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Linearity between temperature peak and
bioenergy CO2 emission rates
Francesco Cherubini1*, Thomas Gasser2,3, Ryan M. Bright1, Philippe Ciais3 and Anders H. Strømman1

Many future energy and emission scenarios envisage an
increase of bioenergy in the global primary energy mix1–4.
In most climate impact assessment models and policies,
bioenergy systems are assumed to be carbon neutral, thus
ignoring the time lag between CO2 emissions from biomass
combustionandCO2 uptakebyvegetation5. Here,weshowthat
the temperature peak caused byCO2 emissions frombioenergy
is proportional to the maximum rate at which emissions occur
and is almost insensitive to cumulative emissions. Whereas
the carbon–climate response (CCR; ref. 6) to fossil fuel
emissions is approximately constant, the CCR to bioenergy
emissions depends on time, biomass turnover times, and
emission scenarios. The linearity between temperature peak
and bioenergy CO2 emission rates resembles the characteristic
of the temperature response to short-lived climate forcers. As
for the latter7–9, the timing of CO2 emissions from bioenergy
matters. Under the international agreement to limit global
warming to 2 ◦C by 21003, early emissions from bioenergy
thus have smaller contributions on the targeted temperature
thanemissionspostponed later into the future, especiallywhen
bioenergy is sourced frombiomasswithmedium(50–60years)
or long turnover times (100 years).

Bioenergy is part of many future lowCO2 emission scenarios and
it is themost important renewable energy option in studies designed
to align with future RCP projections, reaching approximately
250 EJ yr−1 in RCP2.6 (ref. 1), 145 EJ yr−1 in RCP4.5 (ref. 2) and
180 EJ yr−1 in RCP8.5 (ref. 4) by the end of the twenty-first century.
Integrated assessment models and policy directives have mainly
focused on the quantification and mitigation of risks associated
with deforestation and land-use changes10, and only recently has
the default ‘carbon neutrality’ assumption applied to CO2 emissions
from bioenergy come under scrutiny by governmental authorities11.

In bioenergy systems, the CO2 exchanges with the atmosphere
are usually characterized by fast emissions from biomass
combustion and slow CO2 uptake by vegetation re-growth. As
succinctly mentioned in the 5th IPCC Assessment Report12, this
yields a non-zero climate forcing even if the net CO2 fluxes sum up
to zero over time. The climate impact from this temporal asymmetry
can be quantified at different points of the carbon–climate cause–
effect chain12, from a simple sum of CO2 fluxes informing about an
initial carbon debt5 to radiative forcing and subsequent temperature
change13. Whereas the temperature response to a CO2 pulse from
fossil fuels is sustained for many centuries at an approximately
constant or slightly decreasing value6,14–16, recent studies showed
that the temperature change from bioenergy CO2 emissions is

characterized by an initial warming followed by a smaller long-term
cooling and asymptotically tend to zero12,13,17. However, an analysis
that disentangles the role of CO2 emissions from bioenergy within
the policy-relevant framework3,7,8,18 linking temperature peak
(1Tpeak) and emissions is still missing. Many studies found that the
temperature peak of long-lived greenhouse gases (GHG) is roughly
proportional to cumulative emissions6,14,19, whereas the1Tpeak from
short-lived species is constrained by their maximum emission
rate7–9,12,20. The reason is that the atmospheric perturbation from
long-lived GHGs such as CO2 is lasting so long that the induced
temperature rise will stabilize only if emissions are reduced to
zero19, whereas the temperature change from short-lived species
decreases after a maximum once emission rates have peaked9.
Within a two-basket approach in which GHGs are differentiated
into long- and short-lived8, a specific global warming target could
therefore be achieved by setting a dual objective to limit cumulative
emissions of long-lived GHGs and maximum emission rates of
short-lived species8.

Here, we show that there is a linear relationship linking the
global temperature peak frombioenergy tomaximumCO2 emission
rates, as it is observed for short-lived climate forcers. Using the
global carbon-cycle climate model OSCAR v2.1 (ref. 21), whose
technical description is available in the Supplementary Information,
we investigate the climate system response to CO2 emissions from
bioenergy sourced from biomass resources with short (6 years),
medium (55 years) and long (103 years) turnover times. The latter
case study can be taken as the upper bound for the regeneration
period of commercial forest plantations. Summarized in Table 1, the
bioenergy experiments are based on post-harvest chronosequences
of CO2 net ecosystem exchanges (NEE) that dictate the rates at
which the biomass energy resources can be replenished. We treat
biomass as a renewable source, with the system being carbon neutral
along the biomass turnover time. Simulations are performed under a
constant background climate following the protocol15 recently used
by the IPCC (ref. 12) for the computation of emission metrics and
temperature responses (see Methods for specific details). The direct
carbon and climate responses to CO2 pulses for the cases analysed
in this study are reproduced in the Supplementary Information,
where the possible effects of a changing climate are also explored
(Supplementary Figs 3–5).

In Fig. 1 we show the carbon–climate response (CCR (ref. 6), also
referred to as TCRE (ref. 22)), computed as the ratio of temperature
change to cumulative emissions in ◦C per teraton Carbon (TtonC),
for the default experiment with +1% yearly increase in carbon
emissions. The results are generated after 1,000 repetitions of
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Table 1 |Characteristics of the biomass and post-harvest net ecosystem exchanges (NEE) used in the bioenergy experiments.

Simulation case Location Plantation type Dominant species Turnover time
(years)

Mean annual
precipitation
(mm d−1)

Mean annual
air temperature
(◦C)

Source

Biomass, short
turnover time

23◦00′ S;
48◦ 52′W

Subtropical Eucalyptus grandis 6 4.0 22.0 Ref. 28

Biomass, medium
turnover time

46◦ 30′ N;
91◦ 06′W

Cold temperate Hardwood, mainly
Populus tremuloides

55 2.1 5.2 Ref. 29

Biomass, long
turnover time

60◦ 05′ N;
17◦ 28′ E

Hemiboreal Pinus sylvestris 103 1.85 6.09 Ref. 30

These cases are representative of short, medium and long biomass turnover times (that is, the time required to replenish the biomass resource). The NEE fluxes are used to model the ecosystem carbon
response fed into OSCAR v.2.1. Further details about these case studies are available in Supplementary Fig. 2.

the model experiments with variations of key global carbon-cycle
and climate parameters. The CCR is a metric that consistently
generalizes previously proposed temperature-based metrics, such
as the temperature response to a pulse or sustained emission15,23,
into a single metric which allows one to infer CO2-induced
temperature change directly from cumulative emissions6,22. In the
fossil simulations, the CCR is time-invariant after an adjustment
period, owing to the compensation between the saturation of carbon
sinks and the saturation of CO2 radiative forcing with increasing
atmospheric CO2 (ref. 6). Our value of 1.7± 0.4 ◦Cper TtonC (mean
± one standard deviation)is in line withmore sophisticated carbon–
climate and earth systemmodels: C4MIPmodels show an ensemble
mean of 1.6 ◦C per TtonC emitted (range 1.0–2.1; ref. 6), whereas a
range of 0.8–2.4 ◦C per TtonC is found across 15 CMIP5 models22.
In contrast with fossil fuels, the CCR in the bioenergy simulations
shows a clear time dependency, declining after a maximum, with
the rate of the decline increasing with decreasing turnover times.
In bioenergy systems with medium and long turnover times, CCR
temporarily exceeds the value from fossil fuel emissions, reaching
a maximum at approximately 1.95 ± 0.35 ◦C per TtonC. This
stems from the fact that, in addition to emissions from biomass
combustion, ecosystems are in these cases net CO2 sources to
the atmosphere for about two decades after harvest, because CO2
respiration fluxes are larger than the CO2 uptake by net primary
productivity (Methods).

The CCR in bioenergy experiments is thus dependent on time
and resource turnover times. The influence of different annual
growth rates is explored in Fig. 2. CCR of fossil fuel emissions is
almost constant across the different emission pathways (Fig. 2a).
By contrast, the CCR in the bioenergy experiments is dependent
on the specific emission scenario. Figure 2b shows that CCR values
remain relatively small for quickly regenerating biomass resources.
When bioenergy is sourced from biomass with medium (Fig. 2c) or
long (Fig. 2d) turnover times, the CCR at the beginning is almost
insensitive to time and emission growth rates, but after this initial
phase it gradually decreases over time down to lower values at a
rate dependent on the emission growth rate and resource turnover
time. Unlike for fossil fuel emissions, a specific CCR value for CO2
emissions from bioenergy cannot therefore be used as a simple
metric to infer the induced temperature change from cumulative
emissions, owing to its clear dependency on time, resource turnover
times and emission pathways.

We gather further insights into the climate system response to
CO2 emissions from bioenergy by investigating the temperature
peak from a variety of idealized emission trajectories with different
combinations of emission growth rates, peak year and post-peak
decline rates. In Fig. 3 we single out the sensitivity of 1Tpeak
to cumulative emissions (6E) or to the maximum emission
rate (Emax) by constraining the emission trajectories either at
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Figure 1 | Carbon–climate response (CCR) as a function of time under a 1%
per year increase in emission rates. Results for fossil fuels are in grey and
those for bioenergy are in blue, red and green for the short, medium and
long biomass turnover times, respectively. The solid lines are the ensemble
means and the coloured areas represent the outcomes within one standard
deviation from uncertainties in the carbon and climate system.

Emax=10GtonC yr−1 (Fig. 3a), or at 6E = 1 TtonC (Fig. 3b). For
reference, CO2 emissions from fossil fuels and cement production
were about 9.5GtonC yr−1 in 201124. As previously shown6,14,22,
the 1Tpeak from fossil fuel emissions is proportional to the total
amount of emissions and insensitive to emission rates. The total
allowable cumulative carbon emissions for the 2 ◦C target can here
be approximated to 1.25 TtonC, in line with previous estimates
in the range of 1.0–1.5 TtonC (refs 16,19,25), with approximately
0.5 TtonC emitted so far from pre-industrial times24. In Fig. 3b,
where emission trajectories result in6E=1 TtonC, the1Tpeak from
fossil CO2 approximately follows the respective CCR value. The
temperature peak from bioenergy shows opposite characteristics:
there is an almost linear relationship between 1Tpeak and the
maximum emission rates (Fig. 3b) and the 1Tpeak is almost
insensitive to cumulative emissions (Fig. 3a). Although fossil carbon
emissions cause an equal temperature rise for each additional unit
of emission, 1Tpeak from bioenergy does not depend on the total
amount of CO2 emitted, but rather on the maximum rate at which
emissions occur. Figure 3b shows that extreme maximum CO2
emission rates from bioenergy are required to approach a1Tpeak per
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Figure 2 | Carbon–climate response (CCR, ensemble mean only) in ◦C per TtonC as a function of time and emission growth rate. Simulations are based
on CO2 from fossil fuels (a) and CO2 from biomass energy production with short (b), medium (c) and long (d) turnover times. CCR isolines are marked by
a solid black line. In c and d the isolines also show the mean CCR value in the fossil fuel experiment (1.7 ◦C per TtonC).

1 TtonC close to that from fossil fuels. This occurs for Emax around
30GtonC yr−1 in the case of a long turnover time, and further higher
rates would be needed for biomass with smaller turnover times. The
sensitivity of 1Tpeak to 6E and Emax is compared in Fig. 3c, which is
based on the normalized temperature peak ranges of the ensemble
means in Fig. 3a,b.We also consider, as a benchmark, non-CO2 well-
mixed GHGs with different lifetimes (CH4, N2O, some CFCs and
HFCs). Similarly to short-lived species such as CH4 and HFC-41,
CO2 emissions from bioenergy show a higher sensitivity of 1Tpeak
to Emax. For these species the climate system has insufficient time
to fully respond before the perturbation has disappeared, because
the atmospheric lifetimes are shorter than the timescale required by
the climate system to respond to a forcing7,23. On the other hand, if
the gas is long-lived the climate system has time to fully respond
to the perturbation. This is the case for long-lived GHGs such
as CO2 emissions from fossil fuels, which exhibit a higher 1Tpeak
dependency on the amount of cumulative emissions. The similarity
between CO2 emissions from bioenergy and short-lived species is

confirmed by further simulations in which 1Tpeak shows a higher
linear correlation with Emax (Supplementary Figs 6 and 7). This
linear relationship can be used to build simplemetrics for bioenergy
with which one can infer the induced temperature peak from the
maximum rate at which emissions take place. For example, within
an emission rate range of 0<Emax <20GtonC yr−1 (Supplementary
Fig. 6b), the peak temperature rise from bioenergy is equal to
0.095± 0.029, 0.063 ± 0.02 and 0.005 ± 0.002 ◦C per GtonC yr−1
for the long, medium and short turnover times, respectively.

Under the framework of the two-basket approach, CO2 emissions
from bioenergy sourced from renewable biomass can therefore be
assigned to the basket of short-lived emissions. For these species
the timing of emissions does matter, because their impact gradually
dissipates over time, whereas for long-lived GHGs it will persist for
centuries. This means that early emissions from bioenergy have a
smaller contribution than late emissions to a global warming target
occurring in several decades from now—such as the 2 ◦C target
in 2100.
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Figure 3 | Sensitivity of 1Tpeak from idealized emission trajectories as a
function of 6E or Emax. a, Sensitivity of 1Tpeak on 6E from emission
trajectories with the same Emax (10 GtonC yr−1) and resulting in di�erent
levels of 6E (0.3–2.0 TtonC). b, Sensitivity of 1Tpeak on Emax from emission
trajectories resulting in the same amount of 6E (1 TtonC) but with di�erent
Emax (5–30 GtonC yr−1). c, Comparison of the sensitivity of 1Tpeak to 6E
(1Tpeak, 6E) or to Emax (1Tpeak, Emax) using the normalized temperature
range of 1Tpeak dynamics for the cases in a and b; the dotted red line marks
the equal sensitivity. The temperature peak dynamics over 6E or Emax of
the non-CO2 GHGs are in Supplementary Fig. 8. The ensemble mean of
1Tpeak with one standard deviation is shown in a and b, whereas c shows
the ensemble mean only. In c numbers in parenthesis indicate the
approximate lifetimes of the gas12; species that can be assigned to the
short-lived basket are marked with a circle and those to the long-lived
basket with a triangle. CO2 emissions from bioenergy are less sensitive to
6E than can be inferred from the lifetimes when compared with the other
GHGs. This is because the lifetime is approximated with a first-order decay
model that does not take into account negative values of the response.

The results presented in this study distinctively reflect the
quintessential difference of the climate responses to CO2 emissions
from bioenergy and fossil fuels. Both emissions induce perturba-
tions to the carbon and climate system, but biomass is a renewable
resource that can be replenished within a timescale of year(s) to
decades, whereas fossil reservoirs are generated through geological
timescales and cannot be replenished24. Within the goal of mitigat-
ing climate change, bioenergy is unequivocally recognized as a key
option1,3. Our analysis shows that CO2 emissions from bioenergy
can be assessed in ways that are consistent with those of other
GHGs, and that relevant insights are achieved by explicitly con-
sidering the resource-specific turnover times and the temperature
peak dynamics. By going beyond the ‘carbon neutrality’ convention,
these insights can be included into the existing variety of emission
metrics12 and frameworks to facilitate the assessment of bioen-
ergy CO2 emissions under specific climate targets, and ultimately
enhance the identification of effective climate change mitigation
options. The latter should also take into account, when appropriate,
other climate-regulating mechanisms (for example, biogeophysical
effects, aerosols and N2O emissions from fertilization)26 and case-
specific constraints (for example, land availability, water demand,
soil degradation and associated yield losses)27 not considered in
this study.

Methods
These results are obtained after integration of a global carbon-cycle climate
model and empirical observations of biosphere–atmosphere exchanges of CO2

following harvest disturbance. The responses in atmospheric CO2 and global
mean surface temperature are computed using OSCAR v2.1 (ref. 21), a compact
coupled carbon-cycle and climate model that simulates the redistribution of
anthropogenic carbon among the main carbon reservoirs (atmosphere, terrestrial
biosphere and oceans). A technical description of OSCAR v2.1 is available in the
Supplementary Information, together with a description of the origin of the
uncertainty ranges shown in the results. The performance of OSCAR v2.1 with
respect to other models is benchmarked in Supplementary Fig. 1. The carbon and
climate responses of this paper are calculated under constant background climate
conditions according to the standard protocol for emission metrics15—that is, the
model is initially forced with historical concentrations up to the reference year
(namely, 2010), thereafter the concentration and other anthropogenic forcings are
stabilized at the 2010 level (for example, atmospheric CO2 concentration is kept
constant at the value of 389 ppm), and then a CO2 emission pulse of 100GtC is
added to the atmosphere five years after the reference year (namely, in 2015). The
size of this pulse is compatible with the responses to infinitely small pulses, as
shown elsewhere for both the carbon-cycle15 and the climate (temperature)
system6. The results presented in this study can thus be downscaled to
characterize impacts from emissions of smaller size. The atmospheric lifetime of
the CO2 perturbation in the bioenergy cases is computed by fitting the ensemble
mean curves in Supplementary Fig. 3a with a first-order decay model. CCR is
computed from emission pathways growing at a rate between 0 and 6% as the
ratio of the instantaneous global average surface temperature change (in ◦C) to
cumulative carbon emissions (in TtonC). The possible influence of varying
background CO2 atmospheric concentration and climate on the temperature
response and CCR are investigated by reproducing the same experiments in 2100
after letting CO2 concentration change during the twenty-first century according
to the four RCP scenarios (Supplementary Figs 4 and 5).

We created two independent groups of 500 idealized emission trajectories
(with a ten-year peak phase occurring between 2030 and 2160, followed by a
post-peak phase with a decline to zero within a maximum of 100 years) to study
the sensitivity of 1Tpeak to 6E or Emax. In the experiment aiming at testing the
sensitivity of 1Tpeak to 6E (Fig. 3a), emission trajectories are constrained to
Emax=10GtonC yr−1 and result in 6E ranging between 0.3 and 2TtonC. The
dependency on Emax (Fig. 3b) is studied over emission trajectories of
5<Emax <30GtC yr−1 and resulting in the same amount of cumulative emissions
(6E=1 TtonC). The normalized temperature ranges in Fig. 3c are computed as(
1Tmax

peak−1Tmin
peak

)
/1Tmax

peak using the corresponding temperature peak dynamics.
Another set of unconstrained emission trajectories in which Emax and 6E span
between 0 and 20GtonC yr−1 and between 0 and 4TtonC, respectively, are
generated to distinguish short- and long-lived species as in ref. 8 (Supplementary
Figs 6 and 7). Units for the emission trajectories of the non-CO2 GHGs: 6E are
in 1,000Mtons and Emax are in Mtons per year for CH4 and N2O; 6E are in
Mtons and Emax are in ktons per year for the other GHGs.

In the bioenergy simulations, emissions from combustion are associated with
the ecosystem carbon responses represented by the NEE chronosequences

986 NATURE CLIMATE CHANGE | VOL 4 | NOVEMBER 2014 | www.nature.com/natureclimatechange

© 2014 Macmillan Publishers Limited.  All rights reserved. 

 

http://www.nature.com/doifinder/10.1038/nclimate2399
www.nature.com/natureclimatechange


NATURE CLIMATE CHANGE DOI: 10.1038/NCLIMATE2399 LETTERS
(Supplementary Fig. 2 shows the data used in this study). NEE values include
CO2 sequestration by net primary productivity (NPP) and ecosystem respiration
(that is, oxidation of carbon from soil and dead biomass). In the chronosequences
representative of a medium and long turnover time, the ecosystem is a net carbon
source for approximately the first couple of decades following disturbance, owing
to the dominant respiration flux (mainly from the decomposition of harvest
residues) over NPP, which then becomes dominant and ecosystems turn to be net
carbon sinks. These ecosystem responses are prescribed to OSCAR v2.1 in the
form of a series of small pulses whose cumulative value over the turnover time is
equal to the emission pulse. Many woody bioenergy cases can be expected to fall
between the short and long turnover time; biomass species with turnover times
shorter than six years, such as perennial grasses and short rotation coppice, cause
a perturbation smaller than that shown here for the short turnover case, and can
be approximately considered climate neutral. The simulations in this paper are
based on the assumption that bioenergy is a renewable resource—that is, it fully
regenerates along the turnover time—although on a case-specific basis some net
carbon losses (for example, in the first succession) or gains (for example, in
fertilized plantations) can be expected.

Received 24 March 2014; accepted 5 September 2014;
published online 5 October 2014
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