia in units of milligrams per liter as NH. In this report,
the criteria for un-ionized ammonia in milligrams per liter as
NH, were converted to an equivalent concentration of total
ammonia (ammonium plus ammonia) in milligrams per liter as
nitrogen (N) using well-known equations for the speciation of
ammonia as a function of pH and temperature.
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Natural Conditions Effect on Criteria

In Oregon, all previously described numeric water-
quality criteria can be superseded if it is determined that water
quality under “natural conditions” would be of lower quality
for a specific time and place. Oregon Administrative Rules
state, “Where a less stringent natural condition... exceeds
the numeric criteria... the natural condition supersedes the
numeric criteria” (Oregon Department of Environmental
Quality, 2011). For instance, if the numeric instantaneous
dissolved-oxygen criterion is 4.0 mg/L, but analysis indicated
that the dissolved-oxygen concentration under natural
conditions for a certain place and time would be 3.8 mg/L,
then 3.8 mg/L becomes the applicable criteria.

Natural conditions is defined as “conditions or
circumstances affecting the physical, chemical, or biological
integrity of a water of the state that are not influenced by past
or present anthropogenic activities” (Oregon Department of
Environmental Quality, 2011). Anthropogenic activity that
modified flow began prior to 1900 in the Klamath Basin,
when little to no quantitative flow or water-quality data were
available. In the dissolved-oxygen criteria analyses for this
report, model simulations to approximate natural conditions
of water quality were constructed by assuming a level of
improved water quality from Upper Klamath Lake and limited
effects from nonpoint and point sources. These simulations
are termed “reference condition” to acknowledge that they
represent only an approximation of natural conditions. More
specifics of the reference conditions model construction, and
how the USGS-Watercourse-Reclamation reference conditions
analysis differs from that used in the TMDL, are described in
Sullivan and others (2012).

Results

Comparison to Dissolved-Oxygen Criteria

Measured and simulated dissolved-oxygen concentrations
were well above the relevant criteria in winter, spring, and late
fall. In the base case (scenario 3(1a)) conditions of 2006-09,
dissolved-oxygen concentrations were less than the criteria in
the Link-Keno reach of the Klamath River in summer through
early fall (fig. 5). At that time of year, the river had large loads
of decomposable organic matter, which consumed oxygen
during decay. Water temperatures were warmer during this
period, which decreased the solubility of oxygen in water.

The maximum number of days that any of the three numeric
criteria were not met in any scenario year ranged as high as
143 days and tended to be at least about 100 days at most
locations in the base case (table 3); in the years modeled, the
30-day criteria were more difficult to attain compared to the
7-day or instantaneous criteria, so the results in table 3 are for
the 30-day criteria analysis. The average concentration below
the criteria for that period ranged from 1.2 to 3.7 mg/L for key
locations in the base case (table 3).

Under base case conditions, some part of the Link-Keno
reach was less than dissolved oxygen criteria for at least
3 months in summer in all years modeled. Dissolved oxygen
conditions generally worsened from upstream to downstream
for several reasons: inflowing oxygen concentrations were
elevated from aeration at Link Dam and Link River, oxygen
demand increased downstream as algae and particulate organic
matter settled and decayed, and inflows of oxygen-demanding
material or low dissolved-oxygen levels entered the river from
point sources (for example, Klamath Falls and South Suburban
wastewater treatment plants) and nonpoint sources (Lost River
Diversion Channel and Klamath Straits Drain) along the reach.

Setting Link River nutrient and organic matter
concentrations at lower values (scenario 3(2a)) to reflect the
Upper Klamath Lake TMDL target led to increased attainment
of dissolved-oxygen criteria in the upper Klamath River.
In that scenario, the upper areas of the reach, close to Link
River, improved from levels less than the dissolved-oxygen
criteria for 3 months of the year (scenario 3(1a)) to attaining
the criteria at all locations and times (scenario 3(2a); table 3).
The more downstream reach of this study area, closer to
Keno Dam, was still less than the dissolved-oxygen criteria
in this scenario, although the period was shorter, and when
digressions occurred, concentrations were much closer to the
criteria. For example, in the 2009 base case 3(1a), at segment
69 at the Klamath Straits Drain inflow, for the 142 days when
dissolved-oxygen criteria were not attained, waters were
less than the criteria by an average of 3.4 mg/L. In scenario
3(2a), that location did not attain dissolved-oxygen criteria on
86 days, but the concentrations were less than the criteria by
an average of 0.1 mg/L for the 86 days.

Simulating point and nonpoint sources along the
Link-Keno reach in compliance with Klamath River
TMDL allocations (scenario 3(1b)) shifted the river toward
compliance with dissolved-oxygen criteria, but in fewer
locations and to a lesser amount than simulating Link River
inflows in compliance with the Upper Klamath Lake TMDL.
Simulating in-reach point and nonpoint sources to meet
TMDL allocations was most effective at bringing the river
into compliance with water quality criteria when Link River
was already at the Upper Klamath Lake TMDL target. For
Keno (segment 95) in 2008, the base case results were less
than the criteria for 142 days by an average of 3.2 mg/L; when
Link River TMDL compliance was assumed, water quality
improved and the dissolved-oxygen concentrations were
less than the criteria on 82 days by an average of 0.3 mg/L
(table 3). Adding in Klamath River point and nonpoint
source TMDL compliance provided sufficient additional
improvement to achieve dissolved oxygen compliance at Keno
for the entire year.
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Table 3. Number of days dissolved oxygen was simulated to be less than the 30-day criteria (and the average amount less than the
criteria) at selected Oregon Department of Environmental Quality compliance locations for scenario 3 under the base case and Total
Maximum Daily Load scenarios, Klamath River, Oregon, for years 2006—09.

[30-day criteria is based on Oregon Department of Environmental Quality regulations (Oregon Department of Environmental Quality, 2011). Abbreviations:
segment, model segment; TMDL, total maximum daily load; WWTP, wastewater treatment plant; mg/L, milligram per liter]

Days less than 30-day dissolved oxygen criteria (and average less than the criteria, in mg/L)

Klamath River at Klamath River at Klamath River at Klamath River at Klamath River
Scenario WWTP inflows  Lost River Diversion . Klamath Straits
. Miller Island . at Keno
(segments 4, 8) Channel inflow Drain inflow
Segment 8 Segment 19 Segment 38 Segment 69 Segment 95
2006
3(la) Base case (current conditions) 101 (1.2) 119 (1.8) 124 (2.7) 127 (2.8) 128 (2.7)
3(1b)  Sources at TMDL allocations 101 (1.2) 118 (1.7) 124 (2.6) 125 (2.6) 124 (2.4)
3(2a) Link River at TMDL target 0 0 16 (0.1) 85 (0.3) 27 (0.5)
3(2b) Link River and sources at TMDL 0 0 0 69 (0.2) 0
2007
3(la) Base case (current conditions) 98 (1.8) 111 (2.5) 123 (3.1) 122 (3.1) 108 (2.3)
3(1b)  Sources at TMDL allocations 98 (1.8) 110 (2.5) 121 (3.1) 114 (3.2) 102 (2.1)
3(2a)  Link River at TMDL target 0 0 9(0.1) 69 (0.4) 0
3(2b) Link River and sources at TMDL 0 0 0 62 (0.3) 0
2008
3(la) Base case (current conditions) 97 (2.3) 119 (3.1) 138 (3.3) 143 (3.1) 142 (3.2)
3(1b)  Sources at TMDL allocations 97 (2.3) 119 (3.1) 137 (3.3) 141 (3.0) 140 (3.0)
3(2a) Link River at TMDL target 0 4(0.2) 22 (0.2) 41 (0.1) 82 (0.3)
3(2b)  Link River and sources at TMDL 0 3(0.2) 20 (0.2) 19 (0.1) 0
2009
3(la) Base case (current conditions) 104 (2.3) 122 (3.3) 136 (3.7) 142 (3.4) 140 (3.5)
3(1b)  Sources at TMDL allocations 103 (2.3) 122 (3.3) 136 (3.6) 140 (3.4) 136 (3.4)
3(2a) Link River at TMDL target 0 0 0 86 (0.1) 78 (0.3)

3(2b) Link River and sources at TMDL 0 0 0 57 (0.1) 0
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Figure 5. Dissolved-oxygen concentrations for the base case scenario (3[1a]) and reference conditions (3[nc]) scenarios,
and hourly, 7-, and 30-day dissolved-oxygen criteria for the upper Klamath River at Miller Island (model segment 38), Oregon,
2007. Scenario descriptions are shown in table 2.



Comparison to pH Criteria

The pH in the Link-Keno reach was greater than the
9.0 maximum criterion during some periods in summer under
base case conditions when algal blooms occurred (figs. 6A,
6B). The minimum pH criterion of 6.5 was attained in all
model runs for scenarios 1 to 3. Unlike dissolved oxygen,
where digressions from the criteria were more common in
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the mid and downstream reaches, pH 9.0 criteria exceedances
were most frequent in the upstream reaches (table 4). A
primary cause of elevated pH was related to algal blooms in
Upper Klamath Lake, which enter the upper Klamath River
through the Link River. Algal populations decreased from
upstream to downstream in the Link-Keno reach (Sullivan
and others 2008, 2009), so pH values also decreased in the
downstream direction.

Table 4. Number of days pH was simulated to be greater than the 9.0 criteria (and the average amount greater than the criteria) at
selected Oregon Department of Environmental Quality compliance locations for scenario 3 under the base case and Total Maximum

Daily Load scenarios, Klamath River, Oregon, for years 2006—09.

[2007 runs were bracketed by also using input total inorganic carbon calculated with pH during low-bloom conditions (leftmost values when a range is given)
for the Link River, Lost River Diversion Channel, and Klamath Straits Drain inputs. Abbreviations: TMDL, total maximum daily load; segment, model
segment; WWTP, wastewater treatment plant]

Days out of compliance with pH criteria (and average amount greater than the criteria)

Klamath River at

Klamath River at

Klamath River at

Klamath River at Klamath River

Scenario WWTP inflows Lest River Diversion . Klamath Straits
. Miller Island M at Keno
(segments 4, 8) Channel inflow Drain inflow
Segment 8 Segment 19 Segment 38 Segment 69 Segment 95
2006
3(1la) Base case (current conditions) 90 (0.30) 69 (0.21) 53 (0.19) 28 (0.13) 8 (0.10)
3(1b) Sources at TMDL allocations 90 (0.30) 74 (0.22) 55 (0.20) 29 (0.14) 14 (0.11)
3(2a) Link River at TMDL target 112 (0.51) 93 (0.40) 94 (0.37) 73 (0.28) 62 (0.23)
3(2b) Link River and sources at TMDL 112 (0.51) 101 (0.41) 104 (0.38) 86 (0.30) 79 (0.30)
2007
3(1la) Base case (current conditions) 52 (0.44) 32 (0.55) 24 (0.72) 21 (0.58) 24 (0.55)
3(1b) Sources at TMDL allocations 53 (0.43) 33 (0.55) 24 (0.72) 22-23 26-27
(0.58-0.57) (0.52-0.55)
3(2a) Link River at TMDL target 7-105 9-77 23-78 18-64 52-93
(0.08-0.46) (0.08-0.54) (0.15-0.51) (0.24-0.47) (0.23-0.50)
3(2b) Link River and sources at TMDL 6-106 8-78 23-79 19-71 78-102
(0.07-0.46) (0.06-0.54) (0.13-0.50) (0.22-0.46) (0.23-0.57)
2008
3(la) Base case (current conditions) 102 (0.44) 69 (0.39) 49 (0.36) 24 (0.18) 9(0.11)
3(1b) Sources at TMDL allocations 103 (0.44) 71 (0.39) 49 (0.36) 29 (0.18) 15 (0.12)
3(2a) Link River at TMDL target 142 (0.65) 127 (0.54) 110 (0.51) 73 (0.43) 61 (0.38)
3(2b) Link River and sources at TMDL 143 (0.65) 135 (0.53) 119 (0.51) 92 (0.38) 79 (0.39)
2009
3(1la) Base case (current conditions) 90 (0.45) 68 (0.35) 43 (0.27) 13 (0.27) 13 (0.23)
3(1b) Sources at TMDL allocations 91 (0.44) 70 (0.35) 45 (0.27) 15 (0.31) 15 (0.29)
3(2a) Link River at TMDL target 106 (0.74) 101 (0.69) 98 (0.63) 83 (0.45) 82 (0.40)
3(2b) Link River and sources at TMDL 106 (0.74) 101 (0.70) 99 (0.64) 88 (0.48) 90 (0.48)




16

Ammonia, in milligrams per liter as N

Ammonia, in milligrams per liter as N

1.0 T T T T T T T T T T T

20.0

Modeling the Water-Quality Effects of Changes to the Klamath River Upstream of Keno Dam, Oregon

pH

EXPLANATION

—— Minimum criteria
10.0 — Maximum criteria
— Hourly (scenario)

Ammonia (Acute)
T T

I
EXPLANATION

Hourly acute criteria
—— Hourly (scenario)

Ammonia (Chronic)

25 | | | | | | | | | | |
EXPLANATION
| —— 4-day average chronic criteria
20 .
——— 4-day average (scenario)

15—

1.0

05

0
Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.
2007

Figure 6. pH and ammonia concentrations from scenario [3(2a)], and criteria for pH and acute and chronic ammonia toxicity
for the upper Klamath River at Miller Island (model segment 38), Oregon, 2007. For comparison, Link River total inorganic
carbon was calculated based on (A) current conditions pH and (B) estimated low-bhloom pH. Scenario descriptions are shown
intable 4.



Model Scenarios 17

B
pH
1o | | | | | | | | | | |
EXPLANATION
—— Minimum criteria
100 — Maximum criteria n

— Hourly (scenario)

Ammonia (Acute)

20 T T T T T T T T T T T
EXPLANATION

= Hourly acute criteria
@ ——— Hourly (scenario)
§ 15.0 —
5
o
w
g
5 100~ —
2
£
<
[ =
g 05+ _
£
<

P B s e | L ]

Ammonia (Chronic)
25 T T T T T T
EXPLANATION

—— 4-day average chronic criteria
20 .
——— 4-day average (scenario)

05—

Ammonia, in milligrams per liter as N

Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.
2007

Figure 6.—Continued



18 Modeling the Water-Quality Effects of Changes to the Klamath River Upstream of Keno Dam, Oregon

The pH effects associated with compliance of Upper
Klamath Lake/Link River and in-reach tributary sources
with TMDL targets and allocations were more difficult to
predict. The pH was not only related to in-reach reactions
that are capably modeled by the CE-QUAL-W2 model, but
also the TIC and alkalinity of the inflows, which likely would
change if the upstream watersheds were managed or altered
to meet upstream TMDL allocations. Thus, the effect on
TIC and alkalinity could be different depending on upstream
management actions. For year 2007, scenarios 3(1b), 3(2a),
and 3(2b) were run twice, first by assuming that inflow pH
and TIC would be unchanged after the Klamath River TMDL
allocations or Upper Klamath Lake target were met, and again
by estimating the pH and TIC conditions that might occur
in the presence of smaller algal blooms in those inflows.

The difference in model output was minor in 3(1b), but
significant in 3(2a) and 3(2b), the runs that simulated Link
River with Upper Klamath Lake at its TMDL target. As an
example, at Miller Island (segment 38) in 2007 for scenario
3(2a), the model predicted that the pH would exceed the
criteria for 78 days if inflow pH and TIC were unchanged

or above the criteria for only 23 days if inflow pH and TIC
were estimated to account for smaller algal blooms upstream
(table 4, figs. 6A, 6B).

With the model predicting elevated pH conditions
to occur when TMDLs were met, such as in scenario
3(2b) compared to the base case, the cause of the elevated
conditions provides a good illustration of the difficulties in
accurately predicting a future pH condition. Under base-case
conditions, pH tends to increase or decrease largely depending
on the levels of photosynthesis and respiration that occur.
Photosynthesis removes dissolved carbon dioxide (essentially
carbonic acid) from the water, and respiration processes
release carbon dioxide (carbonic acid) back into the water.
Removing acid increases the pH, and adding acid decreases
the pH. During a bloom, the pH tends to be high because
of the removal of carbon dioxide for the production of
biomass, whereas after a bloom declines, the pH decreases to
a level that tends to be less than the maximum pH criterion.
During a large algal bloom in Upper Klamath Lake, the pH
is high and TIC concentration is low in Link River. In the
Link-Keno reach, substantial amounts of TIC are released
from decomposing algae and organic material, allowing the
pH to decrease downstream. If a model scenario removed
large populations of algae from the Link River inflow but
did not adjust the pH or TIC, then the pH in the Link-Keno
reach tended to stay elevated because the amount of carbon
entering the reach was too small to replenish the TIC through
subsequent decomposition and respiration processes. In

estimating the effects of management activities that might
decrease upstream inputs of algal populations, downstream pH
conditions depend greatly on the pH and TIC of the inflows,
which is the reason the analysis in this report bracketed a
range of potential conditions for one of the modeled years.

A natural conditions analysis was not undertaken for
the pH criteria in this study. If natural conditions were taken
into account, for some periods when the pH was simulated to
exceed the pH 9.0 criterion, natural conditions pH also may
also have been elevated, causing the relevant pH criteria to be
greater than 9.0. Therefore, the number of days the criterion
was exceeded may be overstated in this analysis; however, this
was considered a conservative assumption.

Comparison to Ammonia Toxicity Criteria

Numeric ammonia toxicity criteria vary in space and
time because the criteria are based on pH and temperature. In
winter when pH values were near-neutral and temperatures
were low, the criteria were relatively high. Although ammonia
concentrations were elevated during winter, the acute and
chronic ammonia toxicity criteria were even greater at that
time of year (figs. 6A, 6B). During summer, however, when
pH was elevated and temperatures were warm, the calculated
ammonia toxicity criteria decreased, so it was more likely that
the ammonia criteria would be exceeded.

Upper Klamath River waters were simulated to exceed
the acute ammonia toxicity criteria between 0 and 27 days for
the base case conditions for the years and selected locations
shown in table 5. Exceedances of the chronic ammonia
toxicity criteria were simulated to be more frequent, between
27 and 118 days for the base case (table 6), and most common
in the upstream part of the reach nearer Link River. Similar
to the pH criteria analysis, the simulation of exceedances of
the chronic ammonia toxicity criteria was sensitive to inflow
TIC values. For example, at Miller Island (segment 38) for
scenario 3(2a) in 2007, the number of days exceeding the
criteria varied from 83 to 29 depending on whether the TIC
was calculated from base case pH conditions or a potentially
lower pH under conditions with less algae (table 6, fig. 6A,
6B). The simulated range of exceedance days, however,
illustrates the importance of determining the effect of
upstream management activities on pH conditions; for these
simulations, insufficient information was available for these
scenarios to provide estimates that are more certain.

A natural conditions analysis was not undertaken in this
study to assess the potential ammonia toxicity conditions in
that reference condition.
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Table 5. Number of days acute ammonia toxicity was greater than the criteria (and average amount greater than the criteria) at
selected Oregon Department of Environmental Quality compliance locations for scenario 3 under the base case and Total Maximum
Daily Load scenarios, Klamath River, Oregon, for years 2006—09.

[2007 runs were bracketed by also using total inorganic carbon calculated with pH during low-bloom conditions (leftmost values when a range is given) for the
Link River, Lost River Diversion Channel, and Klamath Straits Drain inputs. Abbreviations: TMDL, total maximum daily load; segment, model segment; N,
nitrogen; WWTP, wastewater treatment plant; mg/L, milligram per liter]

Days greater than acute ammonia toxicity criteria
(and average greater than the criteria, as ammonia, in mg/L N)

. Klamath River at Klamath River at . Klamath River at .
Scenario . . . . Klamath River at . Klamath River
WWTP inflows  Lost River Diversion . Klamath Straits
. Miller Island . at Keno
(segments 4, 8) Channel inflow Drain inflow
Segment 8 Segment 19 Segment 38 Segment 69 Segment 95
2006
3(1la) Base case (current conditions) 0 2 (0.03) 14 (0.06) 8 (0.08) 1(0.05)
3(1b) Sources at TMDL allocations 1(0.01) 2(0.03) 14 (0.06) 8 (0.07) 2 (0.04)
3(2a) Link River at TMDL target 1(0.01) 0 0 0 0
3(2b) Link River and sources at TMDL 0 0 0 0 0
2007
3(1la) Base case (current conditions) 6 (0.04) 13 (0.13) 18 (0.24) 18 (0.31) 19 (0.32)
3(1b) Sources at TMDL allocations 6 (0.04) 13 (0.13) 18 (0.24) 18 (0.31) 19 (0.32)
3(2a) Link River at TMDL target 0 0 0-7 0-11 0-5
(0.00-0.02) (0.00-0.08) (0.00-0.03)
3(2b) Link River and sources at TMDL 0 0 0-7 0-10 0-2
(0.00-0.02) (0.00-0.08) (0.00-0.03)
2008
3(1la) Base case (current conditions) 4(0.02) 20 (0.07) 27 (0.14) 16 (0.13) 1(0.08)
3(1b) Sources at TMDL allocations 4(0.02) 20 (0.07) 26 (0.14) 16 (0.13) 1(0.08)
3(2a) Link River at TMDL target 0 0 5(0.01) 17 (0.04) 4(0.01)
3(2b) Link River and sources at TMDL 0 0 4(0.01) 12 (0.03) 0
2009
3(1a) Base case (current conditions) 6 (0.01) 4(0.02) 1(0.02)
3(1b) Sources at TMDL allocations 6 (0.01) 4(0.02) 1(0.02)

0 0 8 (0.01)
0 0 6 (0.01)

3(2a) Link River at TMDL target
3(2b) Link River and sources at TMDL

o O O o
o O O o
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Table 6. Number of days chronic ammonia toxicity was greater than criteria (and average amount greater than the criteria) at selected
Oregon Department of Environmental Quality compliance locations for scenario 3 under the base case and Total Maximum Daily Load
scenarios, Klamath River, Oregon, for years 2006-09.

[2007 runs were bracketed by also using TIC calculated with pH during low-bloom conditions (leftmost values when a range is given) for the Link River, Lost
River Diversion Channel, and Klamath Straits Drain inputs. Abbreviations: TMDL, total maximum daily load; segment, model segment; N, nitrogen; WWTP,
wastewater treatment plant; mg/L, milligram per liter]

Days greater than chronic ammonia toxicity criteria
(and average greater than the criteria, as ammonia, in mg/L N)

Klamath River at Klamath River at Klamath River at

Scenario WWTP inflows Lost River Diversion Klaqlath River at Klamath Straits Klamath River
. Miller Island . at Keno
(segments 4, 8) Channel inflow Drain inflow
Segment 8 Segment 19 Segment 38 Segment 69 Segment 95
2006
3(1a) Base case (current conditions) 111 (0.19) 101 (0.21) 98 (0.29) 79 (0.29) 68 (0.28)
3(1b) Sources at TMDL allocations 111 (0.19) 102 (0.20) 97 (0.28) 78 (0.28) 70 (0.27)
3(2a) Link River at TMDL target 122 (0.12) 117 (0.10) 119 (0.14) 109 (0.16) 101 (0.15)
3(2b) Link River and sources at TMDL 123 (0.12) 119 (0.10) 118 (0.13) 110 (0.14) 114 (0.11)
2007
3(1a) Base case (current conditions) 84 (0.21) 74 (0.32) 69 (0.35) 54 (0.33) 60 (0.34)
3(1b) Sources at TMDL allocations 85 (0.21) 74 (0.32) 70 (0.35) 50-53 62-62
(0.33-0.32) (0.33-0.32)
3(2a) Link River at TMDL target 11-110 20-76 29-83 33-86 83-91
(0.02-0.07) (0.05-0.12) (0.09-0.16) (0.08-0.20) (0.09-0.12)
3(2b) Link River and sources at TMDL 12-111 19-81 38-85 28-87 65-86
(0.02-0.07) (0.05-0.12) (0.08-0.16) (0.08-0.18) (0.07-0.08)
2008
3(1a) Base case (current conditions) 118 (0.16) 82 (0.23) 71 (0.35) 49 (0.37) 47 (0.34)
3(1b) Sources at TMDL allocations 118 (0.16) 87 (0.23) 73 (0.34) 49 (0.35) 46 (0.34)
3(2a) Link River at TMDL target 137 (0.08) 134 (0.09) 149 (0.12) 134 (0.15) 109 (0.17)
3(2b) Link River and sources at TMDL 136 (0.08) 144 (0.09) 158 (0.12) 151 (0.13) 133(0.12)
2009
3(1a) Base case (current conditions) 118 (0.19) 110 (0.22) 94 (0.26) 43 (0.21) 27 (0.20)
3(1b) Sources at TMDL allocations 119 (0.19) 112 (0.22) 95 (0.26) 44 (0.20) 28 (0.18)
3(2a) Link River at TMDL target 129 (0.13) 124 (0.14) 119 (0.16) 98 (0.20) 95 (0.18)

3(2b) Link River and sources at TMDL 129 (0.13) 125 (0.15) 121 (0.16) 98 (0.18) 96 (0.15)




Scenario 4. Compare USGS Model and TMDL
Model Results

As part of the TMDL process, ODEQ and Tetra Tech,
Inc. developed a water-quality model for almost the entire
Klamath River, including the Link-Keno reach, based
on a CE-QUAL-W?2 model previously developed for a
dam-relicensing process by Watercourse (Watercourse
Engineering, Inc., 2004). That model from Watercourse was
used to construct a modified model for the Link-Keno reach
for the years 2000 and 2002 (Tetra Tech, Inc., 2009). The
data used to drive the model, however, did not include direct
measurements of organic matter concentrations, organic
matter partitioning, or algae species. The technical basis of
the TMDL model for the Link-Keno reach was reviewed and
evaluated previously by the USGS (Rounds and Sullivan,
2009 and 2013).

Methods

The TMDL model and the more recent USGS model
were developed for different years, so their specific predictions
cannot be compared directly. A qualitative comparison was
made by Sullivan and others (2012) with the 2006-09 USGS
input files applied to the TMDL model. That comparison
provided a qualitative way to examine the effect of differences
between the models in organic matter partitioning, algae
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algorithms, parameter values, bathymetry, and the nature

of the sediment oxygen demand formulation. In the current
analysis, the comparison was rerun using the updated USGS
model that includes macrophytes and enhanced pH buffering
(Sullivan and others, 2013).

Results

Comparisons of model results for most constituents were
similar to those documented by Sullivan and others (2012);
therefore, only pH, the newest calibrated constituent of the
USGS maodel, is discussed here. Use of the updated USGS
model with enhanced pH buffering produced results that more
closely compare to the measured pH (fig. 7). Most versions
of CE-QUAL-W?2, including that used for the TMDL model,
only consider carbonate alkalinity in the calculation of pH, and
do not consider buffering by organic matter, orthophosphorus,
or ammonia. Buffering by organic matter was demonstrated
to be important in the upper Klamath River ecosystem by
Sullivan and others (2013). The addition of macrophytes to
the USGS model also helped to improve the simulation of pH
in the Link-Keno reach, because photosynthetic activity tends
to increase the pH of the river. The influence of macrophytes
on pH was especially important in the downstream part
of the model domain near Keno, where macrophytes were
most populous.

Keno KRS12a Miller Island Railroad Bridge
105T7op
T 82 : : : : : : : : : : : :
105} Bottom
Jan. Apr. July Oct. Jan. Apr. July Oct. Jan. Apr. July Oct. Jan. Apr. July Oct.
2007
EXPLANATION
—— Measured
—— USGS model
TMDL model, scenario 4
Figure 7. Comparison of measured daily average pH with daily average model results from the calibrated USGS model and

scenario 4 TMDL model (2007 inputs applied to TMDL model setup) for sites in the Link-Keno reach of the Klamath River,

Oregon, 2007.
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Scenario 5. Particulate Matter Shunting

For scenario 5, the effect of shunting or diverting
particulate material away from withdrawal canals was
examined; particulate material suspended in the water column
remained in the Klamath River when water was withdrawn
through canals to the Lost River basin. Although the work
presented here primarily focuses on the effects in the Klamath
River between Link River and Keno Dam, a potential future
extension of this scenario could examine how this decrease
in particulate material into the Lost River might affect water
quality in that basin.

Methods

In the current study, the scenario 5 setup was unchanged
from Sullivan and others (2012), except that this scenario was
run with the updated model that includes macrophytes and
enhanced pH buffering (Sullivan and others, 2013).

In brief, although water withdrawals from the Klamath
River continued for all or part of each year to the A Canal,
Lost River Diversion Channel, North Canal, and Ady Canal,
particulate material was assumed “filtered” so that it stayed in
the Klamath River instead of leaving the river through these
canals. The shunted particulate matter included inorganic
suspended sediment, labile particulate organic matter,
refractory particulate organic matter, and all algae types
(blue-green algae, diatoms, and other algae). The A Canal
is outside the Link-Keno model boundary, so the effect of
shunting particulate matter was calculated and then that load
was added to the Link River inflow. Shunting for the other
canals was accomplished within the model by alterations to
the CE-QUAL-W2 source code (Sullivan and others, 2012),
wherein particulate matter simply remained in the river and
was not withdrawn.

If less particulate matter were exported into the Lost
River basin, it is possible that decreased loads of certain
materials would return to the Klamath River through canals,
which bring water from the Lost River basin to the Klamath
River. Because the Lost River basin was outside the model
boundary, potential variations in return flow water quality for
the Lost River Diversion Channel and Klamath Straits Drain
returns was examined with a bracketing approach. Scenario 5a
represented an end member that assumed base case return
flow concentrations. Scenario 5c represented an end member
that assumed dissolved-oxygen concentrations were at
saturation and that concentrations of particulate and dissolved
nutrients, algae, and organic matter were zero for the Lost
River Diversion Channel and Klamath Straits Drain returns.
Clearly, zero concentrations of those constituents is unlikely
in any future condition, but scenario 5¢ serves to examine
the potential effect of large changes in the characteristics of
the return flows. Scenario 5b instituted intermediate changes
to return flow concentrations in the Lost River Diversion
Channel and Klamath Straits Drain.

Results

In general, scenario 5 results using the updated model
indicated that shunting would degrade water quality in the
Link-Keno reach compared to the base case. For instance, the
model predicted a June—October decrease in Link-Keno reach
volume-average dissolved-oxygen concentration of between
1.3 and 2.3 mg/L, compared to the base case (1a), depending
on year and scenario (table A4, fig. 8), and June—October
reach-averaged concentrations of dissolved oxygen in the
base case (1a) were already low (2.85-4.60 mg/L) (table A4).
Ammonia, chlorophyll a, particulate organic carbon, total
nitrogen, and accumulated sediment concentrations all
increased in these shunting scenarios, consistent with the
increased input loads of particulate material. The simulations
predicted that nitrate concentrations would decrease, primarily
because of lower dissolved-oxygen concentrations to support
ammonia nitrification. Orthophosphorus, total phosphorus, and
dissolved organic carbon concentrations either increased or
decreased depending on the scenario (tables A3 and A4).

Variability in the characteristics of the return flow
water in Lost River Diversion Channel and Klamath Straits
Drain, as expressed in the differences in simulation results
from scenarios 5a, 5b, and 5c¢, had only a minor effect on
Link-Keno water quality (tables A3 and A4). As discussed in
Sullivan and others (2012), several factors contributed to this
result, including the fact that point and nonpoint sources had
relatively small effects on upper Klamath River dissolved-
oxygen concentrations when Link River particulate loads
were high.
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Figure 8. Simulated dissolved-oxygen
concentration under the base case and for
scenario 5 in the Link-Keno reach of the Klamath
River, Oregon, August 1, 2007. Scenario 5 simulated
the effect of filtering canal withdrawals from the
Klamath River, such that particulate matter was
kept in the Klamath River. Values are daily average,
segment volume-average concentrations.



Scenario 6. Decrease Particulate Organic
Matter and Blue-Green Algae in Link River

The objective of scenario 6 was to decrease the amount
of particulate organic material and algae in Link River and

assess downstream spatial and temporal water quality impacts.

Removal of algae and particulate material has been postulated
as a potential management alternative for improving the water
quality in the upper Klamath River (for example, Stillwater
Sciences and others, 2012). Load decreases of 25, 50, and

90 percent were simulated for 2006—-09 assuming that load
decreases applied for the entire calendar year, as well as for
the June 15-October 31 time period (tables 7, 8).

Methods

The decrease in particulate organic matter and algae
loads was envisioned as a treatment approach using physical
removal of larger-size particulate material, with active
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removal that could be turned on when needed. The removal
site was assumed to be located either at Link Dam or in Link
River, as long as the treatment resulted in a decrease of Link
River particulate matter and algae loads to the Klamath River.
In recent years, summer blue-green algae populations in Link
River have been dominated by the blue-green algae species
Aphanizomenon flos aquae, which forms large filaments

and flakes visible to the naked eye. The particulate organic
matter during the time of summer blue-green algal blooms
was assumed to be dead algae derived from the blooms. In
these model scenarios, Link River inflow blue-green algae

and particulate organic matter concentrations, both labile and
refractory, were decreased by identical percentages to preserve
the ratio between the algal standing crop and its contribution
to particulate organic matter. If a trophic shift or other change
resulted in a shift from the currently dominant Aphanizomenon
flos aquae to a species that was less prone to produce
particulate organic matter or perhaps more prone to produce
smaller particles of organic matter, then this assumption could
be revisited.

Table 7. Annual particulate organic material and algae load decreases for scenario 6, Link-Keno reach

of the Klamath River, Oregon, 2006-09.

[Annual load decreases are the sum(s) of the monthly averaged volume (Q x time) multiplied by the monthly averaged
concentration. Abbreviations: POM, particulate organic matter; ALG1, blue-green algae; C, carbon; N, nitrogen; P,

phosphorus]
25 percent load decrease (metric tons)
Year Associated nutrient decrease
POM ALG1 POM+ALG1
Organic C Organic N Organic P
2006 788 866 1,655 761 97.6 6.62
2007 679 833 1,512 695 89.2 6.05
2008 1,480 697 2,176 1,001 128 8.71
2009 1,808 470 2,278 1,048 134 9.11
50 percent load decrease (metric tons)
Year Associated nutrient decrease
POM ALG1 POM+ALG1
OrganicC  Organic N Organic P
2006 2,561 1,732 4,293 1,975 253 17.2
2007 1,651 1,665 3,317 1,526 196 13.3
2008 2,438 1,394 3,831 1,762 226 15.3
2009 3,478 940 4,418 2,032 261 17.7
90 percent load decrease (metric tons)
Year Associated nutrient decrease
POM ALG1 POM+ALG1
OrganicC  Organic N Organic P
2006 4,982 3,118 8,100 3,726 478 324
2007 3,184 2,998 6,182 2,844 365 24.7
2008 4,514 2,508 7,023 3,231 414 28.1
2009 6,479 1,693 8,171 3,759 482 32.7
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Table 8.

Particulate organic material and algae load decreases (June 15-0ctober 31) for scenario 6,
Link-Keno reach of the Klamath River, Oregon, 2006—09.

[Load decreases are the sum(s) of the monthly averaged volume (Q x time) multiplied by the monthly averaged concentration.
Abbreviations: POM, particulate organic matter; ALG1, blue-green algae; C, carbon; N, nitrogen; P, phosphorus]

25 percent load decrease (metric tons)

Year Associated nutrient decrease
POM ALG1 POM+ALG1
Organic C Organic N Organic P
2006 416 782 1,198 551 70.7 4.79
2007 353 827 1,179 542 69.6 4,72
2008 1,079 691 1,770 814 104 7.08
2009 1,454 427 1,880 865 111 7.52
50 percent load decrease (metric tons)
Year Associated nutrient decrease
POM ALG1 POM+ALG1
OrganicC  Organic N Organic P
2006 832 1,565 2,396 1,102 141 9.58
2007 705 1,653 2,359 1,085 139 9.43
2008 2,158 1,382 3,540 1,629 209 14.2
2009 2,907 853 3,760 1,730 222 15.0
90 percent load decrease (metric tons)
Year Associated nutrient decrease
POM ALG1 POM+ALG1
OrganicC  Organic N Organic P
2006 1,497 2,816 4,313 1,984 254 17.3
2007 1,269 2,976 4,245 1,953 250 17.0
2008 3,884 2,488 6,373 2,931 376 25.5
2009 5,233 1,536 6,768 3,113 399 27.1

Concentrations of smaller-sized particulate materials
remained unchanged in the model input files. For instance,
concentrations of other algae groups were not adjusted in this
scenario and concentrations of inorganic suspended sediment
also were assumed to be unchanged. For most of the year,
particularly during low flow periods, inorganic suspended
sediment would be made up of relatively small sized clay
particles, so approaches designed to catch larger algae and
particulate organic matter were assumed not to target this
material. Larger suspended inorganic particles from tributary
sources may be present in winter during storms, but such
conditions were usually of short duration.

For each year, concentrations of particulate organic
matter and blue-green algae were decreased by 25, 50, and
90 percent in the Link River model input file (tables 7, 8).

Removal was simulated to occur during two times of the year:

January 1 through December 31 (*“year-round”), and June 15
through October 31 (“seasonal”). The seasonal scenario was
intended to simulate removal only for the summer and early
autumn when loads of particulate organic matter and algae
were greatest (fig. 2).

The load decreases of particulate organic matter and algae
in this scenario also would result in decreases of their nutrient
components including carbon, nitrogen, and phosphorus
(tables 7, 8). The stoichiometry used to translate particulate
organic matter and algae decreases into nutrient decreases was
estimated based on the algal and organic matter stoichiometry
used in the calibrated USGS water-quality model. Some
seasonal variations in these ratios are likely, but currently the
model allows only one set of values for each compartment.

Concentrations of particulate matter and blue-green
algae in other inflows, such as the Klamath Straits Drain,
were unchanged. Water quality in the Klamath Straits Drain
could be affected by changes in Klamath River water quality,
because the Klamath Straits Drain is sourced in the Lost
River basin, and the Lost River basin and Klamath River are
connected by several canals. For this analysis, however, the
water quality of the Klamath Straits Drain was assumed to
be unchanged.



Results

The model predicted that reduced concentrations of
algae and particulate matter at Link River would decrease
algae, chlorophyll a, and particulate matter concentrations
in the Link-Keno reach (fig. 9; tables A5, A6), causing a
concomitant decrease in the accumulation of organic matter in
the sediments in summer. The model also predicted decreased
concentrations of most dissolved nutrients, including
orthophosphorus and ammonia, which are released from the
decay of algae and particulate organic matter. One dissolved
nutrient, nitrate, was predicted to increase its concentration in
summer, due to more prevalent oxic conditions. Depending
on year and modeled treatment, annual average total nitrogen
and total phosphorus decreased by as much as 19 percent and
as much as 16 percent, respectively. Because total nitrogen
and total phosphorus did not decrease equally, the ratio of
total nitrogen to total phosphorus ratio in the Link-Keno reach
decreased with this treatment.

Because decomposing algae and particulate organic
matter in the water column and sediment exerted high oxygen
demands over short periods in this study reach (Sullivan and
others, 2010), a decrease in the amount of this material led
to overall greater dissolved-oxygen concentrations (figs. 9,
10; tables A5, A6). Depending on the treatment level, model
location, and time of year, the effect on dissolved-oxygen
concentrations could be large, increasing concentrations by as
much as 4.4 mg/L (153 percent increase) as a June—October
reach average. There was a short period in late June and
early July at certain locations where dissolved-oxygen levels
in near-surface waters were lower with treatment, because
the algal treatment removed algal oxygen production by
photosynthesis. However, the overall result of treatment was
to increase dissolved-oxygen concentrations in the reach.
Improvement in dissolved oxygen was predicted to occur
throughout the reach, from the Link River inflow to Keno
Dam (fig. 10), with notable improvements mid-reach, which
under base case conditions typically has especially low
concentration of dissolved oxygen. The effect on dissolved
oxygen was similar in all 4 years modeled, with a relatively
linear relation between the load decrease at Link River and the
increase in dissolved oxygen through the reach (fig. 11).

The pH in the Link-Keno reach was predicted to increase
after treatment (fig. 9 and tables A5, A6). Total inorganic
carbon concentrations in the Link-Keno reach decreased due
to the treatment (fig. 9) because in the CE-QUAL-W2 model
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total inorganic carbon is produced by the decay of particulate
matter and algae (Cole and Wells, 2008). During periods of
large algal blooms in Upper Klamath Lake, the Link River
inflows to the Klamath River have high pH and relatively low
TIC concentrations because algal photosynthesis consumed
TIC to create algal biomass. With decreased TIC inputs from
upstream, and decreased releases of TIC from a smaller load
of decomposing particulate organic matter in the Link-Keno
reach, the high pH of the incoming water tended to remain
high. The release of TIC from decomposition and respiration
processes was insufficient in these scenarios to replace

the carbon removed from the inflows; less carbon dioxide
released means less carbonic acid produced and a greater pH.
Although most of the treatment effects could be considered
to be positive, an increase in summer pH could be considered
a negative effect, because pH levels greater than the Oregon
maximum pH criterion of 9.0 are undesirable. Because
ammonia toxicity criteria are pH-dependent in Oregon, the
criteria would decrease during periods of high pH, although
the simulated decrease in ammonia concentrations made these
criteria less likely to be exceeded.

Removing particulate organic matter and blue-green
algae at Link River for the entire year provided only a small
improvement over the seasonal treatment from mid-June
through October (fig. 9, tables A5, A6). For instance, the
seasonal 90 percent treatment was predicted to increase
annual volume-average Link-Keno reach dissolved-oxygen
concentrations by 1.2-1.7 mg/L depending on the year. The
year-round treatment was predicted to add only an additional
0.1-0.3 mg/L to the level of improvement (table A5). Most
Aphanizomenon flos-aquae algae and associated particulate
organic matter entered the reach in summer and early fall
(fig. 2) during the period when the seasonal treatment was
active. The largest benefit occurred for the 90 percent removal
treatment, compared to 25 or 50 percent removal levels.

Model results also suggest that if Link River particulate
removal was the selected treatment option, removal of close
to 90 percent of material, depending on year, may be required
to bring Link-Keno reach dissolved-oxygen concentrations
to meet the dissolved-oxygen criteria. For example, in year
2008, the simulations of June to October 50 percent decrease
at Link River, still resulted in 30-110 days in which the
dissolved-oxygen criteria were not attained, depending on
location. The 90 percent decrease at Link River, however,
led to dissolved-oxygen criteria being met at all compliance
locations in that year, except for 6 days at Keno (segment 95).
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Figure 9. Simulated water-quality conditions at 1 meter depth at Keno (model segment 95) for the base
case and for scenario 6 model simulations of 90 percent decrease of particulate organic matter (POM) and
blue-green algae at Link River, Oregon. Decreases were simulated for the entire calendar year 2009 and

for June 15-0ctober 31.
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concentration in the Link-Keno reach, Klamath
River, Oregon on August 1, 2007 under the base
case and for scenario 6 decreases in Link River
algae and particulate organic matter. Values
are daily average, segment volume-average
concentrations.
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Oregon, for each of the years modeled, 2006-09.

Dissolved oxygen increase is a reach average
for June to October each year.
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Scenario 7. Route Klamath River Water Through
Treatment Wetlands

The possible water-quality effects of routing the upper
Klamath River streamflow through adjacent wetlands and
then returning the flow back into the river were investigated in
scenario 7. Wetlands have been hypothesized as a potentially
effective means of decreasing loads of suspended particulate
material and nutrients, which could lead to beneficial
water-quality improvements in the river. In these scenarios,
only one treatment wetland location was used at a time; in
the future, simulations of simultaneous operation of multiple
wetland locations along the river could be considered.

Methods

Wetland Locations

Possible areas for wetland development or restoration
along the Link-Keno reach were identified by Mahugh and
others (2008). A subset of the wetlands identified in that report
were used for the simulations in this report (fig. 12), with the
simulation of two locations for water withdrawal from the
Klamath River. The first withdrawal location, for wetland A,
was at model segment 28 (fig. 12; scenarios 7a-7c). This
1,400 acre wetland would be located in the Klamath Wildlife
Area at Miller Island (site 8 in Mahugh and others, 2008).
The second treatment diversions, for wetlands B, were located
at model segment 54 upstream of the Klamath Straits Drain
inflow to the Klamath River (fig. 12; scenarios 7d-7f), and
incorporated 2,950 acres of possible wetland sites identified
by Mahugh and others (2008). For all simulations, water was
assumed to return to the river segment downstream of the
withdrawal intake location to avoid significant depletion of
streamflow in the river (table 9). Steady state conditions were
assumed, with inflows and outflows considered to be equal.

Table 9. Wetland representations for scenario 7 simulations,
Klamath River, Oregon.

[Wetland locations are shown in figure 12]

Approximate Diversion Return
Wetland Scenario area model model
(acres) segment segment
A 7a,7b,7¢c 1,400 28 29
B 7d,7e,7f 2,950 54 55
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Figure 12. CE-QUAL-W2 model grid, location of wetland A and B areas, and approximate diversion and
return flow points (marked with arrows) for scenario 7 simulations, Klamath River, Oregon.



Wetland Effects on Water Quality

The water quality of the return flow reflected projected
changes in water quality after passing through the wetland.
Removal fractions for total suspended solids (TSS) and BOD
are typically 60-80 percent for BOD and 50-90 percent for
TSS depending on the nature and concentration of the influent
and the flow rate (Crites and Tchobanoglous, 1998). The TSS
and BOD decreases then were used to modify the relevant
components of the model input files.

For this analysis, volumetric averages of water
temperature, BOD, and TSS in the diverted water from
segments 28 or 54 were calculated from base-case model
results (scenario 1a) for May 1 through October 31. Three
different treatment wetland calculator results (Mahugh
and others, 2008) were used to estimate BOD and TSS
removal rates, as well as the required wetland area for a
target BOD removal rate of 50 percent. Other analysis
assumptions included

» Wetland diversion flow rate of 100 ft3/s,
» Wetland depth of 2 ft, and
¢ Influent water temperature, BOD, and TSS based on

simulated instream values for segments 28 and 54.

Influent concentrations and wetland calculator results
are shown in table 10. This analysis assumes that wetland
diversion flow rates and wetland areas can be increased in
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direct proportion, such that a 400 ft3/s wetland diversion flow
rate would correspond to a wetland that is four times the area
listed in table 10.

The treatment wetland tool predicted increases in
BOD and TSS levels when inflow concentrations were
low (for example, minimum ranges in table 10). In such
circumstances, wetland plants and processes can potentially
produce BOD and TSS levels that are greater than the lowest
influent concentrations hypothesized from the Klamath
River. The use of treatment wetlands when river conditions
are near this lower bound may not be advisable due to low
removal efficiency.

For these simulations, two sets of model runs were
completed for two removal rates of BOD and TSS: 50 percent
(scenarios 7a, 7b, 7d, 7e) and 90 percent (scenarios 7c, 7f).
BOD and TSS representations in model input were assumed
to be composed of inorganic suspended sediment (ISS), labile
particulate organic matter (LPOM), refractory particulate
organic matter (RPOM), labile dissolved organic matter
(LDOM), and the three algae types (table 11). Decreases
in total nitrogen (TN) and total phosphorus (TP) in these
scenarios would be somewhat less than the specified 50 and
90 percent decrease rates in actual field conditions because,
in addition to POM, LDOM, and algae, TN and TP included
refractory dissolved organic matter (RDOM), ammonia
(NH,), orthophosphorus (PO,), and nitrate (NO,), which were
assumed to be unchanged through the wetland.

Table 10. Wetland calculator results (required wetland area and removal rates) for model segments 28 and 54 of the
Link-Keno reach for influent maximum, average, and minimum biochemical oxygen demand and total suspended solids per
100 cubic feet per second of flow diverted to a wetland in the Link-Keno reach of the Klamath River, Oregon.

[Model segments are shown in figure 12. Calculated maximum, average, and minimum values include the 4 years (2006—-09), where the
treatment period was for May 1-October 31 for each year. Range of required area: All removal rates listed are the average of the results of three
models: (1) RCM model; (2) Declining k model (Crites and Tchobanoglous, 1998), (3) Water budget model (Tchobanoglous and others, 2000).
Abbreviations: BOD, biochemical oxygen demand; TSS, total suspended solids; na, not applicable; mg/L, milligram per liter; —, no removal]

Calculated input

Wetland tool results

Model Influent Influent Range of required TSS_ rem_oyal Ave_rage TSS rel_noval
segment BOD ISS area for 50 percent  for identified (maximum)  at maximum
(ma/L) (mg/L) BOD removal wetland area BOD removal BOD removal
9 g (acres) (percent) (percent) (percent)
28 Maximum 20.38 45.46 128-160 77-80 75 (70-79) 83-85
54 15.96 34.45 135-166 75-78 71 (67-75) 80-82
28 Average 7.88 13.41 1193-208 56-59 51 (47-55) 56-59
54 6.47 10.90 na? na? 44 (40-47) 48-51
28 Minimum 51.36 45.93 - - - -
54 31.28 44.55 - - - -

LAt minimum water temperature, the maximum BOD removal efficiency was 47 percent.

°No value is indicated because maximum BOD removal rates are less than 50 percent.

3At low BOD concentrations, BOD was not removed from the water. BOD increased.

4At low TSS concentrations, TSS was not removed from the water. TSS increased.
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Table 11. Specified decreases in modeled return flow due

to removals of biochemical oxygen demand, total suspended
sediment, total nitrogen, and total phosphorus through treatment
wetlands for scenario 7 in the Link-Keno reach of the Klamath
River, Oregon.

[-, no change]

Removal rate

CE-QUAL-W2 modeled constituent (percent)

50 90
ISS Inorganic suspended sediment X X
LPOM Labile particulate organic matter X X
RPOM Refractory particulate organic matter X X
LDOM Labile dissolved organic matter X X
RDOM Refractory dissolved organic matter - -
ALG1 Algae group 1 (blue-greens) X X
ALG2  Algae group 2 (diatoms) X X
ALG3  Algae group 3 (other algae) X X

NH, Ammonia
PO, Orthophosphorus
NO, Nitrate -

RDOM concentrations in the inflow and return flow
from the treatment wetlands were set to be identical because
interactions with the wetland soils, macrophyte excretion,
and various decay processes could add RDOM in the
wetland and counter any removal process for this constituent.
Because no data were available regarding nutrient cycling
in wetlands in the project area, the uptake and production
of inorganic dissolved nutrients through the treatment
wetlands were assumed to be approximately equal for these
initial simulations, so no decrease was applied for dissolved
inorganic nutrients. The actual concentration of dissolved
inorganic nutrients in wetlands could change, though
removal and retention behavior varies among different types
of wetlands (Mymazal, 2007). Water temperature was not
changed in these simulations.

Although most of the modeled constituents were
inter-related through the various removal processes (for
example, assumed BOD, TSS, TN, and TP decreases of 50
or 90 percent), BOD was assumed to be the highest priority
parameter in this analysis, because of the direct effect on
dissolved oxygen. Thus, specifying BOD decreases tended
to meet the required decreases in TSS, with the exception of
ISS, and TN and TP where inorganic forms were assumed to
remain unchanged.

Flow

For each wetland for scenario 7, withdrawals and
tributaries for the entrance and the exit points, respectively,
were added to the model. Wetlands were used for the period

between May 1 and October 31. Performance of treatment
wetlands depends directly on the life cycle and density of
vegetation cover, which affects the hydrodynamic and water-
quality conditions, and would not be uniform during May 1
through October 31. For this scenario as a first-cut estimate,
however, removal rates were assumed to be fixed through the
treatment period.

Another assumption involved the lateral averaging of
the CE-QUAL-W2 model. Diversion and return flows for
the treatment wetlands occur at the channel margins, and
the conditions at the margins may differ from conditions
mid-river. As a result, local water-quality conditions in
the river could be different than that simulated in the
CE-QUAL-W2 model.

One constraint on the use of treatment wetlands is the
available water in the Klamath River. Because the Link-Keno
reach is both a diversion source and return flow destination,
the flow rate varies at different locations. For instance,
waters can be diverted from the Klamath River at Lost
River Diversion Channel (segment 19) and returned through
Klamath Straits Drain (segment 69) about 9.3 mi downstream.
Therefore, the flow rate between the point of diversion and the
location of return flow can be notably decreased, with flow
rates less than 300 ft3/s at times. Thus, a simple assumption
of, for example, a 400 ft3/s delivery rate for a treatment
wetland may not be feasible in summer in the reach between
the Lost River Diversion Channel and the Klamath Straits
Drain. To accommodate the flow variability and occasional
low flow conditions, and representing an upper bound to
potential treatment wetland prescription (that is, water quality
improvement), the entire volume of the river was diverted
from and returned to the subsequent downstream segment
in these initial scenario runs. An additional withdrawal for
the entrance and an additional tributary for the exit were
introduced to the model. Although there would be considerable
biological issues and facilities costs to treat the entire river
(for example, fish screens or intake structures) considering
the high range of flow in the main stem, this approach was
deemed acceptable for the purposes of assessing the range of
potential wetland treatment options. As was the practice for
previous model scenarios, an end-member approach is helpful
in determining a potential range of outcomes, and adjustments
based on other factors (including engineering and legal issues)
can be made with refined model runs in the future.

In addition to treating the entire river flow, a second,
more representative case was simulated with the diversion
flow at a 250 ft3/s fixed flow rate for a fixed wetland area
(scenarios 7b, 7¢). A range of flows, rather than a fixed
flow rate through the season, could have been used in this
scenario; however, a fixed flow rate of 250 ft3/s was used after
considering the available streamflow in the Link-Keno reach
in 2006—09 and the need to minimize changes in the water-
surface level of the river.



Results

Routing water through wetlands and back into the
Klamath River in these scenarios produced elevated dissolved-
oxygen concentrations and lower chlorophyll a, particulate
organic carbon, total phosphorus, total nitrogen, ammonia, and
orthophosphorus concentrations downstream of the wetlands
(tables A7, A8) compared to the base case. Concentrations of
nitrate were predicted to increase slightly due to the greater
levels of dissolved oxygen.

The effect of the wetland occurred only downstream of
the location where wetland return flows reentered the reach.
Thus, return flows from wetland A at segment 29 (fig. 12)
would not affect water quality in upstream segments 2 through
28. Likewise, return flows from wetland B at segment 55
would not affect water quality in segments 2 through 54.
Because the highest concentrations of organic matter and algae
typically were in the upstream end of the Link-Keno reach,
there would be lower removal efficiencies in wetlands farther
downstream in the reach because there would be less material
to remove. Model results also indicated that the greatest
dissolved oxygen improvement was not immediately at the
wetland flow return point, but farther downstream in the Link-
Keno reach (fig. 13), mostly because the improvements in
dissolved oxygen were a result of decreased oxygen demands
(BOD and sediment oxygen demand), which take time and
downstream distance to be expressed.

Simulation of 90 percent BOD and TSS removal
in the wetlands led to more improvements in Klamath
River water quality compared to simulation of 50 percent
removal. Changes in water quality with a fixed 250 ft%/s flow
rate through the wetlands always were less than changes
achieved by treating the entire flow of the river for the same
50 percent decrease rate (fig. 13; tables A7, A8). Significant
improvements in water quality could be made through the
use of treatment wetlands, but large fractions of the river flow
would need to be treated to provide the improvements that
might be needed to meet water-quality criteria. If located in an
advantageous location in the upstream part of the Link-Keno
reach, treatment wetlands at some scale may be a useful part
of a larger program of water-quality improvement.
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12 T

—
o
[}

Model Scenarios

I I I
EXPLANATION
Scenario
Base case (2007)
7a, segment 28, 50 percent
7b, segment 28, 50 percent, 250 ft¥/s
7c, segment 28, 90 percent N

I I
EXPLANATION
Scenario
Base case (2007)

—— 7d, segment 54, 50 percent
7e, segment 54, 50 percent, 250 ft¥/s
——— T7f, segment 54, 90 percent B

| | | | | |
90 75 60 45 30 15
Model segment

<«——  Flow direction

Keno Dam
Link River @

Figure 13. Simulated dissolved-oxygen
concentration under the base case and for

wetland simulations in scenario 7 in the Link-Keno

reach of the Klamath River, Oregon, August 1,
2007. Wetlands were simulated at segments
28 (top graph) and 54 (bottom graph). Values
are daily average, segment volume-average
concentrations.
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Scenario 8. Altered Flow—Import/
Export to and from the Klamath Project

Table 12. Flow rates used in scenario 8, Klamath River, Oregon.

[Flow changes were implemented for the period June 15-October 15. Abbreviaton: ft%/s,

cubic foot per second]

The objective of model scenario 8 was to

investigate how different options for importing and . o Lost River Klamath Straits
(or) exporting water to and (or) from Reclamation’s Scenario Link River Diversion Channel Drain
Klamath Project through the A Canal, Lost River

. . . . Base case Base case Base case Base case
Diversion Channel, and_ (or) Klgr_nath .Stralts Drain 8a Base case — 200 ft3/s  Base case + 200 ft3/s Base case
could affec_t water-quality conditions in the upper 8b Base case — 200 ft3/s  Base case Base case + 200 ft®/s
Klamath River. 8c Base case — 200 ft3/s  Base case + 100 ft/s Base case + 100 ft%/s

Methods

Three model runs were tested to evaluate the effects of
diverting more water through the Klamath Project and Lost
River basin rather than down Link River, increasing return
flows through the Lost River Diversion Channel or Klamath
Straits Drain by the same amount. The return flows might have
less particulate material compared to water in Link River,
thus imparting a potential water-quality benefit to the river.
The three simulations all decreased Link River inflows by
200 ft3/s, with that flow diverted into the A Canal, which flows
into the Lost River basin. The A Canal and Lost River are
outside the model boundary, so the flow and biogeochemical
transformations in those reaches were not modeled directly.
The 200 ft3/s flows were returned to the Klamath River
through the Lost River Diversion Channel and (or) the
Klamath Straits Drain (table 12). Flows in these two canals
originate in the Lost River basin for all or part of the year and
were included as tributary nonpoint sources in the Link-Keno
model. The Lost River Diversion Channel operates either as a
tributary to or withdrawal from the Klamath River, depending
on time of year. If it was operating to withdraw Klamath River
water to the Lost River basin, those withdrawal flows were
decreased by 200 ft3/s, with the consideration that the diverted
A Canal flows could be used in the Lost River basin in place
of Lost River Diversion Channel withdrawals.

Flow changes were implemented for June 15 through
October 31 for each year modeled. Typical flows at Link River
for this period were 500-3,300 ft3/s in 2006-09, with elevated
flows in June and lower flows in September—October. Flows
at Keno Dam were the same in the base case and scenario
runs, because the flow decrease in Link River was balanced by
flow increases in Lost River Diversion Channel and Klamath
Straits Drain.

Routing more flow into the Lost River basin could affect
the quality of water returned through the return canals, but for
this initial simulation set, that water quality was assumed to be
unchanged. Travel time effects on the concentrations in Lost
River Diversion Channel and Klamath Straits Drain were not
considered in these initial runs, although travel time effects
in the Link-Keno reach as a result of decreased flow at Link
River was considered by the model.

Water returning to the Klamath River through the Lost
River Diversion Channel would follow a relatively short flow
path; water returning through Klamath Straits Drain would
follow a longer return path and be exposed to potentially
different soils and wetland environments. These differences
could be taken into account in a follow-up experimental and
modeling analysis in the future.

Results

Simulated changes in water quality through the Link-
Keno reach were dependent on the water quality in the three
main boundary inflows (Link River, Lost River Diversion
Channel, and Klamath Straits Drain) under consideration
in this scenario. For instance, Link River typically had
high concentrations of algae and particulate organic matter.
Decreased imported loads of these constituents through Link
River in these simulations resulted in lower concentrations of
chlorophyll a and particulate organic matter in the Link-Keno
reach. Concentrations of chlorophyll a and particulate organic
matter decreased by about 4-16 percent as a June—October
entire-reach average, depending on year and scenario.

Routing more return flow through the Klamath Straits
Drain (scenario 8b) did not reduce ammonia concentrations
(tables A9, A10); rather, ammonia concentrations tended to
increase. On the other hand, the models predicted a minor
decrease in ammonia concentrations when the return flow was
routed through the Lost River Diversion Channel (scenario
8a). Nitrate concentrations were similar through these
simulations, with slight increases in nitrate levels observed
through the reach for all simulations. Due to relatively high
orthophosphorus levels in the Klamath Straits Drain and Lost
River Diversion Channel, none of the options were effective
in reducing orthophosphorus concentrations. Compared to the
base case scenario, overall average dissolved-oxygen levels
did not change significantly through the reach for any of the
scenario 8 simulations (fig. 14). Most of the improvement in
dissolved-oxygen conditions occurred downstream of Miller
Island, probably as a result of decreased oxygen demands
directly related to decreased loads of particulate material
imported through Link River. This improvement, however,




came at the expense of degraded dissolved-oxygen conditions
in the more upstream part of the Link-Keno reach, which were
probably due in part to a longer travel time upstream of Lost River
Diversion Channel. Longer travel times allow oxygen demands
more time to be expressed.

Some water-quality changes were due to differences in
water quality in the various inflows, but some water-quality
changes were due to internal mixing and travel time effects. As
an example, at segment 8 in 2007, which is downstream of Link
River but upstream of Lost River Diversion Channel and Klamath
Straits Drain, there was an increase in total dissolved solids
(TDS) concentration (fig. 15), a constituent that is conservative
in CE-QUAL-W2, with concentrations altered only by
hydrodynamics or mixing, rather than biogeochemical processes.
One likely explanation is that with less Link River flow, the model
input distributed tributary, which has greater TDS, would make up
a larger part of the flow here. The distributed tributary is a model
input designed to close the water balance and is meant to represent
groundwater inputs and ungaged surface water inputs. Some
travel time effects also were evident, as decreased velocities in the
upstream part of the model domain accompanied the decreased
flow at Link River (fig. 15). Decreased velocities allow more time
for the expression of oxygen demands, which could account for
the faster loss of dissolved oxygen downstream of Link River in
scenario 8 simulations compared to the base case (fig. 14).
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Figure 14. Simulated dissolved-oxygen
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routing simulations in scenario 8 in the Link-Keno
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Scenario 9. Augment Dissolved Oxygen or Add
Riparian Shade

The purpose of scenario 9 simulations was to assess water
quality under different options to increase dissolved oxygen
and reduce water temperature. These options can be regarded
as exploratory, because definitive approaches for augmenting
dissolved oxygen and reducing water temperatures in the
Link-Keno reach have not yet been developed. Potential
prescriptions for dissolved-oxygen augmentation include
reaeration with atmospheric oxygen and direct aqueous
augmentation. Direct aqueous augmentation is an oxygen
transfer system where supersaturated water is piped into the
river. Water temperature changes associated with increasing
the amount of vegetative riparian shading also was explored.

Methods

Dissolved-Oxygen Augmentation

Two options for augmenting dissolved oxygen were
considered. A “reaeration” or “saturation dissolved oxygen”
set of simulations (scenarios 9a, 9b, 9¢) assumed that
dissolved-oxygen concentrations at three selected locations
(one location in each run) were assumed to reach saturation
with respect to atmospheric oxygen as a result of some
reaeration treatment. To model this condition, the whole water
volume in the river was withdrawn, dissolved-oxygen levels
set to saturated conditions, and then returned to the river at
a nearby downstream location. Although annual simulations
were completed, the saturation dissolved oxygen treatment
was applied between July 1 and October 31.

In a second set of simulations called “supersaturated”
(scenarios 9d, 9e, 91), a fixed rate of flow of 100 ft3/s
(2.83 m3/s) was withdrawn from the river, supersaturated with
dissolved oxygen to a concentration of 100 mg/L, and returned
to the river just downstream of the withdrawal point. This
supersaturated aqueous injection was set up for three locations
(one location in each run) during July 1 to October 31. The
water with 100 mg/L of dissolved oxygen was assumed to be
injected at depth as outlined below.

For both sets of model runs, three locations were
selected:

1. Near Railroad Bridge. Withdrawal segment 7, receiving
segment 9. For supersaturated model runs, water was
injected into the two layers above the bottom-most
active layer.

2. Highway 97. Withdrawal segment 21, receiving
segment 22. For supersaturated simulations, water was
injected into the three layers above the bottom-most
active layer.

3. Miller Island. Withdrawal segment 38, receiving
segment 39. For supersaturated simulations, water
was injected to the six layers above the bottom-most
active layer.

Riparian Shade

In the base case model, topographic and vegetative
riparian shading were both set to zero because (1) topography
did not provide any substantial shading and (2) woody riparian
vegetation of any significant height was limited. Because
topographic conditions cannot be modified, this scenario
focused on the effect of increased vegetative riparian shade.
CE-QUAL-W?2 has options to simulate static or dynamic
shade, where the first is unchanging and the second changes
with time of day and season. Dynamic shade, as simulated
here, takes into account factors such as vegetation height and
density, distance from the river centerline to the controlling
line of vegetation, sun angles, river segment orientation, and
the cycles and timing of deciduous vegetation cycles (leaf on
and leaf off).

For these simulations, deciduous trees were assumed
to colonize the river edge on the left and right banks for the
entire Link-Keno reach. Tree heights of 32.8 and 65.6 ft
(10 and 20 m) were simulated in different model runs.
Transmission of solar radiation through the canopy was
assumed to be zero (100 percent solar blockage) during the
period when the modeled trees had leaves, from late March
through mid-October. These model runs represent an end
member condition to examine the maximum potential effects
of added shade; additional simulations with less vegetation
could be completed to represent realistic possibilities for
future vegetation densities, heights, and distributions.

Shading was not considered to affect boundary inflow
temperatures for the following reasons:

Due to the size of Upper Klamath Lake, shade along Link
River was assumed to have little to no effect on the Link
River boundary temperature.

Lost River Diversion Channel is about 100 ft wide

from the Lost River to the Klamath River. At 100 ft in
width, an effective tree height would be in the range

of 80 to 100 ft and continuous. This degree of riparian
vegetation height and density are not likely because such
large trees might endanger levee integrity and access for
maintenance; typically, riparian vegetation is removed
from these levees.

3. The Klamath Straits Drain is about 75 ft wide for much of
its length. Levees also border this system, although they
are not as high as Lost River Diversion Channel levees.
Beyond shading the drain properly, the challenge for this
system would be to shade all the laterals that feed into
the drain in this reach. Further, the operations of the drain
and lands adjacent to the drain would need to be known
and simulated to properly represent water temperatures.
Additionally, wildlife refuges upstream of the Klamath
Straits Drain have large areas of open water marshes that
would be challenging to manage for water temperature.



Results

Dissolved-Oxygen Augmentation

Both the “saturated” and “supersaturated” scenarios
were effective at increasing dissolved-oxygen concentrations
in the Link-Keno reach. The point of maximum effect on
river dissolved-oxygen concentrations was immediately
downstream of the saturation or injection point, and the
effect decreased in the downstream direction as a result of
consumption by decomposition and respiration processes
as well as losses to the atmosphere for the supersaturated
runs (fig. 16). Thus, if a specific location was targeted for
dissolved oxygen improvement, the model predicts that the
maximum benefit would be achieved by locating the saturation
or injection point at or just upstream of that location. This
differs from the wetland treatment scenarios, where the point
of greatest dissolved oxygen improvement was some distance
downstream of the treatment location.

Although these dissolved-oxygen saturation and injection
treatments were effective at increasing dissolved-oxygen
concentrations, the model predicted that the effect on other
water-quality constituents in the reach would be modest
(tables Al11, A12). This scenario did not change the source
of the low-dissolved-oxygen conditions; it simply addressed
and masked one of the outcomes by raising dissolved-oxygen
concentrations. The model did predict minor increases in
nitrate concentrations under these treatments, which was likely
because more oxygenated conditions favored that form of
dissolved nitrogen.

Saturating the water column at Miller Island (segment 38)
generally improved reach-average June-October dissolved-
oxygen concentrations more than saturating the river at the
two upstream locations (table A12) in the 4 years modeled.
This likely is because the Miller Island location often has
some of the lowest dissolved-oxygen concentrations in the
reach, which allowed the most dissolved oxygen to be added
through the reaeration process.

In 3 of the 4 years modeled, the supersaturated runs
indicated that of the three modeled injection locations, the
site at Highway 97 (segment 21) increased June—October
dissolved oxygen concentrations in the Link-Keno
reach by the greatest amount. The simulated maximum
dissolved-oxygen concentration for the supersaturated
injection at Miller Island sometimes was greater than the
maximum results for the other two locations (fig. 16, August 1
results), probably because river flows at that site were lower,
because it is downstream of the Lost River Diversion Channel
withdrawal. The supersaturated scenarios were predicted
to produce dissolved-oxygen concentrations in excess of
saturation at the injection location. If this type of treatment
were used, the Link-Keno model could be used to assist with
optimizing the treatment specifics to allow the maximum
benefit, while eliminating excess oxygen treatment when not
necessary. The model also could be used to help optimize the
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Figure 16. Simulated dissolved-oxygen
concentration under the base case and for
saturated and supersaturated model runs

for scenario 9in the Link-Keno reach of the
Klamath River, Oregon, August 1, 2007. Values
are daily average, segment volume-average
dissolved oxygen concentrations.

reaeration/saturation treatment, because these exploratory runs
assumed the entire river reaches saturation, although it may

be more realistic to attain such conditions for only parts of the
water column or river.

Shading

Even with the simulation of dense 65.6 ft (20 m) trees
along the entire Link-Keno reach, the predicted cooling effect
was modest, with an average temperature decrease of less than
0.6°C through the reach for June—October (table A14). The
amount of cooling increased from upstream to downstream
reaches due to the cumulative effect of shade along the entire
reach (fig. 17). Other water-quality constituents that might be
affected by shade, and the resulting decreased water temperature
and less light for photosynthesis, revealed only minor effects in
these simulations. Average concentrations of dissolved oxygen,
ammonia, nitrate, chlorophyll a, particulate organic carbon,
dissolved organic carbon, total nitrogen, total phosphorus, and
pH were predicted to remain unchanged or to decrease slightly
(tables A13, Al4). Average concentrations of orthophosphorus
were predicted to increase, but by an insignificant amount.
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Figure 17. Simulated water temperature under
the base case and for shading simulations in
scenario 9 in the Link-Keno reach of the Klamath
River, Oregon, August 1, 2007. Values are daily
average, segment volume-average temperatures.

The simulation of 65.6 ft (20 m) trees with dense
canopies along the entire reach was an end member simulation
used to examine what might be the maximum possible effects
of vegetative shading. More realistic amounts of possible tree
density, height, and extent would produce even smaller water
temperature and water-quality effects. The effect of shade
on the Link-Keno reach was limited, primarily because the
relatively wide river channel is much wider than the shade cast
by vegetation typical to the area.

Scenario 10. Climate Change Effects on
Water Quality

Scenario 10 explored possible water-quality effects of a
future warmer climate on the Link-Keno reach. Predicted air
temperature increases were derived from Global Circulation
Model (GCM) results, downscaled for the Klamath Basin.
These predicted future temperatures were used to adjust the
Link-Keno model meteorological conditions and boundary
inflow water temperatures.

Methods

Predicted future air temperature changes were derived
from five future GCM climate scenarios, which were
simulated as part of a recent Klamath River dam removal
study (Bureau of Reclamation, 2011; King and others, 2011).
As part of that study, precipitation and air temperature

predictions from five GCMs were downscaled to the upper and
lower Klamath River basin. Hydrologic and meteorological
conditions were forecast under the different climate change
scenarios for a future period of 50 years. In the dam removal
study, the downscaled precipitation and air temperature
results provided input to a watershed scale hydrologic model,
SAC-SMA, which estimated future hydrologic runoff to be
used by two hydrologic decision models. Input hydrology
for the two decision models was monthly, and daily flows
were disaggregated for the downstream daily model using
an approach that matched historical seasonal hydrology.
The climate and Klamath dam removal study examined
management alternatives under current operations with
dams in-place and under the full Klamath Basin Restoration
Agreement (Klamath Basin Restoration Agreement, 2010)
with four downstream dams removed; Link and Keno Dams
would remain in-place.

For this study focusing on the Link-Keno reach of
the Klamath River, future air temperature, dew point
temperature, and water temperature of inflows were estimated
based on the GCM-predicted annual average air temperature
changes (maximum, median, minimum) between the base
period 2006-09 and the future period 2057-60. Over 50 years,
future air temperature was predicted to increase in all GCM
simulations, although the amount of temperature change
varied between simulations. The Link-Keno model for
calendar year 2007 was selected as the base model for this
scenario, although any of the 4 years could have been used.

Flows

Initial plans for these model runs were to apply the
hydrologic outputs of the climate change models to the
Link-Keno CE-QUAL-W2 models. For several reasons,
however, climate change flows were not used, but base
scenario conditions (base case) flows were used.

The first reason to retain the base-case flows was that
hydrologic conditions predicted for the Link-Keno reach were
relatively similar in current and future years. The dam removal
study hydrologic results illustrated that year-to-year flow
differences were often greater than the overall flow change
from the base case years to the future 50-year period. For
example, Keno Dam outflows for the CE-QUAL-W2 2006—-09
models were plotted with the 2012—60 monthly flows (fig. 18)
from one of the downscaled GCM models (Canadian Centre
for Climate Modeling Analysis, using the 75th precipitation
quantile; other GCM models that use 50 or 25 percent
precipitation percentiles would simulate drier years than the
CCCMA model). The general seasonal patterns in flow were
similar for the base-case and future years predicted by the
GCM. On an annual average basis, the range of flows for
future years 2057-60 and for base years 2006—09 were similar,
with the range simulated for the entire period of 2012-60
including both wetter and drier conditions (fig. 19).
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Figure 19. Annual average outflow at Keno
Dam, Klamath River, Oregon. Base-case flows
are compared to future Canadian Centre for
Climate Modeling Analysis (CCCMA) flows.

Another reason to retain the base-case flows is that
serious challenges exist in using second-generation hydrologic
data from a model that had different objectives, and spatial
and temporal resolution. For instance, the monthly time step
for flow in the dam removal study (Bureau of Reclamation,
2011) was much longer than the 30-minute to daily time step
used for CE-QUAL-W?2 input. Additionally, the future flow
operations model was not used to manage diversions and
return flows or storage (assumed constant) in the Link-Keno
reach, but instead was used for long-term planning horizon
studies at the basin scale. The Link-Keno CE-QUAL-W2
modeling (Sullivan and others, 2011) focused on a specific
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reach, examining water quality responses on short timescales
in longitudinal and vertical detail. If future CE-QUAL-W?2
climate change scenarios include altered flows, consideration
of these smaller-scale hydrologic conditions will be important
before using hydrologic results from available climate change
models. For these reasons, this climate change analysis
focuses only on the effects of air temperature change and the
related meteorological and water-quality changes.

Meteorological Conditions

Using output from all five GCMs, a minimum, median,
and maximum annual average air temperature change for
the Link-Keno reach was determined between 2006-09 and
2057-60 (table 13). Three model runs were constructed by
increasing the measured hourly air temperatures for the Link-
Keno reach for 2007 by these minimum (10a), median (10b),
and maximum (10c) annual average air temperature changes.
For these three runs, the dew point temperature for model
input was recalculated assuming that relative humidity would
remain unchanged in the future period, and air temperature
was increased by the minimum, median, and maximum
changes. For the base-case year 2007, relative humidity was
calculated using dew point temperature and air temperature
inputs. These dew point temperature calculations used
equations from Snyder and Shaw (1984):

E = (RH x E,) /100 o«
E —6.108el727T/(T+2373)
, =6.
B= In( E
6.108
D =237.3B/(1-B)

)/17.27

where
E, is saturation vapor pressure (millibar),
T is dry-bulb air temperature (degrees Celsius),
E is vapor pressure (millibar),
RH is relative humidity (percent), and
D is dew point temperature (degrees Celsius).

Table 13. Annual average change in air
temperature between 2006-09 and 2057—60 from
five Global Circulation Models for the Klamath
River basin, Oregon.

Annual average air
temperature change
(degrees Celsius)

Minimum 0.86
Median 1.99
Maximum 3.25
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Water Quality

Water temperature boundary conditions were updated
after the meteorological changes were implemented.
Procedures similar to those used by Perry and others (2011)
were applied, with use of the Mohseni equation (Mohseni
and others, 1998) to predict future water temperature. First,
weekly average air temperatures for the entire reach and
weekly average water temperature for Link River, Lost River
Diversion Channel, and Klamath Straits Drain were calculated,
consistent with the Mohseni equation. Subsequently, the
weekly average air and water temperatures for the base case
years were used to develop individual Mohseni equation
parameters for each inflow:

o—p

T =p+— B
s H 1+eY(B_Ta)

@)

where

_‘

is the weekly mean water temperature,
in degrees Celsius,
is the minimum water temperature,
is the maximum water temperature,
is the air temperature at the point of inflection,
represents the slope at the inflection point, and
. IS the weekly mean air temperature, in
degrees Celsius.

< ™R TE

Table 14.

Similar to Perry and others (2011), the parameter p was
set to 0°C and then a, B, and y were estimated by a non-linear
regression method for Link River, Lost River Diversion
Channel, and Klamath Straits Drain using data from the base-
case years 2006-09. Separate equations and Mohseni parameters
were fit to the rising and falling limb time periods, the part of the
year when air temperature tends to increase or decrease, for each
of the three locations. For example, in 2007, air temperature
generally increased through early July and decreased thereafter.
After obtaining the best-fit parameters from the nonlinear
regression model, measured weekly mean water temperature was
plotted against weekly mean air temperature along with results
from the fitted Mohseni equations for the rising and falling limbs
of air temperature for the three locations. The fitted equations for
the rising and falling limbs were quite similar for the Link River
and Lost River Diversion Channel, so a single equation was used
for those boundaries (table 14, fig. 20).

After the Mohseni equations were derived for Link River,
Lost River Diversion Channel and Klamath Straits Drain, future
weekly averaged water temperatures were estimated using the
estimated future air temperature. To obtain future hourly water
temperature, the difference between weekly averaged base
year water temperature and weekly averaged future year water
temperature was added to or subtracted from the base year
hourly water temperatures.

Considering anthropogenic influence on point sources and
their relatively small flows, water temperature for point sources
were not estimated for the future years. Base-case values for
those sources were used in these climate change scenarios.

Final parameter estimates of the non-linear regression model for

major inputs at selected sites in the Link-Keno reach of the Klamath River,

Oregon, 2006-09.

[From Mohseni and others, 1998. Temperature values are in degrees Celsius. &, minimum
water temperature. B, air temperature at the point of inflection. ¥y, slope at the inflection point]

Boundary or source Limb o B Y
Link River Rising, falling 24.6 9.2 0.199
Lost River Diversion Channel Rising, falling 24.3 8.5 0.201
Klamath Straits Drain Rising 254 8.1 0.219

Falling

26.2 9.8 0.192
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Figure 20. Measured weekly mean water
temperature versus measured weekly mean air
temperature, with the final fitted equation for the
entire simulation period (2006-09) for Link River,
Lost River Diversion Channel, Klamath Straits
Drain, Klamath River, Oregon.
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Results

Water temperatures in the Link-Keno reach consistently
increased under the warmer future climate condition scenario.
In summer, the trend of increasing water temperature was
expressed throughout the entire Link-Keno reach (fig. 21).

The minimum (10a) air temperature increase of 0.86°C with
associated dew point temperature and inflow water temperature
changes led to an annual average water temperature increase

of 0.6°C for the Link-Keno reach as an annual volume-average
result (table A15). The median (10b) air temperature increase of
1.99°C led to an annual average water temperature increase of
1.4°C. The maximum (10c) air temperature increase of 3.25°C
led to a water temperature increase of 2.4°C. These increases

in water temperature could increase risks to key threatened and
endangered fish species, depending on the time of year.

Because dissolved-oxygen solubility decreases with
increased water temperature, dissolved-oxygen concentrations
were decreased under a warmer future condition, as much as
0.3 mg/L as an annual volume-average under the conditions
examined here. Model results revealed only minor changes in
other water-quality constituents (tables A15, A16).

Scenario 10 focused on direct effects of temperature
changes in the Link-Keno reach. Climate change also could
affect water-quality conditions and phytoplankton composition
of Upper Klamath Lake and Lost River watersheds, thus
changing the inflow water quality of Link River, Lost River
Diversion Channel, and Klamath Straits Drain. Water quality of
inflows was not adjusted in this study, except for temperature.
Future model scenarios could explore how other possible climate
change effects could affect water quality in the Link-Keno reach.
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Figure 21. Simulated water temperature under

the base case and climate warming simulations
in scenario 10 for the Link-Keno reach of the
Klamath River, Oregon, August 1, 2007. Values are
daily average, segment volume-average water
temperatures.
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Overview of Scenario
Results

Ten sets of scenarios (table 2)
were tested with the Link-Keno
water-quality model to provide
insights into potential water-quality
changes as a result of changes
in operational or management
strategies. Each scenario
evaluated here affected water
quality in different ways (fig. 22,
appendix A).

Scenarios 1 to 3 assessed the
water-quality effects of meeting
TMDL allocations and targets
and were not associated with
specific treatments or prescriptions.
Rather these simulations explored
systematically decreasing input
concentrations of dissolved and
particulate nutrients, organic
matter, and algae until targets or
allocations were met. These were
the only scenarios that resulted in
large decreases in dissolved organic
matter (represented as DOC) in
the Link-Keno reach, especially
scenarios 2a and 2b (fig. 22).
Whether the levels of dissolved
organic matter decreases assumed
for these simulations are possible
in this reach is uncertain, given
that upstream watersheds have
wetlands that typically have high
concentrations of dissolved organic
matter. These TMDL scenarios
and analyses assessing whether
water-quality criteria would be
achieved could be revisited in the
future when or if specific treatment
options to meet TMDLSs are
identified for evaluation.

Scenario 5 evaluated
particulate shunting, and
simulated a significant decrease
in water-quality conditions in
the Link-Keno reach. However,
eliminating particulate material
from the Lost River basin may
improve water quality there, which
could be explored in the future
through additional monitoring,
research, and modeling. Scenario 6
simulations focused on removal

Total phosphorus, Dissolved organic carbon, Particulate organic carbon, Chlorophyll a Ammonia, Dissolved oxygen, Water temperature,
in milligrams per liter in milligrams per liter in milligrams per liter in micrograms per liter in milligrams per liter in milligrams per liter degrees Celsius

Total nitrogen,
in milligrams per liter
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Figure 22. Simulated water quality for scenarios 1, 2,5, 6, 7, 8,9 and 10 for the Link-Keno

reach of the Klamath River, Oregon. Values are entire-reach averages for June—
October 2007. The horizontal dashed line represents a reference line equal to results from

the base case.



of particulate matter and algae at Link River and illustrated
improvements in dissolved oxygen and other water-quality
constituents in downstream reaches. The large improvements
resulting from 90 percent removal of algae and particulate
matter in Link River demonstrated the importance of that
inflow to water quality in the Link-Keno reach. Scenario 7
examined the effects of wetlands on water quality, addressing
not only particulate matter and algae in the Link-Keno reach,
but also changes to ancillary constituents, such as dissolved
nutrients and oxygen (fig. 22). Scenario 8 examined the
effects of flow routing changes. Scenario 9 assessed specific
prescriptions aimed at improving dissolved-oxygen levels
through mechanical means and water temperature effects
related to riparian shading. Dissolved oxygen additions
increased dissolved-oxygen concentrations, but had little

to no effect on other water-quality constituents in the study
reach (fig. 22). Riparian shading had little impact on water
temperatures due to the wide river channel compared to the
height of native trees that would potentially grow along Keno
Reservoir. Scenario 10 demonstrated potential changes to

the Link-Keno reach under a future warmer climate. If warm
water temperatures remain an issue in the Klamath River,
alternate management strategies to provide microhabitats with
cool-water refugia may be useful.

The details of model scenario set-up have direct
implications on model results. Because specific details of
water-quality prescriptions and management strategies for this
reach have not yet been determined, many of these simulations
were exploratory, examining the range of effects and analyzing
general temporal and spatial patterns. These results and the
existing model can be used to assist in assessing, prioritizing,
and selecting management or treatment options as well as
helping to refine specific plans.

Future Application and Development

The initial application of the Link-Keno models have
provided insight into water quality and hydrodynamic effects
that may occur under various management options or other
system changes. Based on the results of this modeling study,
suggestions for future study in this reach include:

Further development of existing scenarios. Selected
existing scenarios could be developed in more detail based
on findings to date. For example, the wetland scenario
(scenario 7) could be formulated to explicitly incorporate a
wetland into the model grid. This would allow the simulation
of macrophyte growth, water evaporation, organic matter
settling, and chemical transformation in the wetland, among
other benefits. Additionally, some initial scenarios were
set up in exploratory form, using end-member situations to
identify possible effects. As more specific restoration plans
are targeted, scenarios could be updated or reformulated to
provide insight toward optimizing the water-quality effects

Future Application and Development |

of particular options. Scenarios could be post-processed

to provide output in format for specific purposes, such as
for comparison to water-quality standards or to aquatic life
habitat metrics.

Additional scenario applications. The scenarios presented
in this report represent an initial selection of options for
possible change to the system. There are other management
and treatment options that could be considered. These might
include, but are not limited to, changes to the water quality
or flow at Link River, timing of flows through the Lost River
Diversion Channel or Klamath Straits Drain, treatment
options from a recent pollutant reduction workshop (Stillwater
Sciences and others, 2012), or other management options that
come under consideration in the future.

Connect to research and modeling on Upper Klamath
Lake. The outflow of Upper Klamath Lake through Link
River has a dominant effect on the water quality of this reach.
Some changes to the Link River inflow are straightforward
to model with the Link-Keno model, for instance removal
of particulate matter and algae at Link River (scenario 6).
However, the water-quality effects of entire-watershed
changes to Upper Klamath Lake, outside the Link-Keno model
boundary, are not easy to project. Work is ongoing to improve
water-quality modeling capabilities for Upper Klamath Lake.
As model scenarios to examine future conditions in Upper
Klamath Lake are developed, those results could be used
in the Link-Keno model to examine how changes in Upper
Klamath Lake could affect the Link-Keno reach and to provide
a boundary condition for modeling downstream of Keno Dam.
Expanding the Link-Keno model to include the 1-mi Link
River reach would allow a more direct connection to Upper
Klamath Lake models.

Connect to research and modeling in the Lost River
basin. The Link-Keno reach is interconnected with the Lost
River basin through multiple canals. Work to collect data and
understand processes in the Lost River is ongoing. As results
from that work become available, the Link-Keno scenarios
could be updated or expanded to incorporate that knowledge.

Continue selected field work for model improvements.
Although major field work for the purposes of development
of the 4 years of models is complete, continuing field
and experimental work could be considered to improve
understanding of certain water-quality processes. Such field
work could include experimental work to better understand
algal health, particulate matter, and nutrient dynamics in the
Link-Keno reach. Additionally, grab water-quality samples
in the Link River reach would support expansion of the
model into this river reach, for ultimate connection to Upper
Klamath Lake modeling efforts. Although 4 years of model
results represent a range of flow and climate conditions, field
sampling in a year with unusual operations, or climatic or
hydrologic conditions (dry, wet, warm, or cold) would provide
data to further develop the model and assist in understanding
the response of the reach to extreme or unusual conditions.



42 Modeling the Water-Quality Effects of Changes to the Klamath River Upstream of Keno Dam, Oregon

Acknowledgments

Funding for this project was provided by the Bureau
of Reclamation. Discussions with Rick Carlson and Jason
Cameron at the Bureau of Reclamation were helpful
during scenario development. Daniel Turner of the Oregon
Department of Environmental Quality provided helpful
explanations of the State of Oregon water-quality criteria.

Supplementary Materials

Previous project reports and data along with the
calibrated base-case models used in this study can be
accessed at the project web site, http://or.water.usgs.gov/proj/
keno_reach/.

References Cited

Bureau of Reclamation, 2011, Hydrology, hydraulics and
sediment transport studies for the Secretary’s determination
on Klamath Dam removal and basin restoration: U.S.
Bureau of Reclamation, Technical Service Center, Technical
Report No. SRH-2011-02, prepared for Mid-Pacific region,
Denver, Colo, variously paged.

Cole, T.M., and Wells, S.A., 2008, CE-QUAL-W2—A two-
dimensional, laterally averaged, hydrodynamic and water-
quality model, version 3.6: U.S. Army Corps of Engineers,
Instruction Report EL-08-1, variously paged.

Crites, R., and Tchobanoglous, G., 1998, Small and
decentralized wastewater management systems: WCB
McGraw-Hill, p. 582-588.

Deas, M.L., and Vaughn, J., 2011, Keno Reservoir particulate
study 2008—Technical memorandum, Prepared for the
Bureau of Reclamation, Klamath Basin Area Office,

April 2011: Davis, California, Watercourse Engineering,
Inc., 38 p.

King, D., Sutley, D., and Raff, D., 2011, Klamath Dam
removal study climate change hydrology development—
Appendix E, Documentation of hydrology simulations for
the Klamath Dam removal studies, Section 17.2, climate
change hydrology, in Bureau of Reclamation, 2011,
Hydrology, Hydraulics and Sediment Transport Studies
for the Secretary’s Determination on Klamath River Dam
Removal and Basin Restoration: Bureau of Reclamation,
Mid-Pacific Region, Technical Service Center, Denver,
Colo. Technical Report No. SRH-2011-02, p. 1-15.

Klamath Basin Restoration Agreement, 2010, Klamath Basin
Restoration Agreement for the Sustainability of Public
and Trust Resources and Affected Communities: U.S.
Department of the Interior, 371 p., accessed June 19, 2013,

at http://klamathrestoration.gov/sites/klamathrestoration.

gov/files/Klamath-Agreements/Klamath-Basin-Restoration-
Aqgreement-2-18-10signed.pdf.

Mahugh, S., Deas, M.L., Gearhart, R.A., Vaughn, J.,
Piaskowski, R., and Rabe, A., 2008, Keno Reservoir
Feasibility Study, Phase II—Identification and Assessment
of Potential Treatment Wetland Sites in the upper Klamath
River: Prepared for U.S. Bureau of Reclamation, Klamath
Basin Area Office, Proposal No. 07SF200051, 49 p.

Mohseni, O., Stefan, H.G., and Erickson, T.R., 1998,
Anonlinear regression model for weekly stream
temperatures: Water Resources Research, v. 34, no. 10,
p. 2685-2692, accessed July 15, 2013, at http://dx.doi.
0rg/10.1029/98WR01877.

Mrazik, S., 2007, Oregon water quality index summary
report, water years 1997-2006: Oregon Department of
Environmental Quality, DEQO7-LAB-007-TR, 13 p.

Oregon Department of Environmental Quality, 2002, Upper
Klamath Lake drainage Total Maximum Daily Load
(TMDL) and Water Quality Management Plan (WQMP):
Oregon Department of Environmental Quality, 188 p.

Oregon Department of Environmental Quality, 2007, Oregon’s
2004/2006 integrated report: Oregon Department of
Environmental Quality Web site, accessed November 16,
2007, at http://www.deq.state.or.us/wg/assessment/rpt0406.
htm.

Oregon Department of Environmental Quality, 2010,
Upper Klamath and Lost River subbasins total maximum
daily load (TMDL) and water quality management plan
(WQMP): Oregon Department of Environmental Quality
Web site, accessed December 2010 at http:/www.deq.state.
or.us/WQ/TMDLs/klamath.htm.

Oregon Department of Environmental Quality, 2011, Oregon
Administrative Rules OAR 340-041, accessed October 21,
2011, at http://arcweb.sos.state.or.us/pages/rules/oars_300/
oar_340/340_041.html.

Perry, R.W., Risley, J.C., Brewer, S.J., Jones, E.C., and
Rondorf, D.W., 2011, Simulating water temperature of the
Klamath River under dam removal and climate change
scenarios: U.S. Geological Survey Open-File Report
2011-1243, 78 p. (Also available at http://pubs.usgs.gov/
0f/2011/1243/.)



http://or.water.usgs.gov/proj/keno_reach
http://or.water.usgs.gov/proj/keno_reach
http://klamathrestoration.gov/sites/klamathrestoration.gov/files/Klamath-Agreements/Klamath-Basin-Restoration-Agreement-2-18-10signed.pdf
http://klamathrestoration.gov/sites/klamathrestoration.gov/files/Klamath-Agreements/Klamath-Basin-Restoration-Agreement-2-18-10signed.pdf
http://klamathrestoration.gov/sites/klamathrestoration.gov/files/Klamath-Agreements/Klamath-Basin-Restoration-Agreement-2-18-10signed.pdf
http://dx.doi.org/10.1029/98WR01877
http://dx.doi.org/10.1029/98WR01877
http://www.deq.state.or.us/wq/assessment/rpt0406.htm
http://www.deq.state.or.us/wq/assessment/rpt0406.htm
http://www.deq.state.or.us/WQ/TMDLs/klamath.htm
http://www.deq.state.or.us/WQ/TMDLs/klamath.htm
http://arcweb.sos.state.or.us/pages/rules/oars_300/oar_340/340_041.html
http://arcweb.sos.state.or.us/pages/rules/oars_300/oar_340/340_041.html
http://pubs.usgs.gov/of/2011/1243/
http://pubs.usgs.gov/of/2011/1243/

Poulson, S.R., and Sullivan, A.B., 2010, Assessment of
diel chemical and isotopic techniques to investigate
biogeochemical cycles in the upper Klamath River,
Oregon, USA: Chemical Geology, v. 269, nos. 1-2, p.
3-11, accessed July 15, 2013, at http://dx.doi.org/10.1016/j.
chemgeo.2009.05.016.

Rounds, S.A., and Sullivan, A.B., 2009, Review of Klamath
River total maximum daily load models from Link River
Dam to Keno Dam, Oregon: U.S. Geological Survey
Administrative Report, 37 p., accessed July 17, 2013, at
http://www.usbr.gov/mp/kbao/waterquality/klamath_river_
model review_final.pdf.

Rounds, S.A., and Sullivan, A.B., 2013, Review of revised
Klamath River total maximum daily load models from Link
River Dam to Keno Dam, Oregon: U.S. Geological Survey
Open File Report 2013-1136, 32 p. (Also available at http://
pubs.usgs.gov/of/2013/1136/.)

Snyder, R.S. and Shaw, R.H., 1984, Converting humidity
expressions with computer and calculators: University of
California Cooperative Extension Leaflet 21372, 23 p.

Stillwater Sciences, Riverbend Sciences, Aquatic Ecosystem
Sciences, Atkins, Tetra Tech, NSI/Biohabitats, and Jones
and Trimiew Design, 2012, Klamath River pollutant
reduction workshop—information packet: Technical
Memorandum prepared for California State Coastal
Conservancy, Oakland, Calif., 87 p.

Sullivan, A.B., Deas, M.L., Asbill, Jessica, Kirshtein, J.D.,
Butler, Kenna, and Vaughn, Jennifer, 2009, Klamath River
water quality data from Link River Dam to Keno Dam,
Oregon, 2008: U.S. Geological Survey Open-File Report
2009-1105, 25 p. (Also available at http://pubs.usgs.gov/
0f/2009/1105/.)

Sullivan, A.B., Deas, M.L., Asbhill, Jessica, Kirshtein, J.D.,
Butler, Kenna, Stewart, M.A., Wellman, R.W., and Vaughn,
J., 2008, Klamath River Water quality and acoustic Doppler
current profiler data from Link River Dam to Keno Dam,
2007: U.S. Geological Survey Open File Report 2008-1185,
24 p., at http://pubs.usgs.gov/0f/2008/1185/.

Sullivan, A.B., Rounds, S.A., Asbill-Case, J.R., and Deas,
M.L., 2013, Macrophyte and pH buffering updates to the
Klamath River water-quality model upstream of Keno Dam,
Oregon: U.S. Geological Survey Scientific Investigations
Report 2013-5016, 52 p., at http://pubs.usgs.gov/
sir/2013/5016/.

References Cited 43

Sullivan, A.B., Rounds, S.A., Deas, M.L., Ashill, J.R.,
Wellman, R.E., Stewart, M.A., Johnston, M.W., and
Sogutlugil, 1.E., 2011, Modeling hydrodynamics, water
temperature, and water quality in the Klamath River
upstream of Keno Dam, Oregon, 2006-09: U.S. Geological
Survey Investigations Report 2011-5105, 70 p. (Also
available at http://pubs.usgs.gov/sir/2011/5105.)

Sullivan, A.B., Rounds, S.A., Deas, M.L., and Sogutlugil,
I.E., 2012, Dissolved oxygen analysis, TMDL model
comparison, and particulate matter shunting-Preliminary
results from three model scenarios for the Klamath River
upstream of Keno Dam, Oregon: U.S. Geological Survey
Open-File Report 2012-1101, 30 p. (Also available at http://
pubs.usgs.gov/0f/2012/1101/.)

Sullivan, A.B., Snyder, D.M., and Rounds, S.A., 2010,
Controls on biochemical oxygen demand in the upper
Klamath River, Oregon: Chemical Geology, v. 269, nos.
1-3, p. 12-21, accessed July 15, 2013, at http://dx.doi.
0rg/10.1016/j.chemge0.2009.08.007.

Tchobanoglous, G., Crites, R., Gearhart, R. and Reed, W.,
2000, A review of treatment kinetics for constructed
wetlands, in Woo, S., Smith, B., Finney, B.A., eds., The
role of wetlands in watershed management-lessons learned:
Arcata, Calif., Humboldt State University, p. 147-158.

Tetra Tech, Inc., 2009, Klamath River model for TMDL
development, Prepared for U.S. Environmental Agency
Region 9 and 10, Oregon Department of Environmental
Quality, and North Coast Regional Water Quality Control
Board, December 2009: Tetra Tech, Inc., 196 p., accessed
May 20, 2011, at http://www.deq.state.or.us/wqg/tmdls/docs/
klamathbasin/uklost/KlamathL ostAppendixC.pdf.

U.S. Environmental Protection Agency, 1986, Quality criteria
for water 1986. EPA 440/5-86-001: U.S. Environmental
Protection Agency EPA 440/5-86-001, 477 p., accessed
June 5, 2013, at http://water.epa.gov/scitech/swguidance/
standards/criteria/aglife/upload/2009_01 13_criteria_

oldbook.pdf.

Wmazal, Jan, 2007, Removal of nutrients in various types of
constructed wetlands: Science of the Total Environment,
v. 380, nos. 1-3, p. 48-65, accessed July 15, 2013, at http://
dx.doi.org/10.1016/j.scitotenv.2006.09.014.

Watercourse Engineering, Inc., 2004, Klamath River
modeling framework to support the PacifiCorp Federal
Energy Regulatory Commission Hydropower Relicensing
Application, March 9, 2004: Watercourse Engineering, Inc.,
248 p.


http://dx.doi.org/10.1016/j.chemgeo.2009.05.016
http://dx.doi.org/10.1016/j.chemgeo.2009.05.016
http://www.usbr.gov/mp/kbao/waterquality/klamath_river_model_review_final.pdf
http://www.usbr.gov/mp/kbao/waterquality/klamath_river_model_review_final.pdf
http://pubs.usgs.gov/of/2013/1136/
http://pubs.usgs.gov/of/2013/1136/
http://pubs.usgs.gov/of/2009/1105
http://pubs.usgs.gov/of/2009/1105
http://pubs.usgs.gov/of/2008/1185
http://pubs.usgs.gov/sir/2013/5016
http://pubs.usgs.gov/sir/2013/5016
http://pubs.usgs.gov/sir/2011/5105
http://pubs.usgs.gov/of/2012/1101
http://pubs.usgs.gov/of/2012/1101
http://dx.doi.org/10.1016/j.chemgeo.2009.08.007
http://dx.doi.org/10.1016/j.chemgeo.2009.08.007
http://www.deq.state.or.us/wq/tmdls/docs/klamathbasin/uklost/KlamathLostAppendixC.pdf
http://www.deq.state.or.us/wq/tmdls/docs/klamathbasin/uklost/KlamathLostAppendixC.pdf
http://water.epa.gov/scitech/swguidance/standards/criteria/aqlife/upload/2009_01_13_criteria_goldbook.pdf
http://water.epa.gov/scitech/swguidance/standards/criteria/aqlife/upload/2009_01_13_criteria_goldbook.pdf
http://water.epa.gov/scitech/swguidance/standards/criteria/aqlife/upload/2009_01_13_criteria_goldbook.pdf
http://dx.doi.org/10.1016/j.scitotenv.2006.09.014
http://dx.doi.org/10.1016/j.scitotenv.2006.09.014

This page is intentionally left blank.



Appendix A. Volume-Average Annual and June—October
Scenario Results for the Link-Keno Reach, Upper Klamath
River, Oregon
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