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Equations for Estimating Bankfull Channel Geometry and
Discharge for Streams in Massachusetts

By Gardner C. Bent and Andrew M. Waite

Abstract

Regression equations were developed for estimating
bankfull geometry—width, mean depth, cross-sectional area—
and discharge for streams in Massachusetts. The equations
provide water-resource and conservation managers with
methods for estimating bankfull characteristics at specific
stream sites in Massachusetts. This information can be used
for the adminstration of the Commonwealth of Massachusetts
Rivers Protection Act of 1996, which establishes a protected
riverfront area extending from the mean annual high-water
line corresponding to the elevation of bankfull discharge along
cach side of a perennial stream. Additionally, information
on bankfull channel geometry and discharge are important
to Federal, State, and local government agencies and
private organizations involved in stream assessment and
restoration projects.

Regression equations are based on data from stream
surveys at 33 sites (32 streamgages and | crest-stage
gage operated by the U.S. Geological Survey) in and near
Massachusetts. Drainage areas of the 33 sites ranged from
0.60 to 329 square miles (mi?). At 27 of the 33 sites, field
data were collected and analyses were done to determine
bankfull channel geometry and discharge as part of the
present study. For 6 of the 33 sites, data on bankfull channel
geometry and discharge were compiled from other studies
done by the U.S. Geological Survey, Natural Resources
Conservation Service of the U.S. Department of Agriculture,
and the Vermont Department of Environmental Conservation.
Similar techniques were used for field data collection and
analysis for bankfull channel geometry and discharge at all
33 sites. Recurrence intervals of the bankfull discharge, which
represent the frequency with which a stream fills its channel,
averaged 1.53 years (median value 1.34 years) at the 33 sites.
Simple regression equations were developed for bankfull
width, mean depth, cross-sectional area, and discharge using
drainage area, which is the most significant explanatory
variable in estimating these bankfull characteristics. The
use of drainage area as an explanatory variable is also the
most commonly published method for estimating these
bankfull characteristics. Regional curves (graphic plots) of
bankfull channel geometry and discharge by drainage area
are presented. The regional curves are based on the simple

regression equations and can be used to estimate bankfull
characteristics from drainage area. Multiple regression
analysis, which includes basin characteristics in addition to
drainage area, also was used to develop equations. Variability
in bankfull width, mean depth, cross-sectional area, and
discharge was more fully explained by the multiple regression
equations that include mean-basin slope and drainage area
than was explained by equations based on drainage area
alone. The Massachusetts regional curves and equations
developed in this study are similar, in terms of values of
slopes and intercepts, to those developed for other parts of the
northeastern United States.

Limitations associated with site selection and
development of the equations resulted in some constraints for
the application of equations and regional curves presented in
this report. The curves and equations are applicable to stream
sites that have (1) less than about 25 percent of their drainage
basin area occupied by urban land use (commercial, industrial,
transportation, and high-density residential), (2) little to
no streamflow regulation, especially from flood-control
structures, (3) drainage basin areas greater than 0.60 mi? and
less than 329 mi?, and (4) a mean basin slope greater than
2.2 percent and less than 23.9 percent. The equations may not
be applicable where streams flow through extensive wetlands.
The equations also may not apply in areas of Cape Cod and
the Islands and the area of southeastern Massachusetts close
to Cape Cod with extensive areas of coarse-grained glacial
deposits where none of the study sites are located. Regardless
of the setting, the regression equations are not intended for
use as the sole method of estimating bankfull characteristics;
however, they may supplement field identification of the
bankfull channel when used in conjunction with field verified
bankfull indicators, flood-frequency analysis, or other
supporting evidence.

Introduction

Information about the channel geometry and discharge
of streams under bankfull conditions is important for many
hydrologic applications. Bankfull discharge is the streamflow
that occurs when the stream fills its channel and any additional
discharge will result in the stream overflowing its banks.
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Bankfull geometry (width, cross-sectional area, mean depth)
defines the physical extent of the stream when the stream is
bankfull. The geometry of a stream and the location of the
water’s edge at bankfull conditions are fundamental measures
of the size and location of the stream.

Information about bankfull channel geometry is
important for the application of the Commonwealth of
Massachusetts Rivers Protection Act of 1996-310 Code of
Massachusetts Regulations (CMR) 10.00—Section 10.58
(The Commonwealth of Massachusetts, 2009). This Act
specifies that riverfront areas of all perennial streams be
protected, where the riverfront area is defined as a 200-foot-
wide strip (25-foot-wide strip in selected densely developed
areas) of land on each side of a stream that starts at the mean
annual high-water line of perennial streams. The Act states
that the mean annual high-water line is best represented by
bankfull field indicators, such as change in slope, changes
in vegetation, stain lines, top of point bars, changes in
bank material, or bank undercuts along streambanks that
correspond to the elevation of the water surface of the stream
when the stream fills its banks and establishes the bankfull
stream width. Town and city conservation commissions and
the Massachusetts Department of Environmental Protection
(MDEP) are charged with enforcing the Riverfront Protection
Act by regulating work in the riverfront areas and, thus, must
be able to accurately determine the bankfull stream width of
perennial streams.

In Massachusetts, bankfull data are being used in the
design of bridges and culverts for stream crossings, such
that they can accommodate fish and wildlife passage and
avoid adverse effects on ecological systems (Massachusetts
Department of Transportation, 2010; Massachusetts Executive
Office of Energy and Environmental Affairs, 2012). State and
Federal regulations required that the new and replacement
structures span the stream channel width by a minimum of
1.2 times the bankfull width. The River and Stream Continuity
Partnership (2011) developed revised river and stream
crossing standards for Massachusetts using the same standard
of 1.2 times the bankfull width. Additionally, the U.S. Army
Corps of Engineers—New England District is using these
same river and stream crossing standards for its State General
Permit (http://www.nae.usace.army.mil/Regulatory/SGP/
ma.htm) in Massachusetts.

Information about bankfull channel geometry and dis-
charge is important to Federal, State, and local governments
and private organizations involved in stream assessment and
restoration projects. Stream-restoration projects during the last
two decades have focused on using a natural-channel design
approach that depends on estimates of natural bankfull chan-
nel geometry and discharge rather than traditional engineering
practices that may involve straightening, widening, deepening,
or hardening banks and channels.

Bankfull channel geometry and discharge are commonly
estimated using equations and graphical plots that relate
bankfull width, mean depth, cross-sectional area, and
discharge to drainage area; the graphical plots are referred to

as “regional curves.” In Massachusetts and throughout the
eastern United States where sub-regional or statewide regional
curves are not available, regional curves published by Dunne
and Leopold (1978) are used by Federal, State, and local
governments and private organizations to estimate bankfull
geometry and discharge. Though widely used, the curves
developed by Dunne and Leopold (1978) for the eastern
United States were developed from sites of unknown locations
(Emmett, 2004), and the accuracy of these curves when
applied to streams in Massachusetts is unknown. Moreover,
regional curves such as these are based on simple regression
equations and use one explanatory variable, drainage area, to
estimate the response variables of bankfull width, mean depth,
cross-sectional area, and bankfull discharge. However, much
variability is present in relations between drainage area and
bankfull geometry and discharge. These simple regression
equations for bankfull channel geometry and discharge cannot
account for the variance that may result from other factors
such as basin slope, basin elevation, surficial geology, soil
type, the presence of water bodies and wetlands, and land use
in the basin. These factors could be incorporated in multiple
regression equations that could provide better estimates of
bankfull geometry and discharge than the commonly used
regional curves. Improved methods of estimating bankfull
geometry and discharge are needed to support implementation
of the Riverfront Protection Act of 1996 and other hydrologic
applications in Massachusetts than are currently available
with the generalized regional curves for the eastern United
States or other field-based approaches. To address this need,
the U.S. Geological Survey (USGS), in cooperation with

the MDEP, Bureau of Resource Protection, Wetlands and
Waterways Program and Massachusetts Environmental

Trust, conducted a study to develop equations for estimating
bankfull geometry and discharge from data collected at stream
sites in and near Massachusetts, using simple and multiple
regression techniques.

Purpose and Scope

This report describes the methods used, data collected,
and equations developed for estimating bankfull channel
geometry and discharge for streams in Massachusetts.

As a part of this study, bankfull channel geometry data

were collected and analyzed for 27 sites—20 streams in
Massachusetts, 3 streams in northern Connecticut, 2 streams
in southern New Hampshire, and 2 streams in northern Rhode
Island—during July through December 2004. Bankfull
channel geometry and discharge data for six other streams

in or near Massachusetts collected as part of other studies
were also used in the development of equations. The six
additional sites include two in Massachusetts, three in New
York, and one in Vermont. The simple regression equations
were developed by relating bankfull width, mean depth, cross-
sectional area, and discharge to drainage area at these 33 sites
in and near Massachusetts. Multiple regression with additional
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basin characteristics also was used to develop equations. The
simple regression equations developed for Massachusetts
are compared to equations developed for other areas in the
eastern United States and southeastern Canada. Limitations
of the regional curves, methods used in data collection, and
estimation of the bankfull discharge are discussed.

Description of Study Area

The bankfull geometry and discharge at a stream location
can be greatly affected by the geography, climate, and surficial
geology upstream from that location. In Massachusetts, these
factors, particularly the extent and type of surficial deposits,
could affect stream channel and flow characteristics.

Massachusetts encompasses 8,093 square miles (mi?)
in the northeastern United States (fig. 1). Elevations range
from sea level in coastal areas to about 3,500 feet (ft) above
sea level (NAVD 88) in the northwest. Elevations generally
increase from eastern to western Massachusetts. The
climate in Massachusetts is humid with average annual pre-
cipitation ranging from about 40 to 45 inches (in.) in eastern
Massachusetts to about 40 to 50 in. in western Massachusetts,
where higher elevations may cause orographic effects. Average
annual temperature is about 50 degrees Fahrenheit (‘'F) in east-
ern Massachusetts and about 45 °F in western Massachusetts.

Surficial deposits that overlie bedrock in most of
Massachusetts were deposited mainly during the last glacial
period but can include areas of recent floodplain alluvium
deposits. In this report, these surficial deposits are classified
as either till (which includes till, till with bedrock outcrops,
sandy till over sand, and end-moraine deposits) or stratified
deposits (which include sand and gravel, coarse sand, fine-
grained sand, and floodplain alluvium deposits). Till (also
known as ground moraine) is an unsorted, unstratified mixture
of clay, silt, sand, gravel, cobbles, and boulders, typically
deposited by glaciers on top of bedrock throughout much of
the State. Till is primarily found in upland areas but can also
be found at depth in river valleys. Stratified deposits include
sorted and layered glaciofluvial and glaciolacustrine deposits.
Glaciofluvial deposits are material of all grain sizes (clay,
silt, sand, gravel, and cobbles) deposited by glacial meltwater
streams in outwash plains and river valleys. Glaciolacustrine
deposits generally consist of clay, silt, and fine sand deposited
in temporary lakes that formed after the retreat of the glacial
ice sheet. Stratified deposits are more widespread in eastern
Massachusetts than in western Massachusetts. In eastern
Massachusetts, stratified deposits can be extensive outwash
plains, particularly in the southeast. In other areas of the State,
stratified deposits are more likely to be found in river valleys.

On Cape Cod and the Islands and the area of southeastern
Massachusetts close to Cape Cod, the surficial geology is
almost entirely stratified deposits (Simcox, 1992, p. 47,

51, and 52) (area labeled as U.S. Environmental Protection
Agency (USEPA) Level III ecoregion—Atlantic Coastal
Pine Barrens in fig. 2). In these areas, precipitation mainly
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percolates into the soil and through the unsaturated zone to
the groundwater table (reducing surface runoff) and later
discharges to the stream as base flow. Thus, runoff peaks can
be greatly diminished in magnitude, which may also affect the
streamflows that form bankfull channel discharges.

The geomorphic and hydrologic variability associated
with different physiographic provinces can be an important
factor in determining bankfull characteristics. Denny (1982)
identifies seven physiographic provinces within the study area.
From eastern to western Massachusetts, the physiographic
provinces are the Coastal Plain, Coastal Lowlands, Central
Highlands, Connecticut Valley, Hudson-Green-Notre Dame
Highlands, Vermont Valley, and the Taconic Highlands (fig. 2).
Additionally, the USEPA has divided the United States into
ecological regions (U.S. Environmental Protection Agency,
20006). These regions are based on ecosystems that generally
are similar and have been identified through the analysis
of the patterns and the composition of biotic and abiotic
features. These features include geology, physiography,
vegetation, climate, soils, land use, wildlife, and hydrology.
The study area includes four Level III ecoregions (U.S.
Environmental Protection Agency, 2006). From eastern to
western Massachusetts, the USEPA Level III ecoregions are
Atlantic Coastal Pine Barrens, Northeastern Coastal Zone,
Northeastern Highlands, and Eastern Great Lakes and Hudson
Lowlands (fig. 2).

Methods of Data Collection and
Analysis

The methods used for site selection, data collection for
bankfull channel geometry, and data analysis to determine
bankfull discharge and recurrence interval are similar to those
used in other studies of bankfull characteristics of streams
in the eastern United States. As in the other studies, the data
collection and analyses were based on surveys done at USGS
streamgages and associated stream reaches using methods
outlined by Leopold (1994) and Rosgen (1994, 1996). Field
data were collected between July and December 2004. The
methods described in this section were used at the 27 sites
for which data were collected and analyzed as part of the
current study, unless otherwise indicated. Methods of data
collection and analysis for the six additional sites are similar
and are described in other reports. Methods for the two sites
in Massachusetts are described by the U.S. Department of
Agriculture, Natural Resources Conservation Service (Thomas
Garday, U.S. Department of Agriculture, written commun.,
2005). The three sites in eastern New York studied by the
USGS are described in Mulvihill and Baldigo (2007). The
one site in Vermont is described in Jaquith and Kline (2006)
for the Vermont Department of Environmental Conservation,
Water Quality Division, River Management Program.
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Site Selection

The stream sites that were used in this study met a num-
ber of general selection criteria that are similar to the criteria
used in other bankfull studies in the eastern United States.
These criteria are

1. the site is at a continuous or recently discontinued USGS
streamgage or crest-stage gage in or near Massachusetts;

2. the streamgage or crest-stage gage at the site has a mini-
mum of 10 years of streamflow record;

3. streamflow at the site is relatively naturally flowing with
little to no high-flow regulation by dams, diversions, or
other features;

4. the drainage area contains less than 25 percent urban
land use, where urban land use includes commercial,
industrial, transportation, and high-density residential
(MassGIS, 2009);

5. the site is wadeable for surveying; and

6. identifiable bankfull indicators are present.

Additionally, sites with differing drainage areas were included
to develop equations that would be applicable throughout the
State.

All current and discontinuous streamgages in and
near Massachusetts with data in the USGS National Water
Information System (NWIS) were reviewed in terms of these
selection criteria. Twenty-seven streamgages were identified in
NWIS that met the criteria (table 1 and fig. 1).

Bankfull Stage Indicators

Bankfull stage is the elevation of the streamwater surface
when the stream fills its channel; it can be recognized in the
field by a number of physical indicators and characteristics
along the stream’s banks. Identification of bankfull-stage
indicators (henceforth “bankfull indicators™) generally
followed procedures discussed in Harrelson and others
(1994), Leopold (1994), U.S. Department of Agriculture,
Forest Service (1995, 2003, and 2004), Rosgen (1996), and
Powell and others (2004). For this study the emphasis was on
the following bankfull indicators in this order: (1) the active
floodplain (a flat depositional surface adjacent to the stream
channel) where the stream overtops its banks, (2) depositional
features (such as point bars), (3) changes in the bank slope,
(4) changes in the particle size of bank material, (5) undercuts
or scour lines in the bank, and (6) changes in vegetation on
the bank (for example, an area with no trees, transitioning to
an area with trees). The most common feature used for the
identification of the bankfull stage was the active floodplain
where the stream overtopped its banks.

As a guide to field investigations and for comparison
with field observations, the stream stages of peak discharges
with recurrence intervals of 1 to 10 years were estimated from
discharge data at the streamgage associated with each site
(table 2). Previous studies have shown that bankfull conditions
are associated with peak discharges that recur, on average,
every 1.5 years (Dunne and Leopold, 1978; Harrelson and
others, 1994; Rogen, 1996). The stages associated with the
1- to 2-year recurrence interval peak discharges were used
in the field to help identify the general areas along stream-
banks to be examined for bankfull indicators. Recurrence
intervals of annual peak discharges were calculated using a
Log-Pearson Type III analysis following procedures outlined
by the Interagency Advisory Committee on Water Data (1982)
for the associated streamgage at each site for the period of
record. The estimated peak discharges for the 1- to 2-year
recurrence intervals then were used with the 2004 water year'
stage-discharge rating curve for active streamgages to deter-
mine the corresponding stream stage of these peak discharges;
the most recent stage-discharge rating curve available for the
time period when the streamgage was in operation was used
for discontinued streamgages. In the field, the elevations on
the streambank of water levels (stage) that would be associ-
ated with these peak discharges were determined using the
difference between the elevation (stage) of water surface at the
time of the field survey and the peak discharge stage values.
Generally field bankfull indicators were found to fall within
the range of elevations (stage) associated with the 1- to 2-year
recurrence interval peak discharges at each site. In all cases,
however, the best field bankfull indictor was used, even if it
was above or below the range of elevations (stage) estimated
from peak discharges.

Bankfull Channel Geometry

The procedures for determining bankfull channel-
geometry characteristics generally followed the methodologies
presented in a number of widely used publications. Bankfull-
stage indicators were identified at 14 to 25 locations (averaged
20 locations) along the stream channel, separated by a
distance equivalent to approximately one bankfull width, at
each of the 27 sites. The latitude and longitude of the most
upstream location and the most downstream location at each
of the 27 sites are presented in appendix 1. The total length
of stream surveyed at each site averaged about 1,384 feet (ft)
(range 552-2,661 ft). At the 14 to 25 locations at each site, the
bankfull indicators were flagged on the left and right stream
banks (looking downstream). The best indicators (right and
left banks) were identified, and any other likely indicators
at higher or lower elevations were also identified. The type
of bankfull indicator generally was noted, and generally, a
relative rating of good, fair, or poor was noted.

'A water year is the 12-month period beginning October 1 and ending
September 30. It is designated by the calendar year in which it ends.



The elevations of bankfull indicators, the water sur-
face, and the stream thalweg were determined relative to the
established datum at the streamgage at each site using standard
surveying techniques (Harrelson and others, 1994; Leopold,
1994; U.S. Department of Agriculture, 1995, 2003, and 2004;
Rosgen, 1996; and Powell and others, 2004). The accuracy
of the elevation points surveyed was recorded to the nearest
0.01 ft, and all loops within the survey closed within 0.02 ft
of the starting elevations. The horizontal distances between
the locations were measured, generally along the thalweg of
the stream.

Detailed cross sections to define bankfull channel geom-
etry (width, mean depth, and cross-sectional area) were sur-
veyed at two of the locations where bankfull indicators were
flagged at each site. These detailed cross-sectional surveys
were made at riffle sections at the two locations that were most
representative of the bankfull channel geometry of the entire
stream reach. The detailed cross-sectional survey consisted
of 20 to 25 points in a section across the stream at which the
elevation of the stream channel bottom and streambanks were
determined; points along the cross sections were more closely
spaced where changes in the elevation of the stream channel
bottom and streambanks were greatest. Additional data on
streambed materials were collected at the two riffle locations,
using methods described by Wolman (1954) (appendix 2). The
data included measurements of the intermediate particle-size
diameter at 50 locations across each of the two cross sections.

The elevations of the bankfull indicators, water surface,
and thalweg and the distance along the stream reach were
entered into a Microsoft EXCEL spreadsheet template devel-
oped for bankfull stream reach surveys (Peter Cinotto, U.S.
Geological Survey, written commun., 2004). The spreadsheet
plotted a profile of the bankfull indicators, water surface, and
thalweg of the stream reach and the surveyed cross section at
the two selected riffle locations. The spreadsheet calculated
the bankfull and water-surface slopes. The spreadsheet also
calculated bankfull width, mean depth, cross-sectional area,
and the particle-size distribution of the streambed material at
the two detailed cross sections.

Bankfull Discharge

Bankfull discharge for each of the 27 sites was calculated
using the elevations of bankfull indicators at locations that
were in the gage pool of the streamgage. This method was
the primary method of calculating bankfull discharge for the
present study, and the values of bankfull discharge calculated
in this way were used to develop the equations. The gage
pool is the area of the stream reach in which the stream stage
is recorded and for which the existing stage-discharge rela-
tion (rating curve) is determined. Only locations within the
gage pool could be used because the elevations needed to be
related to the elevation of the water surface in the gage pool
in order to use the stage-discharge relation developed for the
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streamgage to calculate bankfull discharge. In most cases, only
one of the locations where bankfull indicators were flagged
along the stream reach at each site was located in the gage
pool. In those cases, the elevations of the bankfull indicators
from the right and left banks were averaged to determine the
bankfull elevation at the streamgage. In cases where more than
one location was in the gage pool, the elevations of the bank-
full indicators from right and left banks for all those locations
were averaged. The bankfull stage then was used with the
stage-discharge rating curve that was applicable when the data
were collected (water year 2004) for that streamgage to esti-
mate the bankfull discharge. For discontinuous streamgages,
the most recent stage-discharge rating curve that was avail-
able for the time period when the streamgage was operating
was used.

The recurrence interval of the bankfull discharge at
each of the 33 sites was determined from an analysis of the
annual instantaneous peak discharges for the period of record
through water year 2009 at each site. The Log-Pearson Type
1T method (Interagency Advisory Committee on Water Data,
1982) was used to determine flood frequency (recurrence
interval of specific flood discharges) from the streamflow
record. The number of water years of record analyzed for
the 33 sites ranged from 19 to 97 with an average of about
54 years and a median of 49 years (table 2). A minimum of
10 years of record is typically used for a peak-flow analysis.
The recurrence intervals of bankfull discharges were taken
as equal to the recurrence interval of the equivalent annual
instantaneous peak discharge (table 2). For those sites with
bankfull discharges between recurrence intervals of the com-
puted peak discharges in table 2, the bankfull discharge recur-
rence intervals were estimated by interpolation.

Bankfull discharge was also estimated for each of the
27 sites using two alternative methods that use data collected
at the two riffle locations at each site where detailed cross
sections were surveyed. These methods were considered
check methods of the primary method of estimating bankfull
discharge, which was done using the elevation of bankfull
indicators in the gage pool of each site and the corresponding
stage-discharge rating curve. Detailed data used in the two
alternative check methods are provided in appendix 2.

The first alternative check method, which is the more
common method, uses the Manning’s equation.

2 1

1.49

0=—""4R*S?, (1)
n
where

QO  =discharge, in cubic feet per second;

n = Manning’s roughness coefficient;

A = cross-sectional area of channel, in square
feet;

R = hydraulic radius, in feet; and

S =energy gradient or friction slope, in feet per
foot.
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Development of Equations for Estimating Bankfull Geometry and Discharge 1"

For this study, the variable S was approximated using the
estimated water-surface slope at the riffle cross section. Jarrett
(1984) reports that the use of the water-surface slope in place
of the energy or friction slope, S, is a common practice. The
water-surface slope was estimated using the slope of a best-fit
line through the water-surface elevations at the surveyed loca-
tion one bankfull width upstream from the riffle section, at the
riffle section, and at the surveyed location one bankfull width
downstream from the riffle section.

The Manning’s roughness coefficient “n” was calculated
using four equations developed by Limerinos (1970) using
thed , d,, d,,and d of the streambed material. For this
study, the particle-size distributions of the streambed material
atthed , d,, and d, [intermediate particle diameter that
equals or exceeds that of 16, 50, and 84 percent of the particle
diameters, respectively, determined by methods described by
Wolman (1954)] were determined from the 50-point pebble
count of the intermediate particle-size diameter at each of
the two riffle cross sections. The d (weighted particle-size
distribution) was determined from the following equation that

weights the d, , d, and d,.
d, =((0.1d,;)+(0.3dy,) +(0.6dy,)) )

Manning’s roughness coefficient “n” using the d,, was

0.0926 ’ 3)
0.10 1.60log—
16
using the d_, the equation was
1
6
e 0.0926R - 4)
0.35+2.0log—
d50
using the d,,, the equation was
1
= 0.0926R¢ ,and (5)
1.16+ 2.Ologi
84
using the d , the equation was
1
6
ne 0.0926R - (6)
0.90+ 2.0logd—

w

where
n = Manning’s roughness coefficient;
R = hydraulic radius, in feet;
d, = 16th percentile particle diameter of bed
material, in feet;
d, = 50th percentile (median) particle diameter
of bed material, in feet;
dg, = 84th percentile particle diameter of bed
material, in feet; and
d, = weighted particle diameter of bed material,

in feet (see equation 2).

With a second alternative check method, bankfull dis-
charge also was calculated using an equation developed by
Jarrett (1984) for high-gradient streams.

0=3.84R"¥S"", (7
where
O = discharge, in cubic feet per second;
A = cross-sectional area of channel, in square
feet;
R = hydraulic radius, in feet; and
S =energy gradient or friction slope, in feet
per foot.

Jarrett (1986, p. 15) notes that S (the energy gradient or
friction slope) is the slope of the energy line of a body of flow-
ing water. Also, Jarrett (1986) states that, on the basis of data
from 21 streams used to develop equation 7 (Jarrett, 1984), the
friction slope and water-surface slope can be used interchange-
ably. The major limitation of the equation is that the water-
surface slope of the stream channel must be between 0.002 to
0.04 ft/ft. Other limitations are discussed by Jarrett (1984) in
greater detail.

Development of Equations for
Estimating Bankfull Geometry and
Discharge

The common method of estimating bankfull channel
geometry and discharge is to relate bankfull width, mean
depth, cross-sectional area, and discharge to drainage area
through regression equations and graphic plots. The plots of
the regression equations for bankfull channel geometry and
discharge are commonly referred to as “regional curves.”
Regional curves are based on simple regression equations,
which use one explanatory variable, drainage area, to estimate
the response variables of bankfull width, mean depth, cross-
sectional area, and bankfull discharge. Multiple regression
equations have more than one explanatory variable, such as
factors and basin characteristics other than drainage area, that
may affect bankfull geometry and discharge.
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Factors Affecting Bankfull Channel Geometry
and Discharge

Drainage area of a basin is the main factor affecting
bankfull channel geometry and discharge. However, physical,
hydrologic, land-use, and climatic characteristics of a drainage
basin can affect bankfull channel geometry and discharge.
For example, bankfull studies in Pennsylvania (Chaplin,
2005) and Virginia (Keaton and others, 2005) found that the
presence of carbonate bedrock was inversely related to values
of bankfull discharge, width, mean depth, and cross-sectional
area. Sherwood and Hutiger (2005) found that main-channel
slope and elevation were related (positive and negative,
respectively) to bankfull channel geometry and discharge.
Anthropogenic factors, such as flood control dams or major
diversions, also can affect bankfull channel geometry and
discharge, but because the present study used naturally flowing
streams with little to no peak-flow regulations, anthropogenic
factors were not considered here.

Characteristics that could affect bankfull channel geom-
etry and discharge were summarized by reviewing peak-flow
studies in states in northeastern United States: Connecticut
(Ahearn, 2004), Maine (Hodgkins, 1999), Massachusetts
(Wandle, 1983; Murphy, 2001), New Hampshire (Olson,
2009), New York (Lumia and others, 2006), Rhode Island
(Zarriello and others, 2012), and Vermont (Olson, 2002).

All of these studies found drainage area to be a significant
variable, along with characteristics of the basin such as areal
percentage of lakes and ponds (Olson, 2002), areal percent-
age of wetlands (Hodgkins, 1999 and Olson, 2009), areal
percentage of basin storage (lakes, ponds, and swamps)
(Wandle, 1983; Lumia and others, 2006; and Zarriello and
others, 2012), areal percentage of forest land (Lumia and
others, 2006), main-channel slope (Wandle, 1983; Lumia and
others, 2006; and Olson, 2009), ratio of main-channel slope
to basin slope (Lumia and others, 2006), percent of a basin
above a set elevation (Olson, 2002 and Lumia and others,
2006), mean basin elevation (Wandle, 1983; Ahearn, 2004),
difference between the mean and minimum basin elevations
(Murphy, 2001), basin lag factor (Lumia and others, 2006),
drainage density (Zarriello and others, 2012), mean-annual
runoff (Lumia and others, 2006), maximum snow depth
(Lumia and others, 2006), mean annual precipitation (Lumia
and others, 2006), mean April precipitation (Olson, 2009),
and the recurrence interval associated with 24-hour rainfall
amounts (Ahearn, 2004). Characteristics that were shown by
these studies to have positive effects on peak flow are drainage
area, main-channel slope, percent of a basin higher than a set
elevation, mean basin elevation, mean annual precipitation,
and the recurrence interval of 24-hour rainfall amounts. Char-
acteristics shown to have negative effects on peak flows are
basin storage, percentage of lakes and ponds, areal percentage
of wetlands, percentage of forest land, average main-channel
elevation, and basin shape.

Bankfull Channel Geometry and Discharge at
Study Sites

Bankfull geometry (width, mean depth, and cross-
sectional area) and discharge are presented in table 3 for the
27 sites at which data were collected as part of the present
study and for the 6 sites for which data were compiled from
other studies. Data from all 33 sites were used to develop the
equations and regional curves.

Bankfull width, mean depth, and cross-sectional area
were determined from the two surveyed cross sections at riffle
locations at the 27 sites at which data were collected as part of
this study; values from the two cross sections were averaged
for use in developing the equations. Bankfull geometry for
the 6 additional sites was determined as the average of values
from 1 to 7 cross sections per site (table 3). Average values for
all 33 sites used in developing equations ranged from 13.5 to
148 ft for bankfull width, 0.73 to 5.8 ft for bankfull mean
depth, and 9.77 to 858.5 ft? for bankfull cross-sectional area.

Estimates of bankfull discharge were made at the
27 sites using three methods—one primary method and two
alternative check methods. Bankfull discharge calculated from
the elevation of bankfull indicators and the stage-discharge
rating curve at the streamgage was the primary method, and
the values that were calculated from this method were used
in developing equations (table 3). This method was used as
the primary method because the stage-discharge rating curve
is based on physical measurements of discharge and stage
at the site. It also is the simplest method, requires the fewest
assumptions, and requires estimation of the fewest number of
variables. The two alternative methods for estimating bankfull
discharge provided checks on the results of the bankfull
indicator-stage method for comparison of the 27 sites where
data were collected for this study. The two alternative check
methods were based on data collected at the two surveyed
riffle cross-section locations.

Bankfull discharge at the 27 study sites, based on the
primary bankfull indicator-stage method for comparison with
values determined using the other two check methods, ranged
from 46 to 3,470 cubic feet per second (ft*/s) (table 3). The
recurrence intervals of bankfull discharges for the 27 study
sites ranged from 1.03 to 3.48 years (table 3) with an aver-
age of 1.58 years and a median of 1.34 years. For all 33 sites
that provided the data used to develop the equations, bankfull
discharge ranged from 24 to 5,640 ft/s, and the recurrence
intervals ranged from 1.03 to 3.48 years with an average of
1.53 years and a median of 1.34 years.

The average bankfull discharges calculated using the
Limerinos d  equation (equation 6) (1970) and the Manning’s
equation (equation 1) for each of the 27 sites ranged from
132 to 3,302 ft¥/s (table 4); that range compares well with
the range of estimated bankfull discharges using the bankfull
indicator elevations and the stage-discharge rating curve
(primary) method for the 27 sites (table 3). Evaluation of the
percent difference between the two methods found that the
average and median difference was about 25 and 21 percent
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[USGS station no.: Streamgages shown in figure 1 and described in table 1. USGS, U.S. Geological Survey; no., number; mi?, square mile; ft, foot; ft>, square foot;
ft*/s, cubic foot per second; yr, year; CT, Connecticut; MA, Massachusetts; NH, New Hampshire; NY, New York; RI, Rhode Island; VT, Vermont; --, unknown]

Drain- Bankfull Discharge Bank-  Bankfull Banidull
. Cross- Cross-
USGS . age dis- recurrence . full mean .
. Station name . section . sectional
station no. area charge interval o width depth area
mi? ft¥/s r ) ft ft
(mi?) (fe/s) (yr) (ft) (ft) (f)
Data collected for this study

01093800  Stony Brook Tributary near Temple, NH 3.60 211 241 9 24.00 1.65 39.54
17 25.00 1.50 37.42
Average 24.50 1.58 38.48
01096000  Squannacook River near West Groton, MA 63.7 742 1.14 3 81.50 3.52 286.89
16 65.90 3.01 198.36
Average 73.70 3.27 242.63
010965852 Beaver Brook at North Pelham, NH 47.8 433 1.16 3 57.00 391 223.05
14 43.80 2.82 123.47
Average 50.40 3.37 173.26
01100600  Shawsheen River near Wilmington, MA 36.5 295 1.10 6 57.80 3.59 207.46
10 74.30 2.47 183.59
Average 66.05 3.03 195.53
01101000  Parker River at Byfield, MA 21.3 273 3.16 1 43.50 3.08 133.79
2 49.40 2.47 121.93
Average 46.45 2.78 127.86
01103500  Charles River at Dover, MA 183 954 1.33 11 98.50 3.96 390.01
17 98.80 3.97 392.00
Average 98.65 3.97 391.01
01105600  Old Swamp River near South Weymouth, MA 4.50 226 2.73 8 40.30 1.28 51.47
14 30.80 1.34 41.29
Average 35.55 1.31 46.38
01105870  Jones River at Kingston, MA 15.7 253 3.48 6 42.50 2.00 85.00
13 34.80 2.16 75.05
Average 38.65 2.08 80.03
01109000  Wading River near Norton, MA 433 295 1.15 5 40.00 2.13 85.06
10 41.30 2.56 105.60
Average 40.65 2.35 95.33
01109070  Segreganset River at Dighton, MA 10.6 193 1.07 8 31.30 2.28 71.42
14 33.80 1.62 54.66
Average 32.55 1.95 63.04
01111300  Nipmuc River near Harrisville, RI 16.0 318 1.31 9 46.00 2.24 103.07
13 57.50 2.03 116.63
Average 51.75 2.14 109.85
01111500  Branch River at Forestdale, RI 91.2 1,210 1.34 7 87.00 3.67 319.58
9 79.80 3.18 253.39
Average 83.40 3.43 286.49
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Table 3. Bankfull channel geometry and discharge for study sites in and near Massachusetts.—Continued

[USGS station no.: Streamgages shown in figure 1 and described in table 1. USGS, U.S. Geological Survey; no., number; mi?, square mile; ft, foot; ft>, square foot;
ft*/s, cubic foot per second; yr, year; CT, Connecticut; MA, Massachusetts; NH, New Hampshire; NY, New York; RI, Rhode Island; VT, Vermont; --, unknown]

Drain- Bankfull Discharge Bank-  Bankfull Bankdfull
. Cross- cross-
USGS . age dis- recurrence . full mean .
. Station name . section . sectional
station no. area charge interval no width depth area
mi? ft¥/s r ) ft ft
(mi?) (ft/s) (yr) (ft) (ft) (#)
Data collected for this study—Continued

01162500  Priest Brook near Winchendon, MA 194 182 1.10 6 59.60 1.59 94.98
9 51.50 2.48 127.82
Average 55.55 2.04 111.40
01163200  Otter River at Otter River, MA 34.1 374 1.43 6 66.50 1.61 107.34
13 52.90 1.93 102.18
Average 59.70 1.77 104.76
01169000  North River at Shattuckville, MA 89.0 3,070 1.23 2 108.80 491 534.10
17 103.80 4.80 497.87
Average  106.30 4.86 515.99
01169900  South River near Conway, MA 24.1 1,710 1.71 9 61.10 4.09 249.68
18 70.00 3.98 278.68
Average 65.55 4.04 264.18
01170100  Green River near Colrain, MA 41.4 2,110 1.52 3 109.00 2.86 311.70
15 100.50 3.52 353.37
Average  104.75 3.19 332.54
01171500  Mill River at Northampton, MA 52.6 1,600 1.33 2 86.00 3.53 303.51
6 83.00 3.60 298.96
Average 84.50 3.57 301.24
01174900  Cadwell Creek near Belchertown, MA 2.55 46 1.03 6 20.30 1.28 26.05
11 16.90 1.33 22.48
Average 18.60 1.31 24.27
01175670  Sevenmile River near Spencer, MA 8.81 163 1.74 20 37.90 1.49 56.43
13 25.50 1.80 45.99
Average 31.70 1.65 51.21
01176000  Quaboag River at West Brimfield, MA 150 1,010 1.54 4 143.90 2.67 384.51
20 121.00 2.71 327.46
Average  132.45 2.69 355.99
01181000  West Branch Westfield River at Huntington, MA 94.0 3,470 1.34 2 112.50 3.14 353.66
11 135.80 3.17 430.09
Average  124.15 3.16 391.88
01184100  Stony Brook near West Suffield, CT 10.4 274 1.38 18 48.00 1.74 83.40
22 39.50 1.58 62.26
Average 43.75 1.66 72.83
01187300  Hubbard River near West Hartland, CT 19.9 507 1.21 6 72.00 2.38 171.40
16 74.50 2.20 164.03
Average 73.25 2.29 167.72
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[USGS station no.: Streamgages shown in figure 1 and described in table 1. USGS, U.S. Geological Survey; no., number; mi?, square mile; ft, foot; ft>, square foot;
ft*/s, cubic foot per second; yr, year; CT, Connecticut; MA, Massachusetts; NH, New Hampshire; NY, New York; RI, Rhode Island; VT, Vermont; --, unknown]

Drain- Bankfull Discharge Bank-  Bankfull Bankdull
USGS . age dis- recurrence CrOS% full mean cross-
station no. Station name area charge interval section width depth sectional
(mi)  (fts) (yr) no- (ft) (ft) ey
Data collected for this study—Continued
01198000  Green River near Great Barrington, MA 51.0 1,150 1.56 7 75.30 2.76 207.61
20 62.80 3.25 204.40
Average 69.05 3.01 206.01
01199050  Salmon Creek at Lime Rock, CT 29.4 490 1.52 14 49.00 2.14 104.75
21 43.50 2.78 121.03
Average 46.25 2.46 112.89
01333000  Green River at Williamstown, MA 42.6 1,220 1.56 8 84.00 2.84 241.38
15 74.00 3.34 246.86
Average 79.00 3.09 244.12
Data collected for other studies
101174000 Hop Brook near New Salem, MA 3.39 80 1.09 1 16.41 1.10 17.54
2 17.93 1.40 25.54
6 19.70 1.40 27.21
8 27.73 0.90 25.98
Average 20.44 1.20 24.07
101174600 Cadwell Creek near Pelham, MA 0.60 24 1.24 3 17.0 0.77 13.23
4 10.8 0.86 9.29
5 18.0 0.72 12.96
8 10.5 0.56 5.86
9 13.6 0.79 10.78
10 6.7 0.85 5.66
11 18.2 0.58 10.59
Average 13.5 0.73 9.77
201334000 Walloomsac River near North Bennington, VT 111 1,879 1.10 - 110 3.7 410
301360640 Valatie Kill near Nassau, NY 9.48 227 41.07 -- 38.3 2.3 89.0
-- 345 2.2 76.8
-- 427 2.1 87.6
-- 38.7 1.8 69.6
Average 38.55 2.1 80.75
301362100 Kinderhook Creek at Rossman, NY 329 5,640 41.83 -- 139.6 5.8 806.5
-- 156.4 5.8 910.5
Average  148.0 5.8 858.5
301361000 Roeliff Jansen Kill near Hillsdale, NY 27.5 690 41.59 - 54.4 35 189.1
-- 55.8 3.8 213.8
-- 60.4 3.1 185.2
Average 56.87 3.47 196.03

'Data from Thomas Garday, U.S. Department of Agriculture, Natural Resources Conservation Service, written commun., 2005.
Data from Jaquith and Kline, 2006.

Data from Mulvihill and Baldigo, 2007.
“Recurrence interval published as 1.16, 2.1, and 1.8 years for stations 01360640, 01362100, and 01361000, respectively, by Mulvihill and Baldigo, 2007.



16 Equations for Estimating Bankfull Channel Geometry and Discharge for Streams in Massachusetts

higher, respectively, for the Limerinos method than for the
primary method. The estimated bankfull discharge using
the Jarrett equation (equation 7) (1984) ranged from 69 to
3,678 ft*/s (table 4); that range compares well with the range
of estimated bankfull discharges from the primary method in
table 3. A comparison of percent differences between these
two methods found that the average and median differences
were about 22 and 17 percent higher, respectively, for the
Jarrett method than for the primary method. The Limerinos
and Jarrett methods compared well with each other, as
comparison of the percent difference found on average that
Jarrett is about 3 percent higher than Limerinos, but the
median is 4 percent lower for Jarrett (1984) than Limerinos
(1970) (table 4).

The average bankfull width, mean depth, cross-sectional
area, and discharge generally appear to be greater at the
sites in and near western Massachusetts than at the sites in
and near eastern Massachusetts. Specifically, these bankfull
characteristics appear to be greater in the Hudson-Green-
Notre Dame Highlands between the Connecticut Valley
(east) and the Vermont Valley (west) physiographic provinces
(fig. 2) defined by Denny (1982). These sites include North
River at Shattuckville, Mass. (01169000), South River near
Conway, Mass. (01169900), Green River near Colrain, Mass.
(01170100), West Branch Westfield River at Huntington,
Mass. (01181000), Hubbard River near West Hartland,
Conn. (01187300), and Green River at Williamstown, Mass.
(01333000). Although bankfull characteristics at these six
sites appear to be slightly different from the others in and near
western Massachusetts, comparison of selected basin and land-
use characteristics (table 5), peak discharges for recurrence
intervals ranging from about 1 to 10 years (table 2) on a per
unit area basis, annual precipitation characteristics, and annual
runoff characteristics did not find any notable differences from
other sites in and near the region.

Equations

Simple and multiple regression equations for bankfull
width, mean depth, cross-sectional area, and discharge are
presented in table 6. All equations were developed using base-
10 log-transformed bankfull channel geometry, discharge,
and basin characteristic data (table 5) for all 33 study sites.
The transforming of data is a common procedure that makes
the data more symmetric, linear, and constant in variance
(homoscedasticity) (Helsel and Hirsch, 2002). Detailed results
for the simple and multiple regression analyses for bankfull
channel geometry and discharge are shown in appendix 3.
Although the equations were developed using log-transformed
data, the equations are shown in table 6 in forms that allow the
use of non-transformed data.

The simple regression analyses used the automated
procedures in the statistical software package Minitab (2003).
The standard techniques of simple regression analyses were
followed as discussed in Helsel and Hirsch (2002). The
bankfull channel geometry and discharge simple regression

equations using drainage area as the explanatory variable
were evaluated by reviewing the adjusted R? (coefficient of
determination), predicted R?, plots of residuals, and other
statistical indicators of model fit/validity. The predicted R? for
bankfull width (0.8635), mean depth (0.7995), cross-sectional
area (0.9028), and discharge (0.7428) were all acceptable
(table 6). Plots of the residuals were evaluated to verify that
the residuals had no outliers, curvature, or heteroscedasticity
(absence of homoscedasticity). Figures 3A—D show that the
residuals of the simple regression equation for the bankfull
channel geometry and discharge, by drainage area, have no
outliers, curvature, or heteroscedasticity. The residuals are
equally distributed on both the postitive and negative side
of the zero line. The regression equation residuals were also
reviewed spatially to make sure that no clear geographic trends
were observed. Figure 4 shows the geographic distribution
of the residuals for the bankfull width equation. There are six
sites in western Massachusetts where residuals had higher
positive values (regression equation is under predicting
the actual value) than other sites in and near western
Massachusetts. Four sites in southeastern Massachusetts
had higher negative values (regression equation is over
predicting the actual value) than other sites in and near eastern
Massachusetts. All other areas of the State show a fairly even
distribution of positive and negative residuals at the study sites
with no clear pattern; overall, figure 4 shows a fairly even
distribution of the residuals over the study areca. More detailed
output from the simple regression equations are presented in
appendix 3. Graphic plots of the simple regression equations
(equations 8—11 in table 6), which relate bankfull width, mean
depth, cross-sectional area, and discharge to drainage area,
are shown in figures SA-D, respectively. These plots also
serve as regional curves for Massachusetts and allow users to
easily estimate bankfull geometry and discharge from a known
drainage area for any site within the range of drainage areas
shown. The graphs are plotted using logarithmic scales for “x”
and “y” axes, which is common practice for regional curves.
In the multiple regression analysis, the basin
characteristics listed in table 5 were investigated for their
potential relation to bankfull width, mean depth, cross
sectional area, and discharge. The automated statistical
selection procedures “best subsets” and “stepwise” were
used in Minitab (2003) to evaluate the basin characteristics
as potential explanatory variables. Both selection procedures
determined the statistical contribution of the explanatory
variables (basin characteristics) that were entered into the
equation, and variables were retained or deleted on the basis
of their statistical importance. A statistical significance level
of 0.05 for p-values of explanatory variables was generally
used for entry or retention in the equations. Additionally,
potential multiple regression equations were evaluated using
the adjusted R?, predicted R? plots of residuals, and so forth
in determining the best possible equations. The standard
techniques of multiple regression analyses were followed, as
discussed in Helsel and Hirsch (2002).
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The result of the multiple regression analyses was that
drainage area was the most significant variable in explaining
the variability of bankfull width, mean depth, cross-sectional
area, and discharge. Evaluation of the other potential
explanatory variables (basin and land-use characteristics)
(table 5) found that mean basin slope [1:24,000 scale digital
elevation models (DEMs); (U.S. Geological Survey, 2007a)]
was a significant variable in the equations for bankfull
width, mean depth, cross-sectional area, and discharge at a
statistical significance level of 0.05 for p-values (appendix 3).
The predicted R? for bankfull width (0.8780), mean depth
(0.8159), cross-sectional area (0.9320), and discharge (0.8366)
regression equations were all acceptable (table 6). Plots
of the residuals were evaluated to verify that the residuals
had no outliers, curvature, or heteroscedasticity (absence of
homoscedasticity). Figures 6A—H show that the residuals
of the multiple regression equation for the bankfull channel
geometry and discharge in relation to drainage area and mean
basin slope have no outliers, curvature, or heteroscedasticity.
The residuals are equally distributed on both on the postitive
and negative side of the zero line. Additionally, the residuals
by drainage area for the multiple regression equations
(figs. 6A, B, C, and D) are smaller (closer to zero) than those
for each of the simple regression equations in figures 3A-D.
Figure 7 shows the geographic distribution of the residuals
for the bankfull width multiple regression equation. The
distribution of positive and negative residuals across the
State shows no clear geographic pattern. Clusters of sites
with positive residuals in western Massachusetts and with
negative residuals in southeastern Massachusetts, which
occurred for the residuals of the simple regression equation for
bankfull width (fig. 4), do not appear in the geographic plot
of residuals for the multiple regression equation (fig. 6). More
detailed output from the analyses of the multiple regression
equations is presented in appendix 3. Multiple regression
equations for bankfull width, mean depth, cross-sectional area,
and discharge are shown as equations 12—15, respectively,
in table 6.

Inclusion of mean basin slope as an explanatory
variable in the multiple regression equations helps account
for a significant amount of the variance that cannot be
accounted for by drainage area alone. Statistical results
for the simple and multiple regression equations in table 6
show that the R? statistics increased and that the standard
error of the estimate and prediction decreased from the
simple to multiple regression equations. These results show
that the multiple regression equations for bankfull channel
geometry and discharge equations are an improvement over
the simple regression equations, which use only drainage

area as the explanatory variable. Generally, mean basin slope
is higher in basins in western Massachusetts than in eastern
Massachusetts, the significance of which in the regression
equations may be related to a number of factors that differ
regionally across Massachusetts, such as topography, geology,
and climate.

The significance of mean basin slope in the multiple
regression equation, and the differences in geographic patterns
between residuals of the single regression equation (without
basin slope) and those of the multiple regression equation,
indicate there may be regional patterns in bankfull geometry
and discharge across Massachusetts. An alternative to repre-
senting these possible regional patterns in bankfull geometry
and discharge across Massachusetts would be to develop sepa-
rate equations for regions within the State. This approach has
been followed in several recent studies with regional equations
for bankfull geometry and discharge developed at statewide
scales. For example, in Maryland, Pennsylvania, Virginia, and
West Virginia, physiographic provinces were used as regions
for the development of separate sets of equations for these
states. Hydrologic regions, based on analyses of peak-flow
characteristics, were used to delineate regions for bankfull
equations in New York. In the present study, several possible
types of regions were considered for use in developing sepa-
rate sets of equations for different parts of Massachusetts—
physiographic provinces (Denney, 1982; 6 provinces) (fig. 2),
flood regions based on peak-flow analyses (Wandle, 1983;

3 regions—eastern, central, and western), and USEPA Level
III ecoregions (U.S. Environmental Protection Agency, 2006;
4 regions) (fig. 2). All of these regional schemes generally
divide the State longitudinally from west to east. Thus, they
generally reflect patterns of topography, climate/precipitation,
and to some extent, surficial geology. However, separate sets
of equations were not developed for regions within
Massachusetts in the present study because such equations
would be based on small numbers of sites. In equations based
on small numbers of sites, any one individual site, which
may be anomalous in some way, has a larger influence on

the equation parameters than in equations based on larger
numbers of sites. Confidence and prediction intervals also are
larger for equations that are based on smaller sample sizes.
The approach of a single set of equations for Massachusetts
is consistent with the approach taken in recent studies for the
adjacent New England States of New Hampshire and Vermont.
The multiple regression equations that include mean basin
slope, a factor that represents regional differences, to some
extent provide a function similar to separate sets of regional
regression equations.
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Bankfull width regression residuals,

Bankfull cross-sectional area regression residuals,

Figure 3. Simple regression equation residuals in relation to drainage area for bankfull: A, width, B, mean depth, C, cross-sectional
area, and D, discharge for streams in and near Massachusetts.
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Figure 4. Geographic distribution of bankfull width simple regression equation residuals for study sites in and near Massachusetts.
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Figure 5. Regional curves of the relation between bankfull: A, width, B, mean
depth, C, cross-sectional area, and D, discharge and drainage area for streams in
and near Massachusetts.
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Massachusetts.—Continued

21



28 Equations for Estimating Bankfull Channel Geometry and Discharge for Streams in Massachusetts

o
N
o1

o
o =2 o
-— ol N

o

o

(=
*

Bankfull wdith regression residuals,
in base-10 logarithms
*

Bankfull mean depth regression residuals,

100

1,000

e
*

o

e
.

in base-10 logarithms

o

N
*
*

*

-0.3

Bankfull discharge regression residuals,

Bankfull cross-sectional area regression residuals,

0.1 1 10
Drainage area, in square miles

100

1,000

in base-10 logarithms

in base-10 logarithms

-0.05

-0.15

-0.25

0.25

0.2

0.15

0.05

-0.1

-0.2

0.1

0.6

100

1,000

0.4

0.2

-0.6
0.1

1

10
Drainage area, in square miles

100

1,000

Figure 6. Multiple regression equation residuals in relation to drainage area for bankfull: A, width, B, mean depth, C, cross-sectional

area, and D, discharge and in relation to mean basin slope for bankfull: E, width, £, mean depth, G, cross-sectional area, and H,

discharge for streams in and near Massachusetts.



Bankfull width regression residuals,

Bankfull cross-sectional area regression residuals,

in base-10 logarithms

in base-10 logarithms

Bankfull mean depth regression residuals,

Bankfull discharge regression residuals,

in base-10 logarithms

in base-10 logarithms

0.25

0.2

0.15

0.1

-0.1

-0.15

-0.2

-0.25

0.6

0.4

0.2

-0.2

-0.4

-0.6

Development of Equations for Estimating Bankfull Geometry and Discharge 29
>
*
*
* 0‘
‘0
* M ’0 M *
. * 7
*
. “ * R
‘e
*
*
>
10 100
*
* .
*
* *
* * PO
. * 0
e ¢ 4 % .‘ ¢ >
. .
e ©
10 100

Mean basin slope, in percent

.
.
- . ¢
- .
* @
. *
* .
¢ ‘e *
. .
. .
. *
*
.
10 100
*
.
*
* -
*
- *
- e .
- ‘ N
% . g3 -
-
M . e
-
10 100

Mean basin slope, in percent

Figure 6. Multiple regression equation residuals in relation to drainage area for bankfull: A, width, B, mean depth, C, cross-sectional

area, and D, discharge and in relation to mean basin slope for bankfull: E, width, £ mean depth, G, cross-sectional area, and H,
discharge for streams in and near Massachusetts.—Continued



30 Equations for Estimating Bankfull Channel Geometry and Discharge for Streams in Massachusetts

73°00 72°00

70°00"

VERMONT NEW HAMPSHIRE
/ Z.m 193800

01 170100 01162500

0116900 onsszoo 01096000
01169900

1 174000
USETT
01 1 74600

1171500 0117490

42°30°

01175670
ogzm 0 01176000 5
-

42°00 ~ Ly MoTisao0) 7~ =
01111300

2 Y
RHODE” W/ /

| ISLAND v
| ‘QD o W

¥ P g

\ o
] ;

]

] 5
A\ % ﬁf ﬁ\ g
~ 1 $ : &

\ N DSOUND

- : G ISLAN
~ \?E | LO | 8

41°30 el

ATLANTIC OCEAN

50 MILES
|

Base from U.S. Geological Survey Digital Line Graphs, 1989 0
Universal Transverse Mercator, 1:100,000 scale || —L—
Other coverages from MAGIC, MassGIS, NH GANIT, NYSGIS, RIGIS, and VCGI 0 25
EXPLANATION
|:| Study basin Residual of multiple regression equation
at study site and identifier
. +0.050 to +0.180 @ -0.001t0-0.049
@ 0.000t0+0.049 @ oos0t0-0170

T
50 KILOMETERS

Figure 7. Geographic distribution of bankfull width multiple regression equation residuals for study sites in and near Massachusetts.



Development of Equations for Estimating Bankfull Geometry and Discharge 3

Confidence- and Prediction-Interval Estimation

An important adjunct to the estimation of bankfull
discharge and channel geometry using the equations is the
estimation of the confidence and prediction intervals of each
value. The confidence interval provides an estimate for the
mean of the response variable “y” (bankfull channel geometry
and discharge) given any value of the independent explana-
tory variable “x” (drainage area and mean basin slope) (Helsel
and Hirsch, 2002, p. 240-241, 300). The confidence inter-
vals provide estimates of the lower and upper limits for the
estimates of the bankfull channel geometry and discharge
from the equations. For example, the 90-percent confidence
interval for an estimated value (mean) of the response variable
(“y” or bankfull channel geometry and discharge) defines the
lower and upper limits between which the true estimate has a
90-percent chance of being found. In contrast, the prediction
interval provides the confidence interval for an estimate of an
individual response variable “y” (not the mean of the response
variable “y””) (Helsel and lesch 2002, p. 241-242, 300). The
prediction interval is different from the confidence interval
in that it incorporates an additional term for the unexplained
variability of the estimate and the slope and intercept of the
equation. The lower and upper 90-percent confidence and
prediction intervals are included on the plots of the regression
equations (figs. SA-D). The prediction interval is much wider
than the confidence interval, and the lines appear to be parallel
to the simple regression line, whereas the confidence interval
is bowed.

Equations 16—19 were used to calculate the lower
and upper 90-percent confidence and prediction intervals
for the simple and multiple regression equations. These
equations could be easily modified to calculate confidence
and prediction intervals at different levels of significance; for
example, to calculate 95-percent confidence and prediction
intervals, an alpha value (o)) of 0.05 would be used instead
of the 90-percent confidence interval and prediction interval
alpha value () of 0.10. For the simple and multiple regression
equations, the lower and upper confidence and prediction
interval equations are

X, =
0 |:log10 (drainagearea

X, =

log,, (drainagearea)

Lower C1=)//;—(t . XS X (xo ()(')()7l xo)), (16)
n=p>

Upper CI:)//;+(I . X8 X (xo (X'X)_l xo) J, (17)
n—p,E

LowerP1=)//;—(t Msz\/(1+x0 XX) j (18)
nfp,z
UpperP[z)//;+(t . XSX\/(l-i-xo XX) ) (19)
n—p,E
where
CI = confidence interval,
PI = prediction interval;
)’,; = estimated bankfull width, mean depth,

cross-sectional area, or discharge from
equations 8—15 (table 6);

= the quartile of the student’s t-distribution
having n-p degrees of freedorréc with a
probability of exceedance of > ;

n = number of observations, 33 for this study;

p = number of parameters in the regression
equation, 2 for the simple regression
equations and 3 for the multiple regression
equations (includes the intercept);

a  =0.10 for the 90-percent confidence
and prediction intervals (0.05 for the
95-percent confidence and prediction
intervals);

N = root mean square error;

1
):| for the simple regression equations;

1

for the multiple regression equations;

log,, (mean basin slope)

-1 . . a,
(XX)" = covariance matrix = [

a
12 . . .
for simple regression equations;
a21 a22



32 Equations for Estimating Bankfull Channel Geometry and Discharge for Streams in Massachusetts

all a12 al3

r 71 . . . . .
(X X ) = covariance matrix = | d,; d,, a,; | for multiple regression equations;

a31 a32 a33

X, =[1 log,, (drainage area)] for simple regression equations; and

X, = [1 log,, (drainage area) log,, (mean basin slope)] for multiple regression equations.

Parameters of the confidence and prediction interval equations
16-19 for the simple and multiple regression equations are
listed in table 7.

Application

Example calculations of the bankfull width are presented
for the simple and multiple regression equations with the
90-percent confidence and prediction intervals. The example
stream site used is USGS streamgage Green River near Great
Barrington, Mass. (01198000), which has a drainage area of
51.0 mi? and a mean basin slope of 8.336 percent (table 5).

For the example calculations of bankfull width, equations
8 (simple regression) and 12 (multiple regression) (table 6)
are used for the lower and upper 90-percent confidence and
prediction intervals. Statistical data needed to compute the
90-percent lower and upper confidence and prediction inter-
vals are in table 7.

Using the simple regression equation (equation 8,
table 6),

Bankfull width = 15.0418 (51.0) %4038 = 73,59 ft.

To calculate the associated confidence and prediction
intervals for the simple regression equation, the following
matrix is computed:

: 1 1 1
%o _[loglo (drainage area):| B |:log10 (51.0):|[1.7076]

oy <[ @) 0.208608
0.090709

-0.127177
a, ay| |-0.127177

X, =[1 log,, (drainagearea)] =[1 log,, (51.0)] =[1 1.7076]

X x(XX)" =

o [(1x0.208608) +(1.7076x~0.127177) | _[~0.008559
(1x-0.127177) +(1.7076x0.090709) | | 0.027718

X, %(X )" xx, =[(~0.008559x1)+(0.027718x1.7076) | = 0.038772 .
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Table 7. Simple and multiple regression equation confidence and prediction interval parameters for estimating the bankfull width,
mean depth, cross-sectional area, and discharge for streams in and near Massachusetts.

[t-90, the quartile of the student’s t-distribution having either n-2 (simple regression) or n-p (multiple regression, p is the number of explanatory variable
including the intercept, p = 3 for this study) degrees of freedom with a probability of exceedance of 0.05; t-95, the quartile of the student’s t-distribution having
either n-2 or n-p degrees of freedom with a probability of exceedance of 0.025; s, root mean square error; n, number of data points; (X'X)", covariance matrix]

33

Bankfull equation t-90 t-95 S n (X'X)*
Simple regression equations
Width 1.696 2.040 0.0903 33 0.208608 -0.127177
-0.127177 0.090709
Mean depth 1.696 2.040 0.0826 33 0.208608 -0.127177
-0.127177 0.090709
Cross-sectional area 1.696 2.040 0.1308 33 0.208608 -0.127177
-0.127177 0.090709
Discharge 1.696 2.040 0.2608 33 0.208608 -0.127177
-0.127177 0.090709
Multiple regression equations
Width 1.697 2.042 0.0825 33 0.669743 -0.095301 -0.540629
-0.095301 0.092912 -0.037371
-0.540629 -0.037371 0.633828
Mean depth 1.697 2.042 0.0781 33 0.669743 -0.095301 -0.540629
-0.095301 0.092912 -0.037371
-0.540629 -0.037371 0.633828
Cross-sectional area 1.697 2.042 0.1123 33 0.669743 -0.095301 -0.540629
-0.095301 0.092912 -0.037371
-0.540629 -0.037371 0.633828
Discharge 1.697 2.042 0.1986 33 0.669743 -0.095301 -0.540629
-0.095301 0.092912 -0.037371
-0.540629 -0.037371 0.633828
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The associated confidence and prediction intervals are

Y {tn—p,i X 5% (‘c(, (xay! x(,)

LOW@I" C[ :10."0 2 ] :101,8672—1,696><0.0903><\/0,038772 — 6865 ft

Upper CI :10y°+[t~—p.§ * XV(XD(X,XY xo)] —10)8672+1.696 % 00903 x 0038772 _ 7@ g0

yAO—[r XX (1+x[‘()(’X)’lxﬂ)]

LOWerPI =10 ary :101.867271.696)(0.0903X\/l+0.038772 — 51.37 ft
yT)+[t L XSX (1+x£,(X'X)71x0)]

Uppel"P[ — 10 P :101.8672+l.696><0.0903><«/]+0.038772 — 105'42 ft )

Using the multiple regression equation (equation 12,
table 6),

Bankfull width = 10.6640 (51.0)%% (8.336)*!"*! = 72.63 ft.

To calculate the associated confidence and prediction
intervals for the multiple regression equation, the following
matrix is computed:

1 1 1
x, =| log, (drainagearea) |=| log,(51.0) |=|1.7076
log,, (mean basin slope) log,, (8.336)| [0.9210

a, a, a, 0.669743 —0.095301 —0.540629
(XX) =|a, a, a,|=]|-0.095301 0092912 —0.037371
ay @, ay| |-0.540629 —0.037371  0.633828

X, 2[1 log,, (drainagearea) loglo(meanbasinslope)]z[l log,, (51.0) log10(8.336)]=[1 1.7076  0.9210]

(1x0.669743) +(1.7076 x~0.095301) +(0.9210 x-0.540629) | [ 0.009088
X x(XX) " =| (1x=0.095301)+(1.7076x0.092912) +(0.9210x~0.037371) | = | 0.028938
(1x—0.540629) +(1.7076x~0.037371) +(0.9210x0.633828) | | —0.020688

X, X(XX) ™ xx, =[(0.009088 x1)+(0.028938 x1.7076) + (~0.020688 x 0.9210) ] = 0.039448 .
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The associated confidence and prediction intervals are

2

Lower CI =1 0,

;0+[t
Upper CI =10

n-p.—
2

Yo
Lower PI =10

XX (1+x},(X’X)"xO)

Y _[tﬂfp,i X8 X (v(, (xay! xo)

L XX (x'O(X’X)"xU)
ey _ 1 01.8800 +1.697 x 0.0825 x~/0.039448

A—[t s X8 X (]+x('](X'X)71x0)

] :101,8800—1,697><0.0825><«/m =68.12 ft

=77.43ft

] =1 01 .8800 —1.697 x 0.0825 x~/1+0.039448 =52.28 ft

Upper PI = 10}’“[’””’? ] —1()-8800+1.697 x 0.0825 x VI+0.039448 _ 100.89 ft.

The use of the multiple regression equation not only
improves the estimated values of the bankfull width, but also
results in narrower confidence and prediction intervals com-
pared to those that result from the simple regression equations.
This improvement in confidence intervals and prediction inter-
vals also results when the multiple regression equations are
used instead of the simple regression equations for bankfull
cross-sectional area and discharge.

Comparison to Other Studies in
the Eastern United States and
Southeastern Canada

Several studies have been done to develop regional
curves, simple regression equations, and multiple regression
equations for areas of the eastern United States and southeast-
ern Canada (table 8). Studies in Indiana, Maryland, Michigan,
New York, North Carolina, Ohio, Pennsylvania, Vermont,
Virginia, and southeastern Ontario used field methods consis-
tent with those used in this study to develop regional curves
and simple regression equations relating bankfull width, mean
depth, cross-sectional area, and discharge. In most of these
studies, the intercepts and slopes of the regional equations that
include bankfull width, mean depth, cross-sectional area, and
discharge regional equations generally are similar to those of
this study (table 8). Additionally, median bankfull discharge
recurrence intervals for all of these studies range from 1 to
2 years.

Several recent studies have shown that the coefficients
of simple regression equations, using drainage area as the
sole explanatory variable to predict bankfull geometry and
discharge, do not differ substantially within the large areas of
northeastern United States. Bent (2006) determined that sev-
eral bankfull studies (table 8) in the Northeast generally could
be represented with one equation for bankfull width, mean
depth, cross-sectional area, and discharge. But, two studies
had at least one bankfull equation that was significantly differ-
ent from the northeastern United States set of equations—one
study in the Coastal Plain physiographic province and one
study in the Piedmont physiographic province. A similar study
by Johnson and Fecko (2008) for the eastern United States,
which used a different dataset than Bent (2006) but included
data from several of the studies in table 8, determined that the
Appalachian Plateau, New England, and Valley and Ridge
physiographic provinces could be represented by one equation
for bankfull width. They also found that bankfull width equa-
tions for the the Piedmont and Coastal Plain physiographic
provinces were significantly different from equations for the
other physiographic provinces. Faustini and others (2009)
grouped bankfull width study sites in the northeastern United
States into three major ecoregions (constructed by aggregat-
ing USEPA Level III ecoregions): the northern Appalachians,
southern Appalachians, and Coastal Plains. The Faustini and
others (2009) study did not include data from any bankfull
studies listed in table 8. On the basis of these three regional
studies, the Coastal Plain physiographic province in the north-
eastern United States likely is best represented by its own set
of bankfull equations.
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Table 8. Equation parameters used for estimating bankfull channel geometry and discharge by drainage area for selected hydrologic

[ft, foot; ft2, square foot; ft¥/s, cubic foot per second; No., number; mi?, square mile; R?, coefficient of determination; --, no data; <, less than; ~, approximately;
settings and 1 site from White (2001) in the carbonate settings. Cinotto (2003) includes 6 sites from White (2001). Chaplin (2005) includes 5 sites from White
only 37 and 3 sites for Regions A and B, respectively, for the bankfull discharge equations. McCandless (2003b) used 9 sites for the eastern Coastal Plain bankfull
in Virginia and the 14 sites used by McCandless (2003) for the Coastal Plain of Maryland and Delaware. R? values for Massachusetts (this study) and Ohio

) Width
Sltjat_e or area of Hydrologic or physiographic region(s) Reference NP' of a?;:I::I?:e ®
nited States sites e

(mi?) Intercept  Slope R?
Indiana Northern Moraine and Lake Region Robinson, 2013 25 0.26-941 13.4 0.318 0.92
Central Till Plain Region 31 0.04-812 18.2 0.327 0.94
Southern Hills and Lowlands Region 26 0.06-186 27.2 0.286 0.94
Maryland' Allegheny Plateau/Valley and Ridge McCandless, 2003a 14 0.2-73.1 13.87 0.44 0.92

Maryland Coastal Plain McCandless, 2003b 14 0.3-113 10.3 0.38 0.8
Maryland' Piedmont McCandless and Everett, 2002 23 1.47-102 14.78 0.39 0.83
Maine Coastal and central Dudley, 2004 15 2.92-298 7.67 0.52 0.82
Massachusetts' Statewide This study 33 0.60-329 15.0418  0.4038 0.88
Michigan Southern Lower Michigan Ecoregion  Rachol and Boley-Morse, 2009 28 20.9-385 8.19 0.44 0.69
New Hampshire! Statewide Shane Csiiki, NH Department of 20 2.94-385 12.335 0.4832 0.79

Environmental Services, written
commun., 2013

New York! Hydrologic region 4/4a Miller and Davis, 2003 18 3.72-332 12.51 0.51 0.88

New York! Hydrologic region 5 Westergard and others, 2005 16 0.7-332 132 0.459 0.9
New York' Hydrologic region 6 Mulvihill and others, 2005 14 1.02-290 16.9 0.419 0.79
New York! Hydrologic region 7 Mulvihill and others, 2006 10 1.07-349 10.8 0.458 0.89
New York! Hydrologic region 3 Mulvihill and Baldigo, 2007 12 0.42-329 24 0.292 0.85
New York! Hydrologic region 1 and 2 Mulvihill and others, 2007 16 0.52-396 21.5 0.362 0.89
North Carolina Coastal Plain Sweet and Geratz, 2003 22 0.6-182 9.64 0.38 0.95
North Carolina Mountains Harman and others, 2000 12 2.0-126 19.9 0.36 0.81
North Carolina Piedmont-rural Harman and others, 1999 13 0.2-128 11.89 0.43 0.81
North Carolina Piedmont-urban Doll and others, 2002 17 0.2-42.6 24.39 0.33 0.88
Ohio Region A Sherwood and Huitger, 2005 45 0.29-685 18 0.356 0.91
Ohio Region B Sherwood and Huitger, 2005 5 0.55-387 32 0.356 091
Pennsylvania Piedmont White, 2001 6 2.57-102 14.8 0.4613 0.79
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regions or physiographic provinces and states in the eastern United States and southeastern Canada.

Note: Cinotto (2003) includes 6 sites from White (2001). Chaplin (2005) includes 5 sites from White (2001) and 8 sites from Cinotto (2003) in the non-carbonate
(2001) and 8 sites from Cinotto (2003) in the non-carbonate settings and 1 site from White (2001) in the carbonate settings. Sherwood and Huitger (2005) used
discharge equation and 5 sites for the western Coastal Plain bankfull discharge equation. Krstolic and Chaplin (2007) used 6 Coastal Plain sites from their study
(Sherwood and Huitger, 2005) equations are the adjusted R%. Annable (1996a and b) does not include sites for which bankfull discharge was not determined]

Mean depth Cross-sectional area Discharge Range_of recur- Median
(ft) (ft2) (ft¥/s) rence intervals bankfull
Remarks for bankfull
Intercept  Slope R Intercept  Slope R? Intercept  Slope R? di(zr;l::;g)]e rei(,:,ltl:,?,gfe
1.3 0.176 0.75 17.0 0.495 0.92 -- - -- - -
1.6 0.159 0.56 28.8 0.487 0.88 -- - -- - -
1.9 0.183 0.58 50.9 0.468 0.87 -- - -- - -
0.95 0.31 0.91 13.17 0.75 0.93 34.02 0.94 0.99 1.05-1.8 1.51
1.01 0.32 0.87 10.34 0.7 0.96 14.65 0.76 0.97 Eastern Coastal Plain 1.04-1.37 1.14
31.35 0.73 0.98 Western Coastal Plain
1.18 0.34 0.86 17.42 0.73 0.95 84.56 0.76 0.93 1.26-1.75 1.5
0.594 0.34 0.76 4.55 0.86 0.82 5.19 1.05 0.88 <1.0 <1.0
0.9502 0.296 0.82 14.1156  0.7026 0.91 37.1364  0.7996 0.77 1.03-3.52 1.39
0.67 0.27 0.28 4.38 0.74 0.59 4.05 0.95 0.6 <1.005-10 1.25
1.2277 0.2803 0.8 15.028 0.7649 0.85 41.448 0.9191 0.8 - -
1.01 0.31 0.85 12.67 0.81 0.9 62.96 0.87 0.81 1.2-2.7 1.42
0.802 0.367 0.91 10.6 0.826 0.98 45.5 0.84 0.94 1.11-6.00 1.39
1.04 0.244 0.64 17.6 0.662 0.89 48 0.842 0.9 1.01-2.35 1.52
1.47 0.199 0.52 15.9 0.656 0.96 37.1 0.765 0.94 1.05-3.60 1.78
1.66 0.21 0.77 39.8 0.503 0.92 83.8 0.679 0.93 1.16-3.35 2
1.06 0.329 0.89 223 0.694 0.97 49.6 0.849 0.95 1.01-3.80 1.95
0.98 0.36 0.92 9.43 0.74 0.96 8.79 0.76 0.92 <1.0-1.1 <1.0
1.1 0.31 0.79 22.1 0.67 0.88 115.7 0.73 0.88 1.10-1.90 1.59
1.5 0.32 0.88 21.43 0.68 0.95 89.04 0.72 0.97 1.1-1.8 1.4
243 0.33 0.87 60.34 0.65 0.95 306.8 0.63 0.94 1.1-1.5 1.3
1.52 0.265 0.88 27.1 0.621 0.95 93.3 0.637 0.82 1.01-9.65 1.36
2.02 0.265 0.88 64.5 0.621 0.95 230 0.637 0.82 1.26-5.55 1.78
0.7804 0.3919 0.84 11.69 0.8517 0.98 69.6 0.793 0.98 1.2-1.5 1.4
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Table 8. Equation parameters used for estimating bankfull channel geometry and discharge by drainage area for selected hydrologic

[ft, foot; ft2, square foot; ft¥/s, cubic foot per second; No., number; mi?, square mile; R?, coefficient of determination; --, no data; <, less than; ~, approximately;
settings and 1 site from White (2001) in the carbonate settings. Cinotto (2003) includes 6 sites from White (2001). Chaplin (2005) includes 5 sites from White
only 37 and 3 sites for Regions A and B, respectively, for the bankfull discharge equations. McCandless (2003b) used 9 sites for the eastern Coastal Plain bankfull

in Virginia and the 14 sites used by McCandless (2003) for the Coastal Plain of Maryland and Delaware. R? values for Massachusetts (this study) and Ohio

Width
State or area of Hydrologic or physiographic region(s) Reference No. of a?;:I::I?ee W
United States v g physiograp 9 sites e 9
(mi?) Intercept  Slope R?
Pennsylvania Piedmont Cinotto, 2003 14 2.57-102 13.6 0.469 0.8
Pennsylvania' Non-carbonate areas Chaplin, 2005 55 3.45-214 14.65 0.449 0.81
Pennsylvania’ Carbonate areas Chaplin, 2005 11 2.57-216 9.83 0.449 0.81
Vermont! Statewide Jaquith and Kline, 2001 14 8.9-139 10.18 0.5 0.78
Virginia, Maryland, Valley and Ridge Keaton and others, 2005 41 0.1-247 12.445 0.4362 0.89
and West Virginia'
Virginia and Coastal Plain Kirstolic and Chaplin, 2007 20 0.28-113 11.9899  0.63803  0.94
Maryland
Virginia' Piedmont Lotspeich, 2009 17 0.29-111 12.964 0.3721 0913
West Virginia Eastern region (Valley and Ridge) Messinger and Wiley, 2004 11-18  46.5-1,619 8.76 0.503 0.54
Western region (Appalachian Plateau) 36-56 2.78-1,354 16 0.423 0.84
West Virginia' Appalachian Plateau Messinger, 2009 37 0.76-205 20.4865  0.7133 0.9492
Ontario, Canada Southern Annable, 1996a and b 47 7.3-456 9.4571 0.442 0.58
Northeast Appalachian Plateau, Coastal Plain, Bent, 2006 204 0.20-332 13.2635  0.4459 0.82
New England, Piedmont, and Valley
and Ridge
Eastern Eastern Highlands Faustini and others, 2009 275 ~0.4-730 12.62 0.38 0.75
Northeast Northern Appalachians Faustini and others, 2009 87 ~1-250 12.13 0.39 0.72
Eastern Southern Appalachians Faustini and others, 2009 188 ~0.4-730 12.69 0.37 0.77
Northeast New England Faustini and others, 2009 45 ~1-250 13.02 0.37 0.60
Northeast Mid-Atlantic Faustini and others, 2009 77 ~1-250 12.11 0.38 0.75
Eastern Appalachian Plateau, New England, Johnson and Fecko, 2008 154 ~0.2-350 13.34 0.45 --
and Valley and Ridge
Eastern Piedmont Johnson and Fecko, 2008 36 ~0.3-200 13.98 0.39 -
Eastern Coastal Plain Johnson and Fecko, 2008 68 ~0.3-420 10.41 0.38 --
Northeast Appalachian Plateau, New England, This study 334 0.1-396 15.1988  0.4190 0.86

Piedmont, and Valley and Ridge

'Study used in northeastern United States bankfull width regression equation covering the Appalachian Plateau, New England, Piedmont, and Valley and Ridge
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regions or physiographic provinces and states in the eastern United States and southeastern Canada.—Continued

Note: Cinotto (2003) includes 6 sites from White (2001). Chaplin (2005) includes 5 sites from White (2001) and 8 sites from Cinotto (2003) in the non-carbonate
(2001) and 8 sites from Cinotto (2003) in the non-carbonate settings and 1 site from White (2001) in the carbonate settings. Sherwood and Huitger (2005) used
discharge equation and 5 sites for the western Coastal Plain bankfull discharge equation. Krstolic and Chaplin (2007) used 6 Coastal Plain sites from their study
(Sherwood and Huitger, 2005) equations are the adjusted R%. Annable (1996a and b) does not include sites for which bankfull discharge was not determined]

Mean depth Cross-sectional area Discharge Range of recur- Median
() (f2) (f6/s) rence intervals bankfull
Remarks for bankfull
discharae recurrence
Intercept  Slope R? Intercept Slope R? Intercept  Slope R? ( F)l interval
years
0.912 0.339 0.72 12.4 0.81 0.94 53.1 0.842 0.93 1-1.5 1.3
0.875 0.33 0.72 12.04 0.797 0.92 43.21 0.867 0.92 1.0-1.9 1.4
0.894 0.284 0.76 8.62 0.734 0.88 44.29 0.634 0.73 1.2-2.3 1.5
1.22 0.25 0.59 12.21 0.75 0.85 17.69 1.07 0.81 1.12-1.86 1.5
1.001 0.2881 0.87 12.595 0.7221 0.94 43.249 0.7938 0.91 <1.1-2.3 1.3
1.145 0.27345  0.87 10.4459  0.36543  0.89 283076  0.59834  0.79 <1-2.1 1.15

0.892 0.3721 0.915 11.636 0.7981 0.95 43.895 0.9472 0.949 143 1.5
0.59 0.411 0.72 5.48 0.917 0.9 - - - - -
1.32 0.351 0.71 18.2 0.797 0.93 - -- - - --
1.067 0.3128 0.8783 20.4865  0.7133 0.9767 59.81 0.8538 0.9592 1.1-3 1.4
1.2033 0.2345 0.31 3.4685  0.6765 0.7 41.662 0.7217 0.63 - -
0.9951 0.3012 0.76 12.8552  0.7537 0.90 40.9545  0.8448 0.80 - -
1.0377 0.2989 0.80 15.5826  0.7198 0.92 49.4778  0.8206 0.88 - -

physiographic provinces, and shown in figure 8.
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The equations and data for bankfull width developed for
Massachusetts in the present study are compared in figure 8
to the equations and data for bankfull width developed by
the previous 15 studies listed in table 8§ that were located in
the northeastern United States. The 15 previous studies in
the northeastern United States studies addressed in figure 8
include studies in Maryland (two physiographic provinces),
New Hampshire (statewide), New York (six hydrologic
regions), Pennsylvania (carbonate and non-carbonate regions),
Vermont (statewide), Virginia (two physiographic provinces),
and West Virginia (one physiographic province). The earlier
Pennsylvania studies by White (2001) and Cinotto (2003)
were included, although they are listed as not being included
in table 8) because their data are in the statewide Pennsylvania
study by Chaplin (2005). The Coastal Plain physiographic
province studies in Maryland (McCandless, 2003b) and
Virginia (Krstolic and Chaplin, 2007) were not included

because their equations did not compare well with those of
the other 15 studies and the present study for Massachusetts.
The study in Maine (Dudley, 2004) and the earlier study in
West Virginia (Messinger and Wiley, 2004) are not included
in figure 8; the equations from these studies were not
considered comparable because they were developed using
office records of data obtained during discharge measurements
rather than data from field surveys of stream reaches
specifically conducted for bankfull studies. The studies in
table 8 from Indiana, Michigan, North Carolina, Ohio, and
southern Ontario, Canada, were excluded because they were
not considered part of the Northeast. Thus, the 15 previous
studies and the present study for Massachusetts included in
figure 8 represent the Appalachian Plateau, New England,
Piedmont, and Valley and Ridge physiographic provinces in
the northeastern United States.
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Figure 8. Regression lines for bankfull width in relation to drainage area for selected studies in the northeastern United States.
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For the 16 bankfull width equations (15 previous studies
and the present study for Massachusetts) shown in figure 8, the
y-intercepts ranged from 9.83 to 24 with a median of 13.87,
and the slopes ranged from 0.292 to 0.7133 with a median of
0.44 (table 8). A regression equation that would represent the
334 study sites for these 16 bankfull width equations across
the northeastern United States would have a y-intercept of
15.1988 and a slope of 0.4190 with a predicted R? of 0.8607.
This general equation for bankfull width for the northeast-
ern United States is similar to equations published by Bent
(2006) for the Northeast, by Johnson and Fecko (2008) for the
Piedmont and Appalachian-New England-Valley and Ridge
physiographic provinces, and by Faustini and others (2009)
for the northern and southern Appalachian and New England
and Mid-Atlantic water-resources regions (table 8). Bankfull
equations for mean depth, cross-sectional area, and discharge
for these 334 study sites (from the 15 previous studies and the
present study) for the northeastern United States (Appalachian,
New England, Piedmont, and Valley and Ridge physiographic
provinces) are also listed in table 8. The regression summary
statistics and analyses results for these northeastern United
States bankfull channel geometry and discharge equations are
in appendix 4.

Several studies in other states determined multiple regres-
sion equations to estimate more accurately bankfull character-
istics. In Ohio, Sherwood and Huitger (2005) determined that
bankfull characteristics could be estimated better with multiple
regression equations than with simple regression equations
that use drainage area as the sole explanatory variable. They
found that main-channel slope and mean main-channel eleva-
tion (measured using geographic information systems) were
significant variables, in addition to drainage area, and that
local channel slope and bed-material size were significant
variables if they could be field measured at the site of inter-
est. In Virginia, Keaton and others (2005) also determined that
bankfull characteristics could be estimated better with multiple
regression equations than with simple regression equations
using drainage area. They found that the percentage of carbon-
ate bedrock underlying the basin was a significant explanatory
variable in addition to drainage area in estimating bankfull
width, cross-sectional area, and discharge.

Limitations of the Regional Curves and
Regression Equations and Areas for
Further Study

The bankfull channel geometry and discharge regional
curves and equations are applicable for stream sites with
drainage areas of 0.60 to 329 mi”? and mean basin slopes of
2.2 to 23.9 percent (range of these basin characteristics for the
stream sites used to develop the regional curves and equa-
tions). The equations, which are based on data from streams
without regulated peak flows, most likely are applicable to all

streams without flood control structures, such as dams, levees,
diversions, and so forth. If a stream site has regulated peak
flows, the regional curves and equations estimate the bankfull
channel geometry and discharge as if the stream were natu-
rally flowing.

The bankfull channel geometry and discharge regional
curves and equations may not be applicable in areas of
Massachusetts where basin, land use, or climatic conditions
are appreciably different from those of the sites used to
develop the curves and equations. For example, the equations
might not apply to streams with drainage basins in which the
urban land use (commercial, industrial, transportation, and
high-density residential) is greater than about 25 percent of
the total land area. In basins with more urban land, runoff
peaks can be greatly increased in magnitude. This may affect
the bankfull channel forming discharges, which may in turn
affect the bankfull channel geometry characteristics. Basins
with more urban land also may have stream channels that have
been altered by development, which may result in unnatural
bankfull channel geometry characteristics. Additionally, the
regional curves and equations may not be applicable for
streams in basins where the surficial geology is almost entirely
stratified deposits. Stratified deposits are present mainly on
Cape Cod and the Islands and in southeastern Massachusetts
close to Cape Cod (area labeled as USEPA Level 111
ecoregion, Atlantic Coastal Pine Barrens in fig. 2). In these
areas, precipitation mainly percolates into the soil and through
the unsaturated zone to the groundwater table (reducing
surface runoff) and later discharges to the stream as base flow.
Thus, runoff peaks can be greatly diminished in magnitude,
which may affect the bankfull channel forming discharges.
The equations also may not be applicable where streams flow
through extensive wetlands.

The accuracy of the regional curves and regression
equations are a function of the quality of the data used in
their development. These data include identification of
the bankfull stage indicators, measurement of the bankfull
channel geometry characteristics, the occurrence of unknown
regulation that might affect peak flows upstream from a site,
and the measured basin characteristics. Basin characteristics
of the stream sites used in the development of the regional
curves and regression equations are limited by the accuracy
of the digital data layers used. Digital data layers [such as
digital elevation models (DEMs) (U.S. Geological Survey,
2007a), hydrography (U.S. Geological Survey, 2007b),
wetlands (MassGIS, 2011), surficial geology (MassGIS,
2007), soils (U.S. Department of Agriculture, Natural
Resources Conservation Service, Soil Survey Division,

2004; MassGIS, 2012), and land use (MassGIS, 2009)] in

the future will likely become available at scales with better
spatial resolutions than are currently (2013) available. These
digital data layers likely would improve the accuracy of the
measured basin characteristics used as explanatory variables
to predict bankfull channel geometry and discharge, but
re-examination of the regression equations would be required.
Digital data layers that might improve the equation include
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(1) county-level soil-survey maps referred to as Soil Survey
Geographic (SSURGO) database (U.S. Department of
Agriculture, Natural Resources Conservation Service, Soil
Survey Division, 2004; MassGIS, 2012); (2) 1970-2000
climate data available through the Parameter-clevation
Regressions on Independent Slopes Model (PRISM) climate-
mapping system of Spatial Climate Analysis Service at Oregon
State University (http://www.ocs.oregonstate.edu/prism/); and
(3) statewide wetlands (1:12,000 scale) interpreted from stereo
color-infrared photography (MassGIS, 2011).

The regression equations could be incorporated into
a Web-based application of the USGS STREAMSTATS
Program (http://water.usgs.gov/osw/programs/streamstats.
html). A map-based interface is used in the Web-based
application that allows a user to point and click on any
stream site, and the application will calculate selected
streamflow statistics for an ungaged site, or the user can view
available selected streamflow statistics for a gaged site. In
a similar manner, a user could click on any stream site in
Massachusetts, and the appropriate equation will estimate
the bankfull width, mean depth, cross-sectional area, and
discharge with the 90-percent prediction intervals.

Summary and Conclusions

Regional curves, simple regression equations, and mul-
tiple regression equations were developed for estimating bank-
full width, mean depth, cross-sectional area, and discharge for
streams in Massachusetts. The curves and equations provide
water-resource and conservation managers with methods for
estimating bankfull characteristics at a specific stream site in
Massachusetts. This information will assist the environmental
agencies that administer the Commonwealth of Massachusetts
Rivers Protection Act of 1996, which establishes a 200-foot-
wide protected riverfront area extending from the mean-annual
high-water line (bankfull) along each side of a perennial
stream, with exceptions for some densely developed areas
(25-foot wide). Additionally, information on bankfull chan-
nel geometry and discharge are important to Federal, State,
and local governments and private organizations involved in
stream assessment and restoration projects.

The regional curves and equations were developed from
stream surveys at 33 U.S. Geological Survey streamgages in
and near Massachusetts. Drainage areas of the 33 sites ranged
from 0.60 to 329 square miles (mi?). The surveys included
identification of bankfull stage at 14 to 25 locations about
a bankfull width apart along the stream reach at each of the
27 sites. At 2 of these locations at each of the 27 sites, a

detailed cross section was surveyed to determine the bankfull
width, mean depth, and cross-sectional area and to character-
ize the streambed material, using 50-point pebble count of the
intermediate particle-size diameter. Bankfull discharge and
the associated recurrence interval were estimated at each of
the 33 sites. The average and median recurrence intervals of
bankfull discharge in and near Massachusetts were estimated
to be 1.53 and 1.34 years, respectively.

Regional curves and simple regression equations devel-
oped for bankfull width, mean depth, cross-sectional area, and
discharge used drainage area as the sole explanatory variable.
Drainage area is the most significant explanatory variable in
estimating these bankfull characteristics, and it is also the
most commonly used variable for estimation of these bankfull
characteristics. Additionally, statistical analyses determined
that estimation of bankfull characteristics could be improved
with multiple regression equations, which include the explana-
tory variable mean basin slope in addition to the drainage
area. Results of simple regression equations using drainage
area were compared to results from other bankfull studies in
the northeastern United States. The Massachusetts bankfull
characteristics curves and equations compared well with simi-
lar studies in areas of Maryland, New Hampshire, New York,
Pennsylvania, Vermont, and Virginia, excluding the Coastal
Plain physiographic province in Maryland and Virginia. The
curves and equations also compared well with those developed
for the northeastern United States (excluding the Coastal Plain
phyiographic province) using data from the previous studies in
these states.

Limitations associated with site selection and develop-
ment of the regression equations result in some constraints
for the application of equations presented in this report. These
equations apply only to streams within the study area having
(1) a basin area that contains less than about 25 percent urban
area; (2) little to no streamflow regulation, especially by flood-
control structures; (3) drainage areas greater than 0.60 mi?
and less than 329 mi?, and (4) a mean basin slope greater than
2.2 percent and less than about 23.9 percent. The equations
may not be applicable for streams in basins where the surficial
geology is almost entirely stratified deposits. These stratified
deposits are present mainly on Cape Cod and the Islands and
in southeastern Massachusetts close to Cape Cod. The equa-
tions also may not be applicable where streams flow through
extensive wetlands. Regardless of the setting, the regional
curves presented in this report are not intended for use as the
sole method for estimating bankfull characteristics; however,
they may supplement field identification of the bankfull chan-
nel when used in conjunction with field-verified bankfull indi-
cators, flood-frequency analysis, or other supporting evidence.
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Appendix 3. Results of analyses of simple and multiple regression equations to estimate bankfull
width, mean depth, cross-sectional area, and discharge for streams in and near Massachusetts.

[DF, degrees of freedom associated with each independent variable; <, less than; log, base-10 logarithm]

Variable DF Parameter estimate Standard error t-value p-value
Simple regression
Log bankfull width

Intercept 1 1.17730 0.04124 28.54 0.000
Log drainage area 1 0.40382 0.02720 14.85 0.000

Log mean depth
Intercept 1 -0.02217 0.03774 -0.59 0.561
Log drainage area 1 0.29598 0.02488 11.89 0.000

Log cross-sectional area
Intercept 1 1.14970 0.05974 19.25 0.000
Log drainage area 1 0.70255 0.03939 17.83 0.000
Log discharge
Intercept 1 1.56980 0.11910 13.18 0.000
Log drainage area 1 0.79964 0.07855 10.18 0.000
Multiple regression
Log bankfull width

Intercept 1 1.02792 0.06755 15.22 0.000
Log drainage area 1 0.39350 0.02516 15.64 0.000
Log mean basin slope 1 0.17514 0.06572 2.67 0.012

Log mean depth
Intercept 1 -0.13700 0.06392 -2.14 0.040
Log drainage area 1 0.28804 0.02381 12.10 0.000
Log mean basin slope 1 0.13463 0.06219 2.16 0.038

Log cross-sectional area
Intercept 1 0.88486 0.09189 9.63 0.000
Log drainage area 1 0.68424 0.03423 19.99 0.000
Log mean basin slope 1 0.31050 0.08939 3.47 0.002
Log discharge

Intercept 1 0.91640 0.16250 5.64 0.00
Log drainage area 1 0.75447 0.06052 12.47 0.00
Log mean basin slope 1 0.76590 0.15810 4.85 0.00
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