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Increasing risk of compound flooding from storm
surge and rainfall for major US cities
ThomasWahl1,2*, Shaleen Jain3, Jens Bender2,4, Steven D. Meyers1 and Mark E. Luther1

When storm surge and heavy precipitation co-occur, the
potential for flooding in low-lying coastal areas is often much
greater than from either in isolation. Knowing the probability
of these compound events and understanding the processes
driving themisessential tomitigate theassociatedhigh-impact
risks1,2. Here we determine the likelihood of joint occurrence of
these two phenomena for the contiguous United States (US)
and show that the risk of compound flooding is higher for
the Atlantic/Gulf coast relative to the Pacific coast. We also
provide evidence that the number of compound events has
increased significantly over the past century at many of the
major coastal cities. Long-term sea-level rise is themain driver
for accelerated flooding along the US coastline3,4; however,
under otherwise stationary conditions (no trends in individual
records), changes in the joint distributions of storm surge and
precipitation associated with climate variability and change
also augment flood potential. For New York City (NYC)—as
an example—the observed increase in compound events is
attributed to a shift towards storm surge weather patterns
thatalso favourhighprecipitation.Our resultsdemonstrate the
importanceofassessingcompoundflooding inanon-stationary
framework and its linkages to weather and climate.

Nearly 40% of the US population resides in coastal counties5.
Impacts of flooding in these usually low-lying, densely populated,
and highly developed regions, can be devastating with wide-ranging
social, economic and environmental consequences. Two distinct
mechanisms—storm surges and heavy precipitation, either through
direct runoff (pluvial) or increased river discharge (fluvial)—
can lead to flooding in coastal areas. If they occur concurrently
(or in close succession) the adverse consequences can be greatly
exacerbated1,2. Recent compound events have resulted in substantial
damages and loss of human life: for example, the Brisbane and
Thailand Floods in 2011; hurricane Isaac and tropical storm Debby
in 2012; typhoon Haiyan in 2013; and the series of winter storms in
the UK in 2013/2014.

Compound flooding has often been assessed on a local scale6–9,
with regional studies limited to the UK (ref. 10), Netherlands11 and
Australia12. For the US, with many major coastal cities, including
17 port cities with population >1 million13, the likelihood of
the joint occurrence of the two natural hazard types has not
been assessed so far. Here we investigate the spatial and temporal
variability of the dependence between them using hourly storm
surge data (tidal andmean sea level (MSL) influence removed) from
30 tide gauges (TGs; ref. 14) around the US and daily precipitation
averages derived from stations15 within 25 km of these TGs (Fig. 1a
and Methods).

The complex interplay between storm surge and precipitation
can lead to or exacerbate the impacts of flooding in coastal zones
through multiple mechanisms. For mechanism (1), in estuarine
regions, the joint occurrence of both may elevate water levels to
a point where flooding is initiated or its impacts exacerbated.
Mechanism (2) occurs when a destructive storm surge already
causes widespread flooding, such that any significant rainfall on top
of this—even if it is not an extreme event on its own—increases the
flood depth and/or extent of the inundated area. Mechanism (3)
occurs during amoderate storm surge which does not directly cause
flooding, but is high enough to fully block or slow down gravity-
fed storm water drainage, such that precipitation is more likely to
cause flooding.Whether or not all of these mechanisms are relevant
at a particular site strongly depends on the local setting. Here we
capture all of the above-mentioned mechanisms by investigating
the dependency between storm surge and precipitation for two
distinct cases: in Case I we search for the highest annual storm
surge, and then take the highest precipitation within a time range
of ±1 days of this event (covers mechanisms (1) and (2)); in Case
II we search for the highest annual precipitation, and then take
the highest storm surge within a time range of ±1 days (covers
mechanism (3)). We use Kendall’s rank correlation coefficient τ
(ref. 16) to reliably measure dependence between the two variables
and use copula theory17–19 to identify the appropriate dependence
structure. The latter is important to include information on joint
occurrences of extremes into flood risk analysis. Here we consider
three extreme value copulas (Gumbel, Galambos and Hüsler-Reiss)
and two from the Archimedean family (Frank, Clayton; the Gumbel
copula belongs to both classes). We use tail dependence analysis20
and compare observed and simulated data pairs by visual inspection
(see Supplementary Fig. 1 for examples) to identify suitable copulas
to model underlying dependence in the data (Methods). For Case I
we find significant correlation, associated with a higher likelihood
that compound flooding occurs, for virtually all sites along the
Gulf and east coast, and one site in the southwest (Fig. 1b). In
Case II significant dependency is confined to the Gulf and southeast
coast, one site in the northeast, and three sites on the west coast
(Fig. 1c). A sensitivity test using a 50 km radius around the TG
sites to select precipitation stations reveals the same spatial pattern
(Supplementary Fig. 2).

Variations in the dependency between rainfall and storm surge
are also important because they alter the flood risk. We assess
temporal changes by calculating τ for 50-year moving windows
(shifted by one year each time step; Methods). The resulting time
series from six sites with long overlapping records are shown in
Fig. 2a–f. For San Francisco, results are shown for Case II, for the
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Figure 1 | Data sets and spatial variability of the dependency between storm surge and precipitation. a, TG locations; colour represents the number of
overlapping years between storm surge and precipitation time series, numbers in brackets denote the number of precipitation stations in a radius of 25 km
around the TGs. b,c, τ for Cases I (b) and II (c); markers denote the selected copula type (square is Frank; triangles pointing right, left, up and down are
Gumbel, Clayton, Galambos and Hüsler-Reiss, respectively). Insets show linear trends for the storm surge (red; unit is cm yr−1) and precipitation (blue; unit
is mm yr−1) time series for Cases I (b) and II (c) for all sites used in the non-stationary analysis (see text). Open circles denote insignificant correlations or
trends (90% confidence).

other sites for Case I. At all six sites we find an increase in τ ; in
many instances it was insignificant (or even negative) in the first half
of the twentieth century and became significant (90% confidence)
over recent decades. The 90th percentiles of the natural variability
(estimated with a resampling approach; Methods) have recently
been exceeded at all six sites. The linear trends of the running τ
time series for the six sites—and all other sites with at least 55
overlapping years of data and covering a period of at least 65 years
(this criteria is fulfilled by 20 sites in total)—are depicted in Fig. 2g;
for comparability, trends are calculated for the commonperiod since
1948. Results are shown for Cases I and II for all sites where we
find at least one significant positive trend (13 sites in total; see
Methods for information on significance testing). This includes
the major cities of San Francisco (TG 6), Los Angeles (TG 9),
San Diego (TG 10), Houston (TG 13, Galveston), Tampa (TG 16,
St Petersburg), NYC (TG 26) and Boston (TG 29). Comparing tail
dependence coefficients (TDCs; ref. 20) derived from the first and
second halves of the raw data sets (Methods and Supplementary
Fig. 3) reveals that much of the observed increase in the overall
dependency is due to higher incidence of joint events in the upper

tail region, highly relevant for flood risk and design. Discrepancies
between neighbouring sites may stem from regional or local effects,
such as differences in the storm surge climate at multi-decadal
timescales21, or in actual precipitation amounts as a result of local
factors. In some instances, we also find positive and negative trends
at a single site (for example, Atlantic City); these may annul each
other in terms of changes in the actual flood risk depending on the
dominant flood mechanism in the area (generally Case I poses the
greater risk for human lives in coastal regions22).

We analyse the data sets fromNYC inmore detail to attribute the
observed changes in τ to synoptic-scale weather patterns driving
compound or non-compound events. The pairs of ranks (rescaled
by a factor of 1/(N + 1), where N is the number of pairs), also
known as pseudo-observations23, shown in Fig. 3a,b reveal thatmost
events from the past three to four decades lie close to the diagonal,
indicating high correlation (especially in Case I; Fig. 3a), whereas
many of the earlier ones are widely scattered; the same plots, but
with real units, are shown in Supplementary Fig. 4. Events associated
with tropical cyclones (filled squares) are identified using cyclone
track information from the HURDAT (ref. 24) database (Methods)
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Figure 2 | Non-stationarity in the dependence between storm surge and precipitation. a–f, τ for 50-year running windows; filled circles denote significant
correlation (90% confidence); grey shaded areas represent the range of natural variability (10% and 90% levels). g, Linear trends of running τ time series
for the common period since 1948 for Cases I (red) and II (blue); results are shown only for sites with at least 55 overlapping years of data over a 65-year
period. Dashed lines indicate sites that meet the record lengths criteria but do not exhibit significant trends.

and exhibit strong concordance between high storm surge andheavy
precipitation. October 2012 hurricane Sandy (that is, the red square
in the upper left of Fig. 3a) is an exception, stemming from a
highly unusual impact angle, resulting in an extreme storm surge25,
whereas the amount of rainfall was small in the historical context for
such an event.

We use maps of sea-level pressure (SLP) and winds from the
Twentieth Century Reanalysis Project (20CR; ref. 26) to identify
the prevailing synoptic weather situations that have caused selected
storm surge events with high (that is, compound events) and low
(that is, non-compound events) precipitation. The selected events
from Cases I and II at the NYC TG are marked with grey squares

(high storm surge and low precipitation) and grey circles (high
storm surge and high precipitation) in Fig. 3a,b; events are selected
here based on their ranks, the same plots with real units are shown
in Supplementary Fig. 4. The SLP and wind composites depicted
in Fig. 3c–f reveal that storm surges in NYC are accompanied by
heavy precipitation when a high-pressure system stretches from
Newfoundland south over the North Atlantic, from where moist air
is transported into the low-pressure system causing the storm surge
(Supplementary Fig. 5). When the high is confined to the mainland
of North America, dry air (Supplementary Fig. 5) is transported to
the site of interest, and no or only small amounts of precipitation
occur with the storm surge. For TG Boston (located north of NYC),
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Figure 3 | Weather patterns associated with the increasing frequency of compound events in NYC. a,b, Rescaled pairs of ranks of storm surge (s) and
precipitation (p); filled squares are tropical events; framed events were used for the composite plots; colour denotes the year of occurrence. c–f, Composite
plots of SLP (unit is Pa× 105) and wind for events with high storm surge and high precipitation (c,d; circle frames in a,b) and high storm surge and low
precipitation (e,f; square frames in a,b). Case I (a,c,e); Case II (b,d,f). The NYC TG location is shown by the red dot.

SLP, wind and precipitable water content (PWC) composites reveal
similar spatial patterns for Case I (Supplementary Fig. 6) where the
overall correlation is significant at both sites.

We use these results and calculate and compare the centred
pattern correlation (CPC) coefficients27 between the reference sit-
uations depicted in Fig. 3c–f and the SLP and wind fields of all indi-
vidual Case I (CPC1) and Case II (CPC2) events at NYC (Methods).
The difference between the summed (SLP + wind) CPC1 and
CPC2 is used to attribute a respective event to one of the reference
situations. When taking into account the entire time period for
which data are available, the ratio between compound and non-
compound events is 1.7 for Case I and 2.6 for Case II—that is,
weather situations associated with compound events occur approx-
imately twice as often. When we analyse the first and last 30-year
periods separately the ratios increase from 2.7 to 5 in Case I and 2.8
to 3.5 in Case II. This independent approach confirms the results
from the running τ and tail dependence analysis and highlights that
weather patterns favouring high precipitation have dominated the
storm surge climate in NYC over the past few decades.

To quantify the effect of observed changes in τ in NYC on
joint return periods relevant to flood risk analyses (for example to
define flood zones) and infrastructure design and adaptation, we
perform a full multivariate statistical analysis (see Methods); we
use the previously identified copula models (Fig. 1b,c) to capture
the (non-stationary) dependence. We select a random extreme
event combination comprised of 120mm daily average rainfall and
a storm surge of 115 cm. If the latter coincides with mean high

water (66 cm above MSL at the Battery TG) it exceeds the height
of the Manhattan sea wall (∼125 to 175 cm above MSL; ref. 28).
Similar conditions—that is, 118mmdaily rainfall and 114 cm storm
surge—were observed at NYC in 1971 during tropical storm Doria.
We find—for example—that if we use the smallest value of τ (as
observed around the 1940s) the selected event had an ‘AND’ joint
return period (JRP; that is, both variables exceed the respective
threshold at the same time29) of ∼105 years, close to the ‘100-year
event’ often used for design and adaptation planning. Using the
highest value of τ (as observed recently) the JRP drops to∼42 years
(that is, the likelihood that such an extreme compound event occurs
has more than doubled). Falsely assuming independence between
the two variables results in a JRP of ∼245 years. Preserving the
return period of 105 years under current conditions (that is, with
the increased dependency) is associated with an increase of daily
rainfall by 25% to 150mm (assuming 115 cm storm surge) or an
increase of the storm surge by more than 50% to 180 cm (assuming
120mm rainfall). In the absence of significant long-term trends in
time series of the marginal variables during the investigated time
period (insets in Fig. 1b,c), our results indicate that the increase
in the frequency of compound events stemmed from changes in
the dependency (or joint distribution) alone. More research at local
scales is needed to quantify the actual impacts associated with this,
so as to ultimately include the information into optimized design
guidelines and flood risk analyses, and thus define flood zones.
This requires complex integrated modelling experiments (covering
surface and drainage flows) including storm surge, rainfall and river
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discharge (ideally at higher frequency than used in the present
study) as coupled ocean–atmospheric processes9, and should also
consider the output of high-resolution climate models9,30 to explore
how joint dependence of extreme rainfall and storm surges may
respond to future climate variability and change.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
Data selection and processing.Hourly sea-level records14 from 30 tide gauges
(TGs) with at least 30 years of data between 1900 and 2012 are used for the study. If
two or more TGs are located within 55 km, only the longer record is used, to avoid
the same precipitation stations being allocated to more than one TG. The data at
Mayport started in 1928 and ended in 2000, and was merged with Fernandina
Beach (located only 31 km north of Mayport) TG data for the periods from 1897 to
1928 and 2001 to 2012. For the overlapping period (1985 to 2000) the correlation
between the two raw data sets is 0.99. After this correction all records end in
December 2012. The MATLAB T_Tide package31 is used for a year-by-year
harmonic tidal analysis (with 67 constituents), which also effectively removes the
MSL influence (including the seasonal MSL cycle). Years with less than 75% of data
were omitted from the analysis (this affects less than 3% of the overall data). A
visual inspection of the storm surge time series (tidal signal removed) revealed
obvious outliers at several TGs. For Gulf and east coast stations these could be
related to strong hurricanes or extratropical storms; on the west coast tsunamis
were responsible for the highest water levels at several sites. Such events are driven
by different mechanisms and often triggered thousands of kilometres away.
Therefore we should not assume any relationship with rainfall events. We removed
the following days from the records of all TGs located on the west coast: 23 May
1960 (Great Chilean Earthquake), 28 March 1964 (Great Alaskan Earthquake),
11/12 March 2011 (2011 Tōhoku earthquake in Japan). We note that measured
water levels were possibly affected by tsunamis at other times throughout the past
century, but did not always result in large sea-level anomalies at the sites of interest,
and can therefore be neglected for the purpose of the present study.

Cumulative daily precipitation records15 from stations in a radius of 25 km
around the TG sites are used. There are two exceptions to this rule: for Grand Isle
we select stations in a radius of 50 km, as the TG is located offshore and there is
only one precipitation station within 25 km, which covers a period much shorter
than the TG record; for Neah Bay we use a radius of 35 km, as there are only few
precipitation stations within 25 km of the TG and the time period covered by them
is shorter than the TG record. All precipitation records allocated to a TG are
averaged into a single time series and compared to the storm surge records.
Generally, the precipitation time series are longer and more complete than the TG
records; the entire precipitation time series are used to identify the overlapping
periods which are then considered for the dependence study. A sensitivity test
using a 50 km radius instead of 25 km reveals that the τ values derived for the 30
sites are not considerably affected by this definition (Supplementary Fig. 2). For
Australia, significant correlation between precipitation and storm surge was found
for much larger spatial distances (up to 1,000 km), but decreases further away from
the coast12.

The significance of the linear trends of the raw data sets—that is, the annual
maximum and coincident event time series (insets in Fig. 1b,c)—is tested with a
modified Mann–Kendall Test for autocorrelated data32.

Dependence measure and modelling. Dependence between storm surge and
precipitation is measured through Kendall’s rank correlation coefficient τ (ref. 16)
(as opposed to Pearson’s correlation coefficient, which captures only linear
relationships). Storm surges sometimes occurred without precipitation, and this
leads to ties (several zero values) in the Case I data sets. These ties are broken as
suggested in ref. 23, by assigning ranks randomly. This may have a small effect on
the rank correlation when the number of ties is large; therefore we repeat the
procedure 100 times and calculate the average rank correlation. Copula parameters
are derived with the maximum pseudo-likelihood estimator23. Copula models
capable of simulating the prevailing dependence structures are selected by visually
inspecting the observed and simulated (1,000 data pairs) pairs of ranks (or
pseudo-observation clouds; see Supplementary Fig. 1 for examples) and using tail
dependence analysis by comparing non-parametric TDCs (ref. 20) above a
threshold of 0.6, derived from observed and simulated rank pairs.

Temporal changes in the overall rank correlation and tail dependency. The rank
correlation is calculated for 50-year moving windows (shifted by one year each
time step). In each window we required at least 30 data pairs to assure robust
estimates of τ . From this it follows, to be consistent, that at the beginning (end) of
the time series, τ is calculated from the first (last) 30 data pairs if all values are
available (that is, we shift the 50-year windows beyond the edges of the available
time series and calculate τ values as long as 30 data pairs are available).

The significance of the temporal changes in τ is assessed in two ways. First, for
six selected sites and cases (among Cases I and II) the range of the natural
variability (10% and 90% levels) of the rank correlation is derived by resampling τ
(from 50 data pairs) 10,000 times (Fig. 2a–f). Second, we calculate linear trends of
the running τ time series for the common period since 1948 and test the
significance with a similar resampling approach: the ranks of the raw data sets are
randomly rearranged (1,000 times) and the running τ time series and linear trends

are recalculated; the 30% and 70% quantiles are used to identify significant trends.
Here we chose these relatively low levels because the number of degrees of freedom
is small as a result of the running window approach, the linear model might not be
ideal if τ increased rapidly recently after having been relatively stable before (for
example, Fig. 2b), and most importantly the results from the multivariate statistical
analysis reveal that the observed changes in τ—even if the trends are not
significant at high confidence levels (for example, 90%)—greatly affect joint return
periods; the estimated slopes at sites with significant trends range from∼0.002 to
∼0.008, which equals an increase in τ of 0.1 to 0.4 over a 50-year period (or 0.2 to
0.8 over 100 years).

TDCs for the first and second halves of the raw data sets and above a threshold
of 0.6 are compared to investigate whether similar changes as found in the overall
rank correlation are also evident in the upper tails (Supplementary Fig. 3).

Tropical/extratropical and compound/non-compound events in NYC.We use
the HURDAT database24 to distinguish between tropical and extratropical storm
surge events that were recorded at the Battery TG in NYC. When the time stamp of
the day of a particular event occurs in the HURDAT database and the respective
storm entered the region east of 70◦ W longitude and north of 30◦ N latitude at
some point in its life we assume that it was a tropical event, otherwise it is flagged
as an extratropical event.

We identify compound and non-compound events based on the empirical
non-exceedance probabilities of storm surge (s) and precipitation (p). The events
with grey squares in Figs. 3a and 3b fulfil the criteria s>0.6, p<0.4 and p> s+0.4
(that is, s is high, p is small, and the events lie far above the diagonal), events with
grey circles satisfy s>0.6, p>0.6, p< s+0.15 and p> s−0.15 (that is, s and p are
high and events lie close to the diagonal).

Weather patterns associated with compound/non-compound events in NYC.
SLP, PWC and wind fields from the 20CR (ref. 26) and the days when the selected
compound/non-compound events (see previous paragraph) occurred are averaged
into composites, representing reference synoptic-scale weather situations favouring
the occurrence of storm surges with much (Fig. 3c,d) or little (Fig. 3e,f)
precipitation; the PWC composites are shown in Supplementary Fig. 5. We apply
the concept of centred pattern correlation (CPC; ref. 27) as a widely used pattern
similarity statistic in climate studies to correlate, for each spatial point, SLP and
wind fields from all ‘event days’ in NYC with the composites used as reference
situations (shown in Fig. 3c–f). We focus on the area between 70◦ to 40◦ W and 20◦
to 60◦ N, as the reference composites reveal that the prevailing SLP and wind
situation in this area determines whether a storm surge is accompanied by large or
small amounts of precipitation. The summed CPC coefficients (SLP+ winds) with
the low-precipitation reference situation (CPC2; Fig. 3e,f) are subtracted from the
summed CPC coefficients with the high-precipitation reference situation (CPC1;
Fig. 3c,d); if the difference is>0.5 the respective event is flagged as a compound
event, if it is<−0.5 the event is flagged as a non-compound event, and if it is in
between it is not allocated to either of the two. We then calculate ratios between
compound and non-compound events from the Case I and II data sets for the
entire records and for the first and last 30-year periods separately.

Multivariate statistical analysis for NYC.We perform a full multivariate statistical
analysis for the data set from NYC to demonstrate the effect of a changing rank
correlation (that is, changes in the joint distribution) on multivariate return
periods of variables relevant to flood risk analysis and infrastructure
design/adaptation. The marginal distributions for Cases I and II were selected from
a pool of five distributions commonly used in hydrology and (coastal) engineering,
namely the LogNormal distribution, normal distribution, exponential distribution,
Weibull distribution, and the generalized extreme value (GEV) distribution. A
goodness-of-fit (GoF) test comparing the empirical and theoretical
non-exceedance probabilities using the root mean squared error was applied to
identify the distributions fitting best to the underlying data sets; distribution
parameters were estimated with the maximum likelihood method. We use two
Gumbel copulas—identified with the GoF test(s) employed here—to analyse the
Case I and Case II data sets separately. To quantify the effect of changes in the
dependency, the analysis is performed with the highest and lowest values of the
running τ time series in Fig. 2e. The relevant ‘AND’ joint return periods29 are
calculated for a selected compound event.
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