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An end-to-end assessment of extreme weather
impacts on food security
Erik Chavez1,2*, Gordon Conway1, Michael Ghil3,4 and Marc Sadler5

Both governments and the private sector urgently require
better estimates of the likely incidence of extreme weather
events1, their impactson foodcropproductionand thepotential
consequent social and economic losses2. Current assessments
of climate change impacts on agriculture mostly focus on av-
erage crop yield vulnerability3 to climate and adaptation sce-
narios4,5. Also, although new-generation climate models have
improved and there has been an exponential increase in avail-
able data6, the uncertainties in their projections over years and
decades, and at regional and local scale, have not decreased7,8.
Weneed tounderstandandquantify thenon-stationary, annual
and decadal climate impacts using simple and communicable
risk metrics9 that will help public and private stakeholders
manage the hazards to food security. Here we present an
‘end-to-end’ methodological construct based on weather in-
dices andmachine learning that integrates current understand-
ing of the various interacting systems of climate, crops and
the economy to determine short- to long-term risk estimates
of crop production loss, in di�erent climate and adaptation
scenarios. For provinces north and south of the Yangtze River
in China, we have found that risk profiles for crop yields that
translate climate into economic variability follow marked re-
gional patterns, shaped by drivers of continental-scale climate.
We conclude that to be cost-e�ective, region-specific policies
have to be tailored to optimally combine di�erent categories of
risk management instruments.

An increasing body of scientific evidence, derived from both
observations and model simulations, indicates that the climate sys-
tem never was, nor is it likely to ever be, statistically stationary10.
Moreover, statistical characterization of slowly changing weather
extremes is fraught with difficulties11. These stem partly from the
potentially large effects caused by lack of stationarity and partly
from the existence of complex nonlinear processes and threshold
effects. The assessment and the prediction of such effects, both
deterministic and stochastic, on weather extremes depend on a
number of interconnected drivers. For example, changes in weather
variability season-to-season and year-to-year that affects food pro-
duction derive from shifts in the statistics of decade-to-decade
climate processes12,13. Thus, changes in the large-scale climate pro-
cesses that drive both regional and global climate variability affect
the annual onset of rainfall in the tropics and subtropics, as well
as rainfall patterns in temperate latitudes, thus playing a significant
role in the variability of regional rain-fed crop production14. The risk
estimation methodology proposed here integrates large- and small-
scale information, and is based on both observed and simulated data
for weather, climate, crop vulnerability and economic conditions.

The overall, end-to-end methodological construct is illustrated
in Fig. 1. It relies on machine learning involving weather indices
that characterize the vulnerability of crops to weather variability in
different technological scenarios (Fig. 1a).

We here used a stochastic ‘weather-within-climate’ downscaling
approach that quantifies the interaction of low- and high-frequency
climate variability (Fig. 1b) to determine the crop loss risk profiles
(Fig. 1d) for future climate scenarios. These are then used to model
the direct and indirect economic impacts subject to supply loss
shock (Fig. 1e) and to determine optimum mix of risk transfer and
mitigation policies in a particular region or country (Fig. 1f). We
assessed the potential of thismethodological construct by using data
for weather, crops and the economy in four provinces (Shandong,
Hebei, Guangdong and Guangxi) of the People’s Republic of China,
north and south of the Yangtze River.

Existing integrated assessment models (IAMs) have attempted to
provide first estimates of future possible costs of climate impacts on
the economy subject to different globalwarming scenarios15,16. How-
ever, the sensitivity of these IAMs to individual economic parame-
ters, such as the discount rate, has limited their usefulness. Taking
this into account, themethodology presented in Fig. 1 focuses on the
economic impacts driven by the local and regional characteristics
of weather variability and climate state changes, the local response
of the system considered (for example, the crop production sector),
and different scenarios of technological risk mitigation.

Weather indiceswere devised as proxies of physical crop response
to two of the main drivers of yield variability, namely precipitation
variability and exposure to excess temperatures. Other hazards,
such as cold shocks or radiation variability, are not considered
here for lack of space. Observed historical daily weather data
and soil databases for the studied provinces are used to simulate
crop yields using mechanistic crop modelling. Daily precipitation
and temperature data are used to build pixel-level databases
of precipitation and temperature variability indices. Each index
captures exposure to deficit precipitation or excess temperature
during different time intervals of crop growth.

The translation of the metrics of physical-loss risk into metrics
of direct and indirect economic loss is carried out through
macroeconomic modelling of exogenous, supply-side shocks.
Probabilistic and scenario-based risk modelling is cascaded from
climate to agricultural, and finally economic loss through data
clustering, by using machine learning techniques of recursive
partitioning17 and nonhomogeneous hidden Markov models18
(NHMMs), as illustrated in Supplementary Fig. 1. The joint
effects of precipitation variability and excess temperature were
modelled through stochastic-copula dependency; see Methods and

1Imperial College London, Centre for Environmental Policy, London SW7 1NA, UK. 2Imperial College London, Imperial College Business School, Finance
Department, London SW7 2AZ, UK. 3Ecole Normale Supérieure, Paris, Geosciences Department and Environmental Research and Teaching Institute,
F-75230 Paris Cedex 05, France. 4University of California, Los Angeles, Department of Atmospheric and Oceanic Sciences and Institute of Geophysics and
Planetary Physics, Los Angeles, California 90095-1565, USA. 5The World Bank, Agriculture and Environmental Services Department, Risk and Markets
Practice, Washington DC 20433, USA. *e-mail: erik.chavez07@imperial.ac.uk

NATURE CLIMATE CHANGE | VOL 5 | NOVEMBER 2015 | www.nature.com/natureclimatechange 997

© 2015 Macmillan Publishers Limited. All rights reserved

http://dx.doi.org/10.1038/nclimate2747
mailto:erik.chavez07@imperial.ac.uk
www.nature.com/natureclimatechange


LETTERS NATURE CLIMATE CHANGE DOI: 10.1038/NCLIMATE2747

Yield sensitivity simulation
 for different technological 

scenarios

a

c

d

e f

b

Weather
index-based

scenarios modelling

Economic risk 
 profile scenarios

Risk transfer and 
mitigation modelling

Climate and weather 
modelling

Hydrological
and crop modelling

Risk profiles of
 regional-level

 production loss

Large-scale climate 
variability modelling for

different GHG  scenarios

Extreme value
 statistics

Data clustering, 
machine learning

Economic and financial modelling

Figure 1 | Schematic diagram of the end-to-end methodology for deriving
crop production and economic-risk profiles. a,b, Provide hydrological and
crop modelling (a) and climate and weather modelling (b). c, Input from a
and b is used to produce grid-to-province PDFs of yield loss captured by
weather indices, conditional on large-scale interannual climate processes.
d, The grid-level yield loss PDFs and yield response functions subject to
GHG and technological scenarios from c are used to derive regional-level
risk profiles of production loss. e, If the region matches an economic
administrative unit (for example, province, country), the input from d is
used to to derive distributions of province-level economic losses. f, Uses
the input from d and/or, if relevant, e, to determine optimum combinations
of risk mitigation and transfer instruments to minimize risk of
climate-driven losses.

Supplementary Fig. 2. Finally, complete province-level profiles of
economic-loss risk were obtained by considering several technolog-
ical scenarios for climate risk mitigation. Although a historical cli-
mate scenario is presented here, the same methodological construct
is applicable to obtain risk profiles in future climate scenarios by
using NHMMcovariates from simulated large-scale climate drivers.

Vulnerability of crops toweather variability is a sensitive function
of growing period. The length of this period and the dates of
occurrence of phenological stages, such as flowering andmaturity, is
also constrained by local weather variability and by environmental
conditions, as well as by genetic traits. In addition to extreme
weather events, slight changes in planting season and duration of
weather patterns may also reduce yields19. The weather indices are

used to capture the response of crop growth to different features
of weather variability. Excess heat indices are built by counting the
number of days where the maximum temperature, Tmax, surpasses
a critical threshold, Tc, of 30 or 35 ◦C—for instance, the number of
days with Tc> 30 ◦C from day 10 to day 40 of crop development.
Precipitation deficit indices account for cumulative rainfall during
a given period of crop growth. The different periods of aggregation
of weather indices and the colour code used in Fig. 2 are described
in Supplementary Methods and Supplementary Fig. 3.

The machine learning methodology applied here to select pixel-
level weather indices shows that the weather indices which best
captureweather-driven yield variability exhibit spatial heterogeneity
relative to the portion of the growing cycle accounted for by
the index. For instance, the optimal indices for the effects of
precipitation variability (Fig. 2a) and excess heat (Fig. 2b) on
maize yield variability in the northeastern province of Shandong
are heterogeneous, with several pixels spatially clustered according
to different periods of the growing season (Supplementary Fig. 3)
during which the crop is most sensitive to climatic effects. The
spatial clustering of indices seems to follow topographical features of
Shandong province. For instance, the central mountainous and the
westernmost regions of the province are dominated by precipitation
indices capturing vulnerability during, respectively, the middle and
the end of the crop development. This spatial pattern of precipitation
indices also depends on the technological scenario considered (that
is, local rain-fed variety, local irrigated variety, switched rain-fed
variety), as shown in Supplementary Fig. 4. In contrast, a marked
spatial homogeneity is observed in the critical temperature chosen
to build heatwave indices. For each pixel, two sets of 25 heatwave
indices, with either 30 or 35 ◦C as critical temperature, were used to
determine the optimum heatwave index. It is the 30 ◦C threshold
that is homogeneously chosen across all of Shandong province
(figure not shown).

Heatwave-driven variability in rice yield in the Southern
provinces of Guangxi andGuangdong possesses similar spatial vari-
ability; see Supplementary Figs 5a,b. Estimated impacts of weather
variability and climate change on crop production are usually
based on IAMs which imply spatially homogeneous hydrometeo-
rological indicators20. Doing so is likely to underestimate local-to-
regional yield losses. In effect, the rate of succession of phenological
growth stages in crops depends on the accumulation of temporal
photo-thermal units21; this accumulation, in turn, depends on the
interaction of local environmental variables. Therefore, the use of
homogeneous hydrometeorological indicators may fail to system-
atically capture times of peak vulnerability, for example, during
reproductive stages that vary with location.

Results obtained for northern Shandong (Fig. 2) and Hebei (not
shown) provinces illustrate the importance of modelling the joint
impacts of precipitation variability and excess temperature stresses
on rain-fed crops. Under the baseline scenario of the rain-fed
maize variety grown at present, average yield variation throughout
Shandong province, subject to the stress of precipitation variability
alone, produces slightly positive yield anomalies, whereas the joint
modelling of excess temperature and precipitation variability leads
to spatially homogeneous negative anomalies. Supplementary Fig. 4
illustrates the latter.

The nonlinearity of maize yield losses due to drought and
heat stress is captured by our modelling and is consistent with
agricultural field studies22,23. The relatively homogeneous yield
losses for irrigated rice subject to increasing heatwave exposure
throughout the southern Guangdong (not shown) and Guangxi
provinces in Supplementary Fig. 5 are consistent with existing
literature24,25, and might actually be underestimated26.

The results demonstrate that important variations in province-
level risk profiles depend on the regional features of weather and
climate variability.
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Figure 2 | Results of weather index-based modelling of maize yield in Shandong province. a,b, Maps of indices selected to best capture on a 0.25◦×0.25◦

longitude–latitude grid deficit precipitation (a) and excess temperature-driven yield variability (b). Colour scale (see Supplementary Fig. 3) indicates the
phase of crop growth in which the selected index captures the highest sensitivity. c, Map of 10-year return period production (see Methods) of∼200 to
∼1,400 tons per pixel (lightest orange to darkest orange in linear colour scale). d–g, Computations for a heatwave index. d, Mixed univariate distributions
of the index, subject to each NHMM state. e, Viterbi-weighted sum of each distribution. f,g, Convolution of the response function of yield to heatwave (f),
with the weighted sum in e allows the distribution of yield to be obtained (g). Results shown for a single local maize variety rain-fed technological scenario.

To capture dependence on large-scale, low-frequency climate
variability, we have constructed and applied anNHMM(ref. 18); see
Methods and Supplementary Fig. 6. In the northeastern provinces
of Shandong (Fig. 3) and Hebei (not shown), the effect of low-
frequency climate change, modelled by this NHMM, is masked by
high-frequency weather variability. In fact, northeastern China is
strongly affected by mid-latitude weather systems, as well as by
teleconnections from the Tropical Pacific27,28.

In contrast, for the southern Guangdong and Guangxi provinces,
risk driven by weather variability depends strongly on the climate
state. For a given state, the risk profiles in the southern provinces
exhibit minimum variation for varying return periods of weather
events, whereas drastic jumps, of 0.18% and 1.15%, in losses of
provincial gross domestic product (GDP) occur in Guangdong

and Guangxi, respectively, as central-Eastern Pacific sea surface
temperatures shift from a warm to a cold event, as captured by
the Niño-3.4 index in our NHMM (ref. 29) and illustrated in
Supplementary Figs 6 and 7.

We have considered three different technological scenarios:
continuing use of a local rain-fed variety, switching to another, more
drought tolerant rain-fed variety, and the use of a local irrigated
variety. Their effects on the risk profiles are illustrated in Fig. 3a and
Supplementary Fig. 4.

The probabilistic risk profiles of economic loss obtained by
the present methodology are strongly driven by the physical-loss
risk. But the different magnitudes of aggregated direct and indirect
losses also reflect the shares of agriculture within each province’s
GDP (Fig. 3a,b).
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Figure 3 | Risk profiles of province-level physical production and
aggregate economic loss in China’s northeast Shandong province. a, Risk
profiles of maize provincial production loss, driven by the joint impacts of
excess temperature and precipitation variability, subject to three di�erent
technological scenarios: continuous line, local rain-fed variety; dotted line,
switched rain-fed variety; long-dashed line, local irrigated variety. b, Risk
profiles of direct and indirect aggregate economic loss expressed as a
percentage of provincial gross domestic product (GDP2008): black bars,
local rain-fed variety; yellow bars, switched rain-fed variety; red bars, local
irrigated variety.

Our results should help formulate fiscal policy and public
budgeting for these extreme weather risks. Risk management
instruments can be used to minimize and cap the cost of weather
and climate impacts on society, government and producers.

Investments in infrastructure that increases physical resilience
are effective in mitigating risk30. Our results indicate a maize pro-
duction loss generated by a 1-in-50-year event of excess temperature
and precipitation variability produces an aggregate 0.7% loss of
Shandong provincial GDP (see Fig. 3b). They also indicate that in
an irrigation scenario, production and aggregate economic losses
are cancelled. As shown in Supplementary Table 1, estimations of
the cost of deploying new irrigation infrastructure and restoring
existing decaying structures could be performed at a cost of up to
0.73% of Shandong GDP.

The economic efficiency of risk-mitigating investments
decreases, however, with the risk level considered and is only
justifiable up to certain risk level31. To manage the residual risk,

instruments of risk transfer and risk forecast can decrease the
ex-post event costs of damage.

We propose a ‘three-pillar’-based approach for rural develop-
ment and food security risk management. The three pillars are: risk
mitigation, risk forecast and risk transfer instruments. These need to
be tailored and combined to respond to specific climate risk profiles
characterizing a given region. We believe the results of the end-to-
end probabilistic risk assessment methodology presented here will
be particularly effective in setting the balance of these three pillars.
The implications of this work are of concern for farmers and policy
makers, as well as for the whole value chain of the food-and-fibre
industry, and for its long-term sustainability. The crucial importance
of providing such detailed end-to-end information to stakeholders
is further summarized in the Supplementary Discussion.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
Data sources. Daily observed weather data on precipitation, radiation, and
maximum and minimum temperatures were used. The data set was provided by
the National Climate Centre (NCC) of the China Meteorological Administration
(CMA) on a 0.25◦×0.25◦ longitude–latitude grid, available from 1961 to 2012; it
covered the two northeastern provinces of Shandong and Hebei, and the two
southern provinces of Guangxi and Guangdong. Grid-level maize and rice yields
were simulated in those northeastern and southern provinces, respectively, using a
mechanistic crop model called DSSAR-CERES.

Random-forest-based selection of indices.We selected the most effective
pixel-level pairs of indices to capture the effects of deficit precipitation and excess
temperature on yield variability by a random-forest algorithm. This algorithm uses
ensemble-based recursive partitioning and thus permits one to circumvent the
issues of cross-correlation between indices and of a large number of variables
versus a small sample size.

Extreme-value multivariate modelling. Robust stochastic characterization of the
interannual variability of the optimum grid-level weather indices was carried out
using univariate distributions of mixed, exponential—generalized Pareto
distribution (GPD)—type. The latter allows one to accurately estimate the
risk of occurrence of events that are both rare and extreme, within a modified
GPD framework across the whole gridded domain studied. The stochastic
dependence of deficit precipitation and excess temperature is characterized
by coupling their univariate mixed distributions FX and FY within a
Gumbel–Hougaard copula model, as described in the equations (1) and
(2) below.

F(X ,Y )=Cθ (FX ,FY ) (1)

Here Cθ is the Gumbel–Hougaard Archimedean extreme-value copula,

Cθ =
{
−

(
((−log(uX ))

θ
+(−log(uY ))

θ
)
−1/θ
)}

(2)

The coefficient of dependence is θ≥1, where θ=1 characterizes independence of
the uniform transforms uX and uY of the mixed univariate FX and FY distributions
of precipitation and heatwave grid-level indices, respectively.

The Gumbel–Hougaard Archimedean copula enables us to characterize
dependence in both the upper and lower tails without assuming independence of
extreme-value occurrences, as is the case in Gaussian copulas. An example of
stochastic dependence of two weather indices, at the same location and subject to a
technological scenario, is presented in Supplementary Fig. 2.

Nonhomogeneous Hidden Markov Model ‘weather-within-climate’ modelling.
Historical univariate or multivariate distributions of weather indices are derived
by adopting a ‘weather-within-climate’ modelling framework. The distributions are
modelled conditionally on hidden regional weather states, St , that capture seasonal
variability. These states are conditioned themselves on observed or simulated
continental- and planetary-scale climate drivers that capture interannual modes

of variability. A Nonhomogeneous Hidden Markov Model (NHMM) is used to
achieve this two-step conditioning and enable the introduction of non-stationarity,
as illustrated in Supplementary Fig. 1 across a gridded domain and
equation (3) below.

The weather index distributions, P(O1:T ,S1:T |λ,z1:T ), thus use continental-scale
climate variables, z1:T ; these covariates can be observed, as done here, or be
simulated by high-end general circulation models, subject to future greenhouse
gas scenarios.

The non-stationary univariate distributions of pixel-level precipitation and
excess heat, O1:T , follow the mixed GPD-exponential univariate framework
presented above. The copula-characterized stochastic dependency between
marginals is considered stationary across weather states.

Here 1961≤ t≤2012, St are the hidden states of the two-state Markov chain, zt
is the non-stationary Niño-3.4 index acting as covariate, λ={ai,πi}i={1,2} contains
the transition parameters ai and initial probabilities πi of the NHMM, and bSt is the
distribution of the observed weather indices at time t , depending on the state St
as follows:

P(O1:T ,S1:T |λ,z1:T )=πi(z1)bS1 (O1|z1)
T−1∏
t=1

aij(zt )bSt (Ot+1|zt+1) (3)

where aij(zt ) is the transition probability from state i at time t to j at time t+1 of a
first-order Markov chain as a function of the non-stationary covariate zt , πi(z1) is
the probability that the initial hidden state at t=1 is i, S1= i, and bSt (Ot+1|zt+1) is a
component of the vector of observed weather indices characterized by mixed
densities FX and FY cited above, and dependent on the value of the non-stationary
covariate zt+1.

Generalized additive mixed crop response modelling. To model the vulnerability
functions of crop yield to the combined or individual effects of precipitation
variability and excess temperature exposure, generalized additive mixed models
(GAMMs) are used (see equation (4)). The use of a GAMM g (µi) enables one to
capture the nonlinear response of crop yield µi to varying values of a single or
several weather indices (see Fig. 2f),

g (µi)=Xiθ+ f1(x1i)+ f2(x2i)+·· · (4)

Here µi≡E(Yi), with Yi the rice or maize yield response variable following an
exponential-family probability distribution function, and Xi is the ith row of the
model matrix with its corresponding θ parameter vector.

Also, to model the univariate model of rice or maize yield response to
heatwaves or deficit precipitation, a smoothing basis composed of natural cubic
splines is used. Ultimately, the convolution of the GAMM-based yield response
function with the distribution of the corresponding grid-level indices results in the
distribution of yield loss as a function of index values.

Input–output-based economic impact modelling. An input–output modelling
approach is used to assess direct and indirect province-level economic impacts due
to weather-driven maize production shortfall. Further details concerning the
methodology can be found in the Supplementary Information.
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