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if a max-stable copula (max-stable process)10 
is applied. This means that step 5 (Fig. 1) is 
not sufficient.

When computing the regional risk curve 
of a sub-basin (Fig. 1, step 7), Jongman et al.1 
describe its flood hazard by one discharge 
variable according to their dependence 
model. They validate this approximation 
by their Supplementary Fig. 11. This is 
questionable (Supplementary Fig. 3). I count 
13 peaks over the 70% threshold for the 
discharge of Hungary in 22 years. But only 
54% of these peaks correspond to a flood 
and 53% of the floods do not exceed the 
70% threshold. The Supplementary Fig. 1 
of Jongman et al.1 does not represent a 
sufficient validation of the approximation.

In step 9, the estimated hazard is 
linked with exposure and vulnerability to 
estimate the flood risk (step 10). Therein, 
the discrepancy between observations 
and the model should not be larger than a 
random discrepancy with an exceedance 
probability of 5%, which is the accepted 

significance level1,11–13. The model has to be 
rejected in the case of smaller exceedance 
probabilities, which correspond to larger 
discrepancies. The estimated loss for a 10-
year return period is exceeded 6 times in 
14 years (Fig. 2a in ref. 1), resulting in an 
exceedance probability of <1% (binomial 
distribution), and the Solidarity Fund 
claims (Fig. 2b in ref. 1) exceed a 20-year 
return period 4 times, which corresponds 
to an exceedance probability of 0.04%. 
These significant discrepancies demand 
rejection of the model. The discrepancies 
could have arisen at one or more of the ten 
steps discussed above. However, some issues 
could be improved, as explained in the 
Supplementary Information accompanying 
this Correspondence. ❐
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Reply to ‘Statistics of flood risk’

Jongman et al. reply — Raschke1 has a 
number of concerns about the modelling 
approach and assumptions applied in our 
Letter2. Here, we address each of the concerns 
raised and provide our view on the choice of 
the specific methodological aspects, and on 
their validity. 

First, Raschke questions whether the 
Gumbel distribution is appropriate for 
estimating discharge, compared with 
the generalized extreme value (GEV) 
distribution. In a previous study, Dankers 
and Feyen3 performed a likelihood ratio test 
for the GEV distribution against the Gumbel 
distribution in the same model domain as 
used in our Letter. They show that the three-
parameter GEV distribution does not yield 
a significant improvement over the two-
parameter Gumbel distribution in a large 
majority of river locations. They also found 
no evidence that either the GEV or Gumbel 
model produced consistently higher or lower 
estimates for the discharge return levels 
across Europe. Moreover, estimates of the 
GEV shape parameter become very unstable 
for return periods beyond the length of the 
fitting period, which is typically the case for 
flood events that exceed protection standards 
and largely determine expected annual 
flood damages. Based on this reasoning, we 
elected to use the Gumbel distribution and 
conclude that our analysis in that regard is 
statistically sound. 

Second, Raschke claims that the Clayton 
copula that we used to convolute loss 

distributions in individual basins into a single 
continental one was applied inappropriately 
because seasonality was not incorporated, 
an incorrect tail dependency was assumed 
and no other copulas were considered. In 
the Letter, we indeed argue that seasonality 
affects discharge patterns (Supplementary 
Fig. 2 in ref. 2), and we agree that an extended 
dependency model could include seasonality 
as an additional informative covariate. In our 
Letter, we established one single dependency 
structure that represents the entire co-
occurrence of peak discharges between basins 
over the entire time series; future research 
could further contribute to this methodology 
by developing separate copula parameters for 
different seasons. 

It is true that some basins may show 
increasing tail dependency whereas others 
do not. We therefore chose a family of 
copulas that, on the one hand, can model 
independency but, on the other hand, 
can model possible strong increasing tail 
dependencies. The Clayton model shows the 
highest increase in tail dependence compared 
with the other models mentioned and was 
therefore selected. The Clayton copula was 
extensively (but not exclusively) tested for 
Romania (see Supplementary Information in 
ref. 2) and showed very good fit there. Also, 
the Clayton copula has the required flexibility 
to model different forms of dependencies. 
In situations with no or decreasing tail 
dependence, as mentioned by Raschke for 
the United Kingdom, the resulting Clayton 

copula would represent full independence. 
As additional information, we included the 
no-dependence scenario as well. We therefore 
provided a wide bandwidth of possible 
large-scale losses rather than a sensitivity 
analysis showing the effects of using different 
copula models and parameters. Note that our 
model is a special case of the so-called ‘vine 
copulas’4 but the huge number of components 
(1,007 sub-basins) did not allow us to 
estimate the vine structure. 

Third, Raschke argues that the dependence 
model for monthly peaks cannot be applied 
to annual extremes because the Clayton 
copula is not a max-stable copula. We used 
monthly maximum discharges of the entire 
time series to establish the copula parameters; 
we used annual maximum values to compute 
extreme (1 in 2 year to 1 in 500 year) flows. In 
doing so, our model indeed assumes similar 
relative basin dependencies for low- and 
high-return-period flows. In many cases, 
the correlation between the monthly peaks 
will probably be similar to those between the 
annual peaks, and the annual peaks are indeed 
a subset of the monthly peaks. However, this 
relationship is likely to be more complex, 
and we encourage further research on the 
comparative application of max-stable and 
non max-stable copulas. 

Fourth, Raschke states that peak discharges 
aggregated at the national level do not always 
fully explain the reported damaging floods, 
and that river discharges are therefore not a 
good proxy for floods. Raschke is correct to 
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state that the relationship between discharges 
and reported events does not always hold, 
and we can identify two reasons behind 
this. First, there are some months in which 
simulated total peak discharges (at the 
aggregated national scale) were relatively low, 
although flood losses were reported. If we 
examine the damage database used in our 
study5, it becomes clear that these specific 
flood events are very small. For both the May 
1991 and July 1994 events in Austria, the total 
reported losses do not exceed US$100,000. 
Second, there are months with high simulated 
river discharge (at the aggregated national 
scale) but without reported flood losses. 
This effect is likely to occur because the high 
discharges do not always happen in populated 
areas where they cause losses. Following the 
terminology of the Intergovernmental Panel 
on Climate Change6, the peak discharge 
deviation may have coincided with a flood 
hazard, but the lack of exposure results in no 
flood risk. In those cases, our model would 
therefore simulate floods, but with low or 
zero economic losses. Modelled discharge 
peaks versus observed gauge discharge at 
554 stations across Europe have been fully 
validated7. We emphasize that the analysis 
of discharge correlations is conducted at the 
level of 1,007 individual sub-basins and that 
the economic risk modelling is performed 
at the grid-cell level (100 m × 100 m) rather 
than the national scale. 

Raschke’s final argument relates to the 
overestimation of relatively frequent losses, 
specifically for the 1-in-10-year return period. 
We acknowledge that our model outcomes 
do not perfectly represent reported losses, 
as can be expected. There are a substantial 
number of uncertain elements in our 
modelling chain, some of which can be 
validated while others cannot. These model 

elements include the grid-cell-based damage 
modelling, the assessment of discharge 
correlations, the dependency modelling 
and the protection standard estimation. 
In addition to uncertainties surrounding 
tail dependency in different basins, we 
acknowledge that uncertainties surrounding 
the newly developed protection standard 
database can lead to overestimation of 
high-frequency losses, as Raschke points 
out. Whereas validation of the modelled 
protection levels was performed with the 
data available, the number of empirical 
data points is very limited (Supplementary 
Table 2 in ref. 2). For the same reason, we 
necessarily assumed homogeneous protection 
levels within each basin, while this is often 
not the case in reality. Hence, for a basin 
with a protection level of 100 years, we 
assume that no inundation (and therefore no 
damages) would occur below this frequency 
anywhere in the basin, whereas some regions 
(for example, peripheral urban or semi-
urban areas) may not have the same level of 
protection as more densely populated areas.

The only way to reduce this specific 
uncertainty in future large-scale risk 
modelling studies would be to develop a 
detailed geo-referenced dataset of actual 
flood protection levels and observed losses. 
We emphasize that the method still represents 
the most sophisticated approach at the 
continental scale to date, as most large-scale 
models simply assume that no protection 
measures are in place, leading to large 
overestimations of risk8. 

While uncertainties persist and may 
propagate, especially in the lower ranges of 
modelled risk estimates, we reject Raschke’s 
claim that this would falsify the risk model1. 
We do emphasize that we present a first 
approach to a continental-scale disaster risk 

assessment that includes basin dependencies, 
and that the results should therefore not 
be considered as a final answer. Although 
a full sensitivity analysis focusing on each 
individual part of the risk modelling was not 
possible in this study, the quantification of 
uncertainties and further validation of model 
elements on lower spatial levels should be a 
research priority. ❐
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CORRESPONDENCE:

Spatiotemporal patterns of warming
To the Editor — Ji et al.1 present a 
methodology to analyse global (excluding 
Antarctica) spatiotemporal patterns of 
temperature change, using mean monthly 
temperatures obtained from the updated 
Climate Research Unit (CRU) high-
resolution gridded climate database2,3. 
Their analysis fails to take into account 
several key characteristics of the CRU 
database, seriously compromising the 
conclusions regarding the spatiotemporal 
patterns of global warming during the 
twentieth century.

Climatic data comes from thousands of 
stations scattered non-randomly across Earth, 
with much higher densities at mid-latitudes 
than in the tropics or the Arctic, creating 
spatial bias. A distance-weighted interpolation 
from available meteorological stations was 
implemented to fill spatial gaps in the CRU 
database2–4. Land pixels outside a search radius 
of 1,200 km from the closest meteorological 
station were given the corresponding CRU 
0.5° 1961–1990 mean monthly climatology4,5 
(Supplementary Fig. 1; other search radii 
apply to other variables in the CRU database).

In terms of temporal bias, the CRU dataset 
logically contains many fewer observations in 
the early part of its record. This is particularly 
prevalent in remote tropical and Arctic 
regions, where temperature records abound 
with long-term climatological averages. 
Consequently, the temporal autocorrelation 
of such time series is artificially high, and the 
climatic variability they portray for the early 
decades of the record is meaningless (Fig. 1).

Ji et al.1 fail to address these spatial and 
temporal biases. Supplementary Fig. 2 
strongly suggests that the absence of a trend 
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