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Future population exposure to US heat extremes
Bryan Jones1*, Brian C. O’Neill2, Larry McDaniel3, Seth McGinnis3, Linda O. Mearns3
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Extreme heat events are likely to become more frequent in
the coming decades owing to climate change1,2. Exposure to
extreme heat depends not only on changing climate, but
also on changes in the size and spatial distribution of the
human population. Here we provide a new projection of
population exposure to extremeheat for the continentalUnited
States that takes into account both of these factors. Using
projections from a suite of regional climate models driven by
global climate models and forced with the SRES A2 scenario3

and a spatially explicit population projection consistent with
the socioeconomic assumptions of that scenario, we project
changes in exposure into the latter half of the twenty-first
century. We find that US population exposure to extreme
heat increases four- to sixfold over observed levels in the
late twentieth century, and that changes in population are
as important as changes in climate in driving this outcome.
Aggregate population growth, as well as redistribution of the
population across largerUS regions, strongly a�ects outcomes
whereas smaller-scale spatial patterns of population change
have smaller e�ects. The relative importance of population
and climate as drivers of exposure varies across regions of
the country.

Climate change risks are a function of both the nature of
physical hazards related to climate and the vulnerability of society
to those hazards4. Research has focused on characterizing potential
changes in the frequency and magnitude of physical hazards,
whereas possible changes in future vulnerability have received
less attention. However, recognition of the importance of this
dimension is growing as evidenced by the treatment of risk and
vulnerability in the Intergovernmental Panel on Climate Change
(IPCC) Special Report on Extremes4, the recent Working Group II
report of the IPCC Fifth Assessment Report5, the third National
Climate Assessment6, and the new set of socioeconomic scenarios
in production for use in climate change research that explicitly
recognize the role of vulnerability in determining climate change
risk7. Vulnerability itself can be viewed as a function of the exposure
and sensitivity of society to hazards and its capacity to adapt4. These
three aspects of vulnerability will change over time, potentially
having a substantial influence on the magnitude of the risk from
extreme events. To better prioritize research and inform risk
management strategies, it is important to integrate this influence
with projected change in climate to estimate future risks, evaluate
the relative importance of different drivers of risk, and quantify
uncertainty and its different sources in potential outcomes.

Extreme heat is responsible for more deaths in the United
States than any other weather-related event8,9, and its frequency
and intensity is expected to increase over this century10,11. The

physical effects of extreme heat on human populations are
well documented12–14, and certain demographic/socioeconomic
factors heighten vulnerability to heat-related health problems12,14.
Anticipating changes in exposure to future heat extremes is
a key component of understanding future vulnerability and
therefore to adequate planning and mitigation15. Most attempts
to quantify future climate-driven changes in mortality lack
consideration of explicit population scenarios16. In many cases
constant population is assumed,which is not adequate for projecting
future exposure or vulnerability16,17 as these outcomes are heavily
influenced by demographic change. In the few existing studies
considering spatial population dynamics it has been found that,
for example, assumptions regarding internal migration patterns are
a strong driver of future exposure/vulnerability and mortality17.
Not surprisingly, the recently completed third National Climate
Assessment identifies as a key research goal ‘understanding how
climate uncertainties combine with socioeconomic and ecological
uncertainties and improve ways to communicate the combined
outcomes’18. Here, we focus on systematically quantifying the
exposure component of vulnerability to extreme heat in the US
as a function of both climate and population change. Our results
represent a first step towards understanding how patterns of
exposure emerge as a result of the interaction between changes in
population structure and regional climate.

Here we use projections of future climate change according to
the Special Report on Emissions Scenarios (SRES) A2 scenario (see
Supplementary Discussion 1) based on general circulation models
(GCMs) downscaled to 50-km resolution using regional climate
models (RCMs) as part of the North American Regional Climate
Change Assessment Program (NARCCAP). NARCCAP includes
11 GCM–RCM combinations (see Supplementary Discussion 2),
allowing us to address the uncertainty in spatial climate change out-
comes.We combine thesewith a recent spatial population projection
for the US (ref. 19) consistent with the A2 scenario (see Methods).

There are many indices for measuring extreme heat, and it
has been found that the best predictor of heat-related mortality
for specific age groups, seasons and geographic regions can vary
significantly20. However, averaged over larger population groups
and regions, no single variable has significantly stronger predictive
capabilities and alternative measures of heat extremes are highly
correlated20. It has also been found that excess mortality related to
extreme heat events can be effectively described as the independent
effect of daily temperatures rather than as a function of multi-day
heat waves21. Similarly, there are many approaches to quantifying
exposure and vulnerability, and a number of studies have attempted
to estimate/project changes in heat-related mortality that can be at-
tributed to climate change at the city/regional22 andnational scales17.
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Figure 1 | Aggregate exposure for the continental US in the base period
and projected change in exposure for each of the 11 climate models.

As we are investigating a large geographic area and modelling
effects on the total population rather than subgroups we employ a
geographically uniformmeasure, and define a temperature extreme
as a daytime maximum of 35 ◦C or above. Hence, our measure of
exposure is the number of person-days above 35 ◦C (that is, the
annual average number of days with amaximum temperature above
35 ◦Cmultiplied by the number of people exposed to that outcome).
Although thresholds for temperature stress vary across the US, the
35 ◦C threshold has been used for analysis of temperature extremes
even in the Southwest23. For each of the 11 climate projections we
calculated average exposure over the period 2041–2070 and com-
pared it with exposure over the period 1971–2000 (see Methods).

At the end of the twentieth century, aggregate annual exposure
for the continental United States was, on average, 2.3 billion person-
days. Under the A2 scenario, we find that exposure increases to
10–14 billion person-days bymid-century, a four- to sixfold increase
over recent levels (Fig. 1). At the level of the US census division
(see Supplementary Fig. 3) exposure in the base period ranges
from just under 6.5 million person-days in New England, to over
815 million person-days in the West South Central Division, which
includes Texas (Fig. 2). There is significant variation in projected
total exposure, predictably very high levels across most of the
SouthernTier and less in theNorthern regions. In absolute terms the
West South Central Division is projected to experience the largest
increase in exposure, adding 2.7 billion person-days, and the New
England Division is projected to experience the largest proportional
increase relative to the base period. The South Atlantic Division,
which includes Florida, also exhibits large increases in absolute and
relative exposure, and the rapidly growing Mountain Division is
projected to surpass the Pacific Division in total exposure.

Spatial patterns of exposure and its components also vary
significantly across the country. Figure 3 presents the projected
change in the spatial distribution of the population under the
National Center for Atmospheric Research (NCAR) A2 scenario,
the spatial pattern of change in days above 35 ◦C as the ensemble
mean of the NARCCAP simulations, and the corresponding spatial
pattern of change in person-days of exposure. The population
scenario (Fig. 3a) projects growth throughout major urban areas of
the US and across most of the South and West, whereas population
is projected to decline across rural regions of the Northeast, Upper
Midwest, and Deep South23. Most of the country is projected to
experience an increase in extreme heat days (Fig. 3b) with more
warming across the South, especially areas of West Texas and
the Desert Southwest. When these two projections are combined
(Fig. 3c), patterns of projected change in exposure resemble the
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Figure 2 | Aggregate exposure in the base period and projected change in
exposure (both as ensemble means) for each of the nine US census
divisions. Error bars illustrate the standard deviation in projected exposure
across the ensemble for each division.

underlying pattern of population change but with proportionally
more emphasis on the cities of Southern California, Texas, and
the Southeast/Lower Midwest, and less on the cooler cities of the
Pacific Northwest. Areas in West Texas and the Desert Southwest,
projected to experience the largest increase in days above 35 ◦C,
exhibit a lower increase in exposure relative to neighbouring areas
of Eastern Texas (Houston–Dallas–San Antonio corridor) and the
Southeast (Atlanta–Charlotte–Raleigh corridor), a function of the
large population and projected rapid growth in these densely
populated urban areas. In contrast, areas of the upper Midwest and
Northeast that exhibit population decline still see an increase in
exposure, a function of the warming projected for those areas.

We decompose our exposure analysis to evaluate the relative
importance of population and climate drivers and their uncertainty
(climate model uncertainty is discussed in more detail in
Supplementary Discussion 5). We isolate the impacts of population
and climate by recalculating exposure when one factor is held
constant. We also calculate an interaction effect, which can be
thought of as the change in exposure that results from concurrent
changes in population and climate (that is, whether population is
growing in areas that are experiencing more extreme heat). From
Fig. 4 we find that, at the national level, the climate, population
and interaction effects are of similar magnitude. Exposure in
the constant population scenario (climate effect) is roughly 37%
of total projected exposure, whereas exposure in the constant
climate scenario (population effect) is 29%, leaving 32% due to the
interaction effect. At the census division level (see Supplementary
Fig. 15) there is substantial variation in the relative importance
of the climate and population effects, with the population effect
contributing more along the East Coast and Upper Midwest,
whereas the reverse is true in the Southern Plains and Western US.

Several types of population change can influence exposure. In
Fig. 4 the population effect is separated into three components:
national growth, regional redistribution and local redistribution.
Here ‘regional redistribution’ refers to the reorientation of the pop-
ulation across census divisions over time, which results primarily
from migration. ‘Local redistribution’ refers to changes in spatial
population distributions at the 50-km-grid-cell level within census
divisions driven by, for example, suburban sprawl (at this resolution
specific intra-urban patterns of change do not affect outcomes). By
performing two additional calculations—holding population distri-
bution constant over the whole domain or only within divisions (see
Methods)—we can quantify the relative importance of these three
components within the total population effect.We find that national
population growth is responsible for just over half (57%) of the total
population effect. Regional redistribution (largely towards the south
and west in the A2 scenario) contributes an additional 34%. Local
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Figure 3 | Projected changes under the A2 scenario; 1971–2000 to 2041–2070. a–c, Spatial population distribution (a), mean annual number of days
above 35 ◦C (b), and annual exposure in person-days (c).

redistribution is responsible for only 9% of the total population
effect (see Supplementary Fig. 16 for exposure maps).

These results lead us to three key conclusions. First, there is
broad agreement across climate models under the A2 population
scenario that there will be a substantial increase in exposure to
extreme heat in the US over the next 40–50 years. Second, both
climate and population change are significant contributors to this
potential increase. Third, aggregate population change and regional
redistribution of the population are the largest contributors to the
population effect on exposure, whereas local-scale spatial popula-
tion changes contribute less. In existing analyses of future extreme
heat exposure, projected changes in the size and spatial distribution
of the population often take a back seat to projected changes in
climate. Our results suggest that should not be the case. In the
future it is important that policymakers and the research community
regard population change and spatial population dynamics as a
significant component of risk associated with extreme heat events.

Limitations to the study include a key caveat to the third
conclusion: in our analysis we have not distinguished urban and
rural temperature change, which can differ substantially owing
to the urban heat island effect24. Using climate projections that

explicitly account for the urban heat effect could well show that local
urbanization patterns can substantially influence results. We have
also not included demographic or socioeconomic characteristics of
the population such as age, income or level of education in this
analysis, which are known to impact heat-related mortality. So far
there are no high-resolution long-term projections of population
that include this type of information, and even at coarser resolution
(that is, counties) such projections are generally shorter term and
highly uncertain. Future analysis of exposure to climate extremes
will benefit significantly from continued improvement in spatially
explicit population projections. The existing literature suggests
multiple methods for defining extreme heat; in this analysis we
work with only one. It may be useful to consider alternative
and/or geographically specific definitions of extreme heat, such as
combinations of maximum and minimum temperature or humidex
over a specific number of consecutive days, to better understand
projected changes in exposure to climate extremes. Last, in this
work we address uncertainty by using multiple climate models and
performing sensitivity analysis, but our analysis is conditional on a
single scenario (SRES A2) of national population growth and global
climate forcing. A more comprehensive exploration of potential
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Figure 4 | Decomposition of aggregate national-level projected change in
exposure (ensemble mean). Error bar represents the standard deviation in
projected exposure across the ensemble.

uncertainties in outcomes would consider multiple scenarios of
future socioeconomic development and emissions.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
For the purposes of this work we define extreme heat as a daily high temperature
above 35 ◦C. Climate output comes from the North American Regional Climate
Change Assessment Program (NARCCAP), an international programme to
produce high-resolution climate change simulations to facilitate the investigation
of uncertainties in regional-scale projections of future climate in addition to
generating climate change scenarios for use in impacts research. We used the
NARCCAP simulations because it has been demonstrated that the
higher-resolution regional model simulations add value over the GCMs used to
drive them25. Moreover, it has been demonstrated that the RCMs are primarily
responsible for the variability of summer temperature in the simulations
(compared with the driving GCMs)26. NARCCAP modellers ran a set of RCMs
driven by a set of atmosphere–ocean GCMs over an area covering the continental
United States, northern Mexico and most of Canada at about 50-km resolution27,28.
We include 11 RCM–GCM combinations in this work (see Supplementary
Discussion 2 and Supplementary Tables 2 and 3). All models are forced with the
SRES A2 scenario3. To correct model bias, we employ a distribution mapping
technique29 that adjusts the model output values for the current period such that
they have the same statistical distribution as observational data. The same mapping
is then applied to the future period of the simulation. As with most bias correction
techniques, this approach assumes that bias is the same in current and future
periods, and thus may not fully address biases due to interactions between variables
that may be exacerbated by climate change. This factor may add uncertainty in
regions where several models exhibit such biases, but otherwise, because the
technique corrects the entire distribution, this bias correction performs well across
all quantiles, in the extremes as well as near the mean. To apply this technique, we
match the distribution of a gridded observational meteorological data set30 for the
current (1971–2000) period, and then apply a corresponding correction to the
future (2041–2070) data. From each climate scenario we then extract a gridded
distribution of the projected annual number of days above 35 ◦C for the continental
United States. To minimize the effects of natural variability we use 30-year average
results for both the base period (1971–2000) and the future period (2041–2070).

We employ one primary spatial population projection, the NCAR A2 scenario,
to match the A2 forcing scenario driving the NARCCAP models’ simulations. The
projection was constructed using the gravity-based NCAR spatial downscaling
model23. The A2 scenario projects medium/high aggregate population growth
across the continental United States, increasing to just over 405 million by
mid-century. The scenario assumes a sprawling, deconcentrated pattern of
development that was simulated by calibrating the model to historic data from the
South census region from 1950 to 2000, which experienced pronounced sprawl
during that period. Population data are aggregated from a 1/8◦ native grid to the
1/2◦ common grid used in the climate projections.

Exposure to temperatures in excess of 35 ◦C is calculated by multiplying the
population in each grid cell by the projected number of days above 35 ◦C for each
corresponding cell during the appropriate time period. As such, exposure is
expressed in person-days. A spatially explicit distribution of exposure was

calculated for each of the 11 GCM–RCM combinations from which we calculated
an ensemble mean (see Supplementary Figs 2–12 for GCM–RCM results). In
addition to distributions, we aggregate person-days from grid cells to census
divisions and the national level. To assess the drivers of exposure we conducted
four additional model runs for each ensemble member. In the first, we isolate the
impact of climate change on exposure by holding population constant at base-year
levels but allowing climate to evolve according to the ensemble mean projection
(the climate effect). In the second, we do the opposite and hold climate constant at
base-year conditions but allow population to evolve (the population effect). The
interaction effect, the change in exposure resulting from simultaneous change in
population structure and climate, is calculated as the difference between total
exposure and the combined population and climate effects. Multiple forces
contribute to the population effect, including aggregate national population
growth, regional population redistribution (for example, migration), and changes
in local/urban spatial distribution. To further decompose the population effect we
consider two additional projections. In the first, we hold climate constant and allow
for population growth, but in this case holding the base-year spatial distribution of
the population constant (for example, proportional scaling of the population).
From this scenario we can extract the importance of aggregate population change
relative to population redistribution and changes in local spatial structure. In the
final projection we hold climate constant, allow population growth and
migration/redistribution between census divisions, but hold the base-year spatial
distribution within each census division constant. From this scenario we separate
the effect of broad-scale redistributions from that of changes in local/small-scale
spatial structure.
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