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Conservation policy and the measurement
of forests
Joseph O. Sexton1*, Praveen Noojipady1,2,3, Xiao-Peng Song1, Min Feng1, Dan-Xia Song1,
Do-Hyung Kim1, Anupam Anand1,4, Chengquan Huang1, Saurabh Channan1, Stuart L. Pimm5

and John R. Townshend1

Deforestation is a major driver of climate change1 and the
majordriverofbiodiversity loss1,2.Yet theessential baseline for
monitoring forest cover—the global area of forests—remains
uncertain despite rapid technological advances and interna-
tional consensus on conserving target extents of ecosystems3.
Previous satellite-based estimates4,5 of global forest area
range from 32.1× 106 km2 to 41.4× 106 km2. Here, we show
that themajor reason underlying this discrepancy is ambiguity
in the term ‘forest’. Each of the >800 o�cial definitions6
that are capable of satellite measurement relies on a criterion
of percentage tree cover. This criterion may range from
>10% to >30% cover under the United Nations Framework
Convention on Climate Change7. Applying the range to the first
global, high-resolutionmap of percentage tree cover8 reveals a
discrepancy of 19.3× 106 km2, some 13% of Earth’s land area.
The discrepancy within the tropics alone involves a di�erence
of 45.2 Gt C of biomass, valued at US$1 trillion. To more
e�ectively link science and policy to ecosystems, wemust now
refine forest monitoring, reporting and verification to focus
on ecological measurements that are more directly relevant
to ecosystem function, to biomass and carbon, and to climate
and biodiversity.

Forests are the focus of efforts to mitigate harmful ecological
and social impacts of land use, including agreements to reduce
carbon dioxide emissions from deforestation and forest degradation
(REDD+; refs 9–11). The goals are both scientific—to balance
regional and global carbon budgets—as well as political, to reduce
carbon emissions and stop species extinctions by defining national
baselines and managing future anthropogenic change12.

The Forest Resources Assessments (FRAs) of the United Nations
Food and Agriculture Organization (FAO)—the authority for
national and global accounting—recorded 40.8×106 km2 of forest
in 2000, equalling 31% of Earth’s land area13. The FRAs rely on
self-reporting by participating countries, raising concerns about
subjectivity and consistency14–16. Although estimates from satellite
images should provide a more objective base9, even these disagree
significantly over the amount and distribution of forests worldwide.
Figure 1 maps the consensus among eight global satellite data
sets over the class ‘forest’ in or near the year 2000 (Methods).
The densely canopied biomes of the tropical, temperate and boreal
zones, and the treeless deserts, prairies and tundra show near-
perfect agreement across all sources on the presence or absence of
forests. Yet the data disagree over the planet’s semi-arid savannahs,

shrublands and woodlands, and over the northern limits of the
boreal forest. Although 102.2× 106 km2 show perfect consensus
among the eight data sets on either the presence or absence of
forests, 9.4×106 km2 were identified as forest by four out of the eight
sources. These sparsely forested regions are the areas of greatest
remaining uncertainty.

There are two reasons for the uncertainty: technology and
semantics. Among the remotely sensed estimates, the discrepancies
are partially due to the imprecision of empirical models relating
forest cover to optical measurements in challenging environments.
Clouds frequently obscure the land surface in the most humid
regions. Dense vegetation, water, and shadows are confused with
tree canopies in herbaceous wetlands and agricultural areas. In
semi-arid savannahs and woodlands, structural variation and
understory seasonality reduce precision8,17,18. Limited presently
by technological constraints, these uncertainties will shrink with
increases in the number and breadth of sensors, providing greater
temporal frequency, more accurate reference measurements, and
better penetration of clouds18.

More fundamentally, the disagreement is due to the many
definitions of the term ‘forest’. Owing to different geographic and
cultural backgrounds, even expert human interpreters disagree
on the identification of forests in situ or in satellite images. The
problem runs deep etymologically. The word ‘forest’ (from the
French forêt, referring to uncultivated land outside city walls) has
only circumstantial connection to trees, which happened to occupy
the wilderness in medieval France. In contrast, the ‘New Forest’—
founded as a royal hunting preserve in 1079 in southern England—
comprised mostly farms, pasture, and heathland.

Today, there are >800 official definitions of forest6,19. Each of
these discriminates land either by vegetation cover or by human use.
Whereas definitions based purely on land use (for example, forestry)
require only administrative boundaries for mapping, definitions
based on land cover are more directly relevant to carbon and are
observable by satellite sensors. Forest-cover definitions vary along
criteria of tree cover, tree height, and parcel size, as well as between
the actual and potential height of vegetation. The FAO (ref. 13)
defines forests by the criterion of tree cover>10%. The International
Geosphere-Biosphere Programme (IGBP) uses a criterion of >60%
tree cover for forest, specifying savannah as 10–30% and woody
savannah as 30–60% cover20. Spanning the range of the FAO
and IGBP definitions, the United Nations Framework Convention
on Climate Change (UNFCCC) allows participating countries
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Figure 1 | Global distribution of consensus among eight satellite-based data sets4,8,31–36 on the presence or absence of forest in or near the year 2000.
Colours represent the number of times each pixel is identified as forest among the eight data sets—that is, the number of ‘votes’ (out of eight possible) for
forest cover. Larger values (in green) show agreement on the presence of forest. Conversely, values near zero (in red and black) show agreement on its
absence. Yellow values (near four) represent areas of maximum disagreement over both the presence or absence of forest.
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Figure 2 | Global area of forest cover as a function of the tree-cover criterion. Incremental values represent global area (×106 km2) within each bin, and
cumulative values refer to the global area with tree-cover values greater than or equal to that of the bin. Landsat-based tree-cover data8 are publicly
available at www.landcover.org. Global land area (147.3× 106 km2) reflects the extent of terrestrial ecoregion boundaries21.

to select from a range of thresholds between >10 and >30%
tree cover7.

So, how much forest cover is there? The answer depends
on the threshold of tree cover. When applied to the world’s
first high-resolution (30-m-resolution), global map of tree cover8
(www.landcover.org), the official definitions yield large differences
in the global area and distribution of forests. Figure 2 relates
global forest area across the range of possible thresholds, and
Fig. 3 maps the UNFCCC definitions and their differences. Given
the more conservative UNFCCC threshold of >30% cover, there
were 32.2×106 km2 of forests in 2000. Given the FAO and lower
UNFCCC threshold of >10% tree cover, there were 51.5×106 km2.
At the IGBP threshold of>60% tree cover, there were 16.1×106 km2

of forests, with an additional 19.3 × 106 km2 of savannah and

16.1×106 km2 of woody savannah (10–30% and 30–60% cover,
respectively). Discrepancies occur in all biomes, but the greatest dif-
ferences are in regions of intermediate tree cover. Differences exceed
1×106 km2 in boreal forests and taiga, in temperate broadleaf and
mixed forests, and in tropical and subtropical grasslands, forests,
savannahs and shrublands (Table 1). Differences exceeding 25% of
biome area occur in boreal forests and taiga, flooded grasslands
and savannahs, and tropical and subtropical dry broadleaf forests.
Importantly, neither the geographic nor the statistical distribution
of tree cover shows any clear breaks or inflections to discriminate a
natural, a priori distinction between ‘forest’ and ‘non-forest’. Thus,
any definition must be arbitrary by nature.

The tree-cover discrepancy coincides precisely with the
uncertainty among global satellite data sets. It also coincides with
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Figure 3 | Global distribution and discrepancy of forest cover based on United Nations Framework Convention on Climate Change (UNFCCC) definitions.
a–c, Maps represent distributions of forest cover assuming criteria of 10% tree cover (a), 30% tree cover (b) and the di�erence in forest cover between the
two definitions (c).

vast stores of biomass and many developing countries across the
tropics (Supplementary Information). Overlain with pan-tropical
estimates of biomass22 at a social value of US$23/t C (Methods),
the difference in forest cover coincides with 41.2 Gt C valued at
US$1.0 trillion. Indonesia, Vietnam, Myanmar, Argentina, Bolivia,
Colombia, Mexico, Côte d’Ivoire, Democratic Republic of the
Congo, Nigeria, Tanzania, Zambia, Cameroon, Central African
Republic, Ethiopia, Madagascar and South Sudan each could have
forest-carbon assets changed by US$10 billion, depending on
forest definition.

Finding a natural threshold of parcel area is equally challenging.
Assuming the 30% tree-cover criterion, globally there were
1.59×105 km2 of forests in 2000 with patch sizes between the FAO
0.5-ha threshold and 1 ha, and there were 1.98×105 km2 of forest
in patches between 1 and 100 ha in area (Fig. 4). Most patches
meeting the 30% tree-cover criterion are smaller than the 0.5-ha size
criterion. Again, the distribution offers no break or inflection as a
natural distinction between forest and non-forest. The number of
forest patches becomes intractable as the area criterion approaches
zero, and ‘forest’ becomes immeasurable or even meaningless in
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Table 1 |Global forest area by biome21.

Biome Area Forest (>10% tree) Forest (>30% tree) Di�erence

km2 % km2 % km2 % km2

Boreal forests/taiga 14,224,916 76.90 10,938,418 45.10 6,415,061 31.80 4,523,357
Deserts and xeric shrublands 27,752,829 2.34 650,180 0.46 126,774 1.89 523,406
Flooded grasslands and savannahs 1,036,966 45.21 468,838 10.60 109,913 34.61 358,925
Mangroves 293,404 80.23 235,402 57.19 167,793 23.04 67,609
Mediterranean forests 3,180,903 23.48 746,793 11.22 357,037 12.25 389,757
Montane grasslands and shrublands 5,120,243 9.91 507,643 4.43 226,628 5.49 281,016
Temperate broadleaf and mixed forests 12,466,617 59.80 7,455,587 40.73 5,077,288 19.08 2,378,300
Temperate conifer forests 4,010,340 69.88 2,802,276 53.26 2,135,870 16.62 666,406
Temperate grasslands 9,904,686 9.17 907,986 4.21 416,923 4.96 491,063
Tropical and subtropical coniferous forests 707,026 75.95 536,967 39.64 280,249 36.31 256,718
Tropical and subtropical dry broadleaf forests 2,969,433 47.59 1,413,112 23.96 711,398 23.63 701,714
Tropical and subtropical grasslands 20,089,822 34.52 6,934,566 10.68 2,146,591 23.83 4,787,975
Tropical and subtropical moist broadleaf forests 19,513,086 86.13 16,806,448 69.55 13,570,480 16.58 3,235,968
Tundra 7,449,513 12.76 950,209 4.39 326,854 8.37 623,355
Inland water, rock and ice, and deserts and xeric shrublands (each with <2.5% tree cover) are excluded.

high-resolution pixels. The paradox of imposing thresholds is that
they place a large portion of Earth’s forest carbon outside of ‘forests’.
Their practical implication is that refinements in satellite resolution
will be unable to contribute directly to monitoring forest cover
except throughmore scalable variables such as tree cover and height.

The challenge emerges to increase the ecological relevance
of measurements while maintaining their practicality for policy.
How can we increase precision without sacrificing the progress of
REDD+ thus far? Two alternatives are apparent.

A single, unambiguous definition of forest, applied consistently
across the globe, might resolve the confusion. Such a definition
must incorporate attributes of forests that are both measurable and
manageable. Moreover, to reduce emissions from the biosphere,
the measurements must be relevant to biomass. An effective
definition thus requires characteristics of the horizontal cover,
vertical structure, and composition of vegetation—primarily trees.
This solution is already implemented indirectly under the discretion
of each country, through systems of tables relating forest cover
to biomass stratified by country and biome23. Aside from the
complexity and subjectivity of the stratification, the problem with
such coarse tabulations is that the resulting conservation incentives
do not vary with natural productivity or biomass gradients, nor do
they discriminate primary natural forests from secondary forests
or plantations24.

Alternatively, a more transparent solution may be to shift the
focus of monitoring from ‘forest’ onto the ecological characteristics
used to define it. Global satellite estimates of tree cover, canopy
height, and biomass are increasingly reliable and available8,17,22,25–28,
as are the methods to translate them into estimates of forest cover
and change based on national definitions29. These more objective
ecological variables—many of which are already recognized by the
official definitions—comprise the volume and density of vegetation
that are the fundamental components of biomass. They are also the
characteristics managed by forestry and other land uses—including
agriculture, wildlife management, and even urban planning. Given
the growing technical capacity for monitoring, reporting and
verification, science and policy may now refine their focus to
communicate in terms of these more concrete characteristics of
ecosystem structure, function and composition.

This challenge presents an opportunity for mutual advance.
Mapping forest cover and its changes have contributed greatly to
alerting the public to the global crisis of deforestation, and the
political arena has matched this awareness with policy instruments

such as the Kyoto Protocol7, REDD+, and the Aichi Biodiversity
Targets3. But although ‘forest’ is an intuitive label for general
discussion, the intuition transcends neither cultures nor ecosystems,
and the term is neither directly relevant to carbon nor directly
measured from satellite or in situ observations. The resulting
ambiguity blurs estimates of global area and distribution of forests,
as well as the meaning of all logical derivatives of the term—
for example, afforestation, reforestation, forest degradation, and
deforestation6,12,24,30—up to and including the value of carbon.

Science and policy are working to reduce carbon emissions from
the biosphere and to stem the loss of species. Satellite technologies
now enable us to refine our focus from simply mapping forests
to monitoring the dynamics of ecosystem structure, function and
composition. Taking this step forward will improve the objectivity
and precision of ourmeasurements. It will also extend their scope to
the entirety of the terrestrial biosphere and increase their relevance
to biomass, climate change and biodiversity.
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Figure 4 | Global frequency distribution of forest-patch size, assuming the
30% tree-cover criterion.
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Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
To generate the forest-agreement map (Fig. 1), each of eight global land cover data
products4,8,31–36 was translated into a binary (forest versus non-forest) map and
resampled to a common projection and 1-km resolution37. Percentage tree-cover
data sets4,8,38 were first spatially averaged to 1-km resolution and then translated to
forest/non-forest by applying a 30% tree-cover threshold. We then evaluated each
pixel as the number of times it was identified as forest by the eight maps, resulting
in a score between zero and eight ‘votes’. Larger values represent greater agreement
between the products for the forest class, and smaller values represent greater
agreement for the non-forest class. Values near four represent the
greatest disagreement.

Maps of global forest cover (Fig. 3) and estimates of area were calculated by
applying 10% and 30% thresholds to the global, Landsat-based data set8 of
circa-2000, percentage tree cover at 30-m resolution (data available at
www.landcover.org). Gaps in the 2000 data were filled with Landsat-based
estimates from circa 2005 (ref. 39) when available, or with estimates based on data
from the MODerate-resolution Imaging Spectroradiometer (MODIS; ref. 38)
otherwise. This produced two binary maps of forest cover. We subtracted the value
in each pixel based on the 30% threshold from the value based on the 10%
tree-cover threshold and spatially aggregated the result to a percentage for display.

To calculate affected area, biomass and carbon value, we aggregated the
forest-cover data from 270-m resolution to match the 1-km resolution of the
carbon density map22. We then calculated the difference in carbon stock for every
1-km grid cell by multiplying the forest-change percentage by the forest-carbon
density in each cell and summed over area. The social cost of carbon (SCC)

(US$23/t C, in 1995 US dollars) was adopted as the mean of Tol’s (2008) survey of
peer-reviewed SCC estimates40 and adjusted for inflation to the year 2000 at an
average rate of 2.37%/year.

The power-law model of the frequency distribution of forest-patch area:

n=107.22a−1.84 (1)

was estimated by ordinary least squares regression (R2
=0.9485). To minimize

the effect of heteroscedasticity on model fit, the ordinate and abscissa were
log-transformed, and the model was fitted based on the median patch area at each
frequency level. We then evaluated the integral of equation (1) between thresholds
to determine the effect of the patch-size criterion on forest area.
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