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The emerging anthropogenic signal in
land–atmosphere carbon-cycle coupling
Danica Lombardozzi*, Gordon B. Bonan and DouglasW. Nychka

Earth system models simulate prominent terrestrial
carbon-cycle responses to anthropogenically forced changes
in climate and atmospheric composition over the twenty-first
century1–4. The rate and magnitude of the forced climate
change is routinely evaluated relative to unforced, or natural,
variability using a multi-member ensemble of simulations5–8.
However, Earth system model carbon-cycle analyses do not
account for unforced variability1–4,9. To investigate unforced
terrestrial carbon-cycle variability, we analyse ensembles
from the Coupled Model Intercomparison Project (CMIP5),
focusing on the Community Climate System Model (CCSM4).
The unforced variability of CCSM4 is comparable to that
observed at the Harvard Forest eddy covariance flux tower
site. Over the twenty-first century, unforced variability in
land–atmosphere CO2 flux is larger than the forced response
at decadal timescales in many areas of the world, precluding
detection of the forced carbon-cycle change. Only after
several decades does the forced carbon signal consistently
emerge in CCSM4 and other models for the business-as-usual
radiative forcing scenario (RCP8.5). Grid-cell variability
in time of emergence is large, but decreases at regional
scales. To attribute changes in the terrestrial carbon cycle
to anthropogenic forcings, monitoring networks and model
projections must consider the timescale at which the forced
biogeochemical response emerges from the natural variability.

The carbon cycle influences climate through the carbon-
concentration response, which is the gain in carbon storage
with higher atmospheric CO2 concentration, and the carbon–
climate response, which is the loss in carbon storage with climate
change1,3. Previous carbon-cycle analyses have emphasized these
responses at multi-decadal to centennial timescales and their multi-
model uncertainty1–4,9. Although these analyses quantify long-term
carbon-cycle–climate feedbacks, they do not identify decadal-scale
unforced variability in the carbon cycle.

Earth’s climate has unforced variability internal to the climate
system, generally termed natural variability in the climate science
literature, which is an important factor in detecting the change in
climate from anthropogenic forcings. Natural variability manifests
as interannual-to-decadal climate variability, seen in observations
and an individual model realization, as well as ensemble variability
within a model5–8. To confidently detect and attribute changes in
temperature to increases in greenhouse gases, for example, one
can determine the time when the signal of the forced temperature
change becomes large relative to its natural variability8,10,11, also
known as the time of emergence. Despite its importance in
determiningwhen a climate signal can be detected, however, natural
variability is not considered in analyses of the twenty-first century
carbon cycle1–4. In this work, we determine when changes in the
forced carbon signal can be detected by incorporating analyses of

natural variability in Earth systemmodels (ESMs), quantified using
a multi-member ensemble of simulations.

We evaluated the magnitude, timing, and spatial dependence
of variability in terrestrial carbon pools (total ecosystem carbon,
the sum of vegetation and soil carbon) and net land–atmosphere
CO2 fluxes (net ecosystem exchange, NEE) through the twenty-first
century to determine when future changes in the carbon cycle were
detectable, defined as the time when the forced signal emerged from
the noise of natural variability. Analyses were completed using a
six-member ensemble of the Community Climate System Model
version 4.0 (CCSM4) simulations for Representative Concentration
Pathway 8.5 (RCP8.5; ref. 7), which has a radiative forcing of
8.5Wm−2 at year 2100, with a CO2 concentration of about 936 ppm.
The six-member CCSM4 ensemble has a 3.53 ◦C global surface
temperature warming averaged for the last 20 years of the twenty-
first century compared to the 1986–2005 reference period. We
additionally analysed flux tower data and a seven-member ensemble
of the CCSM4 historical twentieth century simulations from 1992
through 2004 (the time period when flux data are available) for
Harvard Forest to compare observed variability tomodel variability.
We also analysed two other CMIP5 models; these models included
a terrestrial carbon cycle in their RCP8.5 simulations and four or
more ensemble members.

The CCSM4 has a prognostic terrestrial carbon cycle driven by
the simulated climate change arising from the radiative forcings,
CO2 concentration, nitrogen deposition, and land-use and land-
cover change. The land surface in the CCSM4 is a sink for carbon
in the absence of anthropogenic land-use and land-cover change,
but release of carbon from these activities results in a small net
source of carbon over the twenty-first century12, whereas other
ESMs project a net carbon sink2,4. This occurs because the model
has low carbon-concentration uptake compared with other ESMs
(ref. 3). Under RCP8.5, cumulative ecosystem carbon projections
among CMIP5models at the end of the twenty-first century, relative
to 2005, range from approximately −184 to 500 PgC, with CCSM4
projecting a change of −69 PgC (ref. 2). The model ranks 12th
for soil carbon and 13th for vegetation carbon skill among the
18 CMIP5 models9.

Natural variability was seen in both observational flux tower
measurements and in CCSM4 simulations. Annual NEE at
Harvard Forest in Massachusetts over the period 1992–2004
averaged −245 gCm−2 yr−1 (negative NEE indicates a carbon
sink), and the sink increased annually at a rate of −15 gCm−2 yr−2
(r 2=0.34; ref. 13). The detrended annual anomaly ranged
from −180 to 145 gCm−2 yr−1 (Fig. 1a; mean absolute value of
the anomalies was 62 gCm−2 yr−1). The seven-member CCSM4
twentieth-century ensemble simulated a modest sink for the same
period at the corresponding model grid cell (Fig. 1b; 13-year
ensemble mean, −19 gCm−2 yr−1). In any given year the forest
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Figure 1 | Natural variability in net ecosystem exchange (NEE) from observations and CCSM4. a, Detrended interannual variability at Harvard Forest
(42.538◦ N, 72.171◦ W) for 1992–2004 (ref. 13). Shown are anomalies from the long-term trend. b, Simulated annual NEE for a seven-member CCSM4
ensemble for 1992–2004. Shown are the ensemble mean (thick black line), and the two ensemble members with the largest (red line) and smallest (blue
line) 13-year (inclusive) mean NEE for the model grid cell corresponding to Harvard Forest. The shading denotes the ensemble range for each year. The area
highlighted in yellow shows the ensemble range of the 13-year means for individual ensemble members. c, As in b for the grid cell corresponding to Harvard
Forest, but for a six-member CCSM4 ensemble for 2080–2099. The area highlighted in yellow shows the ensemble range of the 20-year means for
individual ensemble members. d, As in c, but averaged for North America.

was either a source or sink of carbon (37% and 63% of the time,
respectively, across ensemble members). Despite the larger spatial
scale of a model grid cell, the interannual variability within each
individual ensemble member was similar to the Harvard Forest
flux tower, on the order of ±100 gCm−2 yr−1. The ensemble range
for any particular year was similar in magnitude, and ensemble
variability over the period 2080–2099 was also comparable (Fig. 1c).
Other eddy covariance flux tower sites show ranges of variability
similar to the measured and simulated Harvard Forest. A synthesis
of flux measurements found that interannual variability in NEE was
86 gCm−2 yr−1 in North American deciduous broadleaf forests and
44 gCm−2 yr−1 in evergreen needle-leaf forests14. When analyses
were scaled to larger regions, ensemble variability decreased. For
example, ensemble variability averaged for North America was
±40 gCm−2 yr−1 at the end of the twenty-first century (Fig. 1d),
with each of the ensemble members providing an equally likely
realization of the twenty-first century carbon–climate system.

The time of emergence is defined as the year at which the
forced climate change signal (S, for example, change in annual
temperature) exceeds the noise (N , for example, standard deviation
of annual temperature) by a particular threshold (for example,
S/N > 1 or > 2; ref. 10). The time of emergence for temperature
can range from a few decades in the mid-latitudes to several
decades in regions with high natural variability10. The CCSM4
terrestrial carbon cycle has a similar timescale at which the forced
signal emerges from the natural variability (Fig. 2a–d; illustrated
for individual grid cells in Supplementary Fig. 1). At the end of
the twenty-first century, the CCSM4 forced response (that is, the

change in themeanof themulti-member ensemble)wasmuch larger
than the natural variability (that is, the standard deviation of the
ensemble members) in all regions (Fig. 2d, |S/N |> 4). At this 90-
year timescale, a single ensemble member reliably simulates the
accumulated change in ecosystem carbon.

In contrast, the forced carbon signal is largely not detectable
at 10 years in CCSM4 (Fig. 2a, |S/N |< 2 in most regions), and
only detectable in specific regions at 25 years (Fig. 2b). At these
decadal timescales, attributing changes in terrestrial carbon to a
forced response is not reliable, and analysing a single ensemble
member can be misleading. Only after 50 years does the forced
carbon signal significantly exceed the natural variability in broad
continental regions (Fig. 2c, |S/N |> 2). Unlike temperature15, the
carbon-cycle signal in low latitudes does not emerge early, and in
parts of the Amazon the signal changes from carbon gain at 25 years
to carbon loss at 90 years. However, there is lower confidence in the
simulated carbon cycle at low latitudes as a result of the CCSM4
carbon and nitrogen interactions16.

Analysis of other CMIP5 carbon-cycle simulations demonstrated
similar timescales in the emergence of the forced response
(Fig. 2e–l). The forced carbon signal emerges from the noise
in most locations after 50–90 years in the Hadley Center
Global Environmental Model version 2 with the Earth System
configuration (HadGEM2-ES; Fig. 2g,h) and the SecondGeneration
Canadian Earth System Model (CanESM2; Fig. 2k,l), but the signal
is not detectable at 10 years in CanESM2 and is only detectable
in the Arctic at 10 years in HadGEM2-ES (Fig. 2i,e). The signal is
detectable in some regions within 25 years in bothmodels (Fig. 2f,j),
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Figure 2 | Signal-to-noise ratio maps for ecosystem carbon in three ESMs. Signal (S) to noise (N) is defined as the forced (ensemble mean) change in
ecosystem carbon divided by the standard deviation of the individual ensemble members. Only significant regions, defined as |S/N|>2, are shown (red,
carbon gain; blue, carbon loss). Maps for CCSM4 (n=6) are shown in a–d, for HadGEM2-ES (n=4) in e–h, and for CanESM2 (n=5) in i–l. a,e,i, 10-year
response. b,f,j, 25-year response. c,g,k, 50-year response. d,h,l, 90-year response.

but the regions of emergence vary depending on the model. By
the end of the twenty-first century, a positive signal in the Arctic
and a negative signal in the Amazon emerge in all three models,
although the direction of signal emergence varies among models
in other regions, such as Central Asia and eastern North America.
There are known differences in carbon cycling among the models2,9
that result in differences in the timing, magnitude and direction of
signal emergence.

Natural climate variability is particularly large on small spatial
scales (Fig. 2), but is often different when considered over
regional or continental scales (illustrated for CCSM4 in Table 1).
Climate change detection and attribution has a strong regional
dependence8,10,11,15, and our results suggest similar regional limits
to detectability because the geography of natural climate variability
combines with the regional nature of the forcings (that is, climate
change, anthropogenic land-use and land-cover change, nitrogen
deposition and CO2 fertilization) to impart geographic variation in
the time at which the carbon response emerges (Fig. 2). The forced
change in carbon storage in CCSM4, for example, emerges across
much of Southeast Asia within 25 years (Fig. 2b), but the regionally
averaged time of emergence decreases to 10 years (Table 1). In parts
of Europe, the CCSM4 forced carbon-cycle signal emerges within
25 years (Fig. 2b), but the regionally averaged signal does not emerge

within 90 years (Table 1), because locations of carbon gain are
averaged with locations of carbon loss to produce a small net carbon
change. This highlights that it is essential in monitoring networks
to carefully determine the spatial and temporal scales necessary to
robustly monitor, detect and attribute changes in ecosystem carbon
fluxes to forcings.

Temperature, precipitation and other meteorological factors
drive variability in NEE in flux tower observations13,17–19 and
in the models. Although regional differences in temperature
and precipitation variability produced geographic uncertainty in
twenty-first century climate, the comparable uncertainty in the
terrestrial carbon cycle was not always geographically the same,
illustrated for North America in Fig. 3 using results from CCSM4.
Ensemble variability in summer NEE (when metabolic activity was
greatest)was highest in the centralUnited States andparts ofCanada
(Fig. 3a), and these regions also had large ensemble variability
in summer temperature and precipitation (Fig. 3b,c). However,
regions of high climate variability did not necessarily correspond
to regions of high NEE variability. For example, northeast Canada
and southeast Alaska had high precipitation variability but low
NEE variability, and regions of Canada had high temperature
variability but low NEE variability. Similar to observations20,21,
carbon gain via net primary productivity was more strongly
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Table 1 | Emergence of ecosystem carbon signal in CCSM4.

Region Name Northwest
Bound

Southeast
Bound

Years to
Emergence

Canadian Arctic 90◦ N, 120◦ W 66.5◦ N, 60◦ W 34
Northwest Canada 66.5◦ N, 125◦ W 55◦ N, 125◦ W 62
Central Canada 62◦ N, 100◦ W 50◦ N, 80◦ W 36
Eastern Canada 60◦ N, 80◦ W 50◦ N, 55◦ W >90
Alaska 66.5◦ N, 170◦ W 59◦ N, 140◦ W 25
Western US 50◦ N, 130◦ W 30◦ N, 105◦ W 34
Central US 50◦ N, 105◦ W 30◦ N, 90◦ W 71
Eastern US 50◦ N, 90◦ W 30◦ N, 70◦ W 37
Northern Europe 70◦ N, 5◦ E 60◦ N, 45◦ E 36
Europe 60◦ N, 10◦ W 45◦ N, 30◦ E >90
Western Siberia 66.5◦ N, 60◦ E 55◦ N, 90◦ E >90
Eastern Siberia 66.5◦ N, 90◦ E 50◦ N, 140◦ E 18
Southeast Asia 23.5◦ N, 90◦ E 10◦ N, 120◦ E 10
Central Asia 50◦ N, 55◦ E 35◦ N, 70◦ E 16
Central America 16◦ N, 95◦ W 5◦ N, 75◦ W 22
Amazonia 0◦ N, 70◦ W 10◦ S, 50◦ W 46
Central Africa 5◦ N, 10◦ E 5◦ S, 30◦ E 16
Indonesia 10◦ N, 90◦ E 10◦ S, 150◦ E 6

The number of years after 2011 at which the forced (ensemble mean) signal (S) in ecosystem
carbon averaged for predefined regions significantly emerges from the noise (N), or standard
deviation of the individual ensemble members, for the first time in that region. Emergence is
considered significant at |S/N|>2.

correlated to temperature and precipitation than carbon lost during
heterotrophic respiration (Supplementary Fig. 2).

Continuous and long-term measurements of net CO2 exchange
between terrestrial ecosystems and the atmosphere provide a tool
to monitor ecosystem response to environmental change. Multi-
year to decadal eddy covariance flux studies in forests exhibit
trends in carbon storage, which arise from many factors13,19,22–24.
Our analyses suggest that decadal trends cannot be attributed to
anthropogenic forcings. This is evident in the time of emergence
(>10 years, Fig. 2), but also in large ensemble variability in annual
NEE for both an individual grid cell (Fig. 1c) and North America
(Fig. 1d). This conclusion highlights the necessity for multi-
decadal ecological monitoring networks to reliably detect forced
carbon-cycle changes.

Earth system models simulate a decline in the capacity of
terrestrial ecosystems to store anthropogenic CO2 emissions
over the twenty-first century1–4, and observational analyses have
attempted to detect such a trend (reviewed by ref. 25). Our
work demonstrates that detection of sustained changes in land–
atmosphere carbon-cycle coupling occurs only on multi-decadal
or longer timescales in three different ESMs. Given the large
uncertainty in carbon-cycle projections2,4,9, our results suggest that
ESMs should quantify when the forced carbon-cycle signal emerges
from the natural variability. This would allow further differentiation
among ESMs in their terrestrial carbon-cycle projections and may,
once a detectable signal emerges, provide a constraint on themodels.
Further research to attribute these changes to anthropogenic
forcings, and to predict the near-term decadal carbon cycle,
is necessary to determine how the terrestrial carbon cycle is
responding to Earth system changes, and the effectiveness of
carbon-cycle management to mitigate these changes. The scientific
methods of climate change detection and attribution26, and similarly
decadal climate prediction27, emphasize the importance of natural
climate variability. Our work highlights the need for these methods
to be likewise applied to carbon-cycle science in future multi-model
comparisons to enable detection, attribution and prediction of Earth
system change, not just climate change.
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Figure 3 | Summertime ensemble variability in CCSM4. a, Standard
deviation of the six-member CCSM4 ensemble for total summer
(June–August) NEE at the end of the twenty-first century (averaged for the
20-year period 2080–2099). b, As in a, but for total summer precipitation.
c, As in a, but for mean summer temperature.

Methods
The Community Climate System Model version 4 (CCSM4) consists of a finite
volume nominal 1◦ (0.9◦×1.25◦) 26-level implementation of the Community
Atmosphere Model version 4 (CAM4) with coupled ocean, land and sea ice
components. The land component, the Community Land Model version 4
(CLM4), includes a terrestrial carbon cycle28. A seven-member ensemble of
CCSM4 simulations was performed for the twentieth century using historical
forcings (1850–2005) and six simulations were extended through the twenty-first
century for RCP8.5 (ref. 7). The RCP8.5 simulations, as well as other RCPs,
were submitted for the Coupled Model Intercomparison Project phase 5
(CMIP5) experiments (publically available online at cmip-pcmdi.llnl.gov).
These simulations used a prescribed trajectory of CO2 concentration with
concentrations specified by the CMIP5 protocol29. The terrestrial carbon cycle
responds to that concentration, and the resulting changes in climate,
but does not feedback to the atmospheric CO2 concentration. These
concentration-driven carbon-cycle simulations have been analysed as part
of CMIP5 (refs 2,4).
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All ensemble members were run with identical experimental conditions, but
differed in initialization. The different initial conditions produced different
climate trajectories, each of which is an equally likely realization. The different
ensemble members provide an indication of climate variability within the model
arising from random internal variation.

Net ecosystem exchange (NEE) aggregates ecosystem carbon sinks and
sources into a total ecosystem carbon flux that determines whether the ecosystem
is a net source (positive value) or sink (negative value) of carbon. Simulated net
land–atmosphere exchange is the difference between carbon uptake during gross
primary production (GPP), carbon loss during ecosystem respiration (ER), and
non-respiratory carbon losses. Ecosystem respiration (ER) consists of autotrophic
respiration from plants (Ra) and heterotrophic respiration from microbes (Rh),
that is, ER = Ra + Rh. Net primary production is GPP − Ra.

To assess whether the magnitude of variability was similar in observed and
simulated carbon fluxes, we compared observed NEE at the Harvard Forest eddy
covariance flux tower with NEE for the comparable CCSM4 model grid cell. We
used Harvard Forest flux data because it is one of the longest continuous time
series of NEE, and because the NEE is well-documented13. The observations
show increasing carbon uptake, and we assessed variability by taking the anomaly
from the detrended time series.

We quantified ensemble variability as the standard deviation of the 20-year
(2080–2099) mean total summer (June–August) NEE, temperature and
precipitation across the six-ensemble members. To identify atmospheric variables
causing the carbon-cycle variability, we correlated carbon flux anomalies with
temperature and precipitation anomalies for the summer season (June–August
average). Anomaly was defined as the deviation of an individual ensemble
member from the ensemble mean. We examined the 20-year period 2080–2099
for each of the six ensemble members (a total of n=120 data points) for each
model grid cell. Both the standard deviations and the correlations vary
geographically, and we illustrated them for North America during the summer
season when metabolic activity (and consequently land carbon flux) was greatest,
and therefore most strongly influenced by the physical environment.

The time of emergence is defined as the year at which the climate change
signal (S) exceeds the noise (N ) by a particular threshold10. Changes in carbon
fluxes are nonlinear and are not monotonic, with periods of net carbon gain or
loss over the years. We defined the signal as the ensemble mean change in
ecosystem carbon, calculated as the sum of total vegetation carbon (CMIP5
variable ‘cVeg’) and total soil carbon (CMIP5 variable ‘cSoil’), relative to year
2011. Change in ecosystem carbon integrates NEE over time, and is consequently
less variable than NEE. We defined the noise as the standard deviation of the
individual ensemble members.

We also analysed the signal-to-noise ratio in other CMIP5 model ensembles
that included a carbon cycle in their RCP8.5 simulations. To be included in our
analyses, we required the model to include four or more ensemble members,
simulations to run for the entire twenty-first century, and the output to include
total vegetation carbon and total soil carbon. Models meeting these requirements
included a five-member ensemble of RCP8.5 simulations for CanESM2
(2.8◦×2.8◦) and a four-member ensemble for HadGEM2-ES (1.24◦×1.8◦). For
CanESM2, the cumulative change in land carbon at the end of the twenty-first
century, relative to 2005, is approximately 100 PgC (ref. 2). The model ranks
ninth for soil carbon and seventh for vegetation carbon skill among the CMIP5
models9. For HadGEM2-ES, the cumulative change in land carbon is
approximately 350 PgC (ref. 2), and the model ranks 6th for soil carbon and 11th
for vegetation carbon skill9.
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