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Projected strengthening of Amazonian dry season
by constrained climate model simulations
Juan P. Boisier1*†, Philippe Ciais2, Agnès Ducharne1 and Matthieu Guimberteau1,2

The vulnerability of Amazonian rainforest, and the ecological
services it provides, depends on an adequate supply of
dry-season water, either as precipitation or stored soil mois-
ture. How the rain-bearing South American monsoon will
evolve across the twenty-first century is thus a question of
major interest. Extensive savanization, with its loss of forest
carbon stock and uptake capacity, is an extreme although
very uncertain scenario1–6. We show that the contrasting
rainfall projections simulated for Amazonia by 36 global
climate models (GCMs) can be reproduced with empirical
precipitation models, calibrated with historical GCM data as
functions of the large-scale circulation. A set of these simple
models was therefore calibrated with observations and used
to constrain the GCM simulations. In agreement with the
current hydrologic trends7,8, the resulting projection towards
the end of the twenty-first century is for a strengthening of
the monsoon seasonal cycle, and a dry-season lengthening in
southern Amazonia. With this approach, the increase in the
area subjected to lengthy—savannah-prone—dry seasons is
substantially larger than the GCM-simulated one. Our results
confirm the dominant picture shown by the state-of-the-art
GCMs, but suggest that the ‘model democracy’ view of these
impacts can be significantly underestimated.

Reducing the large uncertainties of the regional precipitation
response to anthropogenic climate forcing (ACF) is a crucial
challenge in the assessment of the future climate andwater resources
availability9. Even though the main mechanisms driving the large-
scale changes in precipitation simulated by GCMs are known10–16,
a convergence of the model projections is not expected in the near
term17. The ACF impacts on the South Americanmonsoon18 (SAM)
are particularly interesting given the local and global implications of
changes in the functioning of Amazonian rainforest1–8,19. However,
even state-of-the-art GCMs are poor at simulating themean rainfall
regime and its variability over tropical South America20,21, and the
projections remain notoriously uncertain in this region9,21–23.

The changes in the Amazonian precipitation (PA) are addressed
here using both an observational data set and an ensemble of
simulations from 36 GCMs participating in phase 5 of the Coupled
Model Intercomparison Project (CMIP5). The model data combine
transient historical simulations from 1960 to 2005 and twenty-first
century projections under a high-emission scenario (RCP8.5, see
Methods and Supplementary Information).

An overview of the CMIP5 model outputs illustrates the
uncertainties in the projected PA (Fig. 1a). Across the twenty-
first century, the ensemble of GCMs shows a slightly negative
trend in basin-wide mean annual PA embedded in a large inter-
model spread, with nearly half of the models showing a trend

towards wetter conditions. The CMIP5 ensemble also indicates a
strengthening of the SAM annual cycle by the end of the twenty-
first century (Fig. 2e), characterized by a late-dry-season rainfall
decrease (−0.54± 0.63mmd−1 in September–November (SON)),
and a slightly wetter wet season (December–February (DJF)). Yet,
this pattern of change is not systematic among the GCMs assessed,
and ∼20% of them simulate a decrease of the SAM amplitude in
response to ACF (not shown).

Qualitatively, the uncertainty in the regional precipitation
responses to ACF can be attributed to different processes operating
within GCMs at different scales (Fig. 1b), ranging from the
global climate sensitivity to CO2 concentration increase—and
underlying changes in large-scale temperature,moisture, circulation
and precipitation24,25—to regional-scale impacts driven by other
factors, for example, land-use change26. The way the large-scale
perturbations affect a region, such as Amazonia, constitutes
another particularly interesting source of uncertainty. The GCM
discrepancies refer, in this case, to model-specific sensitivities
in mesoscale circulation and rainfall to phenomena such as
El Niño/Southern Oscillation21, or to changes in land–ocean
temperature contrast (see Supplementary Fig. 3).

To investigate the processes governing the PA projections in
GCMs, we first looked at the simulated long-term changes in mois-
ture flux convergence in Amazonia (−∇ ·QA) and at two compo-
nents of this variable driven by moisture and circulation perturba-
tions (Methods).We found a close inter-model relationship between
the changes in PA and −∇ ·QA simulated at the end of the twenty-
first century, indicating that atmospheric processes play a leading
role in the control of precipitation responses to ACF (Fig. 1c). This
relationship, however, cannot be explained without the atmospheric
circulation anomalies. The tropospheric warming and concurrent
increase in water vapour content produces an almost systematic in-
crease in moisture convergence (Fig. 1d)—a thermodynamic effect
consistent with the convective regime in place across the Amazon
Basin during most of the year (that is, the so-called wet-get-wetter
response). In contrast, a major dynamic influence on the PA changes
is observed across the GCMs (Fig. 1e), consistent with other studies
pointing out circulation as a strong control of regional patterns of
precipitation change15,16, and as a major uncertainty source in the
modelled response to ACF (refs 16,25).

Following a variety of recent studies using observational
benchmarks for climate simulations19,27,28, we build here an
empirical relationship between observed PA and large-scale
circulation indicators to provide a constraint on GCM projections.
The approach resembles statistical downscaling, as it relates
mesoscale (∼200 km) patterns of precipitation within the Amazon
Basin with explanatory variables at a larger scale (∼2,000 km).
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Figure 1 | Simulated changes in Amazonian precipitation. a, Annual mean precipitation anomalies (relative to 1960–1999) simulated in Amazonia
(PA, basin-wide mean) by 36 CMIP5 GCMs (time series smoothed with an 11-year running mean filter). Box–whisker plot indicates the ensemble median,
lower/upper quartiles and extremes in 2070–2099. b, Qualitative outline of the sources of uncertainty in the projected PA. Given a socioeconomic scenario,
a first discrepancy between GCMs relies on the global-scale climate sensitivity to the anthropogenic climate forcing. The way the large-scale perturbations
a�ect Amazonia represents another source of uncertainty of particular interest in this study. Regional impacts driven by land-surface processes are
combined into a third source of uncertainty (including, for example, feedbacks between vegetation and regional climate, physiological e�ects of CO2 on
plant transpiration, or land-use change). c, Di�erence in annual PA between the ends of the twentieth (1960–1999) and twenty-first (2060–2099) centuries
(1PA), plotted against the corresponding di�erence in water vapour flux convergence (1(−∇ ·QA)). Numbers indicate the various GCMs assessed
(Supplementary Table 1). d,e, The same as in c, but for the thermodynamic and the dynamic component of QA (Q(θ)

A and Q(ω)
A , respectively; see Methods).

The method followed relies on regression models of PA calibrated
against historical observations (1960–2012) of precipitation and
sea-level pressure (pSL). These models aim to mimic the leading
modes of rainfall variability observed across the basin as functions
of pSL of different regions of the globe (Methods). A large ensemble
of constrained PA projections is finally computed by forcing the
regression models with the pSL data simulated by each CMIP5 GCM
from 1960 to 2099 (Supplementary Fig. 4).

We note that the empirical models constructed can account only
for the large-scale influence on PA; many other processes are thus
ignored (Fig. 1b). The method also assumes a simple dependency of
PA on the pSL predictors, and that the relationship established for the
present-day period will hold true in a future climate. To validate our
approach, we computed another set of models using for calibration
the historical precipitation and pSL simulated by each GCM. The
similarity between the PA change simulated by a given GCM and
the corresponding statistical (GCM-based) PA projections allows us
to assess the capacity of the empirical models to predict the future
evolution of PA (Supplementary Information).

Considering the important caveats mentioned above, the
predictive skill shown by the empirical models is fairly good.
The statistical reconstructions explain most of the historical PA
variability and predict, in most cases, the future changes simulated
by the GCMs (Fig. 2c,f and Supplementary Figs 5–7). Given these
results, and aware of the limitations of the validation procedure

(see Supplementary Information), we consider it pertinent to go
through the PA projections analysis using the empirical models
calibrated with observations. This ‘diagnostic’ ensemble reasserts
the general picture shown by the CMIP5 ensemble (Fig. 2g): a
marked rainfall decline is projected to the end of the twenty-first
century in the late dry season (−0.58± 0.39mmd−1 in SON; a
deficit of 14%), whereas a moderate PA increase is diagnosed in
the wet season. However, compared with the GCM simulations, the
constrained projections show a drying signal appearing earlier in the
dry season, resulting in a stronger overall impact during that season.

The spatial distribution of the PA changes shows a clearer
difference between the simulated and constrained projections
(Fig. 3). The GCMs show, on average, large precipitation increases
in the eastern tropical Pacific affecting the western bounds of the
Amazon Basin in DJF and March–May (MAM; Fig. 3a). The late-
dry-season (SON) drying affects most of the Amazon Basin but
is particularly strong in the northeast of the region. A different
picture is obtained with the constrained projections, which show
a widespread drying both in June–August (JJA) and SON, and a
larger sign concordance across the individual estimates compared
with the GCM simulations (Fig. 3b). The drying signal in SON
principally affects the southern part of the basin. In that region,
the strong rainfall seasonality and water limitation during the dry
seasonmakes the rainforest particularly vulnerable to persistent soil
moisture deficits2. We therefore follow a similar approach to earlier
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Figure 2 | Amazonian precipitation climatology, trends and long-term changes. a, Present-day (1960–1999) monthly mean precipitation in Amazonia
(PA, basin-wide mean). b–d, Linear trends of PA from 1960 to 2010. e–g, PA change between the ends of the twentieth (1960–1999) and twenty-first
(2060–2099) centuries. Thick lines and envelopes in a,b and e indicate the ensemble averages (µ)± 1.0 s.d. (σ ) derived from the CMIP5 simulations
(black) and from observational data (red-dashed; Methods). c,f, Statistical predictions based on the regression models calibrated with GCMs (used for
control and evaluation; see Supplementary Fig. 4) are shown in black lines and grey envelopes. d,g, Statistical predictions based on the regression models
calibrated with observations (constrained projections). Light grey intervals indicate the fraction of σ associated with di�erences in the observational
data sets.
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Figure 3 | Simulated and constrained projections. a,b, Seasonal and ensemble mean precipitation di�erence between the ends of the twentieth
(1960–1999) and twenty-first (2060–2099) centuries simulated by the CMIP5 GCMs (a) and diagnosed, based on the constrained projections (b). Dots
indicate grid cells in which more that 90% of the corresponding ensemble members agree in sign.

studies3,4 and assess future Amazon rainforest resilience against the
PA projections derived here.

The dry-season length (DSL, Methods) is a simple indicator
of seasonal rainfall regimes and a straightforward constraint for

tropical biomes5. The present-day precipitation and land-cover
condition29 show that indeed rainforest is the clear dominant biome
in tropical regions with a DSL of less than three months (Fig. 4a).
Above this limit, forest prevalence decreases sharply, and there is
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Figure 4 | Projected changes in Amazonian dry season and potential impacts on rainforest. a, Areal fraction of tropical (25◦ S–25◦ N) rainforest plotted
against the mean (1980–2010) dry-season length (DSL; Methods), based on the MODIS land cover29 and the GPCC precipitation data set at 1.0◦ of
resolution. Grid cells with human-made (cropland, urban) or/and wetland fraction above 5% were excluded from analysis. b, Observed (red-dashed line),
simulated (CMIP5, black line and grey shading) and diagnosed (observations-constrained; black line, grey shading and red hatches) yearly area within the
Amazon Basin with DSL above 3 months (DSL3+). Ensemble means (µ, thick lines) and standard deviations (σ , shading indicates µ± 1.0σ ) are calculated
from filtered time series (5-year running mean). Red envelope illustrates µ± 1.0σ computed with the non-filtered observational data. c, Amazonian DSL3+
area derived from the observed (GPCC, dashed red) and diagnosed (solid black) present-day precipitation (1970–1999). The dotted black contour indicates
the DSL3+ area diagnosed on average in 2090–2099. Green and orange pixels indicate regions with dominating fraction (>50%) of forest and deforested
area, respectively.

a relatively narrow DSL domain where forests can cohabit with
savannahs and treeless biomes. Hence, we use a DSL threshold of
three months to define a rainfall regime (DSL3+) and regions where
pre-existing rainforests are susceptible to switching to other biomes.

Within the Amazon Basin, the observed precipitation defines an
area satisfying DSL3+ of 1.8 million km2, including southeastern
Amazonia and the Brazilian Cerrado (Fig. 4b,c). Yet, there is
large spread on the DSL3+ area derived from the historical GCM
simulations (ranging from 1.3 to 6.2 million km2). Further, the
simulatedmean value of this metric is about twice as large as the one
observed (Fig. 4b). This bias and uncertainty illustrates the difficulty
in assessing correctly the potential climate-change effects on the
Amazonian ecosystem based on the current GCM simulations. In
contrast, the diagnosed PA defines a DSL3+ domain that is consistent
with the observations (Fig. 4b,c).

Both the constrained and GCM projections indicate an expan-
sion of the DSL3+ area (Fig. 4b), but the diagnosed increase of this
area by the end of the twenty-first century (of +0.75 million km2

on average) is substantially larger than the GCM-simulated one
(+0.5 million km2). We note that the uncertainties in the con-
strained projections remain large, even though they show a stronger
signal-to-noise ratio than the CMIP5 ensemble (Figs 2g and 4b).
These uncertainties respond mainly to the imposed large-scale pSL
forcing and, less so, to differences within the various observational
data sets used and to noise induced by natural variability (see Fig. 2g
and Methods).

In summary, our study suggests an important underestimation
of the ACF impacts on Amazonian precipitation as simulated by the
CMIP5GCMs. The dry biases in this region, common in themodels
(Fig. 2a),may be a key reason for the future impact underestimation,
because GCMs already showing very dry present-day conditions
cannot undergo a severe reduction in precipitation. As in the long-
term projections, the historical PA trends seem underestimated in
the CMIP5 ensemble. Compared with the observations, the rainfall
trends simulated between 1960 and 2010 show a coherent season-
ality, but a weaker amplitude (Fig. 2b). Consistent with the findings
in ref. 8, the observation-based PA trends are even larger if we con-
sider a shorter (satellite-observed) period (Supplementary Fig. 2).
A concomitant expansion of the Amazonian DSL3+ area of 0.88
million km2 per century is observed between 1980 and 2012, notably
influenced by the widespread droughts of 2005 and 2010 (Fig. 4b).
Yet, although large compared with the long-term projections, this

trend should be interpreted with care because it does not emerge
clearly from the large interannual variability (p value> 0.05).

In our view, the technique developed here makes best use of the
available observations from the region, while still harnessing the
scientific knowledge inherent in an ensemble of GCM simulations.
This pragmatic approach should producemore accurate projections.
We thus argue that the rainforest decline is a likely response
to future rainfall changes in southern Amazonia. Our estimates
do not account for feedbacks from land surface nor changes in
water recycling. This area is also under the direct pressure of
deforestation (Fig. 4c), so the overarching question remains whether
the combined impacts of climate and land-use change could trigger
a widespread forest dieback, and how these two driversmay interact.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
Model and observational data.We used monthly data from transient coupled
simulations carried out with 36 GCMs participating in CMIP5 (Supplementary
Table 1). The whole period analysed spans from 1960 to 2099, including a single
historical run (1960–2005) per model and the corresponding twenty-first century
projection (2006–2099) following Representative Concentration Pathway 8.5
(RCP8.5, see Supplementary Information).

In addition to precipitation and sea-level pressure (pSL), we used
three-dimensional wind (u={u,v}) and specific humidity (q) data for the
computation of a vertically integrated water vapour flux (Q), which is derived as:

Q=g−10

∫ pS

pT

qudp (1)

where g0 and pS are the gravitational acceleration and pressure at the surface,
respectively. The top pressure level pT is set to 100 hPa. A dynamic (Q(ω)) and a
thermodynamic (Q(θ)) component ofQ are derived as in equation (1), but
prescribing the climatological mean (1960–1999) profiles of q (q) and u
(u), respectively:

Q(ω)
=g−10

∫ pS

pT

qudp (2)

Q(θ)
=g−10

∫ pS

pT

qudp (3)

We use a trapezoidal rule to estimate the vertical integrals in the equations (1)–(3)
from the pressure levels available in the GCMs’ atmospheric fields. The water
vapour flux divergence terms (∇ ·Q, ∇ ·Q(ω) and ∇ ·Q(θ)) further used for the
analysis depicted in Fig. 1 were computed using central finite-difference
approximations in spherical coordinates.

The observational data set includes four gridded products of land precipitation
from the Global Precipitation Climatology Centre (GPCC), the National Centers
for Environmental Prediction (PREC/L), the Climatic Research Unit (CRU) and
from the University of Delaware (UDEL). The monthly data from the Hadley
Centre Sea Level Pressure data set30 (HadSLP2) were adopted for pSL. Further
details, references, and an evaluation of these products are provided as
Supplementary Information.

The Amazon Basin-wide average of a given variable is calculated as the spatial
area-weighted mean over a region of∼7 million km2 (Fig. 3). To have a consistent
domain within the multiple GCM and observational data sets, all fields were
previously interpolated and analysed in a common rectangular grid of 2.0◦
latitude–longitude.

The PA responses to ACF are derived as differences between climatologies
computed at the end of the twentieth (1960–1999) and twenty-first (2060–2099)
centuries. We note that part of these differences could be affected by multi-decadal
internal variability simulated in GCMs. The noise induced by these stochastic
variations is offset when averages are applied to ensembles (see, for example,

Fig. 2), but the standard deviation values should partially reflect uncertainties due
to variability.

The dry-season length (DSL) is defined as the number of months per year with
precipitation rates below 2mmd−1. A minimum DSL of three months is used to
define a rainfall regime (DSL3+) where savannahs/treeless biomes prevail and,
therefore, where rainforest is less resilient to permanent changes in precipitation.
Vulnerable areas within the Amazonian domain are computed yearly with the
pixels satisfying DSL3+. The present-day vegetation partitioning is based on the
MODIS land-cover product MCD12C1 (ref. 29) averaged from 2001 to 2010. We
note the manifest problem of using monthly precipitation data to properly define
dry seasons. However, for the purpose of this study, this disadvantage has a lesser
impact because we compute time averages and regional statistics to derive,
respectively, DSL climatologies (from which fractional values are obtained, Fig. 4a)
and yearly DSL3+ areas (Fig. 4b).

Empirical models of Amazonian precipitation. A multivariate regression analysis
was performed to derive the link between patterns of precipitation in Amazonia
and pSL of different regions of the globe. The choice of pSL as an indicator of the
large-scale motion relies in part on the availability of historical reconstructions of
good quality30. The analysis accounts for the rainfall distribution across the basin.
For this purpose, the leading modes of variability were extracted using a standard
empirical orthogonal function decomposition. This approach allows us to describe
the spatiotemporal variability of PA with only a few time series (we used the first 10
principal components), hence avoiding multiple analyses at the pixel level. This
approach also ensures a spatial coherency on the reconstructed PA fields.

Several regression models were derived with the historical data (1960–2012)
both from the observational products (used to compute the constrained rainfall
projections) and from the GCM simulations (used for the method evaluation; see
Supplementary Fig. 4). The analysis was done separately for each month of the year.
However, information from the months preceding and following the one assessed
was also included in the calibrating data, allowing us to increase by a factor of 3 the
record length used in the analyses, thereby providing robustness in
regression-parameter computation. Hence, both the interannual variability and a
small part of the seasonal cycle are accounted for in the models’ calibration.

The explanatory variables correspond to normalized monthly pSL anomalies
averaged onto a rectangular grid of 20◦ latitude–longitude. Although coarse, this
grid defines worldwide a large set of potential predictors (see Supplementary Fig. 3)
compared with the record length used in the regression computation
(53× 3 months). We therefore combined a predictor selection and an ensemble
technique to manage multi-collinearity/overfitting issues and, hence, to enhance
the predictive performance of the models (see Supplementary Information).
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