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Abstract
The real-time Everglades Depth Estimation Network 

(EDEN) has been established to support a variety of 
scientific and water management purposes. The expansive-
ness of the Everglades, limited number of gaging stations, 
and extreme sensitivity of the ecosystem to small changes 
in water depth have created a need for accurate water-level 
and water-depth maps. The EDEN water-surface elevation 
model uses data from approximately 240 gages in the 
Everglades to create daily continuous interpolations of the 
water-surface elevation and water depth for the freshwater 
portion of the Everglades from 2000 to the present (2014). 
These maps provide hydrologic data previously unavailable 
for assessing biological and ecological studies.

 Ecologists working in the Everglades expressed a 
need to the EDEN project team for daily EDEN water-level 
surfaces from 1990 to 1999. The additional 10 years of 
surfaces will provide ecologists and resource managers 
with two decades (1991–2011) of surfaces to analyze 
hydrologic dynamics. Before 2000, many of the EDEN 
gages used to generate water surfaces were not in opera-
tion. These datasets were extended to provide estimations 
of hydrologic time-series histories. The general approach to 
the record extension (hindcasts) was to (1) create a database 
of available data from 1990 to the present; (2) use dynamic 
cluster analysis to group stations with similar hydrologic 
behaviors for subareas of the Everglades with a large 
number of stations; (3) use results from the cluster analysis 
to select candidate explanatory variables; (4) develop linear 
regression or artificial neural network models to extend 
water-level records; and (5) evaluate record extensions 
by using model performance statistics and comparison 
of water-surface maps for similar hydrologic conditions 
for the hindcasted period (1991–99) and measured period 
(2000–11).

To hindcast and fill data records, 214 empirical models 
were developed—189 are linear regression models and 
25 are artificial neural network models. The coefficient 
of determination (R2) for 163 of the models is greater 
than 0.80 and the median percent model error (root mean 
square error divided by the range of the measured data) 

Hydrologic Record Extension of Water-Level Data in the 
Everglades Depth Estimation Network (EDEN), 1991–99

By Paul A. Conrads, Matthew D. Petkewich, Andrew M. O’Reilly, and Pamela A. Telis

is 5 percent. To evaluate the performance of the hindcast 
models as a group, contour maps of modeled water-level 
surfaces at 2-centimeter (cm) intervals were generated 
using the hindcasted data. The 2-cm contour maps were 
examined for selected days to verify that water surfaces 
from the EDEN model are consistent with the input data. 
The biweekly 2-cm contour maps did show a higher number 
of issues during days in 1990 as compared to days after 
1990. May 1990 had the lowest water levels in the Ever-
glades of the 21-year dataset used for the hindcasting study. 
To hindcast these record low conditions in 1990, many of 
the hindcast models would require large extrapolations 
beyond the range of the predictive quality of the models. 
For these reasons, it was decided to limit the hindcasted 
data to the period January 1, 1991, to December 31, 1999. 
Overall, the hindcasted and gap-filled data are assumed to 
provide reasonable estimates of station-specific water-level 
data for an extended historical period to inform research 
and natural resource management in the Everglades.

Introduction
The Everglades Depth Estimation Network (EDEN) 

project was started to provide scientists working on the res-
toration of the Everglades with spatially continuous quality-
assured and quality-controlled hydrologic data at any point 
within the freshwater part of the Greater Everglades (fig. 1). 
The Everglades Depth Estimation Network is a network of 
real-time water-level gaging stations, an integrated ground-
elevation model, and a water-surface elevation model that 
originally was designed to provide scientists, engineers, 
and water-resource managers with current water-level and 
water-depth information (2000–14) for the entire freshwater 
portion of the Greater Everglades (Telis, 2005, 2006; Telis 
and others, 2014). The Everglades Depth Estimation Net-
work offers a consistent and documented dataset that can be 
used by scientists and water-resource managers to (1) guide 
large-scale field operations, (2) integrate hydrologic and 
ecological data and analysis, and (3) support biological and 
ecological restoration assessments that measure ecosystem 
responses to the Comprehensive Everglades Restoration 
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Plan (CERP; U.S. Army Corps of Engineers, 1999). In 
addition, EDEN, with the integration of real-time data and 
models, provides opportunities for real-time evaluation of 
water-level conditions and water-resource management 
practices.

The expansiveness of the Everglades, limited number 
of gaging stations, and sensitivity of the ecosystem to small 
changes in water depth have created a need for accurate 
water-level and water-depth maps (Pearlstine and others, 
2007). To create daily water-level surfaces for the 
Everglades, EDEN integrates data from a network of 
more than 250 water-level gages maintained by multiple 
agencies, including Big Cypress National Preserve (BCNP), 
Everglades National Park (ENP), South Florida Water 
Management District (SFWMD), and U.S. Geological 
Survey (USGS) (fig. 1). The EDEN surface-water model 
(Telis and others, 2014) generates daily water-level surfaces 
gridded to 400-square-meter cells for January 1, 2000, to 
the present (2014) by using the EDEN grid developed by 
Jones and Price (2007a). Examples of the daily water-level 
elevation are shown in figure 2. When these water-level 

surfaces are combined with EDEN’s digital elevation 
model for ground surface (Jones and Price, 2007b; Jones 
and others, 2012; Xie and others, 2011), daily surfaces of 
water depth can be generated. To assist users in applying 
the EDEN datasets to their needs, a series of tools, or 
applications (EDENapps), were developed to view, extract, 
plot, and manipulate EDEN data to create other derived 
hydrologic data (Telis and Henkel, 2009).

Scientists using EDEN data requested that daily EDEN 
water surfaces be created from 1990 to 2000, a period 
that did not previously have any surfaces. The extended 
period of hydrologic record would provide a longer time 
period for ecologists and scientists to evaluate the relation 
between hydrologic changes and ecological response, and 
ultimately, assist local, State, and Federal agencies in their 
efforts to restore the Everglades ecosystem. Unfortunately, 
before 2000, fewer EDEN gages used to generate water 
surfaces were in operation (fig. 3). To be able to generate 
water-surface maps for 1990 to 1999, water-level data for 
the EDEN stations that were not in operation needed to be 
extended back to 1990.
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Purpose and Scope 

This report documents the water-level record extensions 
(hindcasts) of 237 stations in the freshwater portion of the 
Everglades. The geographical extent of the hindcasts includes 
gaging stations in Water Conservation Area (WCA) 1, 
WCA2A, WCA2B, WCA3A, WCA3B, Pennsuco Wetlands, 
BCNP, and the ENP (fig. 1). An important part of the USGS 
mission is to provide scientific information for the effective 
water-resources management of the Nation. To assess the 
quantity and quality of the Nation’s surface water, the USGS 
collects hydrologic and water-quality data from rivers, lakes, 
estuaries, and wetlands using standardized methods, and 
maintains the data from these stations in a national database. 
One of the critical directions outlined in the USGS science 
strategy for 2007–17 (U.S. Geological Survey, 2007) is to 
provide scientific information for understanding ecosystems 
and predicting ecosystem change. To study the causes and 
consequences of ecological change, the USGS collects 
hydrological, biological, and other data using standardized 
methods, and interprets these data for policymakers to indicate 
how changes will potentially affect natural resources and the 
public. The techniques presented in this report demonstrate 
how valuable information can be extracted from existing 
USGS databases, integrated with other agencies’ data net-
works, and extended back in time (hindcasted) to evaluate the 
linkage between hydrology and ecological response. 

Description of Study Area 

The Everglades is a vast wetland consisting of 
approximately 2.9 million acres covering much of southern 
Florida. The Everglades primarily consists of peat soils and 
tall sawgrass that are interspersed with slightly raised tree 
islands covered by shrubs and woody vegetation (McPherson 
and others, 1995). Historically, the Everglades was an uninter-
rupted wetland that extended from Lake Okeechobee and 
flowed to the southwestern tip of Florida (fig. 4; Richardson 
and others, 1990). The annual rainfall in the Everglades 
generally is between 50 and 60 inches (in.), depending on 
location, with substantially more rainfall along the eastern 
edge (Lodge, 1994). The rainfall has a distinct seasonal pat-
tern, with a wet season from May or June through September 
or October that accounts for about 75 percent of the annual 
total. Water depths in the freshwater marshes range from 0 to 3 
feet (ft) during the wet season. During the annual wet season, 
water levels rise and inundate most of the land, producing 
seasonal flows into the Florida Bay and the Gulf of Mexico 
(fig. 1). Heavy rainfall associated with tropical depressions, 
storms, and hurricanes have a large effect on water levels. A 
single such event can increase water levels by 1 ft or more 
over large parts of the Everglades, and because of the slow 
runoff rates, this can effect water levels for months (German, 
2000). Minimum seasonal water levels generally happen in 
May before the onset of the wet season. In contrast, during the 

dry season, water levels decline to near land surface (McPher-
son and others, 1995). In particularly dry years, large portions 
of the Everglades may become dry and are subject to wildfires. 
This hydrologic pattern of wet and dry seasons helped produce 
and sustain the unique ecosystem of the Everglades.

The Everglades contains several types of environments, 
including freshwater marshes, tree islands, pinelands, man-
grove swamps, and shallow coastal marine waters. The EDEN 
project is concerned with freshwater marshes, the predominant 
Everglades ecosystem. These marshes are characterized by 
sawgrass stands of varying density and height, ranging from 
2 to 3 ft above land surface to 9 ft in some northern areas. 
Other common emergent plants in the freshwater marshes 
include spike rush, muhly grass, and, in some areas, cattails. 
Typical topographic and vegetative features include ridge and 
slough, tree islands, wet prairie, sawgrass, and marl prairie 
(German, 2000).

From the mid-1800s to the late 1900s, the flow pat-
terns, and thus the ecosystem, of the Everglades have been 
substantially altered. Beginning in the mid-1800s, wetlands 
began to be drained and used for agricultural purposes and 
urban development such that by the early 1990s, about 
50 percent of the historic Everglades had been drained 
(McPherson and others, 1995). With population growth and 
increased agricultural production, flood mitigation and water 
use in South Florida became prominent concerns. To address 
those concerns, WCA1, WCA2, and WCA3 (fig. 1) were 
constructed by the U.S. Army Corps of Engineers in the 1940s 
with the goal of regulating water through an extensive series 
of levees and canals. In general, the WCAs store water during 
the wet season and supply water during the dry season. The 
combined effect of drained wetlands and water regulation 
introduced during the 1800s and 1900s diverts an estimated 40 
percent of the water originally flowing through the Everglades 
(McPherson and others, 1995). The substantial changes in land 
use and flow patterns within the Everglades have had adverse 
environmental effects on the hydrology, water quality, and 
native plant and animal communities (McPherson and others, 
1995). Since the late 1990s, through the collaboration of 
Federal, State, and private agencies, substantial focus has been 
given to mitigate these adverse effects and, where possible, to 
begin restoration of the ecosystem and ecological communities 
of the Everglades.

The study area is the freshwater portion of the greater 
Everglades area, which extends from south of Lake 
Okeechobee to the southern part of the ENP (fig. 1). This area 
is a wetlands system that is about 50 miles (mi) wide and 
about 100 mi long. The Everglades is regarded as unique in 
the world because it is not primarily associated with a natural 
river system but is itself a wide and shallow “river” that 
transports water by sheet flow from Lake Okeechobee to the 
Gulf of Mexico. The land slopes within this shallow “river” 
generally are less than about 0.2 foot per mile (ft/mi; German, 
2000).
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Data-Collection Network 

The EDEN database (2014) is composed of hourly water-
level data from 312 gaging stations and includes marsh, river, 
canal, and control structure stations operated by the BCNP, 
ENP, SFWMD, and the USGS in the freshwater and coastal 
waters. Water monitoring networks typically are established 
to meet the mission of the agency, be it regulatory compliance 
requirements, scientific investigation, or other reasons. The 
configuration of networks often changes to meet changing 
agency objectives and funding levels. As with many monitor-
ing networks, the total number of EDEN gages may change 
from year to year because of funding levels, agency mandates, 
and gaging logistics. For any given year, the number of input 
stations used in the EDEN surface-water model may change 
the network configuration. Of the 312 EDEN stations, 237 are 
used in the EDEN Surface-Water Version 2 Model (referred 
to in this report as the “V2 model”; Telis and others, 2014) to 
generate daily water-surface maps for the year 2000 (table 1). 
These 237 stations are the subset of EDEN gages that are used 
to create the hindcasted water-level surfaces for this study. 
The other stations in the EDEN database are used to evaluate 
coastal conditions of the Everglades, estimate missing data for 
the stations in the water-surface model, or are discontinued 
EDEN stations. In this report, the names of the stations follow 
the naming convention used by EDEN and are similar to the 
names used by the agency that maintains the gage. 

Previous Studies 

The EDEN project has used various techniques for 
hindcasting data for stations added to the gaging network to 
provide a concurrent period of water-level data records for the 
water-surface model and for estimating missing data. Soon 
after the initiation of the EDEN project and the development 
of the water-surface model in 2006, 25 real-time water-level 
gaging stations were added to the original EDEN network of 
253 established water-level gaging stations. These stations 
did not have data back to 2000, the original beginning of the 
EDEN database. To incorporate the data from the added sta-
tions to the 7-year EDEN database in the greater Everglades, 
the short-term water-level records (generally less than 1 year) 
needed to be hindcasted to be concurrent with data from the 
established gaging stations in the database. Conrads and Roehl 
(2007) used a three-step modeling approach using artificial 
neural network (ANN) models to estimate the water levels at 
the new stations. The ANN models used static variables that 
represent the gaging station location and percent vegetation 
in addition to dynamic variables that represent water-level 
data from the established EDEN gaging stations. The final 
step of the modeling approach was to simulate the computed 
error of the initial estimate to increase the accuracy of the final 
water-level estimate by incorporating the computed error term. 

The three-step modeling approach for estimating water 
levels at the new EDEN gaging stations produced satisfactory 

results. The coefficients of determination (R2) for 21 of the 
25 estimates were greater than 0.95, and all of the estimates 
were greater than 0.82. The model estimates indicated good 
agreement with the measured data. For some new EDEN 
stations with limited measured data, the hindcasts included 
periods beyond the range of the data used to train the ANN 
models. The comparison of the hindcasts with long-term 
water-level data proximal to the new EDEN gaging stations 
indicated that the water-level estimates were reasonable. The 
percent model error (root mean square error divided by the 
range of the measured data) was less than 6 percent, and for 
most of the stations (20 of 25), the percent model error was 
less than 1 percent.

To increase the accuracy of the EDEN daily water-level 
surfaces, water-level estimation equations were developed 
to fill missing data for every EDEN station (Conrads and 
Petkewich, 2009; Petkewich and Conrads; 2013). To minimize 
the inability of estimating data because of missing data for an 
input station, a minimum of three linear regression equations 
were developed for each station using different input stations. 
Of the 667 water-level estimation equations developed to 
fill missing data at 223 stations, more than 72 percent of the 
equations had an R2 greater than 0.90, and 97 percent have an 
R2 greater than 0.70. The estimation equations recently were 
recomputed to accommodate change in the gaging network 
and further understanding of the hydrologic response of the 
system (Petkewich and Conrads, 2013).

Daamen and others (2010) developed the Automated 
Data Assurance and Management (ADAM) software to allow 
quick and accurate quality-assurance review of the EDEN 
data. The ADAM software utilizes user-defined filter settings, 
linear regression equations (documented in Petkewich and 
Conrads, 2013), and multivariate regression equations to 
estimate missing data and quality assure real-time data. The 
automation process is used to efficiently identify erroneous 
data and provide accurate replacement estimates. In addition, 
the tool can be used to manually review previously processed 
results and modify the estimates, if necessary.

Approach 

The general approach for hindcasting water-level data 
back to 1990 is to identify long-term datasets (measured data 
back to 1990) that are correlated to the short-term datasets 
(measured data beginning after 1990). An empirical model is 
developed that uses the long-term dataset for the explanatory 
(input) variable to estimate (hindcast) the short-term dataset 
back to 1990. An example of a hindcasted dataset is shown 
in figure 5. The measured data for station W14 in WCA3A 
(map label 224, fig. 1) began operation on January 25, 2006 
(table 1). To extend the record to 1990, the long-term station 
SITE_64 located to the north (map label 218, fig. 1) was used 
as input to an empirical model (in this case a linear regression 
model) to estimate the water level for W14 for the period 
January 1, 1990, to January 24, 2006. It is important to note 
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the range of the measured and estimated data. Models, both 
empirical and mechanistic, are more accurate when interpolating 
within the historical range of the data used to develop the model 
(for W14, 7.01 to 10.31 ft, fig. 5) than extrapolating beyond 
the range of the data used to develop the model (for W14 on 
fig. 5., extrapolation below 7.01 ft to 5.03 and above 10.31 ft 
to 11.45 ft). Within the range of measured data, the model is 
interpolating from conditions exhibited in the historical data. 
Models are less reliable when estimating outside of the range of 
the data used to develop the model. Under these conditions, the 
models have to extrapolate to conditions that are not exhibited 
in the data. To make these extrapolations, the model assumes 
that the relation between input and output variables remain 
constant between the measured conditions and the extrapolated 
conditions. The models do not take into account changes in flow-
regulation schedules or meteorological conditions. Depending 
on the dynamics of the system being modeled, this assumption 
may or may not be valid. For the example of hindcasting site 
W14, the model had to extrapolate a little more than 1 ft for 
high-water conditions and almost 2 ft for low-water conditions. 
Limited extrapolation often is appropriate. In a shallow wetland 
system like the Everglades, high-water extrapolations are not 
as problematic as the low-water extrapolation. During high-
water conditions, there is extensive ponding in the WCAs and 

high-water extrapolation probably increases the extent of the 
ponding. During low-water conditions, areas of the Everglades 
can become dry and surface water becomes shallow groundwater 
or discontinuous shallow pools or ponds. Because of micro-
topographic features, small decreases in surface-water elevations 
may translate to extensive dry areas. As discussed in the “Evalu-
ation of Hindcasts using Modeled Water-Level Surfaces” section 
later in the report, extrapolating to the extreme low-water level in 
May 1990 was not appropriate.

The estimation of water levels for EDEN in previous studies 
relied on the configuration of the water-level station network (fig. 
1), which has fairly even spatial distributions of gaging stations. 
For most of the stations in the network, there are proximal 
stations that are well correlated to generate accurate water-level 
data estimates. The spatial distribution of the EDEN stations in 
1990 (fig. 3) is uneven and there are large areas without a gage. 
In 1990, 106 of the EDEN stations used in the V2 model were 
in operation (table 2 and figs. 3 and 6). From 1990 to 1996, 
that number grew to 177 stations. Between 1997 and 2001, 27 
stations were added to the network, between 2005 and 2006, 
31 stations were added to the network, and two stations in 2009 
(fig. 6). The most significant increases in stations occurred in 
WCA2B and BCNP where there was a 1,100- and 460-percent 
increase in gages, respectively between 1990 and 2000 (table 2).
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Table 2. The number of stations by conservation 
area in the Everglade Depth Estimation Network 
(EDEN) Surface Water Model Version 2 in 1990 and 
2000.

Area 1990 2000

Big Cypress National Preserve 7 32
Everglades National Park 47 92
Pennsuco Wetlands 2 6
Water Conservation Area 1 8 12
Water Conservation Area 2A 9 25
Water Conservation Area 2B 1 11
Water Conservation Area 3A 28 48
Water Conservation Area 3B 4 11
Total 106 237
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Figure 6. Bar chart showing the number of Everglades Depth Estimation Network (EDEN) stations in operation for the 
years 1990 to 2010.
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For this study, hindcasts are considered estimated record 
prior to a gage being in operation and estimates are values to 
fill data gaps in the operational data record. Of the 237 stations 
needed for the EDEN V2 model, only 23 of the stations had 
complete records without any data gaps, 46 stations had data 
gaps to be filled, and 168 stations started after January 1, 1990, 
and were hindcasted (table 1). The approach for hindcasting 
and estimating record is the same for this study. A timeline of 
the 237 EDEN stations for this study that shows each station 
and a color-coded timeline of the data type—measured, 
hindcasted, or estimated—is shown in figure 7. One can 
quickly see the predominance of measured data after 2000 and 
the large number of hindcasted sites in the early 1990s.

The challenge for hindcasting stations back to 1990 
is that EDEN stations that are well correlated with another 
EDEN station may not have been operating in 1990. For 
example, station EDEN_11 in WCA2A (map label 144, fig. 1) 
is estimated in Petkewich and Conrads (2013) by using station 
WC2AS1 (map station label 160), WCA2F1 (map station label 
163), or WCA2F4 (map station label 164). These three stations 
are the highest correlated stations in the current (2014) EDEN 
network. To extend the water-level record for EDEN_11 to 
1990, the available measured data are limited to two marsh 
sites located to the southeast of EDEN_11, stations 2A300 
and SITE_17 (map station labels 143 and 157, respectively, on 
figs. 1 and 3).

Because of the large number of stations to hindcast for 
this study, most of the hindcasts were estimated using linear 
regression models. For sites that had unsatisfactory linear 
regression estimates, ANN models were used. The general 
process to compute hindcasts to 1990 was to complete the 
following steps:

• create a database of available data for each Water 
Conservation Area (WCA), BCNP, ENP, and Pennsuco 
Wetlands from 1990 to the 2012; 

• convert all data to the North American Vertical Datum 
of 1988 (NAVD 88);

• fill data gaps of 3 days or less with linear interpolation;

• for Water Conservation Areas (WCA) with a large 
number of stations, perform time-series cluster analysis 
(Risley and others, 2003; Roehl and others, 2006) to 
group gages with similar hydrologic behaviors; 

• develop linear regression or ANN models to extend 
water-level records; 

• hindcast water-level records and (or) fill periods of 
missing record; 

• apply shifts to the hindcast records, if necessary; and 

• evaluate record extensions with model performance 
statistics and comparison of water-surface maps for 
similar hydrologic conditions from the hindcasted 
period (1990–99) and measured period (2000–12).

A more detailed description of the dynamic cluster 
analysis, linear regression models, ANN models, and the 
application of shifts is presented in the “Estimating Water 
Levels” section of the report.

The preference for input data for a model was to use 
measured data rather than hindcasted or estimated data. The 
models used to hindcast and fill missing data have inherent 
errors and using the results of these models as input for 
another model propagates the error into another dataset. There 
were stations where, because of their location and (or) period 
of missing record, the only reasonable input dataset to develop 
a satisfactory model was a hindcasted or estimated dataset.

Limitation of the Datasets 

As with any modeling effort, the reliability of the model 
is dependent on the completeness of the datasets and on the 
quality of the data and range of measured conditions used for 
developing models. The quality of the hindcast models rely 
on the available period of record and historical range of water 
level in addition to the spatial distribution of long-term input 
stations. There are the usual data limitations of measurement 
accuracy, the physical location of the monitoring station, 
instrumentation error, and human error. The agencies that 
collected the EDEN data all have quality-assurance and 
quality-control plans to minimize the error in their measured 
water-level data. For this study, there are two limitations of 
datasets used for hindcasting the EDEN. The first limitation 
is the poor spatial distribution of the monitoring sites and the 
availability of measured data in particular areas of the Ever-
glades for estimating accurate water levels back to 1990. For 
example, the spatial limitation of available data makes it more 
difficult to estimate water levels in BCNP as compared to ENP 
(fig. 3). The second limitation is the range of the water levels 
measured at a particular site that is used for estimating water 
levels at another site. If the range of data inputs to a model is 
small, the estimation model may have to extrapolate more to 
estimate the full range of water level at the output station and 
there will be less certainty in the extrapolated values.

Estimating Water Levels 
The dynamic variability of the water level at a particular 

location in the Everglades is caused by a combination of 
meteorological factors; for example, rainfall, evapotranspira-
tion, and releases through water-control structures to move 
water through the various conservation areas to ENP. The 
water-level inputs at one location that are used for inputs for 
another location incorporate the localized meteorological 
effects and control structure releases. The water releases 
through control structures are regulated through water delivery 
schedules that are designed to minimize the detrimental 
ecological effects of water releases. There have been three 
Water Delivery Schedule Plans in operation during the study 
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period: the Experimental Program of Water Deliveries to 
ENP (1984–99), The Interim Structural and Operational Plan 
(1999–2002), and the Interim Operational Plan (2002–12) 
(South Florida Natural Resource Center, 2005; U.S. Army 
Corps of Engineers, 2011). Although these Water Delivery 
Schedules have the overall effect of altering the volume and 
timing of flows to ENP, for the purposes of this study it is 
assumed that the changes in the operation schedules do not 
have a substantial effect on the localized water-level rela-
tions (correlation) between the nearby input stations used to 
estimate water levels.

Estimation models generally are in one of two cat-
egories: deterministic (or mechanistic) or empirical. Deter-
ministic models are created from first-principles equations, 
whereas empirical models are created directly from data 
and adapt generalized mathematical functions to fit a line or 
surface through data from one or more variables. Because 
of the large number of sites to hindcast or fill, sites were 
first estimated with ordinary least squares (OLS) regression 
models. If the estimates were not satisfactory, ANN models 
were developed to improve the accuracy of the models. 
For areas with a large number of stations to fill or hindcast, 
time-series cluster analysis was used to group stations by 
similar hydrologic behavior. These groupings facilitated the 
selection of input (predictor) sites. Below are descriptions 
of the time-series clustering technique, the empirical models 
used in the study, statistical measures of model accuracy, and 
the shifting of estimated water-level data.

Time-Series Cluster Analysis

For areas with a large number of sites, such as the ENP 
and BCNP south of the Tamiami Canal and WCA3A (fig. 1), 
a time-series clustering algorithm was applied to divide sites 
into classes (groups) having similar behaviors (Roehl and 
others, 2006; Stewart and others, 2006; Risley and others, 
2003). Next, the central tendency (low-frequency variability) 
was removed individually for each site by computing the 
difference from a “standard” time series (average of all the 
time-series data for sites in that class), leaving the residuals 
that accentuate differences between signals. Finally, a cross-
correlation matrix (Pearson R) of the residuals was con-
structed as a measure of the dynamic similarity among sites. 
In the matrix, each cell represented the behavioral similarity 
between the site listed for that row header and that column 
header. The k-means clustering algorithm was applied to 
the cells in the matrix (Weiss and Indurkhya, 1998). For 
k-number of groups, the k-means algorithm optimizes which 
members of the overall group should be in groups 1 through 
k. The optimal number of groups was determined by using 
the root mean square error (RMSE) as a measure of the 
difference in distance between each member and the mean of 
the group. In some cases, the optimal number of groups can 
be selected at the inflection point between a sharp vertical 
decline in RMSE and a horizontal plateau. In other cases, a 

more gradual reduction in RMSE with an increasing number 
of groups happens. 

An example of the time-series clustering is shown 
for 27 sites in WCA3A (fig. 8). The sites were clustered 
into three classes of behaviors (Groups 1–3). The 7-day 
average water level for each group is shown on figure 9. The 
breakout of the three groups generally follows the ground 
elevation gradient with higher water levels to the north and 
lower water levels to the south. Group 1 sites are located in 
the upper region of WCA3A (fig. 8) and have the highest 
average water levels as compared to the other two groups 
(fig. 9). The Group 2 sites are located in the lower region 
near the Tamiami Canal. The Group 3 sites generally are 
located between the Group 1 and 2 sites. The water levels 
for the Group 2 and 3 sites indicate there are often ponding 
conditions at the Group 2 sites that cause the water levels 
to be higher than the Group 3 sites during high-water 
conditions, for example January to March of 2007 and 
2008 (fig. 9). During the dry season, Group 2 and 3 water 
levels are similar, whereas during the height of some wet 
seasons (for example, in October 2006, November 2008, and 
September 2009), the water level for the Group 3 sites is 
higher than the Group 2 sites (fig. 9).

The time-series clustering analysis is valuable for 
selecting candidate input sites for the prediction models. 
The area between two groups indicates that there is a change 
in water-level dynamics and which stations belong to each 
group. For example, 3AS3W1 and EDEN_8 (fig. 8, map 
label 188 and 195, respectively) would make better inputs 
for predicting SITE_65 (fig. 8, map label 219) than W5 
(fig. 8, map label 222) because of their dynamic similarity of 
the sites in Group 3 even though W5, in Group 2, is closer to 
SITE_65. 
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Figure 8. Map showing the time-series cluster analysis results for Water Conservation Area 3A.
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Empirical Estimation Models

The most common empirical modeling approach is 
OLS, which relates variables using straight lines, planes, or 
hyper-planes, whether the actual relations are linear or not. 
Artificial neural network models also are empirical models, 
are developed directly from data, and are a flexible mathemati-
cal structure capable of describing complex nonlinear relations 
between input and output datasets. Calibration of either type 
of model attempts to optimally synthesize a line or surface 
through the measured data. The principal advantages of 
empirical models, such as ANN models, over mechanistic 
models are that they can be developed faster and are more 
accurate, provided the modeled systems are well characterized 
by data. Empirical models, however, are prone to problems 
when poorly applied. Overfitting and multicollinearity caused 
by correlated input variables can lead to invalid mappings, 
or relations, between input and output variables (Roehl and 
others, 2003). Of the 214 water-level estimation models, 189 
are linear regression models and 25 are ANN models (table 3).

Figure 9. Plot showing the 7-day average water levels for the Group 1, Group 2, and Group 3 gages in Water 
Conservation Area 3A South for the period January 1, 2006 to December 31, 2009.

Linear Regression Models

Linear regression models often are used to estimate 
values of one variable based on another variable that has 
more data (Helsel and Hirsch, 1995). Linear regression 
models for water-level estimation equations are in the form 
of y=mx+b, where y is the estimated value, m is the slope, 
x is the value from the input (“predictor”) station, and b is 
the y-intercept. All the linear regression models in the study 
used only one input station. For some sites, there are periods 
when the input station is missing data and no estimates are 
made using that model. For these cases, a second model was 
developed to estimate the data when the first input is miss-
ing. There is one site, CV5NR (fig. 1, map label 41), where 
a third model needed to be developed because of periods 
of missing data from the first two input sites. The input 
variables for the models are listed in table 3. A description 
of the variables is provided in table 1-1 of the appendix.
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Artificial Neural Network Models 

In most cases, water-level data at the input and output 
stations are well correlated and linear regression models 
produced satisfactory results. For stations where the linear 
regression estimates were not adequate, usually evaluated 
by visual inspection of measured and estimated data, an 
ANN model was developed. ANN models are a flexible 
mathematical structure capable of describing complex 
nonlinear relations between input and output datasets. The 
structure of ANN models is loosely based on the biological 
nervous system with interconnections of neurons and 
synapses (Hinton, 1992). Although numerous types of ANN 
models exist, the most commonly used type of ANN model 
is the multilayer perceptron (Rosenblatt, 1958), which is 
used in this study and described in detail by Jensen (1994). 
Multilayer perceptron ANNs can synthesize functions to 
fit multidimensional, nonlinear data. Multilayer perceptron 
ANNs are constructed from layers of interconnected 
processing elements called neurons that execute a simple 
“transfer function” (fig. 10). All input layer neurons are 
connected to all hidden layer neurons, and all hidden layer 
neurons are connected to all output layer neurons. Multiple 
hidden layers are possible, but a single layer is sufficient for 
most problems.

Typically, as well as for this study, linear transfer 
functions are used to scale input values from the input layer 
to the hidden layer, yielding values that generally are within 
the range that corresponds to the most linear part of the 
s-shaped sigmoid nonlinear transfer functions used from the 
hidden layer to the output layer (fig. 10). Each connection 
has a weight (wi) associated with it, which scales the output 
received by a neuron from a neuron in an antecedent layer. 
The output of a neuron is a simple combination of the values 
it receives through its input connections and the associated 
weights, as well as the neuron’s transfer function. 

An ANN is “trained” by iteratively adjusting its 
weights to minimize the error by which it maps inputs 
to outputs for a dataset composed of input/output vector 
pairs. Prediction accuracy during and after training can be 
measured by a number of metrics, including R2 and RMSE. 
An algorithm that commonly is used to train multilayer 
perceptron ANNs is the back error propagation (BEP) train-
ing algorithm (Rumelhart and others, 1986). The algorithm 
optimally minimizes the error in the objective function by 
adjusting the weights into and out of the hidden layer of the 
model (fig. 10). 

Experimentation with various ANN model architectural 
and training parameters is a typical part of the modeling 
process. For correlation analysis or predictive modeling 
applications, a number of potential ANN models are trained 
and evaluated for their statistical accuracy and their repre-
sentation of dynamics of the system. Interactions between 
combinations of variables are considered, in addition to the 
selection of the training dataset from the overall dataset. 
In developing ANN models, it is customary to set aside a 

subset of the data to provide an independent evaluation of 
model performance. Typically, datasets are divided into 
“training” and “testing” datasets. There are many strategies 
for partitioning data into training and testing datasets, but 
the most common is random selection of a specified percent-
age of the total population of measurements. 

The models were calibrated by using the training 
dataset and evaluated with the testing dataset. For models 
with a large dataset with good representation over the range 
of historical behaviors, a small percentage of the dataset 
(10–25 percent) may be selected for the training dataset. 
For models with limited data, a larger percentage (75–100 
percent) may be used in the training dataset. To mitigate the 
extrapolation and sparseness issues, the ANN models were 
conservatively trained using a method referred to as “stop 
training” to both fit the data and extrapolate in a minimally 
nonlinear and, therefore, predictable fashion. Stop training 
simply means stopping the training process before the ANN 
has fit the data to the maximum extent possible. Architec-
tural and training parameters allow the modeler to control 
the geometric complexity of the surface that the ANN fits 
to the data. The ANN models in this report were developed 
using the iQuest data-mining software11 (Version 2.03C DM 
Rev31). The software writes R2 and RMSE to the graphical 
user interface (GUI) during training, and an inflection in 
the rate of change in these parameters indicates a transition 
from a generally linear, multivariate surface fit to a progres-
sively nonlinear fit. This inflection point was used to trigger 
stop training. 

1 The iQuest software is exclusively distributed by Advanced Data Mining, 
LLC, http://advdmi.com/Services.aspx
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Decorrelation of Input Variables 

Many of the ANN models are multivariate models 
using more than one input variable. Usually, input variables 
share information about the behavior of an output variable. 
It is difficult, if not impossible, to understand the individual 
effects of these input variables (sometimes known as 
confounded or correlated variables), on an output variable. 
Empirical models have no notion of process physics or the 
nature of interrelations between input variables. To clearly 
analyze the effects of confounded variables, the unique infor-
mational content of each variable must be determined by 
“de-correlating” the confounded variables. For example, the 
three long-term stations, SITE_64, SITE_65, and SITE_69W 
(fig. 1, map labels 218, 219, and 220, respectively), are 

highly correlated. If the time-series data from these stations 
are used as input to a model they would need to be decor-
related from each other. Decorrelation can be done by using 
a number of cascading models where the output from one 
model is used as input to a subsequent model. For example, 
SITE_65 and SITE_69W can be decorrelated from SITE_64 
in two steps (fig. 11). The first step is to generate a Single 
Input Single Output (SISO) ANN model using SITE_69W 
as input and SITE_64 as output. The residual error (the 
difference between predicted and measured values) is the 
“unshared” information between the two signals and the 
decorrelated signal for SITE_69W. The second step is to 
build an ANN model using SITE_65 and the decorrelated 
signal for SITE_69W to predict SITE_64. The residual of 
this model is the decorrelated signal for SITE_65.

Figure 10. Multilayer perceptron artificial neural network architecture.
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Figure 11. Schematic showing the decorrelation of water levels (WL) for SITE_64, SITE_65, and SITE_69W.

Statistical Measures of Water-level Estimation 
Model Prediction Accuracy

Statistical measures of prediction accuracy were 
computed for the water-level estimation models. Each 
statistic measures a different aspect of the accuracy of the 
prediction equations. Estimation accuracy commonly is 
reported in terms of R2 and is interpreted as the goodness-of-
fit of an equation or model. An interpretation of the statistic 
may determine how much information one variable, or a 
group of variables, provides about the behavior of another 
variable. In this context, an R2=0.6 might be unsatisfactory. 
Another interpretation is that R2 is merely an accounting of 
how much information is shared by the variables being used. 
The standard error is the measure of the scatter of the actual 
observations about the regression line and is the standard 
deviation of the error of the predicted values in the regres-
sion. The standard error can be used to compute confidence 
intervals for the predictions. The mean error (ME) and RMSE 
statistics provide a measure of the prediction accuracy of 
the estimation equations. The ME is a measure of the bias of 
model predictions—whether the model over- or under-predicts 
the measured data. The ME is the overall adjustment of the 
estimated values required to equal the measured values; 
therefore, positive and negative MEs indicate an over- or 
under-prediction bias by the model, respectively. MEs near 
zero may be misleading because negative and positive 
discrepancies in the simulations can cancel each other. RMSEs 
address the limitations of ME by computing the magnitude, 
rather than the direction (sign) of the discrepancies. The units 
of the ME and RMSE statistics are the same as the variable 
simulated by the model. ME and percent model bias (ME 
divided by the mean observed value) were mostly zero for all 
equations and, therefore, are not included in the goodness-of-
fit statistics. ME and percent model bias equal zero because 

simple linear regression equations, such as those described 
in this report, inherently minimize the sum of the residuals 
(error) between the estimates and the measured data. The sum 
of the residuals, and therefore, ME, are zero for all stations. 
The accuracy of the models, as given by RMSE, should be 
evaluated with respect to the range of the output variable. A 
model may have a low RMSE, but if the range of the output 
variable is small, the model may only be accurate for a limited 
range of conditions and the model error may be a relatively 
large percentage of the model response. Likewise, a model 
may have a large RMSE, but if the range of the output variable 
is large, the model error may be a relatively small percentage 
of the total model response. The percent model error (PME) is 
computed by dividing the RMSE by the range of the measured 
data.

The performance statistics for the water-level estimation 
models are listed in table 1-2 of the appendix. The period 
used to compute the model statistics is January 1, 1991, to 
December 31, 2010. The statistics for the individual ANN 
model development (table 4) are not necessarily indicative of 
the quality of the final water-level estimates, which are based 
on multiple models. The number of data points used to train 
and test the ANN models, including the decorrelation models, 
are listed in table 4 along with the number of hidden layer 
neurons (HLNs). Many of the ANN models are multivariate 
models that use more than one explanatory variable. The 
statistics for the ANN models in table 1-2 in the appendix 
are based on all the water-level estimates, and not computed 
separately by the training and (or) testing datasets. Overall, 
the water-level estimation model performance statistics are 
satisfactory. Ninety percent of the water-level estimation 
models have PMEs of 10 percent or less (fig. 12) with the 
median value as 5 percent (table 5). The median R2 for the 
models is 0.91 and the median standard error is 0.19 ft.

WL SITE_64pred1 = F1[WL SITE_69W]

First decorrelation model

Second decorrelation model

WL SITE_64pred = F2[WL SITE_65 and WL SITE_69Wdecorrelated]

WL SITE_64measured

WL SITE_69Wdecorrelated

WL SITE_65decorrelated

WL SITE_64measured
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Shifting Water-Level Estimates

Once water levels are estimated, hydrographs of each 
station are evaluated to identify potential errant data and to 
evaluate the fit of the water-level estimates. For some stations, 
estimated data are a good representation of the missing data and 
can be used without any adjustment. Some of the water-level 
estimates follow the trend of the measured data but are offset 
from the measured data. At these sites, the relative water-level 
estimates are good but the absolute estimates are in error. In 
the Everglades, differences in water level of only 2 or 3 in. 
can be important to the ecology. To improve the quality of the 
water-level estimates, shifting techniques are applied to the 
estimates similar to gage-height correction techniques used 
for computing continuous water-level data records (Rantz and 
others, 1982). The applications of shifts are applied for periods 
of missing water-level data and therefore do not affect the 
model performance statistics.

Figure 12. Frequency distribution of percent model error of the water-level estimation models.

Table 5. Minimum, median, and maximum values for the summary statistics for 237 water-level 
estimation models.
[R2, coefficient of determination; RMSE, root mean square error]

Statistic
Standard error,  

in feet
R2 Mean error,  

in feet
RMSE, 
 in feet

Percent model 
error

Minimum 0.00 0.26 –0.92 0.03 0.50
Maximum 0.85 1.00 0.88 1.11 22.32
Median 0.19 0.91 0.00 0.20 5.04

The most straight-forward type of data correction is one 
where a uniform (constant) correction value is applied to the 
estimates. Prorated corrections are applied over time to improve 
the quality of the water-level estimates. An example of applying 
constant and prorated shifts to water-level estimates for NP46 
(map label 87, fig. 1) are shown in figure 13. The water-level 
estimation model of the site captures the overall trend of 
the data but the estimates are over-predicted by 0.2 – 0.3 ft. 
Shifts were applied to improve the absolute prediction of 
the estimates while maintaining the dynamic variability of 
the model. The shifts were determined by subtracting the 
modeled water level from the measured water level for the 
day before and after the data gap. For the short data gaps from 
September 25 to October 15, 1993, a shift of –0.31 ft was 
started on September 25 and prorated to –0.24 ft on  
October 15. For the large data gap from November 11, 1993, 
to January 20, 1994, a shift of –0.26 ft was applied on 
November 11 and prorated to –0.22 ft on January 20.
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Evaluation of Hindcasts using Modeled 
Water-Level Surfaces

The statistical evaluation of the water-level estimation 
models quantifies the predictive ability of the model to 
capture the water-level dynamics for the individual station 
on a temporal basis. For generating water-level surfaces 
for the Everglades using the V2 model, the hindcasted 
water-level estimation models must perform spatially as 
a group to create water-surface maps that are credible. 
Individual models may be accurate but model error between 
sites may cause erroneous water-surface gradients between 
stations. To evaluate the performance of the hindcast models 
as a group, contour maps of modeled water-level surfaces 
at 2-centimeter (cm) intervals were generated using the 
hindcasted data. The 2-cm contour maps were examined for 
selected days to verify that modeled water surfaces from 
the V2 model were consistent with the input data. The high 
resolution provided by the 2-cm contour intervals highlights 
areas of the model domain where input data may be incor-
rect and where water-level gradients may not be consistent 
with current knowledge of sheet flow in the marshes.

Rather than evaluate water-surface maps for each of 
the 3,650 days of the hindcasted period, which was time 
prohibitive, the water-level surfaces generated by the hind-
casted dataset (1990–99) were compared with water-level 
surfaces generated with the measured dataset (2000–10) for 
a few high- and low-water days. Daily hydrographs were 
generated using measured long-term data from BCNP, ENP, 
and the WCAs for 1990 to 2010. The 21-year hydrographs 
were used to select dates for representative water conditions 
in the measured period (2000–10) and hindcasted period 
(1990–99). Because of the natural interannual climate 
variability in addition to operational differences between the 
WCAs and BCNP and ENP, it is difficult to identify periods 
of similar water-level conditions (within +/– 0.3 ft) for the 
domain of the V2 model. Priority was set on finding similar 
conditions between ENP and WCA3A. For high-water 
conditions, the hindcasted surfaces for September 26 and 
November 19, 1995, were compared with the measured 
water-level surfaces for October 2, 2008. For low-water 
conditions, the hindcasted surfaces of March 3, 1994; 
April 24, 1997; and May 21, 1999 were compared with the 
measured water-level surface for March 2, 2008. 

Figure 13. Example of measured, estimated, and shifted estimated data at NP46 over the period June 1993 
to March 1994.
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Overall, the hindcasted 2-cm contours for the high-
water condition were similar to the contours generated 
with the measured data. There were areas on the hindcasted 
surfaces where potential problems with the hindcasted water-
level data were evident along the Tamiami Canal, along the 
L-67 Canal near SITE_69W, and in central and northern 
areas of WCA2A. The issues with the contours are not only 
issues with the water-level estimations of the hindcasts 
but also are caused by issues with the data. For example, 
the irregularities along the Tamiami Trail were caused by 
the datum correction from the National Geodetic Vertical 
Datum of 1929 to NAVD 88 not being applied to S12B_T 
(map label 109, fig. 1). S12B_T was not a hindcasted site 
but data gaps in the record were filled. For the irregularities 
near SITE_69W, the water-level data were compared with 
SITE_64, SITE_71, and SITE_76 and no apparent data prob-
lems were observed. There are two stations at the locations 
along the L67 canal: SITE_69W in the canal and SITE_69E 
(not shown in fig. 1) in the marsh of WCA3B to the east 
of the canal levee. The water-level data for SITE_69E was 
mistakenly used in the model rather than SITE_69W and the 
lower water levels caused the irregularities in the contours. 
Correcting the datum conversion at S12B_T and substituting 
data for SITE_69W for modeling WCA3B produced water-
level surfaces consistent with adjacent station data. 

The issues in the northern area of WCA2A (fig. 14) 
were a result of a limited number of stations in the areas to 
use for input stations for the water-level estimation models 
(fig. 3). The initial linear regression models for WC2AN1, 
WC2AS1, and EDEN_11 used measured data from the S7_T 
(for the WC2AN1 and EDEN_11 models) and SC11C_T (for 
the WC2AS1 model). Individually, the initial linear regres-
sion water-level estimates for WC2AN1, WC2AS1, and 
EDEN_11 seemed satisfactory, but plotted together (fig. 15), 
the water levels did not follow the ground elevation slope. 
The topographic slope in WCA2A generally is to the south 
and southwest (Jones and others, 2007b, 2012). If water 
levels generally were the same depth, the water levels at 
the three hindcasted sites would be similar and water levels 
at a station to the south, such as SITE_17 would be lower. 
The four sites would have a general downward gradient 
from WC2AN1 to WC2AS1 to EDEN_11 to SITE_17. The 
initial water-level estimation models did not follow the 
general gradient with water levels because WC2AN1 was 
similar to SITE_17 farther to the south (fig. 15A). The three 
sites were re-modeled using ANN models and different 
input stations. Rather than only using measured input 
datasets, hindcasted and filled datasets were used for input 
stations. EDEN_11 was modeled with the hindcasted and 
filled dataset for WCA2F1 (map label 163, fig. 1, table 3). 
WC2AS1 was then modeled with a multivariate model using 
the EDEN_11 predictions and S7_T that was decorrelated 
from the EDEN_11 predictions (table 3). WC2AN1 was then 
modeled using the WC2AS1 predictions (table 3). The final 
water-level estimations (fig. 15B) follow the general ground 
elevation gradient. 

In addition to comparing the 2-cm contoured water-
level maps for the selected high-water and low-water 
days, 240 2-cm contour water-level maps were generated 
for the 1st and 15th of each month for January 1, 1990, to 
December 31, 1999. Irregularities in contours were evaluated 
and issues involving data inputs and (or) water-level estima-
tion models were resolved. The biweekly 2-cm contour 
maps did indicate a higher number of issues in the 1990s. 
In May 1990, the lowest water levels of the 21-year dataset 
used for the hindcasting study happened in the Everglades 
(for example, see long-term measured water levels for 
SITE_64 shown in fig. 5). To estimate these low-water 
levels, the water-level estimation models had to extrapolate 
beyond the range of measured data. As discussed in the 
“Approach” section of this report, the models assume that the 
relation between input and output variable remains constant 
between the measured conditions and the extrapolated 
conditions. For the extreme low-water level during 1990, 
this assumption is not valid. For the low water in May 1990, 
many of the models would have to be extrapolated about 
2 ft lower than the measured data used to develop the 
models. In addition, models that use a hindcasted dataset for 
input would have the errors for two models compounded to 
extrapolate to the extreme low-water levels. Additionally, the 
effort to resolve the water-level estimation model extrapola-
tion is challenging because of the lack of measured data in 
1990 for many areas of the EDEN domain (fig. 3). For these 
reasons, it was decided to limit the hindcasted data to the 
period January 1, 1991, to December 31, 1999. 

An example of the hindcasted and measured water-
surface maps is shown in figure 16. The two maps were 
generated for days with similar high-water conditions. The 
map on the left was generated using the hindcasted data for 
September 26, 1995, and the map on the right was generated 
using the measured data for October 2, 2008. The high-water 
conditions for ENP and WCA3A, as represented by NP62 
and SITE_64, respectively (fig. 1, map labels 88 and 218) 
were within 0.13 ft at both gages for the two dates. Overall, 
the hindcasted water-elevation surface for the high-water 
condition is similar to the surface generated with the mea-
sured data. Overall, the hindcasted and gap-filled data are 
believed to provide reasonable estimates of station-specific 
water-level data for an extended historical period to inform 
research and natural resource management in the Everglades. 
The datasets with the record extensions are available on the 
EDEN Web site using the Explore and View EDEN (EVE) 
graphical interface (http://sofia.usgs.gov/eden/eve/index.php).

http://sofia.usgs.gov/eden/eve/index.php
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Figure 14. Example of 2-centimeter contour water-surface elevation maps for high-water conditions on  
September 26, 1995 used to evaluate the preliminary hindcasted data.
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Figure 15. Measured data for SITE_17 and hindcasted water-level data for EDEN_11, WC2AN1, and 
WC2AS1 for A, preliminary water-level estimation models and B, final water-level estimation models.
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Figure 16. Example of water-surface elevation maps for high water conditions using A, hindcasted data for 
September 26, 1995 and B, measured data for October 2, 2008.

Summary 
The Everglades Depth Estimation Network (EDEN) 

water-surface elevation model uses data from approximately 
240 gages in the Everglades to create daily continuous 
interpolations of the water-surface elevation for the freshwater 
portion of the Everglades from 2000 to the present (2014). To 
provide a longer period for assessing biological and ecological 
impacts, the EDEN team decided to hindcast (extend water-
level data records back in time) to 1990. Before 2000, many of 
the EDEN gages used to generate water surfaces were not in 
operation. Of the 237 stations used in the EDEN water-surface 
model in 2000, only 106 stations were in operation in 1990. 
Of the 106 stations in operation, only 23 stations had complete 
datasets (no missing data). To create an input dataset for the 
EDEN water-surface model, 168 data records were hindcasted 
and 46 data records had missing data gaps filled. 

The water-level data records were hindcasted using 
empirical water-level estimation models. Of the 214 
water-level estimation models used to hindcast and fill data 
records, 189 are linear regression models and 25 are artificial 
neural network models. Ninety percent of the models have 

percent model error (root mean square error divided by 
the range of the measured data) of 10 percent or less. The 
median coefficient of determination for the models is 0.91 
and the median standard error is 0.19 foot. In addition to 
evaluating performance of each water-level estimation model, 
2-centimeter (cm) vertical resolution water-level maps 
were generated using the hindcasted data and evaluated for 
irregular contours indicating a potential problem with the 
hindcasted data. May 1990 had the lowest water levels in the 
Everglades of the 21-year dataset used for the hindcasting 
study. To estimate these extreme low-water levels, the models 
needed to extrapolate beyond the range of the measured 
data. Model extrapolation assumes that the relation between 
input and output variables remains constant and limited 
model extrapolation is often appropriate. For the extreme low 
water in 1990, however, it was decided that large water-level 
estimation model extrapolations were not appropriate and the 
hindcasted dataset was begun on January 1, 1991, and ended 
on December 31, 1999. The hindcasted and gap-filled data 
provide reasonable estimates of station-specific water-level 
data for an extended historical period to inform research and 
natural resource management in the Everglades.
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