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Causal feedbacks in climate change
Egbert H. van Nes1*, Marten Sche�er1, Victor Brovkin2, Timothy M. Lenton3, Hao Ye4, Ethan Deyle4

and George Sugihara4*
The statistical association between temperature and
greenhouse gases over glacial cycles is well documented1, but
causality behind this correlation remains di�cult to extract
directly from the data. A time lag of CO2 behind Antarctic
temperature—originally thought to hint at a driving role
for temperature2,3—is absent4,5 at the last deglaciation, but
recently confirmed at the last ice age inception6 and the end of
the earlier termination II (ref. 7). We show that such variable
time lags are typical for complex nonlinear systems such as the
climate, prohibiting straightforward use of correlation lags to
infer causation. However, an insight from dynamical systems
theory8 now allows us to circumvent the classical challenges
of unravelling causation from multivariate time series. We
build on this insight to demonstrate directly from ice-core data
that, over glacial–interglacial timescales, climate dynamics
are largely driven by internal Earth system mechanisms,
including a marked positive feedback e�ect from temperature
variability on greenhouse-gas concentrations.

Earth system models9 have been an effective, albeit indirect,
way to quantify causality in the climate system. The effects of CO2
and other greenhouse gases (GHGs) on Earth’s temperature are
relatively well understood, but estimates of the effect of temperature
variability onGHGdynamics remain uncertain10–12. Quantifying the
actual strength of this effect is challenging, because it involves a
plethora of mechanisms that are difficult to measure and sometimes
oppose each other. For instance, increased photosynthesis at higher
CO2 levels implies a negative feedback, whereas enhanced plant and
soil respiration at higher temperatures leads to carbon release and
a positive feedback13. A warmer climate may induce the release of
CO2, CH4 and N2O from terrestrial ecosystems, especially in polar
regions14. Furthermore, at higher temperatures, marine CaCO3
neutralization of anthropogenic CO2 decreases15, and methane is
released from hydrate storages below the sea floor, which may
amplify global warming16. Overall, higher global temperatures are
believed to cause a net increase in atmospheric concentrations of
GHGs, implying a positive feedback in warming10,11,17–19. However,
given the complexity of the mechanisms and models, uncertainty
over the feedback effect remains large.

This issue raises the question if there are more direct, model-
independent estimates of the feedback effect based on the strikingly
parallel dynamics of temperature and GHGs over the Pleistocene
ice ages (Fig. 1a). Data-based approaches for unravelling the
causation operating behind this correlation have hitherto largely
focused on phase lags between past climate data sets3, but these
lags vary over time. A slight lead of Antarctic temperature over
CO2 variations has been argued to point to temperature as a
driver of CO2 changes2. However, more recent studies cast doubt
on the existence of a significant time lag of CO2 behind either

Antarctic4 or global5 temperature at the last glacial termination, with
variations inmethane and temperature seeming nearly synchronous
at the Bølling transition20. Meanwhile, the latest data on an earlier
termination7 and inception6 show periods of significant time lags
between CO2 and Antarctic temperature. A simple moving-window
scan of optimal time displacement for correlation (Supplementary
Fig. 1c) supports the emerging view that the time lag of CO2 behind
temperature as recorded in the Vostok ice core1 has varied widely
over the past 400 kyr. Although errors in dating may contribute to
such variation, detailed recent studies6,7,21 confirm that these lags do
vary substantially over time.

What is not common knowledge, however, is that variable time
displacements are in fact expected of nonlinear dynamical systems,
following from so-calledmirage correlations—correlations between
variables that come and go or even change sign8. Correlation is
indeed a poor tool for analysing nonlinear dynamical systems. This
issue can be illustrated by an analysis of some well-known models
(Supplementary Fig. 1a,b). Similar to the Vostok data, in these
models one variable lags behind the other during some periods but
this lag can disappear or even lead during other episodes. This raises
the possibility that the lingering controversy over variable lags may
be partly a product of using an inappropriate lens (simple cross-
correlation) to infer causation.

There is a powerful new methodological approach, however,
that can help distinguish causality from spurious correlation in
multivariate time series from deterministic dynamical systems8.
The technique—convergent cross-mapping (CCM)—is based on a
theorem proved by Takens22,23, stating that the essential information
of a multidimensional dynamical system is retained in the times
series of any single variable of that system. CCM is based on
the idea that Takens’ theorem can be used to detect if two time-
series variables belong to the same dynamical system. Effectively, if
variable X is influencing a paired observed variable Y , then based
on the generalized Takens’ theorem23, we can expect that variable X
can be reliably predicted from the time-series history of variable Y .
Thus CCMmeasures the extent to which the recent historical record
of the affected variableY (or its proxies) reliably estimates states of a
causal variable X (or its proxies). This estimation skill is quantified
by calculating the correlation coefficient ρ between predicted and
observed values of X . A key property that distinguishes direct or
indirect causation from simple correlation is convergence. This
means that cross-mapped estimates improve in estimation skill with
the length L of the time series that is used to predict X from Y . The
level to which predictive power converges (‘CCM skill’8 hereafter)
can be viewed as an estimator of the strength of the causal link. The
essential mechanics of CCM are detailed in ref. 8 and summarized
in three one-minute animations (Supplementary Appendix of ref. 8
or http://simplex.ucsd.edu/Movie_Sall.mov).
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Figure 1 | Causation inferred from time series of insolation, temperature
and GHGs. a, Fluctuations in orbitally driven insolation (65◦ N) and in
temperature and GHGs inferred from the Vostok ice core1. b, Schematic of
causality inferred from the patterns in this study. Temperature and GHGs
exhibit strong feedbacks, whereas orbital forcing has a relatively small role
in influencing temperature.

Here we use CCM to analyse time series of atmospheric
temperature and CO2 and CH4 concentrations reconstructed from
the Vostok ice core1, covering about 400 kyr (Figs 1a and 2), and
the EPICA ice core24,25, which together with Vostok spans about
800 kyr (Supplementary Fig. 2). Our results show that there is no
significant causal association between orbital variables (for example,
insolation) and either temperature or GHGs (Fig. 2c,e,f and
Supplementary Fig. 7). By contrast, the significant CCM signature
apparent between the two GHGs and temperature (Fig. 2a,b,d)
confirms that these are in fact interacting parts of the climate system.
These results represent direct empirical evidence (from data rather
than models) that internal Earth system mechanisms governed
much of the dynamics of the climate system during the Pleistocene
and lend credence to the view that pacemaker effects from orbital
variations are relatively small (10% for high frequencies and up
to 50% for low frequencies) compared with the stronger intrinsic
mechanism of the climate system3,26.

Because the CCM analysis shows strong coupling within the
Earth climate system (correlation coefficients of 0.75–0.87) the
possibility of dynamic synchrony must be addressed to infer the
direction of causation8. Synchrony implies that CCM will converge
in both directions even though causation is unidirectional. This
occurs when one variable Y is a ‘slave’ of the other, (that is, Y
responds closely to the forcing of X , but Y has no effect on X
(see Supplementary Methods)). However this potential difficulty
can be addressed when system response times are slow enough
such that causes can be clearly seen to precede effects. Simply put,
causation with synchrony can be established when dynamic causes
are shown to unambiguously precede dynamic effects. This occurs
when optimal CCM skill occurs with a time lag that reflects the
timescale (delay) of system response (illustrated in a simple model
in Supplementary Methods), and is especially apparent when the
response times in either causal direction are asymmetrical (X to Y ,
or Y to X). Note that identifying the lags for optimal CCM skill,
especially those that are not symmetric, is entirely different in theory
and approach from identifying the lag for optimumcross correlation
between time series (which is necessarily symmetric).

For each pair of variables, we determined the time displacement
that results in the highest CCM skill (Supplementary Fig. 9). In a
bi-directionally coupled system with instantaneous response there
should be no significant differences in the optimal displacements in
either direction. For instance, with simple red noise, the optimum
lag for CCM corresponds to half the length of the vectors used
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Figure 2 | Correlation of cross-mapped versus observed values as a
function of the length of the time series. Shaded areas are the 5th to 95th
percentiles of CCM skill for 100 surrogate time series30 from the null model
(swap model; the shaded areas are the 5th to 95th percentiles of CCM skill
for 100 generated time series30 from a null model see Methods) (red
area= null model for the red line; blue area= null model for the blue line;
overlap= purple). Convergence is significant for all pairs of variables except
the ones involving insolation.

for prediction both ways (Supplementary Fig. 12). By contrast, the
climate system variables all show clear asymmetries in lags for
maximum CCM skill.

The peak for CCM estimates of temperature based on the
GHG time series (that is, the effect of temperature on GHGs)
has an optimal lag that is 2–6 kyr behind that for estimates of
GHGs based on temperature time series (Fig. 3 and Supplementary
Fig. 9 and Supplementary Table 3). CCM consistently indicates
a negative optimal lag for all of the 100-point samples (the level
at which CCM converged). Resampling the data using bootstraps
(see Supplementary Information) reveals that this difference is
highly significant (p< 0.002, the smallest p-value obtainable in
the bootstrap samples) and that a systematic misalignment error
of gas-age up to ∼1,500 yr can be tolerated without changing the
significance (p<0.05) (Supplementary Fig. 13). Additional analysis
of a null model with only a unidirectional effect of GHGs on
temperature (synchronous forcing, see Supplementary Methods),
reveals that the observed asymmetry in lags for optimal CCM in the
Vostok data is unlikely under this scenario (for CO2 p<0.002 and
for CH4 p<0.03), and confirms that we can rule out unidirectional
forcing by GHGs on temperature (a greenhouse effect without
feedback of temperature on GHG levels). Thus, the response of
GHGs to temperature change seems to be significantly slower than
the rapid (essentially instantaneous) response of temperature to
changes in GHGs. This analysis is sufficient to demonstrate that
temperature influences GHGs, and is consistent with the idea that
GHGs drive temperature on a faster timescale.

Less surprising is our finding of CCM convergence when
estimating GHGs from the temperature time series (that is, the
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Figure 3 | Time displacements maximizing CCM skill corresponding to
causal relationships indicated above the bars. The responses of CO2 and
CH4 to temperature have significantly larger lags (the indicated p-values
are from a bootstrapped paired-samples test) than the corresponding
greenhouse e�ects of gases on temperature. The error bars show the 5th
and 95th percentiles of 500 bootstrapped library sets. The lags together
with the convergence of CCM (Fig. 2) imply that a marked positive feedback
e�ect of temperature on GHGs has operated over the glacial cycles.

effect of GHGs on temperature; Supplementary Figs 10 and 11).
This result corroborates (albeit directly) the already well-established
greenhouse effect itself (GHG->temperature) (although we note
that the lag CCM result is not by itself sufficient to show this
(Supplementary Information)).

More interestingly, we also find negative displacements for CCM
associated with a ‘proxy’ link from the salt (Na) content of the ice
record to GHGs (Supplementary Fig. 9). Sea salt in the ice cores
is probably a proxy for sea-ice extent, as the salt mainly originates
fromwind erosion of the sea-ice surface27. Thus CCM results for Na
are consistent with the view that the Pleistocene climate fluctuations
were driven largely by the effects of expanding and shrinking ice
caps, both on land and sea,modulating the accumulation and release
of a large store of carbon in the deep ocean.

In conclusion, our analysis provides direct confirmation that
internal Earth system mechanisms rather than orbital forcing have
controlled climate dynamics over the Pleistocene cycles. Moreover,
they demonstrate the existence and importance of a feedback
effect of temperature variability on GHGs in driving the dynamics
(Fig. 1b). This confirms the existence of a positive feedback
operating in climate change whereby warming itself may amplify
a rise in GHG concentrations. As CCM infers causality directly
from the time series, the consistency of our results with elaborate
mechanistic analysis represents remarkable empirical confirmation
and, moreover, provides a clock for the response times involved. We
suggest that this new and powerful approach may also help to assess
causality behind the numerous other time series we have for the
Earth system.

Methods
We used the Vostok ice core1 on local temperature, CO2, CH4, sodium, dust
(http://www.ncdc.noaa.gov/paleo/icecore/antarctica/vostok/vostok_data.html) and
July insolation28 at 65◦ N (http://www1.ncdc.noaa.gov/pub/data/paleo/climate_
forcing/orbital_variations/berger_insolation). All time series were linearly
interpolated to produce equidistant estimates spaced by 1 kyr. The CCM
algorithm follows ref. 8, which is based on nonlinear state space reconstruction.
This method reconstructs the manifold of the dynamical system based on one
variable X only. E time-lagged values of X (time lags 0,τ , 2τ , . . . (E−1)τ ) are
used as coordinate axes to reconstruct this ‘shadow attractor manifold’. The

algorithm then finds points on this shadow manifold that are close together and
tests whether paired observations of another variable Y are also close together.
This is done by predicting each value of Y on the basis of the closest points in X
using simplex projection (see details in ref. 8). After this each predicted value of
Y is compared with the observed Y (using Pearson’s correlation ρ). This
procedure is repeated using a subset of the time series of X with different
lengths L. It is expected that the prediction improves with the length of the time
series L until it converges to a maximum level. To measure the convergence we
fitted an exponential function (ρ=ρmax−ρ0e−c(L−L0)) to the relationship between
predicted and observed values based on the different subsets of X . L= length of
the used subset, L0= first length used= 10, ρmax the maximum correlation
coefficient, ρ0 the correlation at L=10 and c a convergence speed. The
cross-mapping variables are labelled following the convention of ref. 8, where
‘Y xmap X ’ quantifies the causal effect of X on Y by predicting Xt from E lagged
time-series fragments of Yt . We used E=4, τ=2 kyr by default as this
combination gave a good unfolding of the attractor (visual inspection of
Supplementary Fig. 14) and above E=4 there was no clear improvement of the
predictability of temperature and the GHGs (Supplementary Fig. 15) using
simplex projection29. We also tested other values of embedding dimension E and
embedding lag τ , which gave very similar results (Supplementary Fig. 3).

Robustness was tested by varying CCM parameters (Supplementary Fig. 3),
exploring other ways of interpolation (Supplementary Fig. 4 and Supplementary
Tables 1 and 2), and repeating the analysis on the oldest part of the EPICA
ice-core data24,25 and a high-resolution part of the ice cores of the past 22 kyr
(ref. 21; Supplementary Fig. 2). In addition we examined the significance of the
results using two conservative null models. For the default null model we
generated 100 surrogate data sets which were randomly shifted in phase by
choosing a random break point and swapping the order of both segments. This
procedure destroys the dynamic interdependency between time series, but
preserves nearly all short-term behaviour. We also used a second null model,
generating 100 time series for each variable having the same frequency
spectrum as observed, but with the frequencies randomly shifted in phase30
(see Supplementary Fig. 5). With each of these 4×100 time series all
original variables were predicted using cross-mapping. An interaction is
considered to be significant only if the CCM skill of the real time series is
outside the range of the 5th and 95th percentiles computed from the randomly
generated time series (that is, in Fig. 2 lines above the shaded areas indicate
significant CCM).

For synchronous (that is, strongly correlated) variables, one-way causation is
hard to distinguish from bi-directional causation. Therefore we also analysed the
effect of time displacements on CCM skill. This was done by displacing the time
series up to 10 kyr backwards and forwards before measuring the CCM skill using
500 bootstrapped library sets of length 100. The optimum CCM time lag was
determined by finding the optimum in a Gaussian filtered relation
(bandwidth= 5) of the CCM skill as function of the time lag. We did the same in
a null model (see Supplementary Information).
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