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Grey swan tropical cyclones
Ning Lin1* and Kerry Emanuel2

We define ‘grey swan’ tropical cyclones as high-impact storms that would not be predicted based on history but may be
foreseeable using physical knowledge together with historical data. Here we apply a climatological–hydrodynamic method
to estimate grey swan tropical cyclone storm surge threat for three highly vulnerable coastal regions. We identify a
potentially large risk in the Persian Gulf, where tropical cyclones have never been recorded, and larger-than-expected
threats in Cairns, Australia, and Tampa, Florida. Grey swan tropical cyclones striking Tampa, Cairns and Dubai can generate
storm surges of about 6m, 5.7m and 4m, respectively, with estimated annual exceedance probabilities of about 1/10,000.
With climate change, these probabilities can increase significantly over the twenty-first century (to 1/3,100–1/1,100 in the
middle and 1/2,500–1/700 towards the end of the century for Tampa). Worse grey swan tropical cyclones, inducing surges
exceeding 11m in Tampa and 7m in Dubai, are also revealed with non-negligible probabilities, especially towards the end of
the century.

The term ‘black swan’1,2 is a metaphor for a high-consequence
event that comes as a surprise. Some high-consequence events
that are unobserved and unanticipated may nevertheless

be predictable (although perhaps with large uncertainty); such
events may be referred to as ‘grey swans’3,4 (or, sometimes, ‘perfect
storms’5). Unlike truly unpredicted and unavoidable black swans,
which can be dealt with only by fast reaction and recovery, grey
swans—although also novel and outside experience—can be better
foreseen and systematically prepared for4,5.

Tropical cyclones (TCs) often produce extremewind, rainfall and
storm surges in coastal areas. Storm surges are especially complex
functions of TC characteristics (track, intensity and size) and coastal
features (geometry and bathymetry), and they are also the most
fatal and destructive aspect of TCs (see ref. 6 for a comprehensive
review of global TC surge observations and impacts). Hence, storm
surge is an appropriate and practical metric for identifying grey
swan TCs. The most infamous TC disasters early this century were
attributable to storm surges, but they should not be considered
grey swans, as they had been or could have been anticipated based
on historical observations and/or experience. Hurricane Katrina
(2005), the costliest US natural disaster, generated the highest US
recorded surge flooding (∼10m; ref. 7), but its impact on New
Orleans, due largely to the levee failure, had been anticipated by
various studies8. CycloneNargis (2008), the worst natural disaster in
Myanmar’s history and one of the deadliest TCs worldwide, struck
Myanmar’s Ayeyarwady River Delta at an unusually low latitude
(near 16◦N) and induced extreme surges (over 5m); however, the
catastrophic fatalities in the hardest-hit areas were largely due to the
lack of evacuation plans and cyclone awareness9, although intense
tropical cyclones had been active in the Bay of Bengal and made
landfall inMyanmar (for example, in 2006). Hurricane Sandy, which
devastated theUSNortheast coast in 2012, set the record-high storm
tide (3.4m) at the Battery in New York City (NYC); however, its
storm surge (2.8m) at the Battery was much lower than those of
the 1821 NY hurricane (4.0m; refs 10,11) and more severe grey
swan TCs (4.5–5m) that had been simulated for the region12,13.
Typhoon Haiyan (2013), the deadliest TC in Philippine history,
and probably the most powerful TC to make landfall worldwide,

generated extreme water levels up to 8m near the most-affected
Tacloban area14, but thewater level was comparable to those induced
by earlier storms, including a severe typhoon that struck the area in
1897 (7.3m; refs 6,15).

Prediction of a grey swan TC ismeaningful and practically useful
only when associated with some likelihood/probabilistic statement;
for example, the probability of exceeding the storm surge level
induced by the TC in a year is 10−3. TheMonte Carlo (MC)method,
based on numerous synthetic simulations, is an important way to as-
sess the probability of grey swanTCs.Most currentMCmethods16–18
simulate synthetic TCs using (fairly limited) historical TC statistics.
In contrast, a statistical–deterministic model19, which is indepen-
dent of the TC record, simulates TC environments statistically and
generates TCs in the simulated environments deterministically. This
statistical–deterministic approach may sometimes be more reliable,
as observations of the large-scale TC environment are often better
constrained than those of TC characteristics in areas with very
limited TC history. It is also more likely to generate unexpected
but realistic grey swan TCs, because, rather than extrapolating
historical TCs, it applies physical knowledge of TCs and ample ob-
servations of the large-scale environment.Moreover, as the synthetic
TC environments can be generated for any given climate state, this
model can simulate grey swan TCs not only in the current and
past climates but also in projected future climates20. As TC activity
may vary with changing climate21–24, the model enables quantita-
tive projection of how grey swan TCs will evolve in the future.
This statistical–deterministic TC model has been integrated with
hydrodynamic surge models25 into a climatological–hydrodynamic
method13, which has been shown to generate extreme storm surges
that are far beyond historical records but are compatible with geo-
logic evidence26. Themethodhas been used to study storm surge risk
andmitigation strategies for NYC (refs 27,28), and it is applicable to
any coastal city. Here we apply the method to another three highly
vulnerable regions: Tampa in Florida, Cairns in Australia, and the
Persian Gulf; we identify their grey swan TCs as the synthetic TCs
that are associated with extremely low annual exceedance proba-
bilities (large mean return periods) of the induced storm surges
(see Methods).
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Figure 1 | The 1921 Tampa hurricane compared with two grey swan TCs. a, The 1921 Tampa hurricane simulated based on observed storm characteristics,
including 1-min wind intensity (at 10 m) Vm=43.1 m s−1, minimum sea-level pressure Pc=967.8 mb and radius of maximum wind Rm=36.0 km (when the
storm is at its nearest approach point to the site). Simulated surge at Tampa is 4.0 m. b, The ‘worst’ surge (5.9 m) event for Tampa in the NCEP/NCAR
reanalysis climate of 1980–2005, with Vm=54.7 m s−1, Pc=953.4 mb and Rm=39.7 km. c, The ‘worst’ surge (11.1 m) event for Tampa in the 2068–2098
climate projected by HADGEM for the IPCC AR5 RCP8.5 emission scenario, with Vm= 104.3 m s−1, Pc=829.6 mb and Rm= 17.0 km. The shaded contours
represent the simulated surge height (m; above MSL) and the black curve shows the storm track.

Tampa
Tampa, located on the central west Florida coast, is highly
susceptible to storm surges. Althoughmany fewer storms havemade
landfall in this area than in regions farther north and west on the
Gulf Coast or further south on the Florida Coast, Tampa Bay is
surrounded by shallowwater and low-lying lands; a 6-m rise ofwater
can inundate much of the Bay’s surroundings29. Two significant
historical events have affected Tampa. The Tampa Bay hurricane
of 1848 produced the highest storm tide ever experienced in the
Bay, about 4.6m, destroying many of the few human works and
habitations then in the area. The Tampa Bay hurricane of 1921
produced an estimated storm tide of 3–3.5 m, inducing severe
damage (10 million in 1921 USD).

To investigate the current TC threat for Tampa we simulate
7,800 Tampa Bay synthetic TC surge events in the observed cli-
mate of 1980–2005 (late twentieth century) as estimated from the
NCEP/NCAR reanalysis30. To study how the threat will evolve from
the current to future climates, we apply each of six climatemodels to
simulate 2,100 surge events for the climate of 1980–2005 (control)
and 3,100 surge events for each of the three climates–2006–2036
(early twenty-first century), 2037–2067 (middle), and 2068–2098
(late)–under the IPCC AR5 RCP8.5 emission scenario. The six
climatemodels, selected as in ref. 24 fromCoupledModel Intercom-
parison Project Phase 5 (CMIP5), are CCMS4 (denoted as CCMS;
NCAR), GFDL-CM3 (GFDL; NOAA), HADGEM2-ES (HADGEM;
UK Met Office Hadley Centre), MPI-ESM-MR (MPI; Max Planck
Institution), MIROC5 (MIROC; CCSR/NIES/FRCGC, Japan), and
MRI-CGCM3 (MRI; Meteorological Research Institute, Japan).

The large synthetic surge database includes many extreme events
affecting Tampa. As a comparison, the 1921 Tampa surge event
is also simulated (Fig. 1a). The 1921 Tampa hurricane had a
track similar to that of the 1848 Tampa hurricane31, travelling
northwestwards over the Gulf of Mexico and making landfall north
of Tampa Bay. The ‘worst’ synthetic case (among 7,800 events) in
the reanalysis climate of 1980–2005 has a similar track (Fig. 1b).
However, this grey swan TC is more intense (upper Category 3,
compared to the lower Category 2 1921 storm), inducing a higher
surge at Tampa of over 5.9m (compared to 4.0m simulated for
the 1921 storm). We have also identified grey swan TCs affecting
Tampa that have very different tracks, especially those moving
northwards parallel to the west Florida coast beforemaking landfall.
For example, Fig. 1c shows an extremely intense storm (104m s−1;

‘worst’ case generated under the late twenty-first-century climate
projected by HADGEM) that moves northwards parallel to the
coast and turns sharply towards Tampa Bay, inducing a storm
surge of 11.1m in Tampa. In such cases, the storm surges are
probably amplified by coastally trapped Kelvin Waves. These waves
form when the storm travels along the west Florida coast and
propagate northwards along the Florida shelf, enhancing the coastal
surges, especially when the storm moves parallel to the shelf and
at comparable speed to the wave phase speed32. This geophysical
feature makes Tampa Bay even more susceptible to storm surge.

These grey swan TCs have very low probabilities, which can
be quantified only within the full spectrum of events. Figure 2
shows the estimated storm surge level for Tampa as a function
of (mean) return period for the reanalysis climate of 1980–2005.
The grey swan surge of 5.9m (Fig. 1b) has a return period of over
10,000 years. In comparison, the 1,000-yr surge is about 4.6m and
the 100-yr surge is about 3.2m. The observed surge level of the
1921 hurricane (approximately 3.3–3.8m, as it probably happened
at low tide) has an estimated return period of 100–300 years in the
1980–2005 climate. We note here a potentially large uncertainty in
the analysis. In the simulations, we take the storm outer radius Ro to
be its statistical mean33 to generate the radius of the maximumwind
Rm (see Methods). As shown previously26, neglecting the statistical
variation of storm size may greatly underestimate the surge risk, as
the distributions of the size metrics (Ro and Rm) may be positively
skewed33. Indeed, a sensitivity analysis for Tampa shows that the
estimated surge return periods would be significantly reduced if a
lognormal distribution of Ro (ref. 33) (with the same mean) was
applied; for example, the return period of the 1921 storm surge could
be reduced to as little as 60 years (not shown). However, the result
is very sensitive to the specific distribution of Ro, which itself is
largely uncertain owing to data limitations and lack of fundamental
knowledge of what controls the TC size in nature34,35.

The more severe grey swan surges of above 8m up to
11m (Fig. 1c) have extremely low or negligible probabilities in
the 1980–2005 climate, but they are projected to happen as
5,000–150,000-yr events in the late twenty-first century. As shown
in Fig. 3, the six climate models project that the return period of the
storm surges for Tampa will significantly decrease over the twenty-
first century, especially for the extremes (grey swans). This increase
in storm surge threat is mainly due to the increase in storm fre-
quency and intensity. The magnitude of the surge, especially for the
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Figure 2 | Estimated storm surge level as a function of return period for
Tampa for the NCEP/NCAR reanalysis climate of 1980–2005, based on
7,800 synthetic events. The associated annual frequency of the synthetic
events is 0.36. Black dots show the simulated data, and the shading shows
the 90% statistical confidence interval.

extremes, is projected to increase by all six models, and the CCSM,
HADGEM and MPI models project relatively larger increases (see
Supplementary Fig. 1). The overall frequency of the Tampa Bay
storms is also projected to increasemoderately (<25%) according to
the CCSM, HADGEM and MRI models; greatly (<75%) according
toMIROCandMPI; or extremely (240%) according toGFDL (noted
in Fig. 3). As a result, the CCSM and HADGEMmodels project the
largest increase in the frequency of the grey swans and little change
in the normal events, whereas GFDL projects a relatively uniform
increase in the frequency of all events, and the other three models

project relatively large (small) increases in the frequency of extremes
(normal events). Hence, large uncertainties exist among the climate
models in the probable increase of grey swans over the century. For
example, a 10,000-yr event in the late twentieth century will become
a 1,500–7,000-yr, 1,100–3,100-yr and 700–2,500-yr event in the
early, middle and late twenty-first century, respectively, depending
on the climate models; and a 1,000-yr event in the late twentieth
century will become a 270–1,300-yr, 110–530-yr and 60–450-yr
event in the early, middle and late twenty-first century, respectively.
(Supplementary Fig. 2 (Supplementary Fig. 3) illustrates, for various
levels of events, how the return periods (annual exceedance proba-
bilities) decrease (increase) over the twenty-first century, projected
by each of the six climate models.) Here the effect of neglecting the
variability of storm size may be relatively small for the projections
of the change of the probability. However, this analysis neglects
the possible increase of the magnitude of storm size in a warmer
climate. Although such an increase in storm size, as suggested by
potential intensity theory36, would further increase the surge risk13,
the effect of climate change on storm size has yet to be investigated
observationally and numerically.

Cairns
The TC threat to Cairns, in the far north of Queensland, may not be
well recognized. The city is located about 300 km south of Bathurst
Bay, which was hit in 1899 by Cyclone Mahina (the most intense
TC in the Southern Hemisphere, inducing what may have been the
highest surge flooding (13m) in the historical record37). According
to the Australian Bureau of Meteorology, at least 53 cyclones have
affected Cairns since it was founded in 1876, and several high-
intensity storms (for example, Cyclones Larry in 2006 and Yasi in
2011) were near misses. Recent events include Cyclones Justin in
1997, Rona in 1999, and Steve in 2000, all making landfall north
of Cairns; although these storms (<Category 2) generated storm
surges in Cairns of less than 1m, they induced major flooding (due
also to tide and waves) and significant damage ($100–190million)
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Figure 3 | Estimated storm surge level as a function of return period for Tampa in the climate of 1980–2005 (based on 2,100 events), 2006–2036
(3,100 events), 2037–2067 (3,100 events), and 2068–2098 (3,100 events) projected using each of the six climate models for the IPCC AR5 RCP8.5
emission scenario. The annual frequency (f) is noted for each case. The thin dash curves show the 90% statistical confidence interval. (The data points
and goodness of fit for the upper tail are shown in Supplementary Fig. 1.)
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Figure 4 | Storm surge risk analysis for Cairns, Australia, based on 2,400 synthetic events in the NCEP/NCAR reanalysis climate of 1980–2010. The
associated annual frequency for the synthetic events is 0.16. a, The ‘worst’ surge (5.7 m) event for Cairns, with Vm=79.3 m s−1, Pc=901.1 mb and
Rm=22.3 km. The shaded contours show the simulated surge height (m; above MSL) and the black curve shows the storm track. b, Estimated storm surge
level as a function of return period for Cairns. The red dots show the synthetic data, and the dash curves show the 90% statistical confidence interval.
Orange dots show the tidal-gauge-observed Cairns storm surges (six in total) between 1980 and 2010; green dots show the modelled surges for these
historical TCs (the annual frequency of the historical storms is 0.19).

in the area. (Simulations of these historical cyclones, in comparison
with observations, are shown in Supplementary Fig. 4.)

To study the TC threat for Cairns, we simulate 2,400 synthetic
Cairns TC surge events in the NCEP/NCAR reanalysis climate of
1980–2010. The ‘worst’ surge for Cairns is about 5.7m, induced by
an intense storm (80m s−1) travelling perpendicularly to the coast
andmaking landfall just north of Cairns (Fig. 4a). This grey swanTC
is much stronger than Cyclones Justin, Rona and Steve, and makes
landfall much closer to Cairns. It resembles a hypothetical Cyclone
Yasi that is moderately intensified (by about 10m s−1) and shifted
northwards by about 160 km.

As shown by the estimated surge return curve in Fig. 4b, the
grey swan surge of 5.7m has a return period of over 10,000 years
in the 1980–2010 climate. As a reference, the 1,000-yr surge is
about 3.5m, and the 100-yr surge is about 1.6m. These results
are significantly higher than previous estimates based on synthetic
storm databases generated by statistically extending the historical
storm records. For example, one such study38 estimated that the
1,000-yr storm surge level for Cairns is about 2.3m (storm tide
of 2.9m) and the 100-yr surge level is about 1.3m (storm tide of
2.0m); another39 estimated the 10,000-yr storm tide to be 2.6m,
the 1,000-yr storm tide to be 2.2m, and the 100-yr storm tide to be
1.8m. The lower estimates in these previous analyses, especially for
the most extreme events, were probably deduced by extrapolating
the storm record from several decades to thousands or tens of
thousands of years. Analyses based on geologic evidence of palaeo
coastal inundations also yielded much higher estimates of such
extremes for the north of Queensland than these historical-storm-
based estimates40; our results are more consistent with the geologic
evidence (Nott, personal communication). (The estimated return
levels based on the synthetic storms also comparewell with observed
and modelled historical event levels, available for short return
periods; Fig. 4b.)

The Persian Gulf
The Persian Gulf is a mediterranean sea of the Indian Ocean,
connected to the Arabian Sea through the Strait of Hormuz and

Gulf of Oman. The Persian Gulf is comprised of hot, shallow,
and highly saline water, which can support the development of
intense TCs and storm surges. However, no TC has been observed
in the Persian Gulf, and TC development in the Arabian Sea is
limited by the region’s typically low humidity and high wind shear41.
Cyclone Gonu (2007), the strongest historical TC in the Arabian
Sea (Category 3; 78 fatalities and 4.4 billion in damage), came close
to entering the Persian Gulf, making landfall at the mouth of the
Gulf on the easternmost tip of Oman and then in southern Iran. It
is scientifically interesting and socially important to ask if such a
strong TC can travel into the Persian Gulf.

To answer this question, we assess the TC threat for three major
cities bordering the Persian Gulf: Dubai, Abu Dhabi and Doha. For
each of these cities, we simulate 3,100 synthetic TC surge events in
theNCEP/NCAR reanalysis climate of 1980–2010. As themaximum
width of the Persian Gulf is only about 340 km, it may be poorly
resolved by the NCAR/NCEP reanalysis resolution of 2.5 degrees
(about 250 km); thus we also apply a higher-resolution reanalysis
data set, the NASAModern-Era Retrospective Analysis42 (MERRA;
with a resolution of 0.67◦ × 0.5◦), to simulate the TC surge events
for Dubai. The obtained surge levels and probabilities, however, are
very similar for the two data sets. We here present the result for
Dubai from the MERRA reanalysis (whereas the results for Dubai,
Abu Dhabi and Doha from the NCEP/NCAR reanalysis are shown
in the Supplementary Information). In these simulations, some of
the synthetic storms originate in the Arabian Sea and move into
the Persian Gulf, but the majority originate, surprisingly, within the
Gulf. Moreover, the most extreme surges are all induced by intense
storms that originate within the Gulf.

Figure 5a shows the ‘worst’ surge (among 3,100 events in the
climate of 1980–2010) for Dubai. This grey swan TC originates in
the northwest region of the Persian Gulf, moves southeastwards
in the Gulf, and makes landfall north of Dubai with extremely
high intensity (115m s−1), generating a storm surge of 7.4m in
Dubai. The intensity of this grey swan TC is far beyond the
highest observed TC intensity worldwide (Typhoon Haiyan of
87m s−1). This extremely high wind intensity is due to very large
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Figure 5 | Storm surge risk analysis for Dubai, based on 3,100 synthetic events in the MERRA reanalysis climate of 1980–2010. The associated annual
frequency for the synthetic events is 0.037. a, The ‘worst’ surge (7.5 m) event for Dubai, with Vm= 114.6 m s−1, Pc=784.2 mb and Rm= 13.8 km. The
shaded contours show the simulated surge height (m; above MSL) and the black curve shows the storm track. b, The second-‘worst’ surge (5.6 m) event
for Dubai, with Vm=65.4 m s−1, Pc=927.3 mb and Rm=21.3 km. c, Estimated storm surge level as a function of return period for Dubai. The dots show the
synthetic data, and the shading shows the 90% statistical confidence interval.

potential intensities (PIs), made possible by the area’s high sea
surface temperature (SST; with summertime peak values in the
range of 32–35 ◦C (ref. 43)) and the deep dry adiabatic temperature
profiles characteristic of desert regions. Indeed, the PI calculated
(with the method of ref. 44) using the Dammam (Saudi Arabia)
atmospheric sounding and an SST of 32–35 ◦C is between 109m s−1
and 132m s−1. (The daily PI calculated using the sounding and
the Hadley Centre observed SST, shown in Supplementary Fig. 5,
confirms this result.) Furthermore, surface cooling from deep-water
upwelling is nearly impossible in this highly saline and mixed
body of shallow water (with a mean depth of about 36m and a
maximum depth of 90m), and when, occasionally, the wind shear
is small, the storm can fully achieve its potential intensity. (We note,
however, that the estimated pressure intensity has not been similarly
evaluated, whichwill be done in the future, but the storm surge is less
sensitive to the pressure than to the wind intensity.)

Figure 5b shows the second-highest synthetic surge generated
for Dubai. This grey swan TC originates in the southeast region
of the Persian Gulf, moves directly towards the coast, and makes
landfall almost perpendicularly to the coast and just north of Dubai,
generating a storm surge of 5.7m in Dubai. The storm intensity is
moderate (65m s−1). It is not necessary for the storm to be extremely
intense to generate extreme surges; some near ‘perfect’ combination
of track, intensity and size can induce devastating surge inundation
in Dubai, given its unusual shallow-water surroundings.

Nevertheless, given the prohibiting atmospheric environment in
the region, these extreme grey swan TCs have very low probabilities,
with return periods of the order of 30,000–200,000 years (Fig. 5c).
Also, the surge level decreases rapidlywith decreasing return period.
The 10,000-yr surge for Dubai is about 4m and the 1,000-yr surge
is about 1.9m. The surges for return periods less than 100 years

are very small. Similar and even higher surge levels for Abu Dhabi
and Doha are also estimated using the NCAR/NCEP reanalysis (see
Supplementary Figs 6 and 7).

We note that these analyses are based on the climate of
1980–2010, during which the Arabian Sea’s synthetic TC activity
increased, probably owing to a decrease in the wind shear45. Thus,
although TC development is limited in the Persian Gulf, a large TC
threat exists andmay be very sensitive to changes of the atmospheric
circulation in the region. Moreover, the SST in the Persian Gulf had
a significant upward trend during the period of 1950–2010, with
an abrupt increase in the 1990–2010 era43. Further warming of the
ocean may further increase the chance of the Persian Gulf region
being struck by an extreme storm.

Final remarks
Assessments of the risks associated with natural hazards such as
tropical cyclones have been limited by the comparatively short
length of historical records. This limitation is being overcome by
the new field of palaeotempestology, which identifies TC events in
the geologic record, and by bringing knowledge of storm physics
to bear on the problem. Here we have used a physically based
climatological–hydrodynamic method to assess the likelihood of
highly destructive events for three regions. Uncertainty in storm
size induces uncertainty in the estimated probabilities; accounting
for the variation of storm size from storm to storm and in different
climates, when more information on which becomes available,
may yield significantly higher estimated TC threats. In addition to
the storm surge that we focus on here, coastal inundation is also
affected by the astronomical tide, waves, sea-level rise and future
shoreline changes46, all of whichwill amplify the impact of grey swan
tropical cyclones.
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Methods
Storm generation. The climatological–hydrodynamic method includes three
components: storm generation, storm surge simulation and statistical analysis. We
use a statistical–deterministic TC model19 to generate a sufficient number of
synthetic TCs in an ocean basin under a given climate to obtain a desired number
of TCs that make landfall in a particular coastal area of interest. Weak protostorms
are seeded uniformly over the basin within a large-scale environment provided by a
reanalysis or climate model data set. Once initialized, the storms move in
accordance with the large-scale environmental wind. Along each storm track, the
Coupled Hurricane Intensity Prediction System (CHIPS; ref. 47), a dynamic model,
is used to simulate the storm intensity according to environmental conditions such
as potential intensity, wind shear, humidity and the thermal stratification of the
ocean. These wind and environmental conditions are modelled statistically based
on the reanalysis or climate model data set. The CHIPS model also predicts the
storm radius of maximum wind (Rm), given an externally supplied storm outer
radius (Ro). We apply the observed basin mean of Ro based on the historical
record33 and assume it is constant over the lifecycle of a storm (as it is observed to
not change much over the storm lifetime33). Then we estimate Rm (varying from
storm to storm and over the lifecycle of a storm) from CHIPS.

We design specific criteria (a filter) for each study area to select local storms
from basin-wide events (and record the corresponding annual frequency of the
local storms; the frequency of the basin-wide storms is calibrated to the
observation). Various storm tracks can induce significant surges in Tampa Bay,
including those that make landfall within or near the Bay as well as those that travel
close offshore and parallel to the coast. To capture all these storms, we create a
two-line-segment filter encompassing the Bay and surrounding coastal region. One
line segment links a point on the coast (82.81◦W, 29.17◦ N) about 180 km north of
the Bay’s mouth, to a point over the ocean (83.8◦W, 27.58◦ N) about 100 km west of
the Bay’s mouth. The other line segment links the ocean point (83.8◦W, 27.58◦ N)
to a coastal point (82.407◦W, 27.0◦ N) about 70 km south of the Bay’s mouth. We
select all storms that cross either of these two line segments with intensity greater
than 21m s−1; we call these storms ‘Tampa Bay storms.’ Simpler, circular filters are
created for the other study areas. We create a circle centred in Cairns (145.76◦ E,
16.91◦ S) with a radius of 100 km to select all ‘Cairns storms’ that move into this
circle with intensity great than 21m s−1. Similarly, we create 100-km-radius circular
filters centred at Dubai (55.31◦ E, 25.27◦ N), Abu Dhabi (54.37◦ E, 24.47◦ N) and
Doha (51.53◦ E, 25.28◦ N).

Given the storm characteristics of selected storms in a study area, we estimate
the surface wind and pressure fields using parametric methods fit to the explicitly
modelled maximum wind speed, radius of maximum winds, and minimum
surface pressure. In particular, the surface wind (1-min wind at 10m) is
estimated by fitting the wind velocity at the gradient height to an analytical
hurricane wind profile48, translating the gradient wind to the surface level with
a velocity reduction factor (0.85) and an empirical formula for inflow angles,
and adding a fraction (0.55 at 20 degrees cyclonically) of the storm translation
velocity to account for the asymmetry of the wind field induced by the surface
background wind49. The surface pressure is estimated also from a simple
parametric model50.

Surge simulation.With the storm surface wind and pressure fields as input, we
apply the Advanced Circulation (ADCIRC) model25,51 to simulate the storm surge.
ADCIRC is a finite element hydrodynamic model that has been validated and
applied to simulate storm surges and make forecasts for various coastal regions25,52.
It allows the use of an unstructured grid with very fine resolution near the coast
and much coarser resolution in the deep ocean. The ADCIRC mesh we developed
for Tampa covers the entire Gulf of Mexico. The mesh has a peak resolution of
about 100m along the west Florida coast near Tampa and extends on land up to the
10-m height contour in the Tampa Bay area. The meshes developed for other study
regions are relatively coarser (given coarser bathymetric data). To capture the effect
of storms approaching from various directions, the mesh for Cairns has as its lower
boundary the Australian coastline of Queensland, the Northern Territory, and part
of Western Australia. The mesh extends over the Indian and South Pacific Oceans
(from 114.0◦ E to 176.0◦ E) and is bounded above by Indonesia and Indonesian
New Guinea. The resolution is about 1 km on the Queensland coast around Cairns.
The mesh developed for Dubai covers the entire Persian Gulf and extends over the
Arabian Sea (down to 16.0◦ N). The resolution is about 2 km near Dubai. The same
mesh is used for Abu Dhabi and Doha; the resolution around these two locations is
about 3–4 km.

To evaluate our surge modelling configuration and ADCIRC meshes, we
simulated historical events for Tampa and Cairns (the Persian Gulf has no
historical storms) with the storm characteristics obtained from the Best Track
databases53,54. The simulated storm surge in Tampa for the 1921 hurricane is about
4.0m (see Fig. 1a in the main article), which is comparable to that observed in this
region (∼3.3–3.8m, considering the storm tide was estimated to be 3.0–3.5m and
happening probably at low tide), given the large uncertainties in both the observed
surge level and storm characteristics (especially the size) for this early storm. (Note
that in this case, because an observation of Rm is available only at landfall and there
is no information about Ro, we estimated Ro from the landfall Rm using an
empirical relationship26 between them and the wind intensity, and then kept the
estimated Ro constant to estimate Rm for the time periods before landfall using the
empirical relationship.) For Cairns, we simulated storm surges for all six historical
Cairns storms between 1980 and 2010 (selected using the same filter as for the
synthetic storms) plus Cyclone Yasi in 2011. Simulations are close to the
observations for the most significant events, including Cyclones Justin (1997), Rona
(1999) and Yasi (see Supplementary Fig. 4), but the simulation underestimates the
surge for Cyclone Steve (2000). Not all simulated historical surges match well with
the observations individually, mainly owing to the uncertainty in storm size (an
empirical estimate26 of the Rm using the basin mean Ro was applied owing to the
lack of observations). However, the simulations compare relatively well with all
observations statistically (see Fig. 4b in the main article).

Statistical analysis. Statistical analysis is performed on the synthetic surge data
sets. For a specific location and a given climate scenario, we assume the arrival of
storms to be a stationary Poisson process, with arrival rate as the storm annual
frequency. For each storm arrival, the probability density function (PDF) of its
induced storm surge is characterized by a long tail. We apply a
peaks-over-threshold (POT) method to model this tail with a generalized Pareto
distribution (GPD), using the maximum likelihood method, and the rest of the
distribution with non-parametric density estimation. The estimated storm annual
frequency and surge PDF are then combined to calculate the (mean) return period
(the reciprocal of the annual exceedance probability) for various surge levels13, with
the associated statistical confidence interval calculated using the Delta method55.

It is noted that the statistical confidence interval is a function of the sample size;
it is small for short return periods (where large numbers of samples are generated)
and becomes large for long return periods (less samples for extremes). This
statistical confidence interval does not account for the epistemic uncertainties in
the models that are used to generate the samples. The overall epistemic uncertainty
in the estimation may be considered as the combination of the statistical
confidence interval and the variation in the estimations using different (and ideally
full ranges of) models (for example, different climate model projections presented
in the main article).
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