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In a world that faces continued population growth and changing 
consumption patterns while striving to achieve an equitable and 
acceptable level of human well-being, climate change and land-

use change (LUC) are two of the foremost environmental chal-
lenges. They are also inseparably linked: land-use and land-cover 
change contribute to climate change by affecting ecosystem bio-
geochemical and biophysical processes1,2, and the climate shapes 
the way people use land by affecting food supply and pollution 
impacts on ecosystems3–5. Nearly half of today’s ice-free land sur-
face has been converted from natural ecosystems into cropland 
and pastures6. Since around 1850, LUC resulted in an estimated 
release of more than 150 Pg C into the atmosphere — one third 
of the approximate total anthropogenic carbon emissions — and 
contributed 10–20% of CO2 emissions during the late twentieth 
and early twenty-first centuries1,7. Most of the observed increase in 
atmospheric N2O over the same period has been attributed to emis-
sions from agricultural fertiliser use8. LUC-related climate forcing 
also occurs at the regional scale, either with a cooling or warming 
effect2,9, arising from changes to biogeophysical processes at the 
land surface that control the mixing of the near-surface air, and the 
surface radiation and energy balances10.

LUC will continue to contribute substantially to climate change 
in the future. A number of climate-change mitigation policies rec-
ognize the climate-regulating services of terrestrial ecosystems, 
which can be implemented through LUC11–13. But despite the rec-
ognized need for a better understanding of the LUC–climate inter-
play, LUC is still poorly represented in the current generation of 
global circulation models (GCMs), which limits evaluations of the 
sensitivity of the climate system to LUC14. Moreover, the potentially 
adverse effects of climate change mitigation arising from indirect 
land-use change are largely ignored15–17.

An adaptive socio-ecological system response
People will need to adapt land-use practices in response to climate 
change impacts, particularly in regions where climate change has 
been shown to be a threat to crop and pasture yields and water sup-
ply. Examples from history demonstrate that considerable economic 
and societal decline, even collapses of entire civilizations, can occur 
because of periods of unprecedented and persistent drought18,19. 
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Conversely, examples of past successful responses to climate change 
exist through migration or the adoption of new models of suste-
nance18,20. Although changing supplies of natural resources com-
bined with rapid rates of climate change certainly exert pressure 
on societies, it seems unlikely that a single driver (that is, climate 
change) is the sole cause of instability in socio-ecological systems, 
with their mix of vulnerable, but also stabilizing, facets.

Whether or not the adaptive capacity of today’s societal actors 
is sufficient, globally, to withstand the impacts of projected cli-
mate change over the twenty-first century and beyond is a matter 
of debate21. Land-based mitigation or adaptation options at a cer-
tain locale may cause changes elsewhere with opposing effects16,21. 
Adaptive actions that don’t seem promising in the short-term 
might become important for adaptation over a longer time hori-
zon, whereas others may be increasingly ineffective when longer 
periods of time are considered. Thus a broad temporal and spatial 
perspective is needed when assessing adaptation and mitigation 
responses to climate change. 

Challenges for LUC–climate feedback models
Adaptation and mitigation are processes. However, current 
attempts to represent adaptation and mitigation in climate change 
assessments have focused on top-down statistical indicators of the 
capacity to adapt22, or the capacity to mitigate23, as proxies for these 
processes. It is axiomatic that statistical approaches are only valid 
within their calibration range and are therefore limited in their 
applicability under changing conditions beyond this range24. Most 
importantly, current state-of-the-art modelling tools are unable to 
represent human agency, which underpins individual behaviour, 
decision making and adaptive learning and hence is important for 
understanding how societies will respond to challenges such as cli-
mate and other environmental changes. 

Integrated assessment models (IAMs), often combined with 
computable general equilibrium (CGE) models, are the most 
commonly applied tools for creating projections of global LUC25. 
These models combine representations of micro- and macro-eco-
nomic theory with social and natural system constraints, and are 
widely used to project development pathways in climate change 
assessments14,26,27. IAMs and CGEs have acknowledged strengths 
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in providing comprehensive cross-sectoral analyses, and are an 
important component of a common scenario framework that 
bridges climate research communities28. State-of-the-art IAMs 
analyse project changes in food exports or imports in response 
to market liberalisation, by considering environmental aspects29. 
IAMs can provide estimates of the impacts of biofuel policies on 
LUC30, or assess how changes in diet may affect agricultural green-
house gas emissions31. But, such comprehensive cross-sectoral 
approaches come at the expense of simplifying the heterogeneity 
of human agency and human socio-cultural attributes. Assuming 
that the extant structural and functional relationships between 
people and their environment remain static, the capacity to explore 
adaptive learning across future scenarios is limited32. Models that 
are based on the principles of homogenous, utility-optimizing 
decision-making under equilibrium conditions14 tend to generate 
spatial patterns of land-use that conform to the underlying patterns 
of natural resources (see example in Box  1). They also generate 
outcomes that are very different when compared with models that 
have been developed and calibrated at regional scales33.

There are two fundamental, but somewhat different objec-
tives for using models to analyse global environmental change. 
One is to evaluate the consequences of a range of environmental 
change drivers, including the effects of policies, in a scenario-based 

approach. Such an approach would typically assess the state of a 
system at some point in the future. The other objective is to explore 
the dynamics and alternative representation of interacting pro-
cesses in complex socio-ecological systems. This approach seeks to 
understand how a system functions at present and how these func-
tional processes will change over time34. The predictive approach 
is necessary when assessing future environmental change, whereas 
the process-based approach is vital in supporting the continued 
development of predictive models. Thus, new methods to represent 
adaptive learning, behavioural evolution and the emergence of new 
ways of doing things, which account for dynamic human behaviour 
and decision-making, are complimentary to the continuing devel-
opment and application of IAMs.

Agent-based models (ABMs) translate empirical, social survey 
data about human behaviour and decision-making strategies into 
computer-based representations of interacting agents. They are 
used to simulate heterogeneous and evolving actors across differ-
ent spatial and hierarchical levels35–39. ABMs have been successfully 
applied in climate-policy analyses: for example, in understanding 
how human behaviour and links with carbon prices affect the suc-
cess of activities related to REDD+, and how resources are used in 
cooperatively or competitively managed environments40,41. ABMs 
simulate the behaviour of, and interactions between, individual 

Species A1 

Species B1 

Species C1 

CO2 

H2O

Plant biogeography and vegetation dynamics 
(resource competition, seasonality and growth)

Plant and soil biophysics and biogeochemistry
(carbon, water and nutrient budgets)

Fundamental niche

Realized niche
A1 dominates
B1 coexists

Sp
ec

ie
s

pe
rf

or
m

an
ce

Sp
ec

ie
s

pe
rf

or
m

an
ce

B1  dominates
A1 and C1 coexists C1  dominates

B1 coexists

Environmental space

Environmental space (1)

Sp
ec

ie
s

pe
rf

or
m

an
ce

Environmental space (2)

A2 B2
C2

Sp
ec

ie
s

pe
rf

or
m

an
ce

Environmental space (3)

A3 B3 C3

Sp
ec

ie
s

pe
rf

or
m

an
ce

Environmental space (n)

An
Bn Cn

H2O

Nutrients

PFT C PFT B PFT A

RE 

GPP, NPP
NEE

Soil and 
Canopy
ET

H2O CO2 
…

Figure 1 | Concept of plant functional types in dynamic global vegetation models (DGVMs). The realized niche is differentiated from the fundamental 
niche because it reflects interactions with environmental filters and other plants, modifying the relative abundance of a species within an area or within 
varying developmental stages of the ecosystem (for example, over time). Vegetation dynamics are represented through a limited number of plant functional 
types (PFTs) that group species with similar characteristics, growing in ecosystems of a similar type, even though these might be found in geographically 
very different locations (illustrated by the similar performance curves for species found in n environmental spaces, top centre). The biogeography and 
growth-components of a PFT are combined with process-based algorithms for plant and soil carbon, water, energy and nitrogen cycling (bottom left; see 
also Table 1). At a given location, a mix of PFTs interacts with the atmosphere and soil (and, more recently, humans). This mix can change in response to 
the ageing of the ecosystem, disturbances and environmental trends (bottom right). Typical outputs of DGVMs are carbon and water fluxes: net ecosystem 
exchange (NEE), gross primary production (GPP), net primary production (NPP), respiration (RE) and evapotranspiration (ET).
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actors at the local scale42,43, which are not easily translatable to a 
regional or global scale, especially when considering a geographi-
cally explicit domain. This is partly due to the limited availability of 
consistent, global socio-economic data, but is also because of a lack 
of theory about how to represent these processes over large regions.

ABMs can handle nonlinear system behaviour, including the 
possibility of agents to plan and/or adapt39,42,43. Interactions between 
different agents and between agents and their environments are 
fundamental principles of LUC ABMs35,44, which provide feed-
backs that can dampen or amplify the impacts of change. Although 
ABMs have shown promise as land-system models that incorpo-
rate dynamic human decision-making in response to environmen-
tal and socio-economic change45, the tele-connections, nonlinear 
dynamics and possible surprises that might emerge in the complex 
global socio-economic system have not yet been tackled. Scaling-up 
LUC ABMs to the global scale would provide a methodological 
breakthrough to improve the representation of LUC processes in 
Earth-system models and make the role of human decisions explicit 
in assessments of climate change adaptation and mitigation.

Three significant hurdles exist when assessing land-based soci-
etal adaptation and mitigation options in complex systems at the 
global-scale. First, modelling tools need to represent essential pro-
cesses, with appropriate and variable space- and timescales, within 
both natural and socio-economic systems14,30. Second, methods are 
needed to extend the analysis of local coupled socio-ecological sys-
tems to the global-scale over time periods of years to decades14,30. 
Third, the representation of LUC in GCMs needs to reflect how the 
land-system modelling community understands LUC processes to 
correctly attribute the climate effects of LUC. Tackling these chal-
lenges requires a common analytical framework to accommodate 
disparate methodologies and research paradigms across the physi-
cal and socio-economic sciences47, thus providing the conditions 
needed to identify solutions to societal challenges48.

A novel concept for the human–land nexus
We propose a novel concept for developing LUC models that could 
overcome the difficulties outlined above. We focus on LUC because 
of its impact on climate change at the global and regional scales, 
the variety of land-based mitigation policies and the clear need for 
land-use adaptation to climate change. The concept is, however, 

sufficiently generic to be adopted in addressing other questions and 
interactions within broader socio-ecological systems. We argue for 
a new generation of global LUC models that are explicit about the 
role of human behaviour and decision making; models that can be 
linked to terrestrial ecosystem models to advance our understand-
ing of the human–land system and its sustainable use in a changing 
world. Current ABM approaches that are applied at the local-scale 
are not practical for global-scale applications. Owing to rapidly 
increasing computing power, a model that mimics several billion 
individual actors might be technically feasible14 but properly param-
eterizing the attributes of billions of individuals is not possible in the 
absence of global socio-cultural data49. This implies the need for a 
more limited set of generic agent types49 that will also allow models 
to be applicable to a wide range of questions over long timescales.

The plant functional type (PFT) concept applied in dynamic 
global vegetation models (DGVMs) is used here as a template for 
developing typologies that operate at large spatial scales48,49. The 
basic principles that define PFTs are well grounded in fundamental 
ecology, plant physiology and biogeography (Fig. 1). Hence theory, 
rather than empiricism, is used as the starting point. In contrast to 
how large-scale typologies are created in, for example, marketing50, 
the derivation of PFTs is much more transparent. Although con-
cepts of theoretically grounded agents have been proposed before 
for the analysis of socio-ecological or economic systems, none of 
these concepts are explicitly for global-scale applications39,49–52. The 
PFT approach is one of the few (perhaps the only) examples of the 
successful scaling-up of individuals (here plant species) to create 
global models. Thus, it is reasonable to learn as much as possible 
from this experience. 

The diversity that exists in human systems could be represented 
by meaningful approximations that make use of agent functional 
types (AFTs) in analogy to the use of PFTs. AFTs underpin a theo-
retically informed typological approach that might help achieve 
the goal of scaling-up ABMs. Other papers have demonstrated the 
value of the theoretical approach in specific local contexts52, and 
we aim to encourage the LUC modelling community to extend 
these approaches to a global context. In the following, we further 
develop this idea by briefly summarizing the PFT concept (Fig. 1) 
and exploring how AFTs might be constructed using analogous 
principles (Table 1 and Fig. 2).

Table 1 | Concepts of plant functional types (PFTs) used in today’s dynamic vegetation models53,54,56 and their analogue in the agent 
functional type (AFT) approach. 

Conceptual principle PFT AFT
Motivation for the grouping of types Specified bioclimatic limits and representation 

of a select number of observable functional and 
structural traits

Typology of agent roles and attributes/behaviour

Primary determinants at the regional-global scales Availability of location-specific resources (H2O, 
light and nitrogen) and disturbances

Availability of location-specific capitals (financial, 
social, human, natural and infrastructure)

Guiding process Physiology of plant carbon, water, nitrogen balance, 
allocation and growth strategies

Agent roles and behaviours

Definition of interactions Competition between PFTs or between age-cohorts 
of a PFT; no mutualism

Competition, market interactions, capital 
consumption and transfer

Plastic response-strategies to pressures Acclimation of process or growth response to local 
environment

Experimentation, imitation and learning

Dynamically emerging larger units Ecosystems and biomes Societies, social networks and institutions
Unit of simulation (space) Point-scale, representative for grid-cell (for 

example, 10 minutes or 0.5 degrees)
Grid cell and administrative unit

Unit of simulation (time) Hourly or daily, some processes annually Annual
Land-use and management representation Crop functional types as an extension to natural 

vegetation PFTs
Agent roles that are types of land-uses within grids

This comparison is not intended to convey that plants and humans are similar, but rather to outline mapping strategies for translating typologies in the plant world into analogous approaches that would 
work for AFTs.
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A short overview of plant functional types
An assemblage of observable properties (traits) can be linked to 
plant biophysical and biogeochemical mechanisms that enable dif-
ferent species to cope with similar types of environment and/or 
competition, even when these are encountered in geographically 
very distant locations53–55. DGVMs take advantage of this feature 
by coining functional units, PFTs, which can be thought of as rep-
resenting groups of species with a similar expression of multiple 
traits in response to their environment53–55 (Fig.  1 and Table  1). 
Current DGVMs aim to represent the performance of plant spe-
cies, and model the dynamics of plant–environment interactions, 
by combining climatic limits to growth with a strong footing in 
ecological theory and physiological mechanisms.

DGVMs typically define around 5–15 PFTs that embody the 
enormous variety of the Earth’s plant species by collapsing diver-
sity into the most general strategies to cope with variable sets of 
conditions. A universally agreed PFT scheme for global models 
does not exist53–55, but by using a limited number of PFTs, DGVMs 
have been shown to adequately predict the formation and reforma-
tion of biomes in response to changing environments, and success-
fully reproduce patterns of terrestrial carbon and water fluxes53,56. 
Thus far, most DGVM applications have not explicitly accounted 
for human intervention in natural ecosystems, and their treatment 

of agricultural and forest management processes is immature. 
Different approaches are currently being explored57,58 and fur-
ther development of ‘land-use enabled’ DGVMs will facilitate the 
coupling of terrestrial ecosystem processes with the dynamics of 
human land-use systems. Eventually, such coupled models could 
be used to provide the scientific basis to assess trade-offs between 
immediate human requirements from ecosystems and the need to 
preserve the capacity of the terrestrial biota to supply these ecosys-
tem services over the long term59.

Towards agent functional types
Agent types are often used in constructing ABMs to represent 
real-world actors45,49,51. Agents are not autonomous; they oper-
ate within a socio-cultural context that involves interactions with 
other societal agents60. They are also not static, as they learn and 
evolve, updating their decision strategies and individual goals in 
the process60. Typologies allow generalizations of the attributes 
(traits) of individual actors to simplify model development and 
application, and to provide a more transparent representation of 
agent behaviour and decision processes. Typologies have been 
used and applied successfully in the social and economic sciences, 
whenever it is necessary to handle large datasets representing 
human attributes39,61,62.
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Figure 2 | Concept of agent functional types in global agent-based models. Human agency underpins land-use change modelling along capital gradients 
in agent-based models (top left). For a given agent, the realized niche is differentiated from the theoretically possible one due to interactions with capitals 
(human, social, financial, natural and infrastructure) and with other agents, modifying an agent’s relative abundance within an area or over time. Human 
behaviour and decision making can be represented through a limited number of AFTs that group agents with similar characteristics, occurring at locations 
with similar attributes, even though these might be found in geographically very different places (illustrated by the similar performance curves for agents 
found in multiple capital spaces, top centre). The behaviour of an AFT is underpinned by a number of factors that influence decisions such as experience, 
communicating, deliberating and acting (bottom left; see also Table 1). The mix of AFTs at a given location changes in response to endogenous perturbations 
to the capital space, as well as exogenous drivers such as climate or macro-economic change (bottom right). Land-use dynamics are driven by changes 
in societal demands for ecosystem services leading to different combinations of AFTs, moderated by the role of institutions in regulating or incentivizing 
ecosystem service supply (bottom right). Typical outputs of land-use ABMs are LUC types, and the changing mix of agents and their attributes. 
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Humans are not plants, but AFTs are analogous to PFTs (Table 1 
and Fig. 2); they allow generalizations to be made about human–
environment interactions within socio-ecological models for 
application at the global scale45,63. A land-user AFT is based on 
two primary characteristics: roles (such as forester, farmer, urban 
resident and so on) and behaviours (such as risk aversion, imita-
tion, conservatism and so on) that underpin decision making. This 
includes agents’ expectations of future economic, environmental 
and social conditions that are known to be significant determi-
nants of land-use change64. Learning could be included through, 
for example, past experience, access to comprehensive informa-
tion, willingness to accept information or perceived importance 
of future conditions. Many of these characteristics are similar to 
those used in empirically grounded, regional-scale agent-based 
models of land use49. Global ABMs or AFT-based approaches can-
not replace specialized local studies, as they will not be capable of 
achieving the same degree of local accuracy. Rather, the utility of 
AFTs depends on the identification of those theoretical character-
istics (or responses and behaviours) that hold across very diverse 
individuals, groups or communities and therefore are useful in 
identifying robust, but large-scale, patterns49,65.

The presence of an AFT at a given geographic location depends 
on the attributes of the location and of all possible AFTs (Fig. 2 and 
Table 1). For PFTs, the attributes of a location depend on resource 
availability (for example, light, water, nutrients and space). For 
AFTs, resource availability can be conceptualized in terms of the 
availability of capital (financial, human, social, natural and infra-
structure), which provides a representation of the heterogeneity 
of space66,67. AFTs interact with one another through competition 

for these resources (capitals): Financial capital refers to the broad 
economic context of a region (such as potential for investment or 
availability of finance); human capital refers to the attributes of 
individuals (education, skills and training); social capital to how 
individuals interact with one another through networks (such as 
family units, associations and organizations and governance struc-
tures); natural capital indicates the productive potential of a loca-
tion (for example, crop or timber yields and conservation value); 
and infrastructure represents the physical means of exploiting 
a location (through, for example, transport networks and supply 
chains). So, in simple terms, a rural location that is well endowed 
with all of these capitals would tend to be exploited by an inten-
sive agriculturalist using high-input production techniques, rather 
than a subsistence farmer. In contrast, a location with poor natural 
agricultural resources, little access to financial capital and no infra-
structure, is likely to favour a subsistence farmer. As in the case of 
PFTs, we can conceptualize the competitive interactions between 
AFTs with response curves (Fig. 2). The parameterization of such 
response curves for AFTs is non-trivial from a theoretical perspec-
tive, but some previously published concepts51,52 provide a starting-
point. This is also acknowledged in the use of behavioural types 
described as, for example, ‘innovative’, ‘imitative’ or ‘conservative’ 
in a number of land-use ABMs68. Recognition that generalized fac-
tors and processes can be used to characterize the behaviour of a 
wide range of different real-world actors is currently growing.

Functional typologies such as AFTs and PFTs are based on generic 
(functional) classes. The overall concept is based on an ontology 
that includes attributes of the individual classes, causal relation-
ships between classes and between classes and the environment. 

Capital
Financial
Natural

Region 1 Region 2 Region 3 Region 4

Su
pp

ly

0

0.2

0.4

0.6

0.8

1

0

20

40

60

0 20 40 60 0 20 40 60

0

20

40

60

0 20 40 60

0

20

40

60

1.00.1

1.0

AFT
Conservationist
High farmer
Mid farmer
Low farmer
Unmanaged

AFT
Conservationist
High farmer
Mid farmer
Low farmer

a b

c d

1

3 4

2

Figure 3 | Outcomes from an example simulation of an ABM application for a hypothetical region based on three farmer AFTs (high, medium and low 
intensity farmers) and a conservationist AFT that compete for capital resources. a, The region is divided into a 60 × 60 grid of cells, each with two capital 
attributes: natural capital and financial capital. The distribution of national capital and financial capital across the domain is uneven and unique for each 
grid cell. b, The calculated levels of supply per sub-region, with the red line indicating supply meeting demand (given here as unity). c, The modelled land 
use map when a global demand for food and nature is applied uniformly across the whole area. d, The land-use pattern that is generated when the global 
food demand is divided equally between four sub-regions, defined by dividing the area into four quadrants. Only the demand is spatially partitioned with the 
capital gradients across the whole area remaining unchanged. See Box 1 for further details.

PERSPECTIVE NATURE CLIMATE CHANGE DOI: 10.1038/NCLIMATE2250

©
 
2014

 
Macmillan

 
Publishers

 
Limited.

 
All

 
Rights

 
Reserved. ©

 
2014

 
Macmillan

 
Publishers

 
Limited.

 
All

 
Rights

 
Reserved.

http://www.nature.com/doifinder/10.1038/nclimate2250


NATURE CLIMATE CHANGE | VOL 4 | JULY 2014 | www.nature.com/natureclimatechange	 555

Ontologies are important in establishing the ‘conceptual model’, 
of which the types are a component part. There are similarities 
between AFTs and other agent typologies51,52. However, many 
agent typologies (at the regional scale of modelling) are empirically 
grounded, often being established using statistical, social survey 
data. AFTs are established theoretically, adopting PFTs as a con-
ceptual template. Taking a theoretical approach is necessary given 
the overall goal of the AFT approach, which is to scale-up the ABM 
approach to global scale. Inevitably, reproducing large-scale pat-
terns and emerging dynamics will mean making choices that limit 
the number of AFTs with associated behavioural categories49,51.

There are cases where the AFT–PFT analogy (Table  1) does 
not hold. For instance, plants do not exchange resources between 
locations, whereas AFTs interact in more ways than PFTs, beyond 
competition for resources. Trade flows, including supply-and-
demand trends, connect distant agents, as does migration and the 
flow of knowledge and information. We can conceptualize supply-
and-demand through the ecosystem service concept69, in which 
services are demanded by a population (society) and supplied by 
AFTs. Although the discussion so far has considered the role of 
AFTs by perceiving them as individuals, we can also envisage agent 
types that reflect the collective organization of individuals, for 
example, through institutions. Institutional agents39 operate at dif-
ferent scales within a hierarchy of interacting agents. For example, 
a policy institution operates over regions and/or nation states, and 
influences the decisions of AFTs at specific geographic locations 
within these higher-order spatial units. The aim of an institutional 
agent would be to maintain the flow of ecosystem services (and 
minimize disservices) between AFT suppliers and the population 
(societal demanders). The capacity for higher-level organisation 
such as institutions has no analogue in the PFT concept.

Advantages of the AFT concept
Figure 3 and Box 1 present an ABM application for a hypotheti-
cal region based on three farmer AFTs and one conservationist 
AFT. Even though the situation is simplified, it reflects the real-
world effect of trade barriers on agricultural food production. 
Agricultural trade barriers, combined with high levels of intensifi-
cation, lead to agricultural land abandonment as, for example, has 

been the case in Europe and the US over the past 50–60  years70. 
At the same time, other parts of the world that are unable to meet 
their own sub-regional food demand, because of low natural capi-
tal, suffer from famine. Other studies have shown the effect of such 
regionalization strategies in failing to achieve globally optimal out-
comes in the economy–energy climate system35,40. It is important to 
note that although Fig. 3d shows what are apparently random spa-
tial patterns, these are derived deterministically and the processes 
causing these patterns can be understood as a typical property of 
complex systems.

Human behaviour has also been shown to be critical in deter-
mining the LUC time-response, for instance with respect to the 
cultivation of bioenergy crops. This is due to the effects of time-
lags in crop uptake, which may be on the order of 20  years71. 
Magliocca et  al.52 used an experimental approach to LUC ABM, 
which, although applied to a relatively small area, is based 
on a theoretical construct that could be applied over larger 
geographic extents. There are many examples of the impor-
tance of considering a system’s ‘plasticity’ as well as its nonlin-
earity, including national-level responses to economic change 
(partly as a consequence of expectations of future conditions)72, and 
the sensitivity of ecological systems to human behaviour64. A num-
ber of studies have demonstrated the inadequacy of models that 
assume homogeneity in agent responses at a range of scales52,73,74. 
Moreover, beyond representing groups of individuals, understand-
ing the emergence of both formal and informal governance struc-
tures requires a move away from the treatment of institutions as 
exogenous drivers towards representing institutional processes in 
socio-ecological models14. Current global LUC models are unable 
to simulate this rich and complex set of human mediated processes. 
By inference, therefore, they are also unable to fully encapsulate 
LUC feedbacks to the atmosphere and terrestrial ecosystems. Until 
we are able to use approaches such as AFTs to fill this methodologi-
cal and philosophical gap, understanding the role of LUC in Earth-
system science will progress little from its current state-of-the-art.

Ways forward for global LUC system models
We argue for a deductive approach to the theoretical construc-
tion of AFTs, rather than the more commonly used inductive 

The results from the example simulation shown in Fig. 3 are for a 
hypothetical region based on three farmer AFTs (high, medium 
and low intensity) and one conservationist AFT, which compete 
for capital resources that supply ecosystem services (simplified to 
‘food’ and ‘nature’). Conservationists only supply nature services. 
Farmers supply food and also provide nature services, but at a lower 
level than conservationists, and these increase from high- to low-
intensity farmers. Therefore, the four AFTs are characterized by the 
relative level at which they supply each service, and by behavioural 
thresholds of resistance in response to stress and sensitivity to com-
petition. Examples of behavioural parameterizations of AFTs are 
discussed in ref. 81.

The region is divided into 3,600 grid cells, each with a unique 
combination of capital attributes, which are limited here to natu-
ral and financial capital. Natural capital represents the provision of 
food for nature and is maximized in the bottom-right of the region, 
as indicated on the capital gradient map (Fig. 3a), whereas finan-
cial capital is maximized in the top-right. The resulting modelled 
land-use map, when a global demand for food and nature is applied 
uniformly across the whole area (Fig. 3c), reflects the gradients that 
are assumed in the distribution of capitals giving the optimal distri-
bution of land-use based on resource (capital) availability. This type 
of outcome would be generated by utility-optimizing approaches or 

models that allocate land-use based on land suitability. By contrast, 
a quite different pattern emerges when the global food demand is 
partitioned spatially by dividing the demand equally between four 
sub-regions (Fig. 3d), but with the capital gradients across the whole 
area remaining unchanged. In this case, sub-region 1, is unable to 
meet its food demand due to low financial capital (Fig.  3b), and 
hence nearly the entire area is farmed, although only low-intensity 
AFTs can be sustained (Fig.  3d). As the high-productivity sub-
regions 2 and 4 can meet the sub-regional demands, some grid cells 
are not needed for food or for nature supply and are abandoned 
(unmanaged). In sub-region 3, with higher financial than natural 
capital levels, food is relatively easily produced, so agents that pro-
duce nature have a slight advantage, since their unmet demand is 
greater. However, in this situation, there is no surplus land.

These example results demonstrate the basic functionality of the 
AFT concept, which could be applied to the global scale if param-
eterized with real data about location attributes and agent deci-
sion making. In the given example, society consumes (demands) 
a fixed amount of food and nature services. In principle, it would 
also be useful to model consumer trends with a similar agent-based 
approach that could draw on market-based agent-profiling (with 
the caveat that not all relevant information to achieve this would be 
easily accessible50).

Box 1 | Simulating land-use change in a hypothetical region using AFTs.
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approach based on empiricism. This is not to criticize empirical 
techniques, but rather to highlight that different methods are 
required to scale-up beyond the traditional ABM domain of land-
scapes (for example, to the scale of the Earth-system). We pro-
pose a coherent method that is based on a precedent established in 
another discipline. This provides structure and serves as the basis 
for further development and testing. The successes and failures 
in experimenting with this approach will also be important as a 
learning process.

Solid relationships may not exist between generic typologies and 
land-use-related behaviour. However, it is important to remember 
that the purpose of large-scale models is to explore and develop 
understanding of emergent patterns and large-scale dynamics51,52. 
Theoretical characteristics designed to capture the relevant effects 
of a very wide range of real-world behaviours are more suitable here 
than in the data-driven typologies used by existing land-use ABMs. 
Such theoretical developments should draw on different sources, 
including extensive cross-disciplinary literature reviews (for exam-
ple of psychological sciences, economics and game-theory) and 
expert elicitation, among others.

So, how many AFTs would be needed to specify all roles and 
behaviours? As a best guess, probably more than the 5–15 PFTs 
in DGVMs, but fewer than 100. Although this indicates a slightly 
more complex model system compared with those representing 
the plant-world, it still includes far fewer than the alternative — 
8–9 billion individual agents. Parameterizing AFTs is a formidable 
task, but it is achievable. The plant ecology and DGVM research-
ers, for instance, have demonstrated that it is possible to gather 
thousands of empirical studies into a single database that is acces-
sible to the scientific community to synthesize trait-relationships 
for the improvement of DGVMs75. Similar efforts have already 
been initiated by the LUC community, through a number of 
socio-economic data portals76 and by providing exemplars of clas-
sifying large datasets into clusters77. In particular, qualitative com-
parative analysis78 has potential for meta-analysis of case studies. 
Development of these approaches is still in early stages, but sys-
tematic data assimilation will allow the AFT approach to be applied 
within global-scale LUC models. Such models would be evaluated 
against existing observations in similar ways to LUC simulated 
by IAMs: using remotely sensed information on LUC, aggregated 
statistics from national socio-economic databases, or applying a 
path-dependence analysis79,80.

Future projections of the interplay between LUC and cli-
mate change will need to deal concurrently with adaptive, plastic 
responses in human and biophysical systems, capturing processes 
in both systems that act over a wide range of time and space scales. 
Whether or not, and where, adaptation amplifies or dampens the 
system response to climate change driven by natural or socio-eco-
nomic resource availability should be based on the development 
and application of cross-disciplinary, spatial explicit models of 
similar paradigms. For example, coupling AFT-based LUC models 
with DGVMs that account for LUC, would allow fundamental pro-
cesses that are known to operate in real socio-ecological systems to 
be endogenized. A bi-directional information flow would enable 
agents (that is, decision makers) to respond to changing vegeta-
tion and landscape characteristics (through adaptive learning), and 
hence to deal with feedbacks, time-lags and nonlinearity in the sys-
tem response. Working at a similar level of complexity within simi-
lar modelling paradigms also allows for a much clearer diagnosis 
of response patterns in the different systems, which is currently not 
possible. Such an approach would substantially enhance the capac-
ity to assess land-based climate mitigation options and our under-
standing of how societies will respond to environmental change.
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