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Cover. Sampling on the lower Genesee River in 2013, downstream of the Genesee River at
the Ford Street monitoring station. Photograph by Henry Zajd, Jr., U.S. Geological Survey.
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Streamflow and Estimated Loads of Phosphorus
and Dissolved and Suspended Solids From Selected

Tributaries to Lake Ontario,

201214

By Brett A. Hayhurst, Benjamin N. Fisher, and James E.

Abstract

This report presents results of the evaluation and inter-
pretation of hydrologic and water-quality data collected as part
of a cooperative program between the U.S. Geological Survey
and the U.S. Environmental Protection Agency. Streamflow,
phosphorus, and solids dissolved and suspended in stream
water were the focus of monitoring by the U.S. Geological
Survey at 10 sites on 9 selected tributaries to Lake Ontario
during the period from October 2011 through September 2014.
Streamflow yields (flow per unit area) were the highest from
the Salmon River Basin due to sustained yields from the Tug
Hill aquifer. The Eighteenmile Creek streamflow yields also
were high as a result of sustained base flow contributions from
a dam just upstream of the U.S. Geological Survey monitoring
station at Burt. The lowest streamflow yields were measured
in the Honeoye Creek Basin, which reflects a decrease in flow
because of withdrawals from Canadice and Hemlock Lakes
for the water supply of the City of Rochester. The Eighteen-
mile Creek and Oak Orchard Creek Basins had relatively
high yields due in part to groundwater contributions from the
Niagara Escarpment and seasonal releases from the New York
State Barge Canal.

Annual constituent yields (load per unit area) of sus-
pended solids, phosphorus, orthophosphate, and dissolved
solids were computed to assess the relative contributions
and allow direct comparison of loads among the monitored
basins. High yields of total suspended solids were attributed
to agricultural land use in highly erodible soils at all sites.

The Genesee River, Irondequoit Creek, and Honeoye Creek
had the highest concentrations and largest mean yields of
total suspended solids (165 short tons per square mile [t/mi?],
184 t/mi%, and 89.7 t/mi?, respectively) of the study sites.

Samples from Eighteenmile Creek, Oak Orchard Creek at
Kenyonville, and Irondequoit Creek had the highest concen-
trations and largest mean yields of phosphorus (0.27 t/mi?,
0.26 t/mi?, and 0.20 t/mi? respectively) and orthophosphate

New York, Water Years

Reddy

(0.17 t/mi?, 0.13 t/mi?, and 0.04 t/mi? respectively) of the
study sites. These results were attributed to a combination
of sources, including discharges from wastewater treatment
plants, diversions from the New York State Barge Canal, and
manure and fertilizers applied to agricultural land. Yields
of phosphorus also were high in the Genesee River Basin
(0.17 t/mi®) and were presumably associated with nutrient and
sediment transport from agricultural land and from stream-
bank erosion. The Salmon and Black Rivers, which drain a
substantial amount of forested land and are influenced by large
groundwater discharges, had the lowest concentrations and
yields of phosphorus and orthophosphate of the study sites.
Mean annual yields of dissolved solids were the highest
in Irondequoit Creek due to a high percentage of urbanized
area in the basin and in Oak Orchard Creek at Kenyonville
and in Eighteenmile Creek due to groundwater contributions
from the Niagara Escarpment. High yields of dissolved solids
of 840 t/mi?, 829 t/mi?, and 715 t/mi?, respectively, from these
basins can be attributed to seasonal chloride yields associated
with use of road deicing salts. The Niagara Escarpment can
produce large amounts of dissolved solids from the dissolu-
tion of minerals (a continual process reflected in base flow
samples). Groundwater inflows in the Salmon River have
very low concentrations of dissolved solids due to minimal
bedrock interaction along the Tug Hill Plateau and dis-
charge from the Tug Hill sand and gravel aquifer, which has
minimal mineralization.

Introduction

Lake Ontario is the easternmost Great Lake, has a
direct drainage area of 24,720 square miles (mi?; excluding
the Niagara River and upper Great Lakes watershed), and is
bounded by the Canadian Province of Ontario to the north and
west and New York State to the south and east. Lake Ontario
receives its primary inflow from the watersheds of the upper
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Great Lakes through the Niagara River near Youngstown,

a drainage area of 263,700 mi®>. The U.S. Environmental
Protection Agency (EPA) is administering a program called
the Great Lakes Restoration Initiative (GLRI), which was
launched in 2010 to accelerate efforts to protect and restore the
health of all the Great Lakes through the GLRI action plans I
and II (Great Lakes Interagency Task Force, 2014, undated).
The GLRI action plans call for reductions in nutrient runoff
from wastewater treatment discharges, combined storm and
sanitary sewer overflows, and major nonpoint sources of pol-
lution from urban and agricultural areas. Urbanization often
increases the quantity of chemicals that can be deposited by
atmospheric deposition or applied to the land surface. Urban-
ized impervious surfaces typically increase the hydraulic
efficiency of water moving from the land surface to drainage
systems and decrease travel time in streams; this can result in
an increase in chemical loads carried into and out of a water-
shed. Agricultural activities can increase loads of nutrients,
pesticides, and sediments to streams. Local, State, and Federal
agencies have worked to create best management practices
(BMPs) that focus on urban stormwater management, erosion
control, and nutrient and sediment management on agricultural
land. These practices would presumably benefit overall water
quality in stream systems; however, monitoring of these prac-
tices has not been done on a regular basis in order to quantify
the effectiveness of these BMPs over time.

In 2011, the EPA began a program in cooperation with
the U.S. Geological Survey (USGS) to monitor, evaluate, and
interpret hydrologic and water-quality data collected from
sites at selected tributaries to Lake Ontario. Water-quality data
were used to calculate constituent loads from major New York
tributaries to Lake Ontario (fig. 1). Results from the monitor-
ing program have been compiled in this report that covers the
water years 2012—14." Sites selected specifically for this Lake
Ontario monitoring program included Eighteenmile Creek,
Oak Orchard Creek at Kenyonville and Shelby, Salmon River,
and Black River. In addition to these, several other sites with
established water-quality monitoring programs were included
in this study. These latter sites included the Genesee River
(7 years of record), the Oswego River (4 years), Honeoye
Creek (16 years), and Allen and Irondequoit Creeks (33 years
each). The hydrologic and water-quality information collected
at these sites are used by water resources managers to make
decisions regarding flood hazard and mitigation, low-flow
drought conditions and management, mitigation of streambank
erosion, and nonpoint-source pollution control.

Purpose and scope.—This report describes the hydrologic
and water-quality conditions at 10 surface-water monitoring
sites on selected tributaries to Lake Ontario during the water
years 2012—14. The report presents (1) the methods of data
collection, processing, and analysis and the statistical methods
used for estimations of constituent loads; (2) summaries of
climate records and climate trends, streamflow records, and

'A water year is the period from October 1 to September 30, numbered for
the year in which the water year ends.

water-quality data; and (3) estimation of tributary loads and
comparison of yields for streamflow and phosphorus, ortho-
phosphate, dissolved solids, and suspended solids loads.

Study Area

The New York portion of the Lake Ontario watershed
encompasses 12,560 mi?, excluding contributions from Lake
Erie and the Niagara River (U.S. Department of Agriculture,
Natural Resources Conservation Service, 2015). The sites
that comprise the water-quality monitoring network on the
selected tributaries to Lake Ontario in New York are shown
in figure 1. Two streams, Honeoye Creek and Allen Creek,
are actually tributaries to the Genesee River and Irondequoit
Creek, respectively, which are themselves tributaries to Lake
Ontario. There are two monitoring sites on Oak Orchard
Creek, the upstream location at the village of Shelby and the
downstream site at the hamlet of Kenyonville (fig. 1). The
drainage areas covered by the 10 monitoring sites are a total of
10,105 mi?, or 83 percent of the area of New York that drains
to the lake (table 1).

Land Cover

The 2011 National Land Cover Database (NLCD 2011)
was acquired to calculate land cover characteristics for the
10 watersheds associated with the surface-water monitor-
ing sites (fig. 2; table 2). The NLCD 2011 is the most recent
Landsat-based, 30-meter (m) resolution land cover dataset for
the entire United States developed by the Multi-Resolution
Land Characteristics Consortium (MRLC; Homer and others,
2015). The NLCD 2011 uses a 16-class land cover classifica-
tion scheme for the contiguous United States. For the purposes
of this study, that classification scheme was abridged to six
classes, consisting of open water, developed, barren, forest,
agriculture, and wetlands. Land cover class acreages and per-
cent area calculations for each of the 10 watersheds are listed
in table 2.

Selected Watersheds

The watersheds associated with the 10 surface-water
monitoring sites were delineated using 30-meter (m) resolu-
tion elevation data from the National Hydrography Dataset
Plus version 2 (NHDPlusV2; fig. 1). NHDPlusV2 is an inte-
grated suite of geospatial data products, which incorporates
features of the National Hydrography Dataset, the National
Elevation Dataset, and the National Watershed Boundary
Dataset (Dewald and others, 2012). Each of the 10 watersheds
represents the drainage area upstream from the corresponding
surface-water monitoring site.
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Table 1. Streamflow and water-quality monitoring sites on tributaries to Lake Ontario, New York, water years 2012-14.
[Site locations are shown in figure 1. NAD27, North American Datum of 1927; NADS83, North American Datum of 1983; mi?, square miles; ft*/s, cubic feet per
second]
Station Drainage E;:::::e: a“:ﬁ:::l Period of record
identifica- Station name Latitude Longitude  Datum  area, ? 3
. L area, flow,
tion number in mi? L Startdate  End date
in mi in ft¥/s
04219768 Eighteenmile Creek at 43°18°49.77 78°42°55.5” NAD 83 84.8 1.1 158  Oct. 2011  Sept. 2013
Burt
04220045 Oak Orchard Creek near ~ 43°10°25” 78°23’12”  NAD 27 146 126 161  Oct. 2011  Current
Shelby
0422016550 Oak Orchard Creek near ~ 43°18°04” 78°18°37.9” NAD 83 202 69.4 383  Oct. 2012  Current
Kenyonville
04229500 Honeoye Creek at 42°57°26” 77°35°20” NAD 83 196 69.0 118  Oct. 2012  Sept. 2013
Honeoye Falls
04231600 Genesee River at Ford 43°08°30.2” 77°36°58.7 NAD 83 2,474 20.4 2,792 Oct. 2011  Current
Street Bridge,
Rochester
04232050 Allen Creek near 43°07°49” 77°31°077  NAD 83 30.1 1.5 33.0 Oct.2012  Sept. 2013
Rochester
0423205010 Irondequoit Creek above — 43°08°42” 77°30°43”  NAD &3 142 27.5 161  Oct. 2013  Current
Blossom Road,
Rochester
04249000 Oswego River at Lock 7, 43°27°06” 76°30°19”  NAD 83 5,100 0.6 7,155  Oct. 2011  Current
Oswego
04250200 Salmon River at Pineville 43°32°00” 76°02°19”  NAD 83 238 35.5 813  Oct. 2011  Current
04260500 Black River at Watertown 43°59°08” 75°55°29”  NAD 83 1,864 39.9 3,903  Oct. 2011  Sept. 2013

'Drainage area is the area sampled.

’Excluded drainage is the area not sampled downstream from the U.S. Gelogical Survey gaging stations.

*Mean annual flow is calculated from the period of record dates in this table.

Tributaries to Lake Ontario

Eighteenmile Creek, which flows northward from its
origin near the Lockport Dolostone Escarpment (referred to as
the Niagara Escarpment in this report) shown in figure 3, has
a drainage area of 84.8 mi? with more than 50.0 percent of its
total land cover in agriculture uses and was designated an area
of concern by the International Joint Commission after numer-
ous contaminants were identified in creek sediments. Substan-
tial groundwater contributions that sustain base flow during
most of the year originate from the Niagara Escarpment.

Two monitoring sites are within the Oak Orchard Creek
Basin: the upstream site at Shelby and the downstream site at
Kenyonville. The creek flows west and then north from State
and Federal wetland areas and then flows over the Niagara
Escarpment (fig. 3; Cadwell, 1999) in a series of waterfalls
just north of the Town of Shelby. Substantial groundwater con-
tributions originate in this basin from the Onondaga Limestone
Escarpment (fig. 3), which sustains base flows at least during
spring of each year (Kappel and Jennings, 2012), as well as
from the Niagara Escarpment, which contributes to base flows
year round. Oak Orchard Creek at Shelby has a drainage area
of 146 mi® that consist of 58.1 percent agricultural land and

27.3 percent wetlands. The downstream monitoring site at
Kenyonville adds 56 mi?® to the monitored drainage area (total
drainage area of 202 mi? at this location) and a 7.75-percent
increase in agricultural land, which represents 65.9 percent
of the entire Oak Orchard Creek watershed at Kenyonville.
Upstream from Kenyonville, the creek flows under the New
York State Barge Canal directly into Glenwood Lake. The
stream receives periodic overflow from the New York State
Barge Canal during the canal operating season (April through
November) each year.

The Genesee River flows northward from northwestern
Pennsylvania and enters Lake Ontario at the city of Rochester
and has a drainage area of 2,474 mi* at the USGS monitor-
ing station in Rochester. The land use in the basin is primar-
ily forested and agriculture at 40.8 percent and 46.6 percent,
respectively. The Genesee River is a large source of sediment
to Lake Ontario (New York State Department of Environment
Conservation, 2003). The sediment consists of highly erodible,
glacially derived lacustrine clay and silt soils on the valley
floor through which the river flows for much of its length
(fig. 4). Some subbasins have moderately sloped hillsides in
the agricultural landscape which also contributes to additional
sediment erosion and runoff. Honeoye Creek, encompasses
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196 mi? at its monitoring site at Honeoye Falls (fig. 1), and
is a tributary of the Genesee River in southwestern Monroe
County, with 35.0 percent of its watershed in agriculture and
52.0 percent forested (fig. 2).

The Irondequoit Creek Basin is directly east of the
Genesee River at Rochester and encompasses 142 mi? of
drainage area at Blossom Road near Rochester before it enters
a wetland area and thence Irondequoit Bay and finally Lake
Ontario. The land use transitions from forest and agriculture
in the southern third of the basin to a densely urbanized area
in the northern half. Allen Creek, a tributary of [rondequoit
Creek, drains 30.1 mi?, of which 64 percent is developed land,
at its monitoring site near Rochester. Approximately 33.7 per-
cent of the Irondequoit Creek Basin is developed land, and
half of that developed drainage covers the Allen Creek Basin.

The Oswego River Basin drains 5,100 mi? and is the
largest basin draining to Lake Ontario from New York. The
drainage area has the greatest percentage of open water, which
includes seven of the central and eastern Finger Lakes and
Oneida Lake. Agricultural land use and forested land dominate
the land types in the basin at 40.4 percent and 37.0 percent,
respectively (table 2).

The Salmon River and the Black River flow from east to
the west and drain 238 mi? and 1,864 mi?, respectively, and
are dominated by forested areas at 76.8 percent and 75.2 per-
cent, respectively. The Salmon River receives 17 percent of
its drainage from wetlands and springs that discharge from the
Tug Hill aquifer. The percentages of agricultural and devel-
oped land uses in these two basins are less than those of the
eight other basins in this study.

Influences of New York State Barge Canal

The New York State Barge Canal flows ecastward from the
Niagara River, across six of the basins monitored in north-
western New York (fig. 1). Water is diverted from the Niagara
River and Tonawanda Creek on the west and into the New
York State Barge Canal. The barge canal then flows through
the Eighteenmile Creek and Oak Orchard Creek Basins and
discharges into the Genesee River south of Rochester. The
Genesee River and the barge canal meet at grade or relative
river elevation of the Genesee River, as all canal flow from the
west enters the Genesee River, and a corresponding amount
of flow from the Genesee River enters the eastern continua-
tion of the barge canal and flows eastward through the Allen
Creek and Irondequoit Creek Basins and eventually into the
Oswego River Basin. Overflow spillways and siphons along
the canal permit canal water to flow into the monitored tribu-
tary basins. During the navigation season (from late April to
mid-November), daily flows in the canal east of the Genesee
River typically range from 200 to 300 cubic feet per second
(ft’/s) according to data from the USGS gaging station at Lock
30 at Macedon (station number 04219000; U.S. Geological
Survey, 2014a). From Macedon, the canal flows eastward into
the Oswego River Basin joining with outflows from several
Finger Lakes and other streams, which enter this canalized

Climate 9

river segment of the canal. Eventually the barge canal and
the Seneca River are one and the same as they flow eastward
toward Syracuse (fig. 1). As the barge canal flows north of
Syracuse the canal joins the Oneida River and flows further
east to Oneida Lake where the canal steps through a series

of locks crossing a major watershed divide from the Oswego
River Basin and into the Mohawk River Basin as it flows east
toward Albany and on to the Hudson River. At the confluence
of the Seneca and Oneida Rivers, a section of the barge canal
merges with the Oswego River, which continues northward to
its mouth at Lake Ontario.

Climate

Climate data were obtained from the Northeast Regional
Climate Center CLIMOD 2 (Northeast Regional Climate Cen-
ter, 2015) for four National Weather Service locations: Buffalo
Niagara International Airport (Buffalo Airport) east of the city
of Buffalo, the Greater Rochester International Airport (Roch-
ester Airport) southwest of the city of Rochester, the Syracuse
Hancock International Airport (Syracuse Airport) northeast
of the city of Syracuse, and the Watertown International
Airport (Watertown Airport) west of the city of Watertown.
The weather across northern and central New York is greatly
affected by Lake Ontario, which has a moderating effect on air
temperatures and inhibits the extreme temperature fluctuations
that are recorded further inland. Lake Ontario rarely freezes
completely during the winter months and contributes to overall
snow distributions through lake-effect bands of snow, which
are directed by prevailing wind patterns across the lake from
west to east.

Precipitation

Average annual precipitation for Buffalo, Rochester,
Syracuse, and Watertown Airports (1981-2010) is 40.5 inches
(in.), 34.3 in., 38.5 in, and 36.1 in., respectively (Northeast
Regional Climate Center, 2015). Monthly 30-year mean
precipitation ranged from about 2.2 in. in February to about
3.8 in. from July to September (fig. 54-D; Northeast Regional
Climate Center, 2015).

Average annual precipitation totals during the 3-year
study period (2012-14) were close to 30-year mean values;
average totals for Buffalo, Rochester, Syracuse, and Water-
town Airports were 41.3 in., 35.9 in., 38.5 in., and 38.2 in.,
respectively (Northeast Regional Climate Center, 2015). Lake-
effect storms can produce snowfalls exceeding 1 to 2 ftin a
24-hour period near the lake and, by the end of the season, can
account for more than half the total snowfall in these areas.
Seasonal snowfall amounts can vary widely across the Lake
Ontario watershed in New York, with generally the greatest
amounts of snow (an average annual snowfall of 240 in.) fall-
ing on the Tug Hill Plateau directly east of Lake Ontario.
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Figure 5. Precipitation and temperature at selected airports in New York: C, monthly mean (WYs 2012-14) and normal (WYs
1981-2010) precipitation and temperature at Syracuse Hancock International Airport; and D, monthly mean (WYs 2012-14) and
normal (WYs 1981-2010) precipitation and temperature at Watertown International Airport—Continued
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Air Temperature

The monthly low temperature in Buffalo, Rochester,
and Syracuse was about —4 degrees Celsius (°C; 25 degrees
Fahrenheit [°F]) in January, and the monthly high temperature
was about 22 °C (71 °F) in July. Temperatures in Watertown
were generally lower during both periods: —7 °C (19 °F) in
January and 21 °C (69 °F) in July (Northeast Regional Climate
Center, 2015).

During water years 2012—14 (Northeast Regional Climate
Center, 2015), the largest monthly departure from the nor-
mal values at Buffalo, Rochester, Syracuse, and Watertown
Airports occurred during March 2012 with average values of
8.6 °C (47.4 °F), 8.5 °C (47.3 °F), 8.1 °C (46.5 °F) and 6.3 °C
(43.3 °F), respectively. The 30-year monthly normal tempera-
ture at Buffalo, Rochester, Syracuse, and Watertown Air-
ports for March is 1.1 °C (34.0 °F), 1.3 °C (34.3 °F), 1.2 °C
(34.2 °F), and —0.8 °C (30.6 °F), respectively (fig. 54-D).

Data Collection and Processing

Water levels at 10 monitoring sites and velocity at
1 site—the Genesee River at Rochester—were recorded
continuously during the study period (fig. 1). Water-quality
samples were collected at monthly intervals and analyzed for
phosphorus, orthophosphate, total dissolved solids, and total
suspended solids. Water-quality collections at Eighteenmile
Creek, Oak Orchard Creek at Kenyonville, Allen Creek,
Honeoye Creek, Irondequoit Creek, and the Black River had
different start and end dates during the study due to funding
limitations and annual changes in EPA program priorities
(table 1). Water-quality samples were not collected at the sites
on Eighteenmile Creek, Honeoye Creek, and Allen Creek, and
on the Black River after September 2013.

Stage and Streamflow

The water levels at 10 locations and velocity at the
Genesee River at Rochester streamgage (fig. 1) were measured
every 15 minutes using standard USGS procedures (Sauer and
Turnipseed, 2010) and recorded by an electronic data logger.
Streamflow was measured regularly by the USGS according
to procedures described in Rantz and others (1982), Turnip-
seed and Sauer (2010), and Mueller and others (2013). Stage,
velocity, and streamflow data were compiled and streamflows
were computed from either stage-discharge or stage-area
and index-velocity discharge relations that were developed
through standard USGS procedures (Sauer and Turnipseed,
2010; Levesque and Oberg, 2012). Daily mean streamflows
(appendix 1) were computed from 15-minute discharges at
all 10 monitoring locations, the exception being Oak Orchard
Creek near Kenyonville where computations began in August
2012 and Eighteenmile Creek where the discharges ended in
September 2013.

Chemical Constituents

Water samples were collected by refrigerated automatic
samplers at four monitoring sites. Samplers were activated in
anticipation of storm events at Genesee River at Rochester,
Honeoye Creek at Honeoye Falls, Irondequoit Creek near
Rochester, and Oswego River at Oswego. Samples were col-
lected repeatedly during changes in stage for a given storm
and stored in separate high-density polyethylene (HDPE)
bottles. The frequency of samples varied throughout a given
year over the length of this study. Quality-assurance water
samples, collected from the stream on the first Monday
of each month using the equal-width-increment method
(U.S. Geological Survey, 2014a), were compared with water
samples collected by the automatic samplers. All samples
were analyzed by the USGS National Water Quality Labora-
tory in Lakewood, Colorado (appendix 2). Comparison of
quality-assurance samples showed point samples collected
by the automated samplers were representative of the “true”
constituent concentrations as determined by the equal-width-
increment samples. The period of record (2011-14) was inter-
rupted at four locations (table 1) with later startup dates at four
locations. More than 100 samples were collected at Genesee
River at Rochester, and as few as 17 samples were collected
at Allen Creek near Rochester. The total number of discrete
samples for all sites was 474, with 28 additional quality-
assurance samples; all sample results are stored in the USGS
National Water Information System (U.S. Geological Survey,
2014b). Some additional data were compiled from outside the
reporting dates of 2011-14 for the following locations and
years: Honeoye Creek 2010-11, Genesee River 2011, Allen
Creek 2010-11, Irondequoit Creek 2009—-11, and the Oswego
River 2010-11; these additional data were used for load
modeling interpretation.

Data Analyses

Mean annual flows (table 1) at the 10 monitoring sites
were computed and then normalized by their respective
drainage basin area to account for differences in drainage-
area size. Normalizing flow per unit area allows a direct
comparison of yields among all 10 sites. Differences in yields
could result from streamflow diversions or regulation, which
occurred in nearly all the monitored watersheds, or from
variability in precipitation and evapotranspiration across
large basins. The Genesee River, for example, drains from
the New York-Pennsylvania border where the mean annual
precipitation is 32 in. and the mean annual runoff is 14 in.
(Randall, 1996). The Oswego River has the largest drainage
area, which includes 7 of the 11 Finger Lakes and Oneida
Lake within its drainage area and has a mean annual precipita-
tion of 34 in. Seneca and Cayuga Lakes have surface areas of
67.6 mi’and 66.4 mi?, respectively; these two lakes account
for 90 percent of the total lake volume in the Oswego River



Basin. Oneida Lake is the largest lake in New York with a
surface area of 79.8 mi? and the shallowest of the lakes in the
Oswego River Basin, and therefore has the highest potential
evapotranspiration rate.

Streamflow

Mean annual streamflow at the 10 USGS monitoring
sites ranges from 33.0 to 7,160 ft*/s during the study period
(table 1). The Oswego River has the highest mean annual
flow (7,160 ft*/s), followed by the Black and Genesee Riv-
ers with 3,900 ft¥/s and 2,790 ft*/s, respectively. Allen Creek
has the lowest mean annual flow (33.0 ft%/s) and is a tributary
to Irondequoit Creek, which has similar mean annual flows
compared with those for Eighteenmile and Oak Orchard
Creek near Shelby, which have mean annual flows around
160 ft*/s (table 1).

Monthly mean streamflow yield (fig. 6) for the study
period demonstrates increased yields during the snowmelt and
runoff events from March to May of each year. Winter tem-
peratures were mild in 2012, and flows at all locations reflect a
short period of snowmelt in February 2012. The overall trend
for winter temperatures (fig. 5), however, decreases over the
3 water years (2012—14), pushing snowmelt later into each
following spring season. One significant precipitation event
occurred at all sites in June 2013 across the entire southern
Lake Ontario Basin (fig. 5). Flows at the Salmon and Black
Rivers increased from September 2013 to February 2014 as a
result of increased precipitation during the leaf-off period.

Data Analyses 13

Annual mean streamflow yield for water years 2012—-14
ranges from 0.6 cubic foot per second per square mile [(ft*/s)/
mi*] at Honeoye Creek to 4.2 (ft*/s)/mi?at Salmon River
(fig. 7). Honeoye Creek flow is affected by diversions of
flow from Canadice Lake to Hemlock Lake for the water
supply of the City of Rochester (figs. 6 and 8; Hayhurst and
others, 2010).

The Salmon and Black Rivers have the highest annual
mean streamflow yields, 4.2 (ft*/s)/mi?and 2.9 (ft*/s)/mi?,
respectively, in 2014, presumably due to groundwater con-
tributions from the Tug Hill aquifer into the Salmon River
and direct contributions from the Adirondack Mountains in
the Black River Basin. Eighteenmile Creek and Oak Orchard
Creek near Kenyonville have the third and fourth highest
yields, which are attributed to sustained base flow contri-
butions from the Niagara Escarpment in both basins. Both
creeks have similar annual mean streamflow yields, averaging
2.0 (ft*/s)/mi? at Eighteenmile Creek at Burt and 1.9 (ft¥/s)/
mi?at Oak Orchard Creek near Kenyonville for water years
201214 (fig. 7).

Water Quality

Water quality can be assessed by measurements of physi-
cal characteristics, such as water temperature and specific
conductance, and by the concentrations of constituents, such
as phosphorus, orthophosphate, total suspended solids, and
total dissolved solids. The concentrations of constituents can
be used to highlight differences in water quality in a basin
and compare differences from basin to basin. Concentrations,

12t EXPLANATION
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Figure 6. Monthly mean streamflow for selected tributaries to Lake Ontario, New York, water
years 2012-14.
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Figure 7. Annual mean streamflow yields for selected tributaries
to Lake Ontario, New York, water years 2012-14.

measured in milligrams per liter, can then be used along with
flows to obtain estimated loads of constituents. Estimated
loads provide information about nutrient balance within a
watershed. Those conditions are affected by climate, basin
characteristics and land use, and physical disturbances whether
natural or manmade.

Water Temperature

Water temperature can have direct effects on the solubil-
ity of constituents, the rate of chemical reactions, the level of
organism activity in an aquatic environment, and the growth or
death rates of organisms and microorganisms. Water tempera-
tures can be affected by several factors, including groundwater
contributions, precipitation types and rates, diurnal changes in
air temperature and the amount of solar radiation contacting
the stream, and the tributary inflow temperatures from both
natural and manmade sources.

Temperatures have been collected when possible at the
centroid of flow at the 10 sampling locations at the time the
sample was collected (fig. 1). Water temperatures for sampled
streamflow during water years 2012—14 (table 3) ranged from

a low of 0.0 °C (32.0 °F) at Oak Orchard Creek near Shelby
and Kenyonville, the Genesee River at Rochester, and the
Oswego River at Oswego to a high of 27.5 °C (81.5 °F) at the
Oswego River at Oswego.

Specific Conductance

Specific conductance, measured in microsiemens per
centimeter at 25 degrees Celsius, is a standardized measure of
the ability of water to conduct an electric current and is related
to the amount of ions (atoms with negative [anion] or positive
[cation] charges) dissolved in the water. Specific conductance
was measured with a handheld instrument in the field, whereas
the measurement of dissolved solids requires the collection
of a water sample and analysis of the sample in a laboratory.
The dissolved solids analysis uses an aliquot of total sample
volume, which is filtered and the filter is dried. The amount of
dried solids in the sample is weighed and reported in milli-
grams per liter. In either case, these measurements determine
the general inorganic (ionic) content of the water. Figure 9
illustrates the median specific conductance for each tributary
watershed monitored in this study.

The median specific conductances at Irondequoit Creek
near Rochester, Oak Orchard Creek near Shelby, and Allen
Creek near Rochester were 1,200 microsiemens per centime-
ter at 25 degrees Celsius (uS/cm at 25 °C), 1,130 uS/cm at
25 °C, and 946 pS/cm at 25 °C, respectively. The measure of
conductance is highest at locations within urbanized water-
sheds where the chemistry of storm sewer runoff is greatly
affected by road-deicing salt (sodium chloride) used during
the winter months (Heisig, 2000). The Irondequoit Creek
and Allen Creek watersheds have the greatest percentages of
urban land use of the nine tributary watersheds (table 3). Oak
Orchard Creek at Shelby has a high conductance year-round,
but especially during base flow due to groundwater influences
from the Lockport Dolostone and the Camillus Shale (gyp-
sum) mineral contributions. Inorganic constituents from the
groundwater influence in the upper Oak Orchard Creek Basin
are high in calcium, magnesium, and sodium plus potassium
(Hayhurst and others, 2010; Kappel and Jennings, 2012). The
Salmon and Black Rivers have the lowest specific conductance
because base flows are sustained by groundwater from sand
and gravel aquifers, which have limited contact with bedrock
that might otherwise supply ionized minerals to these streams.
Low concentrations in chlorides can be expected in these rela-
tively undeveloped watersheds.

Nutrients, Total Suspended Solids, and Total
Dissolved Solids

Oak Orchard Creek near Shelby had the highest median
annual concentrations of phosphorus, orthophosphate, and
total dissolved solids of the 10 monitored sites (figs. 10—13;
table 3). The concentrations decrease downstream at Oak
Orchard Creek near Kenyonville for all constituents analyzed
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in this study except for total suspended solids. The reduction
in nutrient concentrations can be directly attributed to Glen-
wood Lake north of the village of Medina. Based on compari-
sons of upstream and downstream Oak Orchard Creek nutrient
data, median sample concentrations upstream (near Shelby)
are nearly twice as great as those downstream (near Kenyon-
ville). However, maximum concentrations of total suspended
solids near Kenyonville far exceed those concentrations at
Shelby, and median concentrations of phosphorus, orthophos-
phate, and total suspended solids near Shelby were 0.185 mil-
ligram per liter (mg/L), 0.079 mg/L, and 874 mg/L, respec-
tively, and near Kenyonville were 0.095 mg/L, 0.048 mg/L,
and 473 mg/L, respectively. A wastewater treatment plant
contributes discharges into Glenwood Lake from the village
of Medina; however, any measure of phosphorus effects is
removed at Glenwood Lake by the time flows reach Kenyon-
ville. Other possible contributions of high suspended solids
found downstream can be measured during localized storm
events, and although the median annual concentration is less
at Kenyonville than at Shelby, a greater percentage of erodible
soils are in agricultural areas to the northeast of Medina, and
these contributions have not been measured during higher end
runoff events.

Eighteenmile Creek at Burt had the third highest median
annual phosphorus concentration (0.130 mg/L) presum-
ably from agricultural runoff and discharge from the city of
Lockport wastewater treatment plant. Eighteenmile Creek at
Burt had the same median annual concentrations of ortho-
phosphate (0.079 mg/L) as Oak Orchard Creek near Shelby
(fig. 12; table 3). Median concentrations may be slightly less
at Eighteenmile Creek than Oak Orchard Creek near Shelby as
a result of the highest maximum concentrations (0.324 mg/L)
being measured at Oak Orchard Creek near Shelby and that
the Eighteenmile Creek constituent concentrations are not
available for water year 2014, affecting the overall medians for
comparison. Median annual concentrations of dissolved solids
(372 mg/L) are primarily attributed to year-round groundwater
discharges from mineralized bedrock and seasonal contribu-
tions from salt applications used for road deicing.

In the Genesee River, median annual concentration of
total suspended solids (31 mg/L) was the second highest mea-
sured in the study and phosphorus (0.088 mg/L) was among
the highest measured. Of the 10 monitored sites, the maximum
concentrations of total suspended solids and phosphorus of
1,220 mg/L and 0.998 mg/L, respectively (figs. 10 and 11;
table 3) were measured in this tributary. The high phosphorus
concentrations in the Genesee River presumably reflect solid-
phase transport associated with the large suspended sediment
loads that are derived from agricultural areas in the basin
and from streambank erosion (New York State Department
of Environmental Conservation, 2003). Although not always
correlated directly with total suspended solids concentrations,
particulate phosphorus concentrations are often correlated
to sediment concentrations. Honeoye Creek discharges into
the Genesee River and reflects some of the same solid-phase
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transport conditions for suspended solids (median annual con-
centration 25 mg/L) as seen in the Genesee River Basin.

The median concentrations of phosphorus and ortho-
phosphate at Honeoye Creek at Honeoye Falls were found to
have similar results; however, 69 mi’ is not within the mea-
sured drainage area downstream from the gage site and is thus
excluded. Extensive agricultural land use likely contributes to
high concentrations of phosphorus and orthophosphate for the
entire Honeoye Creek watershed.

Irondequoit Creek and Allen Creek have well-doc-
umented high chloride concentrations (Sherwood, 2005;
Hayhurst and others, 2010), which are reflected in the dis-
solved solids concentrations (fig. 13; table 3); these locations
have the second and third highest median dissolved solids
concentrations (741 mg/L and 572 mg/L, respectively) of the
study sites. The salt application rates are generally higher in
these two basins because both basins comprise mostly urban
land use with dense population and road networks (Sherwood,
2005). Of all the monitored tributaries, Irondequoit Creek near
Rochester has the highest median annual suspended solids
concentration (96 mg/L) and the second highest median annual
phosphorus concentration (0.175 mg/L).

Concentrations of nutrients and solids were lowest at the
Oswego River at Oswego, the Salmon River at Pineville, and
the Black River at Watertown sites. The Oswego River Basin
has a large amount of agricultural land, but one factor that may
reduce sediment and particulate phosphorus concentrations
are the seven Finger Lakes and Oneida Lake that tend to be
sediment retention areas for much of the basin. Each Finger
Lake has a control structure at its northern end that regulates
the water discharged to the Seneca and Oneida Rivers, the
major tributaries to the Oswego River. In addition the entire
flow of the Oswego River watershed is regulated as part of the
New York State Barge Canal system. The Salmon and Black
Rivers contribute large volumes of water to eastern Lake
Ontario and have very low concentrations of all constituents in
this study. The land cover is dominated by forest, with limited
urbanization, and these rivers receive substantial and sustained
base flow.

Constituent Loads

Load calculations provide an estimate of the amount of a
given constituent that moves in streamflow past an observed
point providing a result as a mass per unit of time. Knowledge
of loads of chemical constituents is important in evaluat-
ing transport processes and assessing the effectiveness of
best management practices that are implemented to control
nonpoint sources of these constituents.

In this study, the USGS R Load Estimation (rloadest)
package (Lorenz and others, 2015) was used to estimate daily
mean constituent concentrations and loads through a log-linear
regression model that uses streamflow, time, and seasonal indi-
cators (cyclic sine and cosine functions of time) as explana-
tory variables (Helsel and Hirsch, 2002; Runkel and others,
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2004). The package can handle censored concentrations
(those concentrations that are below an analytical detection
limit) through an adjusted maximum likelihood estimation
routine. Regression coefficients and associated #-statistics for
each explanatory variable are calculated, and daily loads are
computed from the estimated daily mean constituent concen-
trations and measured daily mean flows. The daily loads are
summed to compute monthly and annual totals. The summary
statistics and the bias diagnostics in the rloadest package
compare observed and estimated loads for all dates on which
samples were collected during the study period. The diagnos-
tic parameters include load bias (Bp), which indicates whether
the regression equation overestimates or underestimates the
estimated loads. If the Bp value was greater than plus-or-
minus 25 percent, then the model was not to be used (Lorenz,
2013). The Bp statistic can be inaccurate if there are too few
observed values or too many censored values to create the load
regression equation. In this report, the model variables were
retained only when the p-value for a given regression coef-
ficient was less than 0.05, which indicated that the coefficient
was statistically significant.

The rloadest package regression coefficients are directly
related to basin land cover, to physical changes, and to bio-
logical processes of nutrient cycles. For example, increased
transport during periods of storm runoff and high streamflow
attributed to nonpoint sources (large spread land use) would
have positive coefficients indicative of linear dependence of
log-transformed concentration on log-transformed stream-
flow; negative coefficients indicate a dilution effect on point
sources. The positive (increasing) and negative (decreasing)
and magnitude components of linear time variables indicate
the presence and direction of a monotonic trend in a con-
stituent load. The presence of a seasonal trend is determined
through the actual regression coefficients for a combined sine-
plus-cosine Fourier function. Generally, dependence of con-
centration and loads on variables of flow (Q and Q?), mono-
tonic time trend (7)), and seasonal trend (based on sinusoidal
function [SS]) is measured by the coefficient of determination
(R?), which describes the amount of variance in loads from
an explanatory model. Table 4 summarizes the statistically
significant model variables, the Bp, and the R? coefficients for
four constituents at the 10 monitored sites. Insufficient data
precluded load estimation for certain constituents and (or)
years at Eighteenmile Creek, Honeoye Creek, the Genesee
River, Allen Creek, Irondequoit Creek, and the Oswego River.
Table 4 also summarizes the additional years of data that were
added to the data from this study and used to produce a load
model for water years 2012-14.

Loads of suspended solids, phosphorus, orthophosphate,
and dissolved solids at most monitored sites were estimated
using a regression model as described above; however, one
site (Irondequoit Creek) had insufficient data, and the regres-
sion models developed for two constituents, even after the
addition of data from outside the study period, are considered
poor (table 4). Suspended solids loads at Irondequoit Creek
were estimated using the best-fit model, but the Bp indicates

that the loads were overestimated by 48.8 percent. Dissolved
solids loads at Irondequoit Creek were estimated as the
product of the median concentration and natural logarithm
[In(Q)] for a given year because there were too few samples to
produce a significant model. Orthophosphate loads at Salmon
River could not be estimated because all concentrations for
samples collected were below the analytical detection limit.
Suspended solids loads could not be calculated at Eigh-
teenmile Creek and the Oswego, Salmon, and Black Rivers
because all concentrations for samples collected were below
the analytical detection limit. Detectable concentrations may
exist during some hydrologic events, such as the rising limb
of a storm hydrograph, but such events were not sampled on
these four streams during the study period.

The estimated loads for all constituents at all sites where
positively correlated with streamflow, which indicated that
loads in these streams were dominated by runoff and nonpoint
sources. The larger basins generated larger constituent loads
than the smaller basins simply by virtue of their size. Basin-
to-basin comparisons of constituent loads were possible by
normalizing the load data by basin area to derive constituent
yields (load per unit area). Annual and mean annual loads and
yields of the four constituents are summarized for the 10 study
sites in table 5, and mean annual yields are displayed in fig-
ures 14 through 17.

Annual yields of total suspended solids (fig. 14; table 5)
were greatest from the Genesee River Basin (mean of
184 short tons per square mile [t/mi®], ranging from 98.3 to
307 t/mi? for water years 2012—14), where agricultural activi-
ties in highly erodible soils dominates the land use. The Irond-
equoit Creek Basin also had relatively large estimated yields
of suspended solids (mean of 165 t/mi?, ranging from 105 to
200 t/mi®) and in 2012 and 2013 had larger estimated yields
than the Genesee River. Compared with yields at the other
monitoring sites, Oak Orchard Creek near Shelby had the low-
est suspended solid yields (mean of 12.1 t/mi?, ranging from
8.8 to 14.7 t/mi?). Oak Orchard Creek near Kenyonville (mean
of 42.2 t/mi?, ranging from 33.7 to 50.6 t/mi?) had yields larger
than Allen Creek (mean of 30.9 t/mi?, ranging from 24.9 to
42.2 t/mi?). The results for the Oak Orchard Creek Basin indi-
cated that suspended solid loads were lower from the upper
basin (near Shelby)—presumably due to the sedimentation
process that is facilitated by the large wetland area in this part
of the basin—than from the lower basin (near Kenyonville)
which has a larger area of agricultural land use. The yields of
the Eighteenmile Creek, Oswego River, Salmon River, and
Black River Basins displayed in figure 14 are not considered
representative of annual yields because the sampling protocol
was inadequate to cover large storm events.

Phosphorus yields (fig. 15; table 5) in the Eighteenmile
Creek Basin were similar to those at Oak Orchard Creek near
Kenyonville, presumably as a result of the discharge from
the Burt wastewater treatment plant and agricultural land use.
The New York State Barge Canal may be another source of
nutrients to Eighteenmile Creek at the city of Lockport where
excess canal water can overflow into Eighteenmile Creek. The
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Table 4. Estimated annual constituent loads at monitoring sites tributary to Lake Ontario, New York, water years 2012—14, and

statistically significant model variables.

[Site locations are shown in figure 1. O, flow; 7, linear time trend; SS, sinusoidal functions to account for the effects of seasonality; 7, number of samples; Bp,
load bias, in percent; R regression coefficient of determination, in percent; In, natural logarithm; --, no data]

Model

Annual load, in short tons

Constituent Additional years' variables? Bp R n 2012 2013 2013 Mean
04219768 Eighteenmile Creek at Burt
Suspended solids -- -- -- -- -- -- -- -- --
Phosphorus -- In(Q), SS -7.0 877 27 21 24 -- 23
Orthophosphate -- In(Q), T, SS 3.7 86.1 27 12 15 -- 14
Dissolved solids -- In(Q), SS 0.3 958 27 59,150 62,040 -- 60,595
04220045 Oak Orchard Creek near Shelby
Suspended solids -- In(Q), SS 2.7 494 38 1,280 1,880 2,140 1,767
Phosphorus - In(0, 0%),8S  -32 858 38 15 29 27 24
Orthophosphate - In(Q, 0%, T,8S -3.01 939 38 10 18 13 14
Dissolved solids -- In(0, 0% -0.1  96.6 38 79,360 98,260 107,030 94,883
0422016550 Oak Orchard Creek near Kenyonville
Suspended solids - In(Q, 0%, SS 7.9 724 29 - 6,800 10,230 8,515
Phosphorus - In(Q), SS 40 842 29 - 46 57 52
Orthophosphate - In(0, 0%),8S  -32 89.6 29 - 23 28 26
Dissolved solids -- In(Q, 0%, 7,5§ 0.6 93.80 29 -- 156,600 178,280 167,440
04229500 Honeyoe Creek at Honeyoe Falls
Suspended solids 2010, 2011 In(Q), SS 8.1 819 60 12,260 10,400 30,060 17,573
Phosphorus 2010, 2011 In(Q, 0, T7,8S 53 88.6 61 18 11 26 18
Orthophosphate 2010, 2011 In(Q), SS 229 822 61 4 3 6 4
Dissolved solids 2010, 2011 In(Q, 0% -0.2  99.0 17 30,880 26,900 34,550 30,777
04231600 Genesee River at Ford Steet Bridge, Rochester
Suspended solids 2011 In(Q, 0% -11.7  90.5 38 243,160 364,250 759,120 455,510
Phosphorus 2011 In(Q, 0%, T,8S -49 927 101 263 408 617 429
Orthophosphate 2011 In(Q), SS 24 834 101 38 40 55 44
Dissolved solids 2011 In(Q, 0»), T -1.0 96.2 38 660,630 760,030 975,790 798,817
04232050 Allen Creek above Blossom Road, Rochester
Suspended solids 2010, 2011 In(Q, 0, T,8S 4.1 84.1 33 770 750 1,270 930
Phosphorus 2010, 2011 In(0, 0%, T,SS -45 903 33 3 4 6 4
Orthophosphate 2010, 2011 In(Q), SS 144 855 33 1 1 1 1
Dissolved solids 2010, 2011 In(0, 0", T.SS -0.1 993 17 12,540 23,230 22,400 19,390
0423205010 Irondequoit Creek above Blossom Road, Rochester
Suspended solids 2009, 2010, 2011 Estimation? 48.8 59.8 65 14,970 27,050 28,440 23,487
Phosphorus 2009, 2010, 2011 In(Q), SS 114 69.6 82 20 29 34 28
Orthophosphate 2009, 2010, 2011 In(Q, 0»), T,SS -88 772 82 4 7 7 6
Dissolved solids -- Estimation* - -- 3 106,990 121,730 129,320 119,347
04249000 Oswego River at Lock 7, Oswego
Suspended solids -- -- -- -- -- -- -- -- --
Phosphorus 2010, 2011 In(Q, 0%, SS 2.2 88.1 84 261 325 426 337
Orthophosphate 2010, 2011 In(Q, 0), SS 29 812 84 129 142 178 150
Dissolved solids - In(0), SS 02 969 36 2,140,900 1,237,500 2,924,400 2.100,933
04250200 Salmon River at Pineville
Suspended solids -- -- -- -- -- -- -- -- --
Phosphorus - In(Q), SS 28 727 36 9 12 18 13
Orthophosphate -- -- -- -- -- -- -- -- --
Dissolved solids -- In(Q), SS 0.1 93.6 36 25,460 29,240 36,770 30,490
4260500 Black River at Watertown
Suspended solids - - - - - - - - -
Phosphorus -- In(Q), SS -7.23 89.1 26 91 119 199 136
Orthophosphate - In(0), T, SS 11 682 26 11 17 31 20
Dissolved solids - In(0, 0 03 945 26 256,840 276,190 330,960 287,997

'Insufficient data for estimation using regression model for 2012—14. Load estimated from the product of additional years data found in the U.S. Geological

Survey National Water Information System.

‘Loads estimated using regression model described by Helsel and Hirsch (2002) and Runkel and others (2004), except where noted.

3Insufficient data. Load estimated from In(Q), T, SS with a Bp of greater than 25 percent, indicating overestimation.

‘Insufficient data. Load estimated from the product of In(Q), annual mean flow for a given year, and median constiuent concntrations (2012—14).
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yields at the Eighteenmile Creek Basin (mean of 0.27 t/mi?,
ranging from 0.25 to 0.28 t/mi?) are comparable to yields in
the lower Oak Orchard Creek Basin near Kenyonville (mean
of 0.26 t/mi?, ranging from 0.23 to 0.28 t/mi?), most likely
attributed to discharge from the Medina wastewater treat-
ment plant and agricultural land use. The Irondequoit Creek
and Genesee River Basins also had considerable sources of
phosphorus that are reflected in high yields in figure 15. The
relatively high yields of phosphorus for the Genesee River
Basin are associated with suspended sediment generated
from agricultural areas and streambank erosion (New York
State Department of Environmental Conservation, 2003). In
contrast, the Oswego River, Salmon River, and Black River
Basins have greater streamflow yields (fig. 7) than the other
basins but have smaller mean phosphorus yields of 0.07 t/
mi?, 0.05 t/mi?, and 0.07 t/mi?, respectively. These low yields
are attributed to the large percentages of forested land in
these basins.

In this study, the Irondequoit Creek Basin was the third
greatest contributor of phosphorus yields (mean of 0.20 t/
mi?, ranging from 0.14 to 0.24 t/mi?) and the fourth greatest
contributor of orthophosphate yields (mean of 0.04 t/mi? rang-
ing from 0.03 to 0.05 t/mi?). However, the natural mitigation
effects of the Ellison Park wetlands on phosphorus and ortho-
phosphate loads, which would otherwise be transported to
Irondequoit Bay and Lake Ontario, would suggest an increase
of orthophosphate yields and decrease phosphorus loads and
have been documented by Coon (1997, 2004) and Coon and
others (2000).

Orthophosphate yields from the upper Oak Orchard
Creek Basin at Shelby (mean of 0.10 t/mi?, ranging from 0.07
to 0.12 t/mi?) were slightly elevated presumably due to export
from wetlands and agricultural land. The yields were similar
or slightly higher downstream at Oak Orchard Creek near
Kenyonville (mean of 0.13 t/mi?, ranging from 0.11 to 0.14 t/
mi?; fig. 16; table 5). The largest orthophosphate yield across
all basins occurred at Eighteenmile Creek (mean of 0.17 t/mi?,
ranging from 0.14 to 0.18 t/mi?), which may be derived from
fertilizer and manure applied to agricultural land, from runoff
from urban areas and wastewater treatment plants, and from
the New York State Barge Canal. Yields of orthophosphate at
9 of the 10 basins are shown in figure 16 with a small profu-
sion in areas with larger streamflow yields.

Annual yields of dissolved solids are usually greatest
in urbanized basins where atmospheric deposition and large
applications of road-deicing salt on impervious surfaces can
increase dissolved solid loads. The Irondequoit Creek Basin
had the largest annual estimated yield of dissolved solids
(mean of 840 t/mi?, ranging from 753 to 910 t/mi?), which
is attributed to road-deicing salts from urban areas. The Oak
Orchard Creek near Kenyonville and Eighteenmile Creek
Basins follow with similar mean annual yields of 829 t/mi?
and 715 t/mi?, respectively (fig. 17; table 5). Because dissolved
solids can be contributed from groundwater in the all basins of
this study, a relative assumption of groundwater yields can be
made with base flow contributions. The areas with large yields

Summary 1|

of dissolved solids that are not urbanized may have large
discharges from dissolved minerals in groundwater as seen
at both Eighteenmile Creek and Oak Orchard Creek Basins
(Kappel and Jennings, 2012)

Summary

This report presents interpretations of flow and water-
quality data at 10 monitoring sites for the periods from Octo-
ber 2011 through September 2014. The total measured water-
shed for tributaries in New York draining to Lake Ontario
is 10,105 square miles (mi?) of mixed land uses (agriculture
and developed) and land covers (open water, barren, forest,
and wetlands).

Precipitation and air temperature were measured at four
airports where weather stations are operated and maintained
by the National Weather Service. Average annual precipita-
tion was the highest at Buffalo Niagara International Airport
and was the lowest at Greater Rochester International Airport
for the 3-year period of the study. Precipitation amounts at
Syracuse Hancock International and Watertown International
Airports were relatively similar for the period. Air tempera-
tures across the southern parts of Lake Ontario were similar
at Buffalo Niagara International, Greater Rochester Interna-
tional, and Syracuse Hancock International Airports; however,
seasonal temperatures at Watertown International Airport are
colder in the winter and significantly cooler during the sum-
mer months. Some noticeable variability exists in precipita-
tion and air temperature data from September 2011 through
September 2014 compared with the 30-year monthly normal,
specifically during the late winter and early spring of 2012.

Streamflow and water-quality sites were monitored by
the U.S. Geological Survey. The smallest basin, Allen Creek,
has the second lowest streamflow yield (flow per unit area),
and the Honeoye Creek Basin has the lowest streamflow yield
overall. Honeoye Creek streamflow yield reflects a decrease in
flows because of year-round withdrawals from Hemlock Lake
and Canadice Lake for the water supply of the City of Roches-
ter. The Salmon and Black Rivers had the highest streamflow
yields because of sustained year-round discharge from the
Tug Hill aquifer. The Eighteenmile Creek and Oak Orchard
Creek Basins had relatively high streamflow yields due in
part to groundwater influences from the Niagara Escarpment
and seasonal overflow discharges from the New York State
Barge Canal.

Water samples from the 10 monitoring sites were
analyzed for orthophosphate, phosphorus, total dissolved
solids, and total suspended solids. The loads of constituents
were computed from concentration data and the daily flows
recorded for each monitoring site (where concentration and
daily flow data were available). Statistical evaluations of the
loads indicated that all constituents at all sites were posi-
tively correlated with streamflow. Multiple sites had insuf-
ficient data, and additional data from years prior to the study
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period were compiled to permit estimations of loads with
regression models.

Annual constituent yields (loads per unit area) were com-
puted to assess the relative contributions and warrant direct
comparison of loads among the monitored basins. All sites that
have high total suspended solids were attributed to agricultural
land use in highly erodible soils and included the Genesee
River, Irondequoit Creek, and Honeoye Creek Basins. These
basins contribute the highest concentrations and largest mean
yields (184 short tons per square mile [t/mi*], 165 t/mi?, and
89.7 t/mi?, respectively) to Lake Ontario. Suspended solids
concentrations at four monitored tributaries (Eighteenmile
Creek, Oswego River, Salmon River, and Black River) were
below the analytical detection limit for all samples collected
for the period of the study; therefore, suspended solids loads
could not be computed for these sites.

Samples from Eighteenmile Creek, Oak Orchard Creek
near Kenyonville, and Irondequoit Creek have the highest
concentrations and largest mean annual yields of phosphorus
(0.27 t/mi?, 0.26 t/mi2, and 0.20 t/mi?, respectively) and ortho-
phosphate (0.17 t/mi?, 0.13 t/mi?, and 0.04 t/mi?, respectively).
These are the result of a combination of sources, including
discharges from wastewater treatment plants, diversions from
New York State Barge Canal, and manure and fertilizers
applied to agricultural land-use areas. The Salmon and Black
Rivers, which drain a substantial amount of forested land
cover and have a large groundwater influence, have the lowest
concentrations and yields of phosphorus and orthophosphate
for tributaries to Lake Ontario for the period of study of
2012—-14. Concentrations and yields of phosphorus are also
high in the Genesee River (0.17 t/mi?), which are presumably
associated with nutrient and sediment transport from agricul-
tural land use in the basin and streambank erosion.

Mean annual yields of dissolved solids are the highest
in urbanized land use areas in the Irondequoit Creek, Oak
Orchard Creek, and Eighteenmile Creek Basins where sea-
sonal chloride loads attributed to road-deicing salts contribute
to dissolved solids yields (840 t/mi%, 829 t/mi?, and 715 t/mi?,
respectively). Oak Orchard and Eighteenmile Creeks see sig-
nificant dissolved solids concentrations and yields as a result
of groundwater influence from particular bedrock formations,
which can produce large amounts of dissolved solids (miner-
als) from the dissolution of these rocks, a continual process
reflected in base flow samples. Groundwater influences in the
Salmon River have very low concentrations of dissolved solids
as a result of limited interaction with bedrock on the Tug Hill
Plateau and the sand and gravel from the Tug Hill aquifer from
which the groundwater flows to sustain streamflow in these
eastern Lake Ontario basins.
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