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Physiological responses of a Southern Ocean
diatom to complex future ocean conditions
P. W. Boyd1,2*, P. W. Dillingham3, C. M. McGraw3,4, E. A. Armstrong5, C. E. Cornwall1,6†, Y.-y. Feng6†,
C. L. Hurd1,6, M. Gault-Ringold7†, M. Y. Roleda6†, E. Timmins-Schi�man8 and B. L. Nunn8

A changing climate is altering many ocean properties that consequently will modify marine productivity. Previous
phytoplankton manipulation studies have focused on individual or subsets of these properties. Here, we investigate the
cumulative e�ects of multi-faceted change on a subantarctic diatom Pseudonitzschiamultiseries by concurrently manipulating
five stressors (light/nutrients/CO2/temperature/iron) that primarily control its physiology, and explore underlying reasons
for altered physiological performance. Climate change enhances diatom growth mainly owing to warming and iron enrichment,
and both properties decrease cellular nutrient quotas, partially o�setting any e�ects of decreased nutrient supply by 2100.
Physiological diagnostics and comparative proteomics demonstrate the joint importance of individual and interactive e�ects of
temperature and iron, and reveal biased future predictions from experimental outcomes when only a subset of multi-stressors
is considered. Our findings for subantarctic waters illustrate how composite regional studies are needed to provide accurate
global projections of future shifts in productivity and distinguish underlying species-specific physiological mechanisms.

An ongoing major challenge is to grasp how climate-change-
mediated alteration of environmental conditions will
influence biota across different scales, from organismal

health to community structure1,2. Oceanographers have
employed climate-change models3,4, time-series observations5
and manipulation experiments6 to understand the biological
ramifications of global change. Phytoplankton manipulation
studies reveal how alteration of individual properties, such as
CO2, affects physiology2,6,7. However, the validity of such single-
parameter findings6,8,9, in the context of complex ocean change1,2,
is challenged by research that reveals interactive effects between
multi-stressors on phytoplankton physiology10,11. We need to
diagnose and understand the physiological mechanisms that
underpin interconnected responses to multi-stressors, which
together set the cumulative response of phytoplankton species to
changing conditions4,6,8.

Understanding the combined effects, across the global ocean,
of complex change on phytoplankton physiology requires a
gradualist approach12,13. Individual provinces will encounter
different permutations of multi-faceted change14, and each is
characterized by a range of resident phytoplankton groups (termed
biomes5). Earth System models provide a framework of projections
of regional change14 that stimulate improved experimental design
to understand the biological effects of oceanic change. In return, a
new generation of manipulation studies must deliver estimates of
the combined effects of complex change on many phytoplankton

species, and distinguish the underlying mechanisms that underpin
these physiological outcomes.

Here, we target subantarctic diatoms, which are ubiquitous and
bloom-formers15. We experimentally manipulate a representative
species6,15 (Pseudonitzschia multiseries) under year 2100 conditions
to quantify its response to ocean change. For simplicity, owing
to the complex nature of our multi-stressor experiment, we
chose batch cultures that permit initial (high nutrient) conditions
to be modified biologically but require careful monitoring.
Our experimental design, along with physiological metrics and
comparative proteomics, enables diagnosis of individual and
interactive effects of ocean properties on diatom physiology. Thus,
regionally we can quantify the cumulative effect of complex change,
and begin to identify underlying physiologicalmechanisms, as a first
step towards re-evaluation of climate-change biogeochemicalmodel
parameterizations and experimental designs3,4,13.

Experimental design
We commence by outlining a new experimental design that relies
on recognition of the controlling physiological variable for the study
organism. Fullest interpretation of results requires the application of
many physiological diagnostics, together with a statistical approach
that is powerful enough to unravel the relative contribution of
individual and interactive environmental effects on our diatom.
At present, even sophisticated experiments10,11 manipulate only
subsets of properties projected to change by 2100 (refs 1–4).
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Figure 1 | A reaction norm of P. multiseries, expressed as growth rate at
each temperature divided by maximum observed growth rate for the
norm. The norm substantiated temperature as the dominant physiological
control on subantarctic diatoms following our arbitrary selection criteria.
Error bars denote±s.d. of the mean (n=3), and the temperature bounds of
the purple rectangle denote the mean (10.6 ◦C) for subantarctic surface
waters for present-day spring/summer29,46 used in treatments A and C,
and that projected (13.7 ◦C) for this province by 2100 (ref. 18) and used in B
and D. Doubling of growth from 10.6 to 13.7 ◦C reveals that selection of
these temperatures cause the largest increase in growth rate per ◦C
warming, relative to present-day temperature. Thus, the role of warming in
setting growth of this subantarctic diatom will be time-dependent and may
decrease beyond 2100 unless diatoms can respond by altering their
thermal traits47.

To address the dual issues of quantification of the cumulative
effects of complex change and its mechanistic underpinning, we
require an experiment that supersedes present-day single- or 2–3-
parameter manipulations. We employed a collapsed factorial design
that provides a tractable, efficient, approach while concurrently
manipulating the stressors that exert major physiological controls
(temperature/CO2/nutrients/iron/light6). This streamlined design
requires identification of the dominant physiological control16
before grouping (that is, collapsing) the remaining stressors into one
combined factor (Methods).

In the Southern Ocean, temperature is recognized as setting
the upper bound on diatom growth17. For P. multiseries, we used
a literature-based physiological ranking6 to identify temperature
as the (putative) dominant control. Its pivotal role for our
subantarctic diatom was substantiated by a reaction norm that
revealed twofold higher growth (Fig. 1), on 3 ◦C warming projected
for 2100 (refs 3,4,18); note, this corroboration is contingent on
our selection criteria (Fig. 1 caption) and different outcomes are
possible if other metrics are applied. The remaining parameters
(CO2/nutrients/iron/light) were then grouped into a combined
factor. Next, we employed a 22 factorial design with four treatments
(Fig. 2): (A) control; (B) 2100 warming only18; (C) 2100 conditions
without warming; (D) 2100 conditions18 (Table 1). Our approach
balances the needs of predicting cumulative physiological effects
of future conditions with identifying the nature of environmental
forcing. This method led to improved efficiency in experimental
design (22 compared with 25 treatments for 5-factors), and the
orthogonality of the dominant physiological control with the
collapsed stressors permits identification of how much variation
is explained by temperature alone, the collapsed stressors, and
their interplay.

Growth rate and cell counts, which integrate organismal
health, were defined as primary physiological metrics. Secondary
diagnostics and comparative proteomics19,20 provide further
mechanistic insights into how organismal performance is
environmentally forced. Interpretation of the relative roles of
individual versus interactive effects of stressors on our diatom

were explored by cross-comparing experimental outcomes in
conjunction with Akaike’s information criterion (AIC) and
partial-R2 (Methods). AIC enables identification of the relative
importance of individual factors, and their interplay, by assessing
how well different statistical models fit the physiological data sets21.
Inter-comparison of the physiological effects of each treatment
enables the following diagnoses: individual effect of future warming
(B versus A); cumulative effects of future change (D versus A);
interactive effects of a future ocean (without warming; C versus A);
complex interplay of warming with altered properties ((D versus B)
compared with (C versus A)) (Fig. 2).

To inter-compare physiological effects, model averaging is the
recommended statistical approach21. Specifically, we considered
five statistical linear regression models for model averaging using
AIC: (M1) a null model with no treatment effects; that is, all
treatments have a common response for the metric (for example,
identical growth rates); (M2) a model with only temperature effects;
(M3) a model with only collapsed multi-stressors effects; (M4)
a model with effects for temperature and the collapsed multi-
stressors, but no interactions (that is, the response is determined
by summing the effects of temperature and the collapsed multi-
stressors); (M5) amodel with different responses for each treatment,
comprising effects of temperature, the collapsedmulti-stressors, and
their interactions.

Experimental results
Figure 3 reveals wide-ranging physiological responses across
treatments A–D. As anticipated (Fig. 1), the individual effect of
warming (B) significantly increased (chlorophyll-based) growth
from 0.49±0.05 to 0.75±0.05 d−1. However, the effect of warming
alone on other metrics was either small (cellular chlorophyll, Si)
or inconclusive. In C, despite higher iron, pCO2 and irradiance,
contrasting trends were evident: growth was 0.37±0.05 d−1, cellular
chlorophyll increased sixfold, and cellular N and P increased
fivefold. InD, wherewarmingwas one of five alteredmulti-stressors,
more pronounced patterns emerged. Growth (0.99 ± 0.09 d−1)
doubled and substantial decreases were observed for cellular P and
Si (comparedwith treatment A, Fig. 3).Model-averaged estimates of
inter-comparisons of physiological effects show striking differences
for individual and interactive effects of warming and other multi-
stressors across these metrics (Supplementary Table 2).

The trends observed in treatment D are explained by the
complex interplay between warming and the other stressors
((DB) compared with (CA)): positive for growth and cell
counts, but negative for other physiological responses (cellular
chlorophyll, N, P; Supplementary Table 2). The importance of
considering all five stressors when assessing their effect on cellular
elemental composition is also apparent from the ratios of metrics
(Supplementary Table 3). Although differences in C/chlorophyll
and Si/N ratios were observed across A–C, similar values were
observed in these treatments for C/N, C/P and N/P. When all
stressors were manipulated (treatment D), N/P increased, C/N
decreased and C/chlorophyll was the lowest recorded, emphasizing
the value of monitoring multiple physiological responses.

The influential role of temperature on our primary diagnostics
is confirmed in Fig. 4, where temperature explains 80% of
the variation in growth and 53% for cell counts. However,
Fig. 4 also reveals that temperature alone is insufficient for
accurately predicting the diatom response to complex change.When
light/iron/nutrients/CO2 and their interplay with temperature are
included, >90% of the variation in the metrics is explained (Fig. 4
and Supplementary Table 4). This conclusion that temperature is
the dominant control for this diatom species, and that interactive
effects are important, is reinforced by AIC weights, which reveal
>99% support for statistical model M5 (Supplementary Table 4).
Figure 4 shows that the effects of light/iron/nutrients/CO2, either
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Figure 2 | Experimental design to mimic a future ocean and assess the individual and interactive physiological e�ects of temperature. Each bar graph
(bars not to scale) graphically illustrates relative changes in each of five biologically influential properties across four treatments as detailed in Table 1. The
arrows (and accompanying text) that link the treatments describe how the individual and interactive e�ects of warming on diatom physiology are teased
apart. Future changes to each property for subantarctic waters were obtained from regional model projections from a global climate-change model18,46

(see Methods).

Table 1 | Summary of the experimental media (nutrients and iron) and conditions (light, temperature, CO2) employed for
treatments A–D, in relation to model projections18,46 for subantarctic waters for year 2100.

Property Medium 1 (treatments A and B) Medium2(treatmentsCandD) Subantarctic model projections18,46

Nutrients (µM) 300 NO3:20 PO4:100 Si 210 NO3:14 PO4:70 Si Future supply 30% less than present day
Iron∗† 20 (pFe) [Fe′]= 51.7 (A) and

62.8 (B) pmol l−1
19.1 (pFe) [Fe′]= 244.5 (C) and
205.2 (D) pmol l−1

Iron∼2-fold higher than present day

CO2 (expressed as DIC,µmol kg−1) 2,245 (±31) 2,372 (±7) Future CO2 ∼double present day
Temperature 10.6± 1◦C (treatment A) 10.6± 1◦C (treatment C) Future∼3 ◦C warmer than present day

13.7± 1◦C (B) 13.7± 1◦C (D)
PAR (µmol quanta m−2 s−1) 30±6 (continuous) 55±7 (continuous) Future higher than present day for mean

mixed-layer irradiances for subantarctic
waters south of New Zealand

The magnitudes of the nutrient additions and CO2 enrichment were confirmed by analysis (Supplementary Table 1, Methods). ∗Denotes calculations of free iron concentration (Fe′), to take into account
the combined e�ects of pH, irradiance and temperature39 in treatments A–D (see Supplementary Methods). †Denotes that the iron enrichment was higher than the model projections18 but that it
represented iron-replete (>200 pM) relative to iron-deplete (<200 pM) conditions for subantarctic waters29 . Alteration of ocean properties (by year 2100) were based on regional projections from
the NCAR Community Earth System Model biogeochemical climate-change model18,46 .

individually or together explain little of the variability in the primary
diagnostics. As iron enrichment can significantly enhance subpolar
diatom growth6,10,15, its beneficial influence may be offset by
negative effects due to fewer nutrients. Similar trends, with respect
to warming, were also observed for most secondary diagnostics
(Fig. 4), whereas cellular chlorophyll and Si may respond more to
changes in other stressors (individually and/or interactively) when
combined with warming.

Visualization of proteomic (Data set 1) and physiological
measurements (Supplementary Table 2) across treatments A–D was

based on two multivariate analyses (non-metric multidimensional
scaling: NMDS; and principal component analysis: PCA; Fig. 5).
Both analyses project high-dimensional data (that is, abundances of
1,640 proteins ormultiple physiological responses) onto a new set of
axes (ordinations), where the x axis explains the greatest variation
in the original data and the y axis explains the second greatest
variation. Coordinates/ordinations of A–D in Fig. 5 illustrate that
the proteomic responses can be correlated with the physiological
metrics along both axes, linkingmolecular-levelmeasurements with
phenotypic observations. Examination of metabolic processes of
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Figure 3 | Summary of physiological metrics sampled during exponential growth (Supplementary Fig. 1) from each of treatments A–D (represented
again by bar graphs within colour-coded circles depicting culture conditions detailed in Table 1). Error bars are the s.d. of the mean (n=3). ∗Denotes data
from one C treatment where some assays were at the limit of detection (that is, lower than the blank) owing to the weak physiological response. No
significant change in cell size was observed across treatments A–D. Note, batch cultures for treatments A–D were each sampled/collected during
exponential growth (Supplementary Fig. 1) and hence cells were not resource-limited. At the experiment’s conclusion, pronounced decreases in phosphate
and increases in pH were evident in D, suggesting resource limitation (Supplementary Table 1). However, the physiological ramifications of these shifts are
probably minor on the basis of reported plasticity of laboratory-cultured P. multiseries in response to increased pH (to 8.4; ref. 48), and bloom-forming
diatoms that were not P-limited in batch cultures at∼0.5 µmol PO4 l−1 (ref. 49).

proteins that describe the greatest observed variance (NMDS1 axis,
Fig. 5a) revealed that relative abundances of proteins responsible
for transcription and translation separated treatment C from the
others, whereas PCA along the PC1 axis shows separation of A–D
based on cell counts, cellular content, and growth. PC2 exhibits
additional separation by chlorophyll and cellular Si. Together, both
plots suggest that the isolation of treatment C is partially due to our
diatom’s inability to process and translate RNA.

More specifically, the significant difference in cellular P
across treatments A–D (Fig. 3) correlates with the abundance
of proteins involved in translational processes that utilize P-rich
macromolecules (RNA to protein; fewer in D compared with
A; more in C compared with A, Fig. 5a). Figure 5a also reveals
temperature-driven proteome alterations, such as a metabolic
strategy supporting increased growth in B (compared with A)

that is evident from 1.5-fold higher abundances of a global
transcriptional regulator/cell division control protein (Data set 1).
Under late twenty-first-century conditions (treatment D), other
strategies are conspicuous (for example, photosynthetic complex
proteins are significantly more abundant relative to the control;
Fig. 5a). There is also evidence of temperature-driven intracellular
reactions dictating proteome responses between both future
conditions, with (D) and without warming (C).

Discussion
Individual versus interactive effects. The individual effect of
warming on subantarctic P. multiseries physiology was compared
with published studies (Supplementary Table 5). Warming
influences subpolar diatoms in different ways, including increasing
cellular chlorophyll22,23, carbon22,23, C/N ratios22 and growth23, but
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Figure 4 | Individual versus the interactive physiological e�ects of
warming on our study diatom. The proportion of variation (R2) explained
by temperature (pink, lower), the other altered properties
(pCO2 /PAR/Fe/nutrients) (light orange, middle) and their interaction (dark
orange, top) for: the primary metrics of growth (d−1) and cell abundance
(n); and the secondary metrics of cellular chlorophyll, C, N, P and Si.

decreasing both cellular P (ref. 24) and cell size25,26. Here, warming
resulted in increased growth rate and cellular chlorophyll (Fig. 3).
The differentially abundant proteins in treatments A versus B
were enriched for B in processes involved mostly in intracellular
transport (for example, vesicle coat complex AP-2, clathrin adaptor
complex, and inner membrane protein translocase, Data set 1). This
is indicative of greater intracellular protein transport and turnover
when diatoms are exposed to warming27.

The metric for maximum growth (µmax) as a function of
temperature28 provides insights into the relative roles of warming
and other stressors for our diatom species. Although temperature
sets the upper bound on Southern Ocean phytoplankton growth17,
iron-enrichment6,29 and/or nutrient stress or limitation30 can
modify rates and influence µ/µmax. As expected, our low-iron
control showed submaximal growth (0.5 d−1 compared with 1.1 d−1
predicted µmax (ref. 28) at 10.6 ◦C). Future warming in B increased
growth to submaximal rates (0.75 d−1 compared with 1.3 d−1
µmax at 13.7 ◦C) revealing that other factors either individually/or
interactively restricted growth. The influence of these stressors on
growth is evident from statistical modelling (Fig. 4), and from D,
which had the highest rate (0.99±0.05 d−1). Despite using batch
cultures, submaximal growth in D is more likely to be influenced
by the individual/interactive effects of 30% less macronutrients
for future subantarctic waters18 than higher CO2/irradiances that
each have either negligible25 or positive23 effects on diatom
growth, respectively.

Our collapsed factorial design enables quantification of
individual and interactive effects of temperature, but requires
inferences to be made into the interplay of temperature and
other stressors. Diagnosis of this interplay relied on a comparison
of physiological trends from treatments C and D with studies
where individual26 and/or several25 properties (temperature/pCO2 ,
iron/pCO2 were manipulated (Supplementary Table 5). For example,
iron enrichment increases diatom growth26,31 as does higher
light (under iron-replete conditions23), whereas higher pCO2 does
not25, providing evidence of their relative contribution (above
that of warming) to increased growth in treatment D relative
to B. Iron enrichment31 or warming24 each decrease diatom
cellular P (increasing N/P ratios), whereas CO2 does not alter
N/P (Supplementary Table 5), offering robust interpretations
of observed changes in this metric in treatment D compared
with A. Decreased cellular P in treatment D is consistent with
fewer translational process (RNA to protein) proteins per cell in
treatment D (compared with A) compared with C (compared
with A) (Fig. 5a, Data set 1). For cellular Si, diatoms in treatment
D had ∼50% of the Si content of cells in A–C. This trend is
not solely temperature-driven (Fig. 4), and probably also due to
decreased Si requirements under lower silicate concentrations32
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Figure 5 | Representations of the di�erent outcomes of treatments A–D.
a, Proteomics. b, Physiological metrics. Biological replicates in treatment A
are denoted by blue circles; B: yellow squares; C: light blue diamonds (n=2
in a, and n= 1 in b owing to low biomass, see Fig. 3 caption); D: orange
triangles. a, NMDS analysis of relative protein abundances of 1,640
proteins in treatments A–D. Grey arrows indicate comparisons between
treatments: the treatment at the base of the arrow is considered as the
‘control’ relative to the treatment at the head of arrow. Metabolic processes
enriched in the between-treatment protein comparisons are colour-coded
to correspond to Data set S1. ↑: metabolic processes with proteins at higher
abundance in treatment (versus control); ↓: proteins at lower abundance.
Note, little is known about the influence of growth phase on phytoplankton
proteomics, with a sole study reporting changes in a small, distinct group of
unidentified proteins across di�erent growth phases for a dinoflagellate50.
b, PCA of treatments A–D based on growth rate, cell counts, cellular
chlorophyll, C, N, P and Si. PC1 represents 80% of the variation for
placement in the data set and PC2 15% of the variation.

and/or iron-mediated decreases in cellular energy metabolism and
associated Si uptake6.

The interplay between stressors ranges from non-interactive
cumulative effects to synergistic interplay8. Synergistic
amplification of growth by warming and iron enrichment
(nutrient-replete conditions) is reported for polar diatoms33,
and iron- and CO2 enrichment (nutrient-replete conditions)
synergistically increase N/P ratios, but decrease Si/N ratios of
subarctic pennate diatoms25. We found direct evidence of positive
interactions in our study: 15% and 30% of variations in growth and
cell counts, respectively, are explained by the interplay of warming
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with other factors (Fig. 4). This prompted investigation of the
mechanisms driving these interactions by an inter-comparison of
treatments C and D. Low growth in C was initially counterintuitive
as C had higher iron, pCO2 and light (but 30% less nutrients).

We propose that the very different outcomes in C and D
stem primarily from three inter-related facets primarily involving
temperature, iron and nutrients. First, the individual effect of
warming on growth (Figs 1 and 4); second, previous reports
of individual effects of warming24,34 and iron enrichment26,31 on
growth; and third the joint influence of temperature (less need
for P-rich ribosomal RNA; refs 24,30) and iron (mechanism(s)
unknown)31 in reducing cellular P and partially offsetting any
detrimental effects of 30% fewer nutrients in treatment D, or the
effects of diatom growth in D (0.99±0.09 d−1) on nutrient uptake
(Supplementary Table 1). Our hypothesis is supported as follows:
first eightfold lower cellular P in treatment D compared with C
(Fig. 3); second, increased yet submaximal growth (0.99± 0.09
compared with 1.35 d−1) and Fv/Fm (0.45 compared with 0.65
maximum35, data not shown) in D suggests that temperature-
and/or iron-mediated reduction in cellular elemental requirements
partially offsets less nutrients (Supplementary Table 1) and/or their
interplay with other stresses. Furthermore, pronounced differences
in the outcomes of treatments C and D indicate that the selection of
properties to be experimentally manipulated requires great care, as
the findings from C (ostensibly a four-way manipulation) yielded
unpredicted and misleading conclusions (compared with D for
2100) on diatom responses to complex ocean change. Our evidence
for the role of temperature and iron in altering subantarctic diatom
physiology, in the context of complex change, was interpreted using
physiological and molecular-level syntheses34,36.

Physiological mechanisms for interactive effects. We propose
specific mechanisms for the joint role of warming and iron
for enhanced physiological performance in D. Each plays a
fundamentally different biochemical role, with temperature
reported to accelerate and primarily drive non-enzymatically
catalysed reactions34, whereas iron enhances enzymatically
catalysed pathways, including photosynthesis36. The summary
of metabolic strategies that differentiates treatments A–D in
Fig. 5 supports the important interplay between temperature
and iron. Together, warming and iron availability boost many
biochemical reactions, including photosynthetic ability and
electron transfer capacity (supported by >2-fold increased
abundance of Rieske [2Fe–2S] protein in D compared with A,
Data set 1). The interplay between temperature and iron is further
confirmed by proteomic comparison of C and D (Fig. 5a), with
more proteins in D (iron enrichment/warming) (compared with C,
iron enrichment/no warming) involved in vitamin B binding37, N
compound biosynthesis, and photosystem complexes, all of which
require iron (Data set 1).

Figure 5a indicates that the greater photosynthetic capacity
of our diatom in D (compared with C) is further evidence of
temperature/iron interactions; many of the proteins that increase
in abundance in treatment D (compared with C) are involved in
photosynthesis and amino acid biosynthesis (Data set 1). Moreover,
there is evidence of potential trade-offs between biochemical
pathways (translation versus carbon fixation) in treatment C
(compared with A), potentially driven by the metabolic shifts
necessary to survive in the suboptimal conditions evident in C.
Diatoms in C are enriched in ribosomal proteins involved in
translation, whereas proteins related to photosynthetic carbon
fixation were less abundant (compared with A). These results
emphasize the complexity and multi-faceted nature of this diatom
species’s physiological response to changing conditions.

The disproportionate influence of warming and iron enrichment
(and their interplay) on our diatom’s physiological response to

complex change illustrates the utility of our approach; holistic
treatment of multi-stressors to examine their cumulative effect
on phytoplankton, followed by exploration of potential causes,
to advance subsets of the most influential properties for further
scrutiny. In hindsight, our batch culture approach should be
superseded by semi-continuous culturing to ensure maintenance
of quasi-steady-state conditions in future holistic multi-stressor
experiments. In our study, there are likely to be additional
interactions between pH and iron38; pH and temperature
(Supplementary Table 5), pCO2 /iron10, iron/temperature/light39
and/or nutrients6, which may exert subtle effects (for example,
altered iron bioavailability39). Our approach can stimulate future
research, across different ocean biomes, from a holistic standpoint
(inclusion of influential multi-stressors) compared with less
inclusive (subset of stressors) approaches6.

Our study reveals that a representative subantarctic diatom
species may benefit physiologically by 2100, and that potential
doubling of growth rates will alter regional productivity and
biogeochemistry3,4. This positive response, driven primarily by
warming and iron enrichment, may remove the need for adaptive
evolution7 for subantarctic diatoms. Our regional analysis cannot
be applied to resident phytoplankton in other provinces, which,
depending on their sensitivity to complex change, may respond
differently to regionally altered conditions14. Nevertheless, our
findings demonstrate that diatom physiological responses are
driven by both individual and interactive stressors, and not all
stressors are equally influential. At present there is incomplete
parameterization of many aspects of the physiological interplay,
evident here, in climate-change models3,4,18,40. However, our study
of diatom proteomics interpreted in conjunction with physiological
diagnostics points to a compelling biochemical basis that underlies
the interplay between stressors. These mechanistic insights set new
goals to guide multi-faceted modelling approaches41 in representing
phytoplankton physiology40 in climate-change models3,4,18.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
Study organism. Pseudonitzschia multiseries (12×4×3.6µm, from scanning
electron microscopy; 86.4 µm3 (using the ‘prism on parallelogram base’ geometric
shape for biovolume51)) was isolated in September 2011 from high-nitrate
low-chlorophyll subantarctic waters off New Zealand that have low dissolved iron
concentrations year-round (that is,∼0.15 nmol l−1; ref. 29). Pennate diatoms are
common in subpolar waters28–30. The isolate has since been maintained in unialgal
culture in the artificial seawater medium Aquil52 with a pFe of 19.1, nitrate 300 µM,
phosphate 20 µM and silicate 100 µM. Six months before the experiment the
diatom was acclimated to pFe 20.0 with the same nutrient concentrations.

Selection of the dominant physiological control on subantarctic diatoms.
A review of environmental controls on phytoplankton6 advocated the use of a
physiological ranking scheme to initially identify the dominant control (sensu;
ref. 16) on phytoplankton groups. They6 proposed that temperature was likely to be
dominant control for Southern Ocean diatoms. To investigate this assertion further
we conducted a reaction norm and measured the steady-state growth rate of our
subantarctic diatom across 8 temperatures (8–17 ◦C) using a
temperature-controlled aluminium block modified after ref. 53.

Experimental design. Five key properties (temperature/CO2/nutrients/iron/light)
were identified as likely to influence diatom physiology6. We employed an efficient
experimental design that relies on prior identification of a dominant factor (that is,
temperature), and then collapses the non-dominant factors together. This approach
balances the needs of making accurate predictions of physiological responses under
future oceanic conditions with identifying which factors and interaction terms are
most important in driving those responses. This collapsed design allows
measurement of the relative importance of: the putative dominant factor; the
combination of the other four factors; and the interaction of the dominant factor
with the four combined factors.

For our needs, this is an improvement on classical multi-factor designs such as
full factorial or fractional factorial designs. Full factorial designs perform well when
the number of factors is limited and the aim of a study is to determine which
factors and interaction terms are most important. However, they are inefficient for
making accurate future predictions and can become intractable with multiple
factors. For example, a full 25 factorial with three replicates per treatment would
have required 32×3=96 experimental units, beyond the current capabilities of
even our state-of-the-art manipulation system54. Fractional factorial designs (for
example, 25−1 designs or smaller)55 reduce the number of treatments, but are still
inefficient for making future predictions because interaction effects are not additive
and most treatment combinations do not represent possible future scenarios. Even
when some interactions are not important and advanced statistical techniques such
as model averaging are employed, many treatments would provide limited or no
information for predictions.

After identifying temperature as the dominant factor, it was kept separate and
the other four factors were grouped together into a combined factor. We then
employed a 22 factorial design that provides efficient predictions of future
responses (2 of 4 treatments represent plausible current and future factor
combinations, rather than 2 of 32 as would occur in a conventional 25 design) and
maintains experimental balance. Thus, for temperature, we had two levels (current:
10.6 ◦C; and year 2100 warming: 13.7 ◦C). For the second factor, we also had two
levels (current: CO2, nutrients, iron, light; year 2100 conditions: CO2, nutrients,
iron, light). This design allows us to resolve between temperature-only effects and
the combined interactive effects between temperature and the other four altered
properties. For the other altered properties, although we cannot determine the
effects of individual properties, we can determine their combined effects (both
primary and interactive). Ultimately, this design allowed us to gain insights into the
property likely to have the largest influence on physiological response
(temperature), and its overall interactions with other properties, and to make
holistic predictions for the physiological response of a subantarctic diatom under
year 2100 oceanic conditions. This would not be possible from an experiment that
did not manipulate all five properties.

Experimental treatments. Two seawater media were used to provide the
conditions used for each of four treatments (Table 1). Media preparation, and the
prior acclimation of the replicate cultures to the range of growth conditions in
Table 1 for treatments A–D followed published procedures. The preparation of
media, and the prior acclimation of the replicate cultures to the range of growth
conditions presented below for each of the four experimental treatments followed
procedures detailed in refs 56,57. The magnitude of the nutrient additions were
confirmed by analysis using a QuickChem Automated Ion Analyser (Lachat
Instruments). The analysis of CO2 for the treatments is detailed in Supplementary
Methods. Changes in free iron concentration [Fe′] during the experiment were
driven by biologically mediated alteration of pH (Supplementary Methods).
Treatments A–D were based on model projections for the subantarctic province
from the NCAR Community Earth System Model biogeochemical climate-change

model18,46. The subantarctic is characterized by considerable sub-regional
variability in mixed-layer depth (for present-day and future projections)46; hence,
the irradiances selected were based on those South of New Zealand (Fig. 3
in ref. 46).

Incubation system. The experiment was housed in a walk-in Contherm BIOSYN
Series Model 650 Plant Growth Chamber that provided lighting for the experiment
and maintained temperature control during subsampling when bottles were
removed from temperature-controlled water baths. Following acclimation, the
diatom was cultured in 16×2 l2 (trace-metal cleaned, after procedures in ref. 56)
polycarbonate culture vessels, comprising four bottles for each treatment; three
replicates containing phytoplankton culture and one control abiotic bottle. Target
pH levels were achieved by flowing pre-mixed gases through a 10-cm loop of
silicone tubing placed through the Teflon lid of each culture vessel58. As CO2 gas
flowed through the tubing, it diffused into the sea water, increasing the dissolved
inorganic carbon (DIC) and decreasing the pH. This approach achieves target pH
levels, while maintaining trace-metal clean conditions within the culture
vessels58,59. For the ambient pCO2 treatments (A and B), 378 ppm (±8 ppm) CO2 gas
flowed through the tubing of each culture vessel for 40 h. For the high-CO2

treatments (C and D), 10% CO2 flowed through the tubing for 10min, and then
747 ppm (± 15 ppm) CO2 for 40 h.

Culture vessels were placed in water baths at 10.7 ◦C and 13.6 ◦C for accurate
control and monitoring of the low-temperature and high-temperature treatments.
Low-temperature treatments were cultured for 17 days, and high-temperature
treatments for 14 days. Irradiance was continuously monitored using floating PAR
(Photosynthetically Active Radiance) sensors within each water bath. Irradiances
required for each treatment were modified using neutral density screening to
attenuate the plant growth chamber (using a subset of the 24×400W) metal halide
lamps (maximum output of 650 µmol quanta m−2 s−1 using all 24 lamps). A
class-100 laminar flow hood was employed within the walk-in growth chamber to
provide trace-metal clean conditions.

The lids of the polycarbonate culture vessels were fitted with 5 ports. The first
port tubing was fitted with a 0.2 µm syringe filter and was used for bubbling air into
the media before inoculation as described above. The second port was also fitted
with a 0.2 µm syringe filter and was used to put air into the head space of the
culture bottle during the incubation. The third port was fitted with a 0.2 µm filter
and left open to allow excess air out of the bottle thereby releasing pressure. The
fourth port tubing was for pH sampling and the fifth port was used to sample the
other parameters.

Sampling protocols. Bottles were removed from the incubators, and the sampling
ports carefully disconnected within the laminar flow hood. The cells were then
re-suspended by gently inverting each bottle. Samples for pH were taken after the
bottles were returned to the incubator. Sampling for all experimental parameters in
each bottle was carried out on day 0, 4 and 9 (all treatments), and then days 11 and
14 for treatments B and D and on day 15 for A and day 17 for A and C. The
following protocols were employed at each sampling point.

For cell counts 1ml samples were fixed with 50% glutaraldehyde to a final
concentration of 0.5% and stored at 4 ◦C. Cells were counted with an Olympus
CKX 41 inverted microscope using a 0.1ml nannoplankton chamber (PhycoTech).

Protocols for in vivo and in vitro chlorophyll analysis, active fluorescence, and
the calculation of chlorophyll-based cell growth rates followed those in refs 56,57.

Cellular particulate C and N were analysed in a Thermo Flash 2000 CHN
Elemental Analyser. Particulate P and biogenic Si were analysed following
procedures in ref. 60 and ref. 61, respectively, and converted to cellular elemental
composition based on cell counts. The low cell abundances in treatment C resulted
in some assays being close to the limits of detection and in some cases being lower
than the blanks. No subsamples were taken for dissolved iron analysis during the
experiment, but confirmation of no trace-metal contamination of the treatments
was obtained indirectly by monitoring several physiological metrics—such as
C/chlorophyll, growth rate or cellular silica (see Supplementary Table 4)—that are
sensitive to iron supply.

Measurement of pH and DIC. In our study, we permitted the initial pCO2 to be
biologically altered during the course of the experiment by the diatom physiology.
In our study, B and D were the only treatments with a measurable change in DIC
over the course of the experiment. In treatment B, the DIC decreased by
183 (39) µmol kg−1; in treatment D, DIC decreased by 519 (31) µmol kg−1.

Automated pHT measurements were made daily using the spectrophotometric
pH measurement system described in ref. 54. Briefly, syringe pumps and rotary
valves (Norgren Kloehn) were used to sample sea water from individual culture
vessels and mix it with thymol blue indicator dye. This solution was directed to an
Ocean Optics spectrometer (USB4000) where absorbance measurements were used
to determine pH using the method of ref. 62. The automated control of all
instruments and the calculation of pHT were done using LabVIEW
(National Instruments).
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pHT was measured each day, and samples for DIC were obtained at the same

time as those for other parameters. Samples were preserved with saturated
mercuric chloride and analysed using an AIRICA IR-based detection system
(Marianda). In treatment B, the DIC decreased by 183 (ref. 39) µmol kg−1; in
treatment D, DIC decreased by 519 µmol kg−1. Carbonate chemistry calculations
were done in SWCO2 (ref. 63) using the dissociation constants64, refitted by ref. 65.
The change in carbonate chemistry within the abiotic controls for treatments A–D
was relatively small over the course of the experiment compared with the
diatom cultures.

Proteomic profiling and quantitative analysis. Data-dependent tandem mass
spectrometry was carried out on a Thermo Scientific Q-Exactive tandem mass
spectrometer following protocols detailed in ref. 20. Relative abundances of
proteins across all biological replicates of treatments A–D were determined using
spectral counting19,66. Normalized spectral abundance factors (NSAF) were
calculated using ABACUS software on all data sets67. NSAF values were then
statistically evaluated using QSPEC (ref. 66). Protein abundance values (adjusted
normalized spectral abundance factor, Data set S1) were log(x+1) transformed for
the NMDS analysis and a Bray–Curtis dissimilarity matrix was used to construct
the NMDS. The NMDS presented in Fig. 5a employed a statistically significant
separation among samples based on treatment calculated using ANOSIM in the
vegan package (688) in R (ref. 68) version 3.1.0 (R=0.9689).

In addition, the peak intensity integrations for tryptic peptides, resulting from
26 proteins determined to be significantly different using spectral counting were
further analysed using MS1 full-scan filtering to validate relative abundances69.
These proteins were chosen to be examined for comparative quantification using
peptide chromatographic peak intensity. Proteins chosen to have a secondary
quantitative analysis using MS1 full-scan filtering were either significantly more or
less abundant on the basis of spectral counting comparisons of treatments A versus
C, A versus D, and C versus D using QSpec statistical analysis66. These proteins
were used as the background proteome in Skyline daily v. 2.6.1.7171 (refs 69,70) for
protein and peptide quantification by MS1 full-scan filtering. A standard method
for unbiased protein quantification from a whole cell employs spectral counting,
which allows relative quantification of all proteins identified. That said, spectral
counting relies on the detection of MS2 spectra and thus risks underreporting
lower-abundance peptides. MS1 full-scan filtering relies on measuring the relative
peak intensities of MS1 peptide intensities and is both accurate and precise over
time69. Duplicate peptides were removed from the analysis as well as peptides with
poor-quality spectra across most biological and technical replicates. Differentially
abundant proteins were detected using the R v. 3.1.1 package MSstats (refs 71,72).
In MSstats, scope of biological replicates was set to expanded (the more
conservative approach) and scope of technical replicates was set to restricted. The
consistency between spectral counting and the MS1 full-scan filtering method
provided further unbiased confirmation on the physiological importance of the
26 proteins examined.

Statistical analysis.We employed a 22 factorial design where one factor was
temperature (set at current and year 2100 levels) and the other factor collapsed four
stressors at current and future levels. When estimating treatment means,
differences in treatment means, standard errors and confidence intervals, model
averaging was employed to optimize the bias-variance trade-off21.

Determining the importance of various factors in an experiment or research
study has traditionally been done through hypothesis-based analysis methods such
as analysis of variance, but can also be performed in a model selection context73.
There is a preference towards this latter approach representing a broad trend in
ecological research74. In model selection, a suite of statistical models are fitted to
the data (that is, various factors are included or not included in different models)
and their relative performance is compared using some metric, such as Akaike’s
information criterion73 (AIC). In addition to the philosophical advantage of
separating model fit from hypothesis testing74, predictions that do not ignore the
uncertainty and variance inherent to the model selection process (for example,
model-averaged predictions based on AIC) outperform those that do21,75–77. In this
study, we used five linear regression-based statistical models (M1 to M5) to
determine the relative importance of temperature, the combined other factors, and
their interaction (see main text).

For each physiological metric and each model, AIC was calculated. AIC
measures how well each statistical model fits the data, but also has a penalty for the
number of factors included. Two (or more) models can be compared by examining
the differences in AIC between them (∆AIC); if∆AIC> 2, the model with lower
AIC is considered to be superior, whereas differences between 0 and 2 are
considered equivocal. Across all of the statistical models, AIC can also be converted
into AIC weights (AICw), which measure the level of support for each model, where
0= no support, 1= full support, and the sum of AIC weights across all models is 1;
∆AIC and AICw are shown in Supplementary Table 3. For example, for the primary
metrics of growth rate and cell count, M5 (the full model that includes all factors
and their interactions) fits the data much better than models M2 and M4

(∆AIC> 10 for each), which strongly outperformed models M1 and M3
(∆AIC> 6 for each). Nearly all (AICw > 0.99) support was on M5 for each metric,
with most support on the most complex model for the secondary metrics as well
(Supplementary Table 3). AIC weights were also used to estimate model-averaged
treatment means and differences between treatments, their standard errors and
approximate 95% confidence intervals21, shown in Supplementary Table 1. Finally,
the resulting model-averaged confidence intervals were used in statements that two
groups were distinguishable from each other (for example, a statement such as
A>B implies that the lower limit of the 95% model-averaged confidence interval
for A–B was>0).

Although we were able to quantify growth rate and cell counts for all
experimental units (replicates), the weak physiological performance (that is, low
cell counts) exhibited by treatment C limited our ability to quantify the secondary
metrics of cellular C, N, P and Si. We therefore removed two replicates each with
low cell counts for the estimation of cellular C, N, P and Si. For cellular chlorophyll,
the variation in treatment C was much greater than in the other treatments,
violating the model assumption of homogeneous treatment variances required for
model-averaged confidence intervals. Therefore, confidence intervals for treatment
C and its comparisons with other treatments were calculated using robust t-based
confidence intervals78 where treatments A, B and D were considered to have a
common variance different from that of treatment C.

As a descriptive statistic, we also calculated partial-R2 to describe variation
explained by model components. For example, for M5, partial-R2 describes the
proportion of variation explained (0= none; 1= all explained) by temperature
alone, the other four altered properties alone, and the interaction of the two
(Fig. 4). For example, for growth rate, temperature explained 80% of the observed
variation by itself. However, the interaction between temperature and the other
altered properties explained 2/3 of the remaining variation (13% of 20%). For those
metrics with high AIC weight on M5 and a large partial-R2 for the interaction term,
it is important to incorporate all important factors at ambient and predicted future
levels, and allowing for the complex interplay between them, to correctly estimate
anthropogenic effects.

Principal components analysis. As many of the physiological metrics were highly
positively or negatively correlated with each other, a principal components analysis
(PCA) was undertaken to examine the underlying structure of the variables at
reduced dimensionality. The PCA was conducted using the following variables,
each rescaled to have mean 0 and unit standard deviation: chlorophyll-derived
growth rate, log n (cell count), chlorophyll a, log C, log N, log P and log Si. Two
observations in treatment C had cell counts that were too low for accurate
measurement of cellular N, P and Si and were therefore excluded from the PCA.
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