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The importance of including variability in climate
change projections used for adaptation
David M. H. Sexton* and Glen R. Harris

Our understanding of mankind’s influence on the climate is
largely based on computer simulations1,2. Model output is typi-
cally averaged over several decades3 so that the anthropogenic
climatechangesignal standsout fromthe largelyunpredictable
‘noise’ of climate variability. Similar averaging periods (30-
year) are used for regional climate projections4–6 to inform
adaptation. According to two such projections, UKCIP02
(ref. 4) and UKCP09 (ref. 6), the UK will experience ‘hotter
drier summers and warmer wetter winters’7,8 in the future.
This message is about a typical rather than any individual
future season, and these projections should not be compared
directly to observed weather as this neglects the sizeable
contribution from year-to-year climate variability. Therefore,
despite the apparent contradiction with the messages, it is a
fallacy to suggest the recent cold UK winters like 2009/2010
disprove human-made climate change9. Nevertheless, such
claims understandably cause public confusion and doubt10.
Here we include year-to-year variability to provide projections
for individual seasons. This approach has two advantages.
First, it allows fair comparisonswith recentweather events, for
instance showing that recent cold winters are within projected
ranges. Second, it allows the projections to be expressed in
terms of the extreme hot, cold, wet or dry seasons that impact
society, providing a better idea of adaptation needs.

The need to include the effects of year-to-year climate variability
has been shown for an ensemble of climate simulations11,12, but
not for a formal set of probabilistic projections that directly
affects adaptation planning. For example, the UKCP09 (ref. 6)
projections underpinned the UK’s first statutory Climate Change
Risk Assessment in 2012. These projections (see Methods) have
the added advantage over earlier studies that any conclusions are
based on a more comprehensive assessment of key uncertainties.
This is because the UKCP09 projections are based on several
ensembles (see Supplementary Table 1) of variants of the HadCM3
climate model (about 400 simulations) that explore uncertainties in
land, atmosphere and ocean processes, sulphate aerosol chemistry,
and the terrestrial carbon cycle, and also use information from
an ensemble of international climate models (CMIP3; ref. 13).
Observational metrics of model quality are used to constrain
the projections by weighting realizations according to their
ability to simulate historical mean climate14 and large-scale
temperature trends15. Unlike UKCIP02, a Bayesian framework16
is used to transparently synthesize these data into probability
density functions (PDFs), which represent the uncertainties
explored by the climate simulations but are conditional on the
method and its assumptions, as well as the evidence (model
output, observational metrics and expert judgement). For a given
emissions scenario, spread in these PDFs (ref. 15) comes from

three sources: (i) modelling uncertainty, arising from imperfect
understanding and the approximate representation by climate
models of processes that determine the forcing associated with the
emissions, and the climate response to this; (ii) climate variability on
multi-decadal timescales; and (iii) errors in statistical estimates of
the climate model responses to changes in forcing15 (see Methods).

By extending the UKCP09 method6,14,15 to simulated 1-year
averages, we effectively add climate variability on timescales of
1–30 years to form projections for individual seasons (grey plumes
in Fig. 1). The PDFs across time can be jointly sampled to generate
a set of equally probable realizations. A small sample of these re-
alizations (coloured lines in Fig. 1) show a few possible pathways
for the future real climate if it was to experience the prescribed
emissions. These reflect a range of plausible climate changes that
cannot be ruled out by the observational metrics used to constrain
the projections, superimposed by natural variability arising within
the climate system. For example, some realizations of summer rain-
fall have strong drying signals (red), whereas some have a lot of very
dry summers but can still produce a few very wet summers (blue).
Generally, wet summer and cold winter seasons still exist under cli-
mate change, despite the tendency towards milder winters and drier
summers covered by the UKCIP02/UKCP09 headline messages.

The impact of adding the year-to-year variability to the 30-
year PDFs depends on its size relative to the magnitude of
the climate change signal and its associated uncertainty (see
Supplementary Fig. 3). In 2000, climate variability dominates the
spread for the four variables averaged over England and Wales
(hereafter England/Wales), but not for global temperature. The
uncertainty increases throughout the twenty-first century for all five
variables. For the temperature variables, the growth in spread is due
to increasing modelling uncertainty alone. Modelling uncertainty
also increases with time for precipitation changes. In winter, further
contributions to the growth in total spread during the twenty-first
century arise from increases in year-to-year precipitation variability,
and in uncertainty associatedwith timescaling15, a component of the
UKCP09 method (see Methods).

The relative roles of climate change and interannual variability
become clearer by comparing the 1-year and 30-year PDFs at
particular time periods (see Fig. 2). For England/Wales temperature,
the warming signal (blue curve) is clear by the 2030s as there is little
overlap with zero change. For precipitation changes, the probable
sign of the signal by the 2080s is clear for summer and very clear for
winter. Generally, studies of the importance of climate change on
individual extreme events17,18 have focused on cases where climate
variability reinforces climate change. The addition of year-to-year
variability, however, extends both sides of the 30-year PDFs, and it is
important not to neglect the seasonswhere climate variability offsets
climate change. As the amplitude of year-to-year variability is large,
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Figure 1 | Projections for individual seasons in response to historical forcings followed by the A1B scenario. a–e, Data are presented for the five variables
(as indicated). Grey shading and lines show percentiles of anomalies in the variables relative to 1961–1990, calculated from 1-year mean PDFs for every year
between 1860 and 2100. Coloured lines show three (five for annual global mean temperature) individual realizations of year-to-year variation sampled
from the 1-year PDFs so that simulated temporal correlations are captured. Thick black lines show observed annual global and England/Wales temperature
and precipitation time series27,28 up to winter 2014/15. The realizations used in each panel are chosen independently, so the same colours in di�erent plots
do not correspond to the same realizations.

the 1-year PDFs show there is still a reasonable chance in the 2030s
for a cold or dry winter, or a mild or wet summer (grey shading), the
very seasons not covered by the headline messages.

Although it is incorrect to contrast the cold UK winter of
2009/2010 with the message for ‘warmer winters’9, it is fair to
compare it with the 1-year PDFs. These PDFs (see Fig. 3a)
give a 20% chance by 2020 of having a winter colder than the
1961–1990 average, consistent withCMIP3 predictions that 20–30%
of winters over Northern Europe will be colder than average during
2011–2050 (ref. 12). For the 2009/2010 winter in England/Wales
which caused the scepticism9, the probability (using the winter

temperature PDF for 2009/2010) is 0.06, which is towards the cold
end of the distribution, but is not inconsistent. By considering
climate projections on the appropriate timescale, the scope for
misinterpreting the 2009/2010 winter in the context of long-term
climate change has been removed. In other words, because of
climate variability, cold winters do not immediately disappear under
climate change, and their occurrence does not contradict the theory
or projections. Indeed, the 2009/2010 winter over Europe would
have been even colder if it was not for an underlying warming
from climate change19. The warming signal and its associated
uncertainty is projected to increase throughout the twenty-first
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Figure 2 | Comparison of 1-year PDFs with 30-year PDFs for anomalies in the four England/Wales variables relative to 1961–1990. a–h, 1-year PDFs (red)
and 30-year PDFs (blue) for the four variables indicated for two time periods: 2035 versus 2020–2049 (a,c,e,g) and 2085 versus 2070–2099 (b,d,f,h).
Grey shading to one side of zero highlights the area under the 1-year PDF where variability o�sets the climate change signal, and the associated probability
is quoted top left or bottom right of each panel.

century, causing the chance of a cold winter to drop steadily to 4% in
2100 (see Fig. 3a), and the chance of England/Wales having a winter
as cold as 2009/2010 to drop to 0.6%. Note that although a single
number is quoted here and below, this number encompasses the
combined uncertainties quantified by the conditional PDF, rather
than being for some specific single pathway.

Even if the 2009/2010 winter in England/Wales had appeared
well outside the 2.5–97.5th percentiles (as the record 1962/1963
cold winter and 2013/2014 wet winter do), a single observed
season outside the projected range could not alone invalidate a
probabilistic projection. However, if observed seasonal averages
were inconsistent with a PDF over several years, then this would
cause concern, indicating potential problems with the projections
and some of the scientific understanding built into climate models.
Such comparisons between 1-year PDFs and observed seasonal
averages are fair. They promote a ‘legitimate rather than radical
skepticism’20, allowing people to test and monitor the degree of
confidence in the projections that are based on contemporary
climate models, which may share common systematic errors21 and
are to an extent dependent on a number of expert choices22.

One potential problem, which could affect the credibility of the
1-year PDFs and our analysis, arises if there is inadequacy in the
climate model’s ability to represent the amplitude of year-to-year
variability. For the high-frequency (less than 30 years) variance
of winter precipitation, the observed value is higher than the
sampled value in all but 1.2% of the plausible realizations, showing
that the simulated variability during the historical period for
winter precipitation is less than observed. Similar tests show
that the simulated variability is larger for summer temperature,
but reasonably consistent for winter temperature and summer
precipitation. The actual impact of this is shown by a simple
sensitivity test (red lines in Fig. 3), where variations on timescales
below 30 years are re-scaled to that observed. This test shows
generally modest effects on these projections, demonstrating that
the projections are reasonably robust to errors in the simulation
of the amplitude of variability. The most appreciable impact
of rescaling the variability occurs for summer England/Wales
temperature, providing an example where improved representation
of variability in future models may have a significant impact on
the projections.
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Figure 3 | Time series of probabilities for seasons that become less likely under climate change. a–d, Time series of the projected probability that the
England/Wales seasonal mean is below the 1961–1990 baseline value (above, in the case of summer precipitation). The black lines are estimated from the
conditional (see text) 1-year cumulative PDFs (so the values at 2035 and 2085 equal the areas of the grey shading in Fig. 2). The red lines are based on
sampled realizations (and hence noisier), where high-frequency variations below 30-year timescales have been re-scaled so that the high-frequency
variance equals the observed value. The red lines are estimated as the fraction of sampled realizations that are above zero for summer precipitation and
less than zero for the other variables at each time point. The legend in a applies to all panels.

The confusion around the 2009/2010 cold UK winter arose from
an apparent contradiction with the message based on the 30-year
PDFs. Before seeing how the 1-year PDFs might alter the headline
messages in such cases, we consider instances of seasonal extremes
that are consistent with a warming climate signal (see Fig. 4). The
1-year projections show over the twenty-first century substantially
increased risk of these. The probability of a summer that was
considered very hot historically (occurring once every 20 years) rises
to 0.9 by 2100. The probability in 2100 for very mild winters is
0.74, whereas for very dry summers and very wet winters, it is 0.4
and 0.32, respectively. The use of 1961–1990 to define a baseline
extreme season follows UKCP09. However, as users might want to
consider alternative reference periods23, the 1-year samples have an
advantage over the UKCP09 PDFs, as they can be readily re-centred
to different baseline periods. In Fig. 4c, for example, the choice of the
more recent period 1981–2010, which for winter precipitation had
more extreme seasons than 1961–1990, gives a modest reduction in
the increased future risk.

These projections suggest new headline messages are possible,
that are robust to the sampling of the main uncertainties, choice
of baseline, or amplitude of simulated variability. For winter

temperature this could be ‘Over England and Wales, we expect an
increasing chance of warmer winters, with fewer colder ones’. We
suggest this summarywould have reduced the chances for confusion
with the 2009/2010 UK winter, in contrast to the original message.
Recent wet summers experienced by England/Wales are a good
example of the benefit of 1-year projections (Fig. 3d) as they show
for 2000–2030 there is still a 35–40% chance of getting a wetter than
average summer. Indeed, throughout the twenty-first century, there
is an 18% dropping to 10% chance of having a ‘very wet’ summer
(20% above the 1961–1990 average) (not shown). For summer pre-
cipitation, a suitable description of the projections might be ‘Over
England andWales, we expect an increasing chance of dry summers,
but only a modest reduction in the chance of very wet summers’.
These new messages convey the sense of the overall climate change
signal while factoring in the role played by the interannual vari-
ability. A planner using the 1-year PDFs for adaptation will have
information on both wet and dry summers, whereas someone using
the 30-year projections might only focus on ‘drier summers’. In this
sense, the wider 1-year PDFs highlight the adaptation challenge
more effectively than the 30-year PDFs. They also present the pro-
jections in terms of the probability of extreme seasons, which people
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Figure 4 | Time series of probabilities for extreme seasons that become more likely under climate change. a–d, Probability of exceeding the
95th percentile of the observed baseline distribution for England/Wales summer and winter temperature and winter precipitation, or going below the
5th percentile for summer precipitation. The black and blue lines use the conditional (see text) 1-year cumulative PDFs, but for two di�erent baseline
periods (for summer precipitation, the blue and black lines coincide, because the observed 95th percentiles in the two baseline periods happen to be the
same). The red lines are based on sampled realizations with adjusted variance as in Fig. 3, and are estimated as the fraction of realizations that exceed (go
below) the 95th (5th) percentile of the observed 1961–1990 distribution at each time point. The legend in a applies to all panels.

canmore easily relate to their experience, and to weather events that
have major impacts, for example, very hot summers or wet seasons
linked with heatwaves and flooding, respectively.

The 2009/2010 winter over Europe was characterized by a very
high frequency of anticyclonic blocking events19. Ideally, the climate
projections would be expressed in terms of changes in frequency
and intensity of such weather regimes that really impact society,
for example, heatwaves, droughts, cold spells and sustained periods
of precipitation. This would make them even more relevant to
people, giving a clearer idea about the future types of weather
that society might experience. To enable this requires the climate
model to sufficiently represent the key phenomena that drive the
extremeweather events, such as the jet stream, storm tracks, tropical
cyclones, anticyclonic blocks, convective storms, stratosphere–
troposphere interactions, and teleconnections to tropical SSTs. The
climate models used for UKCP09 projections are limited in this
respect, so we have only extended the 30-year PDFs by including
variability down to the seasonal timescale, as this was found
to be adequately simulated (empirically correcting the amplitude
in variability did not significantly affect the results in Figs 3
and 4). Enhanced resolution in climate models has already shown

improved representation of stratosphere–troposphere interactions24
and blocking25, and with further development of climate models
using improved process metrics26, we would expect one day to be
able to produce climate projections with this greater level of detail.

Methods
Methods and any associated references are available in the online
version of the paper.

Received 6 November 2014; accepted 3 June 2015;
published online 6 July 2015; corrected online 6 August 2015

References
1. Manabe, S. & Wetherald, R. T. Thermal equilibrium of the atmosphere with a

given distribution of relative humidity. J. Atmos. Sci. 24, 241–259 (1967).
2. Hansen, J. et al. Climate impact of increasing atmospheric carbon dioxide.

Science 213, 957–966 (1981).
3. Stott, P. A. & Tett, S. F. B. Scale-dependent detection of climate change. J. Clim.

11, 3282–3294 (1998).
4. Hulme, M. et al. Climate-Change Scenarios for the United Kingdom: The

UKCIP02 Scientific Report (Tyndall Centre for Climate Change Research,
School of Environmental Sciences, University of East Anglia, 2002).

NATURE CLIMATE CHANGE | VOL 5 | OCTOBER 2015 | www.nature.com/natureclimatechange 935

© 2015 Macmillan Publishers Limited. All rights reserved

http://dx.doi.org/10.1038/nclimate2705
http://dx.doi.org/10.1038/nclimate2705
http://dx.doi.org/10.1038/nclimate2705
www.nature.com/natureclimatechange


LETTERS NATURE CLIMATE CHANGE DOI: 10.1038/NCLIMATE2705

5. Christensen, J. H. et al. in Climate Change 2007: The Physical Science Basis
(eds Solomon, S. et al.) Ch. 11, 847–940 (IPCC, Cambridge Univ. Press, 2007).

6. Murphy, J. M. et al. UK Climate Projections Science Report: Climate Change
Projections (Met Office Hadley Centre, 2009).

7. Adapting to climate change in the UK, POST Note July 2006 Number 267 (POST,
2006); http://www.parliament.uk/briefing-papers/POST-PN-267.pdf

8. Adapting to Climate Change: UK Climate Projections 2009 (DEFRA, 2011);
https://www.gov.uk/government/publications/
adapting-to-climate-change-uk-climate-projections-2009

9. Brown, M. Snow chaos: And they still claim it is global warming. Daily Express
(6 January 2010).

10. Spence, A., Venables, D., Pidgeon, N. F., Poortinga, W. & Demski, C. Public
Perceptions of Climate Change and Energy Futures in Britain. Summary Findings
of a Survey Conducted in January–March 2010 (Technical Report)(Cardiff Univ.,
2010); http://www.understanding-risk.org

11. Räisänen, J. & Ruokolainen, L. Estimating present climate in a warming world:
A model-based approach. Clim. Dynam. 31, 573–585 (2008).

12. Räisänen, J. & Ylhäisi, J. S. Cold months in a warming climate. Geophys. Res.
Lett. 38, L22704 (2011).

13. Meehl, G. A. et al. The WCRP CMIP3 multi-model dataset: A new era in
climate change research. Bull. Am. Meteorol. Soc. 88, 1383–1394 (2007).

14. Sexton, D. M. H., Murphy, J. M., Collins, M. &Webb, M. J. Multivariate
prediction using imperfect climate models part I: Outline of methodology.
Clim. Dynam. 38, 2513–2542 (2012).

15. Harris, G. R., Sexton, D. M. H., Booth, B. B. B., Collins, M. & Murphy, J. M.
Probabilistic projections of transient climate change. Clim. Dynam. 40,
2937–2972 (2013).

16. Rougier, J. Probabilistic inference for future climate using an ensemble of
climate model evaluations. Climatic Change 81, 247–264 (2007).

17. Stott, P. A., Stone, D. A. & Allen, M. R. Human contribution to the European
heatwave of 2003. Nature 432, 610–614 (2004).

18. Pall, P. et al. Anthropogenic greenhouse gas contribution to flood risk in
England and Wales in autumn 2000. Nature 470, 382–386 (2011).

19. Cattiaux, J. et al.Winter 2010 in Europe: A cold extreme in a warming climate.
Geophys. Res. Lett. 37, L20704 (2010).

20. Pidgeon, N. & Fischhoff, B. The role of social and decision sciences in
communicating uncertain climate risks. Nature Clim. Change 1, 35–41 (2011).

21. Knutti, R. The end of model democracy? Climatic Change 102, 395–404 (2010).
22. Sexton, D. M. H. & Murphy, J. M. Multivariate prediction using imperfect

climate models part II: Robustness of methodological choices and
consequences for climate sensitivity. Clim. Dynam. 38, 2543–2558 (2012).

23. Hulme, M., Dessai, S., Lorenzoni, I. & Nelson, D. R. Unstable climates:
Exploring the statistical and social constructions of ’normal’ climate. Geoforum
40, 197–206 (2009).

24. Scaife, A. A. et al. Climate change and stratosphere–troposphere interaction.
Clim. Dynam. 38, 2089–2097 (2012).

25. Scaife, A. A. et al. Improved Atlantic winter blocking in a climate model.
Geophys. Res. Lett. 38, L23703 (2011).

26. Bony, S. & Dufresne, J.-L. Marine boundary layer clouds at the heart of
cloud feedback uncertainties in climate models. Geophys. Res. Lett. 32,
L20806 (2005).

27. Morice, C. P., Kennedy, J. J., Rayner, N. A. & Jones, P. D. Quantifying
uncertainties in global and regional temperature change using an ensemble of
observational estimates: The HadCRUT4 dataset. J. Geophys. Res. 117,
D08101 (2012).

28. Perry, M. C. & Hollis, D. M. The generation of monthly gridded datasets for a
range of climatic variables over the UK. Int. J. Clim. 25, 1041–1054 (2005).

Acknowledgements
We would like to thank L. Kendon for encouraging us to think about this issue. We would
also like to thank S. Belcher, B. Booth, S. Brown, K. Humphrey, V. Pope, A. Scaife,
R. Street and colleagues at the Isaac Newton Workshop on ‘Mathematical and statistical
approaches to climate modelling and prediction’ and, in particular, J. Murphy for
comments. This work was supported by the Met Office Hadley Centre Climate
Programme—DECC/Defra (GA01101). We acknowledge the international modelling
groups for providing their data for analysis, the Program for Climate Model Diagnosis
and Intercomparison (PCMDI) for collecting and archiving the model data, the
JSC/CLIVARWorking Group on Coupled Modelling (GCM) and their Coupled Model
Intercomparison Project (CMIP) and Climate Simulation Panel for organizing the model
data analysis activity, and the IPCCWG1 TSU for technical support. The IPCC Data
Archive at Lawrence Livermore National Laboratory is supported by the Office of
Science, US Department of Energy.

Author contributions
D.M.H.S. and G.R.H. both conceived the method. D.M.H.S. coded up the solution by
modifying the original code of G.R.H. and D.M.H.S. which was used to produce
UKCP09. D.M.H.S. drafted the initial version of the manuscript and Supplementary
Information and made the plots. Both authors discussed the results and implications, and
commented on the manuscript at all stages.

Additional information
Supplementary information is available in the online version of the paper. Reprints and
permissions information is available online at www.nature.com/reprints.
Correspondence and requests for materials should be addressed to D.M.H.S.

Competing financial interests
The authors declare no competing financial interests.

936 NATURE CLIMATE CHANGE | VOL 5 | OCTOBER 2015 | www.nature.com/natureclimatechange

© 2015 Macmillan Publishers Limited. All rights reserved

http://dx.doi.org/10.1038/nclimate2705
http://www.parliament.uk/briefing-papers/POST-PN-267.pdf
https://www.gov.uk/government/publications/adapting-to-climate-change-uk-climate-projections-2009
https://www.gov.uk/government/publications/adapting-to-climate-change-uk-climate-projections-2009
http://www.understanding-risk.org
http://dx.doi.org/10.1038/nclimate2705
http://www.nature.com/reprints
www.nature.com/natureclimatechange


NATURE CLIMATE CHANGE DOI: 10.1038/NCLIMATE2705 LETTERS
Methods
The method used here to make our probabilistic climate projections14,15 consists
of two stages and is based on the six ensembles outlined in Supplementary
Table 1. The first stage14 uses a Bayesian framework16 to predict, at the
resolution of the global climate model, the distribution of equilibrium response to
doubled CO2 levels. The method combines information from: a perturbed
parameter ensemble (PPE; ensemble 1 in Supplementary Table 1), where ensemble
members are based on a standard version of the HadCM3 climate model but differ
in the values of the model parameters that control atmosphere and land-surface
processes; multimodel ensembles of other international climate models13; and
observations. Expert judgement is also included, for example, in specifying prior
distributions for uncertain model parameters, and in the choice of observations.
The Bayesian method requires a more robust sampling of the set of parameter
combinations than provided by the PPE. This is done by building an emulator, a
statistical model trained on the emergent properties of the PPE, which can be used
to predict the recent mean climate and the equilibrium response to a doubling of
CO2 for any combination of parameter values, not just those sampled by the PPE.
The Bayesian framework allows the projections to be constrained by a set of
multiannual mean observations by weighting different model variants according to
their ability to simulate aspects of historical mean climate. The framework
recognizes that climate models are imperfect, and combines information from the
emulator and the multimodel ensemble to specify and include structural modelling
uncertainty in the land/atmosphere component of the climate model in the
predicted probabilities.

The second stage uses a timescaling approach15 to provide
probabilistic projections for regional climate change for different time periods
during the twenty-first century by combining information from the probabilistic
projections from stage one with GCM ensembles that explore uncertainties
in the time-dependent response to historical forcings and projected future
emissions (Ensembles 2–6). The time-dependent regional response is emulated
by assuming a linear variation with global annual mean temperature change,
the latter being predicted by a simple climate model (SCM). The timescaling is
done for each sampled parameter combination; the PDFs of equilibrium response
to doubled CO2 concentrations from stage one are sampled jointly to provide the

climate feedbacks required to drive the SCM, and the normalized response per unit
degree of global temperature change. The SCM is comprised of an energy balance
model for prediction of land and ocean temperature change driven by changes
in greenhouse gas, aerosol, solar and volcanic forcing, with a one-dimensional
diffusion–advection equation for vertical ocean heat transport, and a simple carbon
cycle model. By varying SCM parameters, global uncertainties in aerosol forcing,
ocean heat uptake and carbon cycle feedbacks are accounted for. Parameters
of these Earth System components of the SCM are calibrated to reproduce
the response of the transient perturbed physics (Ensembles 3-6) and multimodel
ensemble simulations, and then sampled along with the atmospheric parameters
during scaling to provide projections for regional change. The sampled projections
are then reweighted, based on the likelihood that they correctly replicate
observed historical changes in surface temperature, and combined to provide
time-dependent PDFs to the end of the twenty-first century for the A1B emissions
scenario29. We note that UKCP09 had an additional third stage, not used here, to
convert GCM-resolution PDFs produced from the first two stages to PDFs at 25 km.

For each model variant it is also possible to generate a realization by sampling
error associated with the timescaling (see Supplementary Information) and adding
it to the emulated climate change signal. Furthermore, a set of equally probable
realizations is used here. This is generated by sampling with replacement
1,000 model variants 2,000 times according to their likelihood weight, taking the
emulated climate change for these 2,000 model variants, and adding sampled
‘noise’ from the timescaling.

In this study we show climate projections for annual global mean temperature
and four climate variables over the three grid boxes that represent England and
Wales, for two timescales: 30 years and one year. For the 1-year PDFs, we make a
minor modification to the second stage described above to account for the
short-term signal from volcanic eruptions (see Supplementary Figs 1 and 2 and
related discussion).
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