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A B S T R A C T

We propose an approach for screening future infrastructure and demand management investments for
large water supply systems subject to uncertain future conditions. The approach is demonstrated using
the London water supply system. Promising portfolios of interventions (e.g., new supplies, water
conservation schemes, etc.) that meet London’s estimated water supply demands in 2035 are shown to
face significant trade-offs between financial, engineering and environmental measures of performance.
Robust portfolios are identified by contrasting the multi-objective results attained for (1) historically
observed baseline conditions versus (2) future global change scenarios. An ensemble of global change
scenarios is computed using climate change impacted hydrological flows, plausible water demands,
environmentally motivated abstraction reductions, and future energy prices. The proposed multi-
scenario trade-off analysis screens for robust investments that provide benefits over a wide range of
futures, including those with little change. Our results suggest that 60 percent of intervention portfolios
identified as Pareto optimal under historical conditions would fail under future scenarios considered
relevant by stakeholders. Those that are able to maintain good performance under historical conditions
can no longer be considered to perform optimally under future scenarios. The individual investment
options differ significantly in their ability to cope with varying conditions. Visualizing the individual
infrastructure and demand management interventions implemented in the Pareto optimal portfolios in
multi-dimensional space aids the exploration of how the interventions affect the robustness and
performance of the system.
ã 2016 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Many urban water systems across the globe face future stresses
such as reduced or shifted water availability due to climate change,
increased water demands, more demanding regulatory regimes
and heightened service expectations (Ferguson et al., 2013;
Hallegatte, 2009; Pahl-Wostl, 2009). Water supply infrastructure
in many major cities globally relies on aging assets designed and
constructed over a century ago (Boyko et al., 2012). Refurbishment
of existing infrastructure and capacity expansion is needed to cope
with future pressures. Moreover, the uncertainty in future
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conditions motivates novel approaches that help discover which
combinations of interventions would work well under a wide
range of plausible futures.

Instead of defining “optimality” under historical or narrowly
defined conditions, planners have recently been seeking “robust-
ness” for planning under uncertainty (Ben-Haim, 2000; Haasnoot
et al., 2013; Herman et al., 2015; Lempert et al., 2003). Robustness
as a planning goal is well suited to situations where the
probabilities that govern uncertain future states are uncertain
themselves. Such uncertainties are known as ‘deep’ or Knightian
uncertainties (Knight, 1921). For example, assigning probabilities
to population growth or the effects of climate change on systems is
problematic (Walker et al., 2013). A robust system is one that
performs well or satisfactorily well over a broad range of plausible
future conditions rather than optimally in one. Robustness is
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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increasingly incorporated as a goal in many-objective water
systems planning studies (Giuliani et al., 2014; Hamarat et al.,
2014; Herman et al., 2014; Kasprzyk et al., 2013, 2012). Planning
approaches seeking robustness have also been investigated in the
UK’s water resource planning context (Borgomeo et al., 2014;
Korteling et al., 2013; Matrosov et al., 2013a, 2013b) but none of
those explored the implications of many-objective decision-
making and how the trade-offs change when multiple sources
of uncertainty are considered. Recently, dynamic robustness
(Walker et al., 2013) that specifically considers the value of
flexibility and adaptation has been explored using the Dynamic
Adaptive Policy Pathways approach for pre-specified strategies
(Haasnoot et al., 2013; Urich and Rauch, 2014) and in multi-
objective optimization (Hamarat et al., 2014; Kwakkel et al., 2014).
Application of such frameworks by water system planners will
require them to understand and accept the benefits of embedding
the search for robustness within automated investment filtering
approaches which historically only considered cost. In our study
we focus on demonstrating how performance trade-offs between
investment packages change when uncertainties are considered
within complex real-world water systems. Our goal is to
communicate to policy makers the increase in understanding
and judgement they can obtain by incorporating uncertainty into
automated intervention evaluation methods.

Urban water supply planners have commonly employed
narrowly defined, least-cost decision frameworks to guide capacity
expansions subject to maintaining required service levels (e.g., Hsu
et al., 2008; Padula et al., 2013). Planning that does not capture key
concerns or preferences across major stakeholder groups increases
the likelihood that policies are viewed as performing poorly
(McConnell, 2010) and maladaptative. The optimality assumptions
implicit to least-cost approaches assume a central planner for
whom expected aggregated costs fully describe their preferences
amongst water supply alternatives. One vision of optimality
inevitably forces a decision maker to prior judgments without the
knowledge of the decision’s wider implications (Cohon and Marks,
1975). In real planning contexts, an increasingly diverse range of
stakeholder perspectives must be addressed with major public
investments and plans (Vogel and Henstra, 2015); this is
particularly the case with decisions involving natural resources
management (Jackson et al., 2012; Orr et al., 2007; Voinov and
Bousquet, 2010). The emphasis is no longer only on one vision of
optimality (e.g. least-cost) but on converging on a plan that
addresses major concerns and acceptably allocates benefits
between the major stakeholder groups and economic sectors
(Loucks et al., 2005). Generating multiple alternative solutions that
are good with respect to multiple objectives but differ from each
other enables explicit examination of the alternatives and gaining
insight and knowledge about the system (Brill et al., 1982).
Methods that clarify the trade-offs across the various benefits and
impacts of portfolios of different supplies and water conservation
actions have garnered a more significant role in recent published
work (Arena et al., 2010; Beh et al., 2015; Herman et al., 2014;
Kasprzyk et al., 2009; Matrosov et al., 2015; Mortazavi et al., 2012;
Zeff et al., 2014).

Simple capacity expansion approaches such as least-cost yield
planning (Padula et al., 2013) are being renewed in many areas of
resource management to incorporate the planning approaches
described above. The current UK approach does not consider a
portfolio’s robustness, cost, and social and environmental accept-
ability explicitly (Dessai and Hulme, 2007). Water planners and
regulators recognize the limitations of the current approach and
are actively seeking to improve the statutory planning framework
(Defra, 2011). Our study aims to reflect the necessity of the current
water planning policy changes that are being considered. These
include a move from solely least-cost solutions to planning for
resilience and robustness against a wide range of plausible future
conditions whilst considering wider impacts of decisions beyond
cost (Environment Agency, 2015). However, the current water
supply system planning framework (Padula et al., 2013) requires
water companies consider intervention yields, i.e., the maximum
daily water supply an intervention can provide, based on historical
flow data. This paper describes a planning approach that explicitly
considers both multiple sources of uncertainty and multiple
evaluation objectives. We show how considering only historical
data can lead to poorly performing system designs under
hydrological futures considered plausible by national climate
model results (Centre for Ecology and Hydrology, 2015). In our
proposed system design screening framework the goal of
robustness and resilience is incorporated explicitly into an
automated intervention selection process. This contrasts with
common approaches where robustness and resilience are evaluat-
ed post-optimization using sensitivity analyses (e.g. Thames
Water, 2014). This provides analysts with a high performing set
of robust system designs and the associated trade-offs in benefits
implied by intervention choices. The benefits of incorporating
multiple sources of uncertainty into a multi-objective decision
making process are demonstrated.

Trade-off analysis has some, but limited, prior history of
inclusion in water resource planning regulations (e.g. California
Department of Water Resources, 2008; UKWIR, 2016). Here we
seek a visually communicable approach which enables stakeholder
deliberation about benefits achievable by the water system and its
engineered assets that is compatible with the resilience and
participatory aspirations of UK water planning (Environment
Agency, 2015). Our study demonstrates the importance of
understanding how benefit trade-offs change when diverse
sources of uncertainty are considered. From a policy perspective
the trade-offs and broader performance requirements help to
avoid the myopia of least-cost decision making (Herman et al.,
2015). Results aid policy makers to orient their investment
strategies towards their key requirements and aspirations.

Our study proposes a multi-scenario multi-objective decision-
making approach which addresses some limitations of the current
planning approach. Several conflicting performance goals includ-
ing the financial, engineering and environmental performance are
considered explicitly. Multiple sources of uncertainty in the form
of scenarios considered relevant by stakeholders are used in an
automated search for robust combinations of interventions. The
ensemble of scenarios consists of climate change impacted
hydrological flows, plausible water demands, environmentally
motivated abstraction reductions, and future energy prices. The
approach is demonstrated by exploring portfolios of alternative
water infrastructure and conservation investments for London’s
water supply for an estimate of conditions in 2035. We use visual
analytics to investigate the trade-offs between performance goals
and communicate the influence of specific interventions on a
portfolio’s performance. Robust portfolios from a multi-scenario
search are compared to those developed when considering only
historical conditions to highlight the benefits of explicitly
considering multiple futures within the investment portfolio
search. Visualizing the individual interventions implemented in
the identified portfolios from both single and multi-scenario
search aids the exploration of how the options affect the
robustness of the system. The proposed multi-scenario efficient
trade-off analysis is a valuable investment screening tool for utility
planners identifying robust infrastructure and conservation
investment bundles that provide benefits over a wide range of
future conditions. We believe such an approach is particularly
valuable where decisions on resource development are contested
and trade-offs need to be negotiated with stakeholders interested
in a diverse set of definitions for desirable system performance.
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The approach is described in the Methods section. Section 3
introduces the Thames basin water resource system, planning
context, and details the optimization formulation and the
scenarios of future conditions. Results are presented in Section 4
and discussed in Section 5.

2. Methods

Least-cost optimal plans are typically identified using baseline
historical conditions and tested against multiple realizations of
future conditions, particularly in the UK planning context
(Environment Agency et al., 2012; Thames Water, 2013). Linking
to this standard evaluation scheme we apply a many-objective
approach considering a range of supply and demand management
interventions as decisions and a combination of financial,
engineering and environmental objectives (detailed in Section 3.1).
A deterministic baseline is developed using only historical
hydrological conditions and demands estimated for the year
2035 (i.e., a single deterministic scenario of the future) as a
preliminary screening for the Thames basin water supply and
demand investments. We then implement a multi-scenario many-
objective optimization approach that incorporates multiple
plausible realizations of future conditions of concern to planners
with the same problem formulation as above, with the only
difference being that the objective values are assessed across the
ensemble of scenarios. Decisions are evaluated against all possible
combinations of considered future changes in external conditions;
solutions that work well across the multiple future states are
sought via the multi-objective multi-scenario optimization. The
results of the two approaches are then compared. Lastly, solutions
from the deterministic optimization are subjected to the multiple
scenarios of the 2nd problem. Deterministic solution performance
is contrasted with that of the multi-scenario solutions to assess the
advantages of considering multiple futures whilst searching. Fig. 1
illustrates the steps performed in this study.
Fig. 1. Flow chart showing the steps of the two approaches followed in the study.
Two separate optimizations, deterministic (left) and multi-scenario (right), were
performed and the results analyzed. The deterministic solutions were then
simulated against the multiple scenarios and their performance was compared to
that of the multi-scenario solutions.
2.1. Simulation-Optimization framework

This study applies a multi-objective evolutionary algorithm
(MOEA) linked to a water resource system simulator where the
simulator is used to assess the performance of different portfolios.
MOEAs are heuristic global search algorithms that simulate the
process of natural evolution and are able to optimize over many
objectives (Coello Coello et al., 2007). Rather than generating a
single optimal solution, MOEAs produce Pareto optimal sets of
solutions, i.e., solutions which cannot be further improved in one
objective without simultaneously reducing performance in anoth-
er (Coello Coello et al., 2007; Kollat and Reed, 2006). When dealing
with complex ‘real-world’ problems the “true” Pareto optimal set is
unknown; a close approximation of the Pareto optimal set is
therefore generally sought (Herman et al., 2014), hence our use of
the term ‘Pareto-approximate’ or ‘approximately Pareto optimal’.
For simplicity this is referred to as Pareto optimal in the following
text. MOEAs coupled with simulation have been shown to be
suitable for complex water resource management and planning
applications (Maier et al., 2014; Nicklow et al., 2010; Reed et al.,
2013), including reservoir operation (Chang et al., 2005; Chang and
Chang, 2009; Giuliani et al., 2014; Hurford et al., 2014), and urban
water supply operation (Cui and Kuczera, 2003, 2005). This study
utilizes the Epsilon-dominance Non-dominated Sorting Genetic
Algorithm II (e-NSGAII) (Kollat and Reed, 2006), a description of
which is provided in the Supplementary material.

The MOEA is linked to an Interactive River-Aquifer Simulation
2010 (IRAS-2010) (Matrosov et al., 2011) model of the Thames
basin water resource system. The MOEA generates decision
variables such as reservoir capacity which are passed to the
simulation model as input in addition to other input variables such
as inflows, network composition, operating rules, etc. The latter
then simulates the system quantifying flow and storage at system
nodes (reservoirs, junctions, abstractions, aquifers, treatment and
desalination plants, etc.) and links (rivers, pipes, water transfers)
using a weekly time step. Performance metrics such as supply
reliability are calculated at the end of the simulation and passed to
MOEA as objective values. The optimization objectives can
therefore be explicitly based on the physical performance of the
system. IRAS-2010 Thames model has been shown to successfully
emulate a model maintained by the environmental regulator
Environment Agency (Matrosov et al., 2011). Surface storage in the
basin is aggregated into a single reservoir node, the London
Aggregate Storage (LAS), while the main demand in the system is
represented by the London aggregate demand.

3. Case study

The Thames basin is located in the south-east of England and is
the driest part of Britain with an average annual precipitation of
just 500 mm (Wilby and Harris, 2006). The population density is
four times higher than that of the rest of England, which results in
more than half of the effective rainfall being used for the public
water supply (Merrett, 2007). Water availability in the region is
threatened by possible changes in rainfall patterns. The UK Climate
Projections (UKCP09) (Murphy et al., 2009) estimate a 15% increase
in winter precipitation and an 18% decrease in summer in the
London area under the SRES A1B medium emissions scenario when
compared to the 1961–1980 baseline conditions (Environment
Agency, 2009). Thames Water Utilities Ltd. (TWUL), which
manages most of the Thames basin water resources, projects a
25% increase in population in the region by 2040 (Thames Water,
2014). This “expected” future is nevertheless highly uncertain. The
Thames basin with existing and possible new water resource
infrastructure is shown in Fig. 2. A description of the supply and



Fig. 2. Current and possible future supply options in the River Thames basin (adopted from Matrosov et al., 2015).
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demand management interventions as well as the basin is
provided in the Supplementary material.

The non-linear seasonal Lower Thames Control Diagram (LTCD)
(refer to Matrosov et al., 2011; and the Supplementary material)
specifies when drought-alleviating supply schemes should be
activated based on the London Aggregate Storage (LAS) volumes.
The LTCD also dictates when the minimum environmental flows in
the Thames downstream of all abstractions at Teddington should
be lowered and when water-use restrictions are imposed. The
thresholds vary depending on the period of the year. The Levels of
Service (LoS) then specify the maximum frequency of imposing the
associated water-use restrictions on customers (Table 1), which are
used as constraints in our problem formulation (Section 3.1).

Planners use the ‘Economics of Balancing Supply and Demand’
(EBSD) framework (Padula et al., 2013; UKWIR, 2002) to identify
the least-cost portfolio of new water supply and conservation
interventions. EBSD is a planning method that seeks to minimize
the financial costs of meeting future water demands over a 25–
30 year planning horizon given portfolios of different supply and
demand management interventions and Levels of Service.
Although the current least-cost planning guidelines do consider
financial, social and environmental costs, they require monetiza-
tion and aggregation of all criteria (Environment Agency et al.,
2012; Padula et al., 2013). The Water Resources Planning Guide-
lines (WRPG) (Environment Agency et al., 2012) encourage water
companies to iterate over the identified least-cost plan to find the
optimum balance between the financial, environmental and social
Table 1
Constraint values based on LTCD diagram and TWUL's Levels of Service (Thames Wate

LTCD Demand Level Average annual frequency of restri

1 1 in 5 years 

2 1 in 10 years 

3 1 in 20 years 

4 Never 
costs as well as non-monetary environmental benefits. The final
plans are tested for their supply reliability and resilience. These
tests are however performed post-optimization. Our proposed
approach explicitly takes into account these metrics within the
optimization and helps to identify plans that demonstrate all of
these characteristics. The metrics are described in the following
section and the Supplementary material.

3.1. Many-objective problem formulation

The London water supply problem described above was
formulated to demonstrate the benefits of incorporating many
performance objectives within the optimization of alternative
investment portfolios. This section describes the objectives,
decisions, and constraints used in the formulation. The perfor-
mance objectives in this study consider the financial (capital,
f CapCost , and energy, f Energy, cost), engineering (supply deficit, f SupDef ,
reliability, f SupRel, and resilience, f SupRes) and environmental (eco-
deficit, f Eco) performance of the system. Some of the objectives
used in the previous study (Matrosov et al., 2015) were changed
after a consultation with stakeholders. In particular, the operating
cost objective here includes only the cost of energy required to
operate the system to assess the effects of possible energy price
change explicitly. The resilience objective that minimizes the
duration of failures considers the maximum duration of failure
here instead of the average duration in the previous study. The
environmental performance is assessed by comparing the natural
r, 2014).

ctions Constraint value referring to supply reliability

C1�80%
C2� 90%
C3� 95%
C4 = 100%
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and simulated flows in the river Thames rather than using the
shortage index associated with a fixed river flow volume as was the
case previously. The storage vulnerability objective maximizing
the minimum aggregate storage level in the previous study is not
included here as the reliability and resilience objectives were
considered sufficient to assess the London’s aggregate storage
performance. The same proposed future supply and demand
management interventions are considered as decisions as in
Matrosov et al. (2015). These include the Upper Thames Reservoir,
River Severn Transfer, Northern Transfer, Columbus transfer, South
London Artificial Recharge Scheme (SLARS), a water reuse scheme
and a new desalination plant (Fig. 2). Demand management
options include active leakage control, a pipe repair campaign (i.e.,
main pipes replacement), water efficiency improvements, instal-
lation of meters, and implementation of seasonal tariffs. The Upper
Thames Reservoir, River Severn Transfer, and Northern Transfer
supply interventions are mutually exclusive where only one of
these interventions can be implemented within a single portfolio.

This study considers two formulations: a deterministic
approach and a multi-scenario approach. The deterministic
approach where the portfolios are evaluated against a single
future scenario based on historical conditions uses a single value
for each objective. In the multi-scenario optimization portfolios
are identified as robust when they perform satisfactorily well over
the considered range of external conditions in the form of
scenarios. The performance metrics are calculated for each future
scenario in the same way as for the deterministic case. We then
calculate the average and the worst 95th percentile of values
obtained from all scenarios to assess performance across the
ensemble of scenarios. The percentile values here do not have a
probabilistic interpretation but refer to the fraction of considered
cases where an outcome occurs. Water planners are typically risk
averse and will want to consider system performance under
stressful conditions. The worst 95th percentile performance value
reflects how a candidate solution would perform if nearly worst-
case conditions occurred and is applied to metrics related to
system failure (in our study, reliability and resilience).

The feasibility of portfolios is constrained by the mutual
exclusivity of certain supply interventions and by meeting the
minimum Levels of Service across the ensemble of scenarios
(Table 1). In this work we assume water managers are interested in
solutions that are able to satisfy today’s minimum performance
levels over a wide range of plausible future conditions. For this
reason, current Levels of Service are applied to all future scenarios
as constraints. The failure frequency, i.e., the frequency of imposing
demand restrictions (Table 1), is calculated for each scenario. If a
candidate solution violates any of the constraints in any scenario, it
is not brought forward into the trade-off space. Keeping the current
Levels of Service limits the solutions to only those that would be
acceptable under current planning goals. This does not consider
that, in response to a changing climate, future managers may
decide 2015-era Levels of Service are too strict. The problem
formulation is defined by Eqs. (1)–(3):

Minimize F xð Þ ¼ f CapCost; f SupDef ; f SupRes; �f SupRel; f Eco; f Energy
� �

ð1Þ

x ¼ Yi; Capif g

Yi 2 0; 1f g8i 2 V

subject to Ck� FRk (2)
Si2ME Yi � 1 ð3Þ
where x is a vector representing a portfolio of supply and demand
interventions, Yi is a binary variable representing the inclusion of
intervention i in portfolio x (1 means the intervention is included
and 0 not included), Capi is a real variable associated with the
capacity/release value of intervention i, V represents the whole
decision space, ck is a constraint associated with Level of Service
(LoS) k, FRk is the value of maximum failure frequency in each
scenario allowed for LoS k, and ME represents the set of mutually
exclusive interventions. The individual objectives and constraints
are described in more detail in the Supplementary material.

3.2. Scenarios of future conditions

One of the most widely applied approaches to incorporate
uncertainties into planning is using scenarios of plausible future
conditions. The economic regulator for the UK water industry
Ofwat (Ofwat, 2013) requires water companies to assess key risks
of their proposed plan. Planners evaluate these risks post
optimization by testing their preferred plans against plausible
futures using scenario simulation. However, the preferred least-
cost portfolio is still identified considering only baseline historical
conditions. TWUL identified and used for scenario testing four
external conditions with the highest potential to adversely impact
their water resources system, based on Ofwat’s recommendations
(Thames Water, 2014). These include climate change impact on
hydrological flows, demand growth, sustainability reductions from
stricter environmental regulations and energy prices. The scenari-
os for the four uncertainties were selected by TWUL to span the
range of conditions that they would like their system to be able to
respond to (Thames Water, 2014). For the purpose of our study we
use the same scenarios as identified by TWUL and consider all of
their possible combinations for the simplicity and ease of
communication. The ensemble, which is incorporated within the
optimization, includes 11 hydrological flow scenarios, 2 demand
levels, 2 sustainability reductions levels and 2 energy price
scenarios resulting in the total of 88 scenarios of future conditions
(Table 2).

3.2.1. Supply-side scenarios
The WRPG guidelines (Environment Agency et al., 2012) require

assessing the effects of climate change on the supply availability
and recommend four different approaches to do so. Two of these
approaches use 11 Future Flows (FFs) hydrological flow scenarios.
The FFs scenarios represent equally probable hydrological scenari-
os characterized by future climate change impacted river flow
time-series. The time-series were developed by the ‘Future Flows
and Groundwater Levels’ project (Prudhomme et al., 2013) and are
available from the National River Flow Archive (NRFA) online
database (Centre for Ecology and Hydrology, 2012). The scenarios
were derived from the set of transient climate projections obtained
from the Met Office Hadley Centre Regional Climate Model
(HadRM3-PPE) by dynamically downscaling the global climate
model (Hadley Centre for Climate Predictions and Research, 2008).
The model was run for the UK climate projections under the
historical and medium emissions scenario (SRES A1B) and was also
used to derive the UK Climate Projections scenarios produced in
2009 (UKCP09) (Murphy et al., 2009). TWUL applied FFs for their
scenario testing (Thames Water, 2014). The SRES emission
scenarios (IPCC, 2000) provide emission projections assuming
no mitigation policies; the IPCC has recently produced the
Representative Concentration Pathways (RCP) scenarios that take
into account the current legislation on air pollutants projecting



Table 2
Future scenarios. All combinations of future conditions were considered in the multi-scenario robust optimization.

Uncertainty dimension Number of scenarios Future conditions

Hydrology 11 See Section 3.2.1
Water demand 2 2325 ML/day

2558 ML/day

‘Sustainability reductions’ to water licenses 2 No reduction (current licensed)
Total of 175 ML/day reduction

Energy unit price 2 13 p/kWh
35 p/kWh

Total number of scenarios 88
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lower anthropogenic emissions (Kirtman et al., 2013). Climate
projections obtained using the RCP scenarios may therefore
provide different magnitude of change for temperature and
precipitation.

The flow time-series for the Thames basin were generated by
the hybrid hydrological model CLASSIC (Crooks and Naden, 2007),
a semi-distributed grid-based rainfall–runoff model that uses a
combination of regionalized and catchment calibrated parameters.
The entire time series of all 11 members of the Future Flows
scenario ensemble (afgcx, afixa, afixc, afixh, afixi, afixj, afixk, afixl,
afixm, afixo, and afixq) covers the period between 1950 and 2098
(Prudhomme et al., 2013).

This study uses a 30-year period (2020–2050) of all 11 scenarios
for simulating demands and energy prices estimated for 2035
where each of these 30 years is assumed to represent possible
conditions in the year 2035. A more detailed description, analysis
and justification of the used time-series is provided in the
Supplementary material.

3.2.2. Socio-economic and regulatory scenarios
The scenarios representing the socio-economic and regulatory

uncertainties for the year 2035 were chosen based on TWUL’s
estimates (Thames Water, 2014) and the Ofwat’s recommenda-
tions (Ofwat, 2013). The socio-economic uncertainty is repre-
sented by two demand projection scenarios and two energy prices
scenarios. The two demand scenarios use the estimate of demands
for 2035 of 2325 Ml/d and 2558 Ml/d, a 10% increase. These values
are adjusted for each month of the year by applying monthly
factors used by the Environment Agency’s commercial Aquator
model. The demand of 2325 Ml/d was estimated by TWUL (Thames
Water, 2014) based on the WRPG recommendations to incorporate
the population growth estimations from local authorities and
several assumptions such as continuation of the current metering
policies, maintaining leakage at the 2015 levels, etc. (Environment
Agency et al., 2012). The 10% increase is used by TWUL to account
for the errors in estimates (Thames Water, 2014).

The energy price scenarios include an energy cost of 13p/kWh
and 35p/kWh. The estimate of 13p/kWh uses the Department of
Climate and Energy medium forecasts for industrial energy prices.
The increase to 35p/kWh was estimated by TWUL by doubling the
forecasted price to account for possible carbon price increases,
network replacements and upgrades, energy price increases, etc.
(Thames Water, 2014).

The institutional uncertainty is represented by two sustain-
ability reduction scenarios. These reflect a possible reduction in the
licensed abstraction volumes for water companies. TWUL current-
ly abstracts from several locations on the River Thames and River
Lee. The IRAS-2010 Thames model aggregates the surface water
abstractions to a single abstraction node upstream of Teddington
Weir on the River Thames and downstream of Feildes Weir on the
River Lee, as well as a single groundwater abstraction point for the
whole basin. The reductions are therefore applied to these single
abstraction nodes. One scenario assumes no license change (i.e.,
that the company will be able to abstract the current volumes in
2035) while the other includes a reduction of 25 ML/d in
groundwater and 100 ML/d and 50 ML/d in surface water from
the River Thames and River Lee, respectively, provided by the
Environment Agency as a plausible future reduction (Thames
Water, 2014).

3.3. Computational details

The deterministic optimization was performed using a 30-year
historical time-series of river flows (1970–2000) with a weekly
time-step and demand and energy estimates for the year 2035. As
in Matrosov et al. (2015) this implies that we use 30 years of
historical hydrology to represent hydrological conditions that we
assume to be representative of those that may occur in the year
2035. The MOEA optimization was run for 25,000 function
evaluations (FEs) 50 times, each with a different random seed
value to lessen the influence of random number generation on the
results. As the “true” Pareto optimal set is unknown, close
approximation to this set was sought (Section 2.1). The reference
set (obtained by non-dominated sorting of the 50 solution sets
where any dominated solution, i.e., a solution that does not
perform better against any objective when compared to the other
solutions, thus is not Pareto optimal, is discarded) was almost
identical to the Pareto optimal solutions obtained from a single
seed analysis.

The MOEA algorithm in the multi-scenario optimization was
run for 50,000 FEs with 10 random seeds. In the multi-scenario
runs, a higher number of function evaluations were required due to
the computational complexity of solving that case. Fewer random
seeds (10) were used here than in the deterministic case (50) in
order to reduce the computational burden. The obtained reference
set again closely resembles the Pareto optimal solutions from a
single seed analysis.

4. Results

4.1. Deterministic optimization analysis

In this section we present the deterministic optimization
results where only a single future scenario based on historical
conditions is considered. The many-dimensional visualization
offers a rich view into high performing combinations of
interventions and their impacts (as demonstrated in Matrosov
et al. (2015)). That study showed how progressively visualizing the
performance dimensions helps communicate many-dimensional
trade-offs and aids stakeholder understanding and deliberation. In
this paper we assume stakeholders are familiar with multi-
dimensional trade-off interpretation and show plots with all
dimensions of performance (six) concurrently and focus on
displaying graphically the benefits of incorporating uncertainty
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explicitly within investment screening. The Pareto optimal
solutions here differ slightly from the solutions in our previous
study due to different objectives used and the shorter simulation
period in the former.

Fig. 3 shows the full set of Pareto optimal portfolios obtained
from the six objective optimization. The figure reveals two distinct
“fronts” with one front skewed to the right, i.e., higher capital costs
(shown on x axis in Fig. 3) are required to achieve identical
reliability between the right and left fronts. By improving the
reliability of the system (downward direction on the vertical axis)
one can also decrease supply deficits (shown on y axis in Fig. 3).
Nevertheless, many perfect reliability solutions (at the bottom
plane of the cube in Fig. 3) exhibit varied supply deficit that
decreases with higher capital investment. The color scale
distinguishes the portfolios according to their environmental
performance, i.e., the eco-deficit objective. The red points
represent the highest eco-deficit, i.e., the worst environmental
performance, while the blue points show the lowest achievable
eco-deficit, i.e., the lowest environmental impact. Portfolios with
the same level of reliability differ in terms of their environmental
performance; reducing the eco-deficit requires higher capital
investment. The orientation of the cones in Fig. 3 shows the
resilience of the portfolios where the cones pointing upwards
indicate the worst resilience, i.e., the longest maximum duration of
LTCD Demand Level 3 failure, while the cones pointing downwards
show the best achievable resilience. This performance objective is
strongly correlated with reliability; improving the system’s supply
reliability also increases the supply resilience, i.e., reduces the
duration of the failure state.

Visualizing the energy cost objective, however, reveals poten-
tially unexpected information about the system. This objective is
represented by the size of the cones in Fig. 3 where the bigger the
cone the higher the average annual operating cost the portfolio
requires. Both of the two distinct fronts (discussed further in
Section 4.2.2) indicate that improving the system’s engineering
and environmental performance requires higher energy use. More
importantly, the portfolios on the left hand side front in Fig. 3
exhibit higher energy cost requirements than the portfolios on the
Fig. 3. Pareto optimal portfolios obtained by deterministic optimization. The
principal axes show the capital cost, supply deficit and reliability objectives. The
eco-deficit objective is depicted by the color scale; the red solutions illustrate the
highest eco-deficit while the blue solutions show the lowest eco-deficit. The
orientation of the cones illustrates the resilience of portfolios and the size of the
cones the energy cost requirements. Cones pointing upwards indicate worst
resilience while cones pointing downwards the best resilience; the bigger the cone
the higher energy use the portfolio requires. The arrows point towards the direction
of preference, i.e., the ideal point would lie in the lower central corner of the cube
and its cone would be of the smallest size, blue color and pointing directly
downwards. Given the inherent trade-offs between the objectives, such perfor-
mance cannot be achieved. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
right hand side of the plot. Although the latter require higher
capital investment to achieve similar engineering performance,
these portfolios are also able to achieve lower eco-deficit (color in
Fig. 3) than the former. Furthermore, lower average annual energy
cost requirements might influence the total long-term cost of a
portfolio.

4.2. Comparison of deterministic and multi-scenario optimization
results

4.2.1. Portfolio performance
Fig. 4 illustrates how the Pareto front changes when we

incorporate multiple sources of uncertainty in the form of
scenarios into the optimization. The individual objectives are
represented as defined in Fig. 3. The translucent points show the
deterministic optimization results analyzed in the previous section
while the full colored points show the multi-scenario optimization
Pareto optimal portfolios. The figure indicates the uncertainties
cause the objective space to shrink and shift slightly towards the
right hand side of the cube, i.e., towards higher capital investment.
Achieving absolute reliability under a range of plausible futures
requires higher capital investment than when only deterministic
conditions are considered. The range of the objective values is
lower for the multi-scenario solutions than for the deterministic
solutions. For instance, the annualized capital cost of portfolios
varies between £18.2m/a and £65.6m/a for the former while the
latter has values between £9.1m/a and £64.4m/a. This suggests that
the higher variability of external conditions requires higher capital
investment to maintain good engineering and environmental
performance.

The multi-scenario optimization solutions (full-colored cones
in Fig. 4) achieve similar levels of reliability and resilience in varied
conditions with better environmental performance at the expense
of higher capital and operating costs as compared to the
Fig. 4. Multi-scenario Pareto optimal portfolio trade-offs (full color cones)
compared to the deterministic Pareto optimal portfolio trade-offs (translucent
cones). The multi-scenario optimization objective space shrinks and shifts towards
higher capital and energy cost requirements (i.e., the full color cones positioned
further from the ideal point on the capital cost axis and bigger than the translucent
cones). These multi-scenario efficient portfolios attain good engineering perfor-
mance despite the higher variability of stresses while outperforming the
deterministic portfolios in the ecological objective (color scale). Please note that
the translucent deterministic solutions and the full colored multi-scenario
solutions were evaluated against different future conditions and are therefore
not directly comparable. The plot highlights how the optimal space changes and
shifts when multiple sources of uncertainty are considered.(For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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deterministic solutions (translucent cones). It is worth noting,
however, that the highest energy cost value does not significantly
exceed the highest value obtained by deterministic optimization.
The similar engineering performance of the two Pareto optimal
sets of portfolios can be explained by the Levels of Service
constraints ensuring the acceptability of the system’s behavior
under varying future conditions. The two distinct fronts present in
the multi-scenario results differ in terms of the operating cost
requirements as was the case in the deterministic solution set
(Fig. 3).

4.2.2. Portfolio composition
Fig. 5 compares portfolio composition (i.e., how interventions

map to the performance objective space) between the determin-
istic (left) and multi-scenario (right) results in the same view as
shown in Figs. 3 and 4. The size of the cones illustrates the energy
cost requirements of portfolios. The color represents the imple-
mentation of the mutually exclusive supply options; green cones
show portfolios that include the Upper Thames Reservoir (UTR),
the red colored portfolios incorporate the unsupported River
Severn Transfer (RST), and blue cones depict portfolios that do not
implement any of these. The deterministic Pareto optimal
portfolios implement a combination of these. When none of these
new supply interventions are implemented portfolios require the
lowest capital investment but have the worst supply reliability.
Most of the Pareto optimal portfolios implement the UTR and only
a fraction implement the RST. The latter (red points in Fig. 5)
exhibit perfect reliability but these portfolios require the highest
operating energy use, possibly making them impractical in the
long-term. None of the multi-scenario Pareto optimal portfolios
(right panel in Fig. 5) implement the transfer intervention which
requires higher capital and operating costs than the reservoir; all
build the UTR reservoir.

The orientation of cones in Fig. 5 indicates implementation of
the Pipe repair demand management intervention for the London
Water Resource Zone (WRZ); cones pointing upwards depict
portfolios that include the Pipe repair campaign while cones
pointing downwards show portfolios that do not. Both panels show
a combination of portfolios with and without the Pipe repair
campaign creating the two distinct fronts. Portfolios implementing
Fig. 5. Comparison of portfolio composition between the deterministic and multi-scenar
and 4. Cone size represents the portfolio energy cost while color shows which of the mu
whether or not each portfolio implemented the London pipe repair campaign. Implemen
cones pointing downwards) the pipe repairs divides the trade-off space into two distinct 

is referred to the web version of this article.)
this intervention require higher capital investment but exhibit
better environmental performance (color of cones in Fig. 4) and
demand lower energy use (size of cones in Fig. 5) than the
portfolios on the left front. This suggests the demand management
interventions may help improve the system’s performance with
reduced energy consumption. All of the multi-scenario Pareto
optimal solutions implement all the other demand management
interventions for the London WRZ (i.e., active leakage control,
efficiency improvement, metering, and seasonal tariffs). Demand
management interventions may therefore be considered to
increase the robustness of plans against uncertain future
conditions.

4.3. How deterministic solutions would perform under uncertainty

Intervention portfolios developed whilst considering only
historical conditions (i.e., deterministic optimization) might not
perform well under conditions that are possible in an uncertain
future. To demonstrate the potential bias in this approach we select
six representative solutions (supply and demand management
portfolios) from the deterministic Pareto optimal front. The six
portfolios are highlighted in Fig. 6 by full color points while the
translucent points depict the whole set of Pareto optimal solutions
from the deterministic (left) and multi-scenario (right) optimiza-
tion. The portfolios are distinguished by indicative names
reflecting their capital investment requirements or implementa-
tion of one of the mutually exclusive supply interventions. The
Least Cost portfolio does not implement any of the mutually
exclusive strategic supply interventions and requires the lowest
capital investment. The Reservoir 1 and 2 portfolios build the UTR,
exhibit the same performance against the reliability objective but
differ in the capital investment requirements. The more expensive
Reservoir 2 portfolio implements the Pipe repair campaign
demand management intervention for the London WRZ, while
the cheaper Reservoir 1 portfolio does not. The Reservoir 3
portfolio also implements the UTR and Pipe repair campaign but
requires even higher capital investment which results in perfect
reliability. The Transfer portfolio implements the RST and achieves
100% reliability. The Highest Cost portfolio achieves perfect
reliability by implementing all considered supply (including
io Pareto optimal solutions. The cardinal axes show the same objectives as in Figs. 3
tually exclusive supply interventions was implemented. Cone orientation indicates
ting (lighter colored cones pointing upwards) or not implementing (darker colored
fronts.(For interpretation of the references to colour in this figure legend, the reader



Fig. 6. Six representative deterministic (left) Pareto optimal portfolios (large full
color spheres in the left panel) were simulated under the 88 future scenarios. The
performance of these solutions over the future scenarios is compared to that of the
multi-scenario Pareto-approximate optimal solutions (full color spheres vs
translucent cones, respectively, in the right panel). Only two portfolios (Reservoir
3, Highest Cost) satisfy the LoS constraints when subjected to the multiple scenarios
but are dominated by other portfolios (they show higher capital costs than
portfolios with the same reliability). Please note that while these two solutions
were Pareto optimal under deterministic conditions, they are not Pareto optimal
under the 88 possible scenarios. The two-dimensional plots are projections of a six-
objective frontier onto a two-dimensional surface and as such show only the trade-
off between the two plotted dimensions.(For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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UTR) and the majority of demand interventions and requires the
highest capital investment.

The six solutions were simulated under the same 88 scenarios
that were used in the multi-scenario optimization. When
subjected to the multi-scenario conditions only two of the six
portfolios satisfy the LoS constraints as calculated over the
scenario ensemble. The performance of these two portfolios
(Reservoir 3 and Highest Cost) under multiple future conditions is
shown in the right panel in Fig. 6 (full color points) and compared
to the multi-scenario Pareto optimal portfolios (translucent cones
in the right panel of Fig. 6). These two solutions exhibit worse
reliability performance under the 88 future scenarios than they did
under the deterministic analysis. In fact, both of these portfolios
exhibit worse performance in all other objectives under uncer-
tainty (summarized in Table 3). The operating costs show the
highest difference indicating that to satisfy the Levels of Service
under higher variability of conditions the system would need to
operate more intensively resulting in higher operating expendi-
ture.

To illustrate the importance of incorporating uncertainty
directly into the optimization the whole deterministic Pareto
optimal set of solutions was simulated over the 88 scenarios. Only
40% of this set satisfied LoS constraints when calculated over all 88
plausible future scenarios. These surviving solutions were then
sorted amongst each other to preserve only the dominating
solutions in the set, discarding majority of these solutions. Only 3%
Table 3
Performance comparison of the Reservoir 3 and Highest Cost portfolios depicted in Fig

Objective Reservoir 3 

Deterministic Mul

Supply deficit (%) 1.20 2.63
Supply resilience (weeks) 0 8 

Supply reliability (%) 100 99.5
Eco-deficit (%) 56 57 

Energy cost (£m/a) 5.56 7.87
of the original deterministic Pareto optimal solutions were left.
While these solutions were Pareto optimal under deterministic
conditions, they are not Pareto optimal under the 88 possible
scenarios.

Fig. 7 illustrates how the performance of these remaining
solutions compares to that of the multi-scenario Pareto optimal
solutions. The latter are shown as opaque while the former are
depicted by translucent points. The two panels show two different
views of the same solution sets. When subjected to the 88 future
scenarios, the remaining deterministic solutions (translucent
spheres in Fig. 7) are dominated by the multi-scenario Pareto
optimal solutions (full color spheres in Fig. 7), i.e., they can no
longer be considered Pareto optimal. The translucent portfolios
require higher capital investment and energy use (shown by the
size of points in Fig. 7) to achieve the same levels of reliability than
the full colored portfolios (that are located in the same position
regarding the vertical axis of Fig. 7a). The latter also require lower
capital investment and energy use to maintain the same levels of
supply deficit than the former, also exhibiting better environmen-
tal performance (shown by color in Fig. 7). This is particularly
visible in Fig. 7b where the same set of portfolios as in Fig. 7a is
shown in different view; the reliability and supply deficit axes
were switched and the plot rotated anticlockwise. The full colored
spheres require lower capital and operating cost as they are closer
to the ideal point with respect to the capital cost axis and of lower
size than the translucent spheres.

5. Discussion

5.1. Many-objective optimization

Water resource systems serve stakeholders with complex and
varying interests who may have differing preferences regarding
how the system should be able to adapt in the context of future
uncertainty (Heffernan, 2012). It is therefore desirable to integrate
these multiple needs in the decision making process (Simpson,
2014) and provide decision-makers with the ability to consider the
broader consequences of various decisions (Loucks, 2012). Multi-
objective optimization allows planners to incorporate different
and often conflicting preferences into decision making. Optimizing
for these preferences explicitly, without the need to monetize and
aggregate them into a single objective, allows decision makers to
visually assess the trade-offs that different investments imply.
Trade-offs can facilitate stakeholder deliberations post optimiza-
tion and provide planners with a rich view into high performing
intervention portfolios that otherwise would remain hidden if
lower dimensional analysis (monetary only) was used. In the
Thames basin, reducing capital investments negatively affects the
engineering and environmental performance of the system (Fig. 3).
Higher capital investment results in maintaining good engineering
and environmental performance whilst saving on energy costs.
Decision makers who value reliability and good environmental
performance without a large increase in energy use may choose a
plan from the portfolios in the lower part of the right front in Fig. 3.
. 6 between the deterministic and multi-scenario conditions.

Highest Cost

ti-scenario Deterministic Multi-scenario

 0.35 1.35
0 2

0 100 99.87
51 54

 9.30 13.69



Fig. 7. Deterministic Pareto optimal solutions that comply with the LoS constraints under the multi-scenario conditions (translucent points) and the multi-scenario Pareto
optimal solutions (full colored points) visualized together. The cardinal axes show the same objectives as Figs. 3, 4 and 5. Color represents the environmental performance of
portfolios while the size of the points indicates their energy costs. The deterministic solutions are dominated by the multi-scenario efficient solutions (i.e., their positions,
colors, and sizes are further away from the ideal point than the multi-scenario solutions). Whilst deterministic solutions were Pareto optimal under historical conditions, they
are not Pareto optimal under the 88 plausible scenarios.(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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5.2. Incorporating uncertainties into many-objective optimization

When planning under uncertainty planners should ensure their
system is able to cope with a wide range of plausible futures. Our
study illustrates that taking into account multiple performance
objectives and planning for robustness can be achieved concur-
rently. Deterministic optimization of the Thames water resource
system interventions considering only the historical flow record
was compared to a multi-scenario optimization which considered
multiple sources of uncertainty. We found that using historical
flow records to assess future system investments can provide
biased information about individual portfolios, i.e., make them
seem favorable when in fact they do not perform well in many
alternate plausible futures. Fig. 6 illustrated how the performance
of six representative solutions from the deterministic optimization
analysis changes subject to multiple sources of uncertainty. Only
two solutions remain feasible (Reservoir 3 and Highest Cost in
Fig. 6) but show worse performance against the optimized
objectives than suggested by the deterministic approach (Table 3).
In total 60% of portfolios considered Pareto optimal in the
deterministic analysis fail under the wider set of future conditions
with only 3% of the original set surviving non-dominated sorting
(see the first paragraph of Section 3.3). Fig. 7 showed that the
multi-scenario portfolios perform better with respect to the
environmental and economic objectives than the survived
deterministic portfolios. By incorporating uncertainty directly
into the optimization process one identifies robust solutions that
perform well under a range of plausible future states.

5.3. Visual analytics

Visualizing the Pareto optimal set of solutions in the many-
dimensional objective space allows decision makers to discover
how the different system performance objectives conflict and
interact with each other. Many objectives may be represented by
other visualization techniques such as parallel plots (Rosenberg,
2015). The many-dimensional trade-off scatter plots presented
here highlight the interactions and conflicts between the
objectives for the purpose of this study. In our experience
communicating the information provided by many-objective
trade-off plots to decision makers is best done by visualizing
dimensions progressively. The many-dimensional plot of Fig. 3
only represents the final stage of the exploration. The progressive
introduction of dimensions within trade-off plots is explored by
Matrosov et al. (2015). Visualizing and exploring the Pareto
optimal portfolios progressively may aid the learning and decision
making process and help justify to interested parties why a certain
intervention was selected. Decision makers are given the
opportunity to decide the balance between performance prefer-
ences a posteriori. Visual analytics can provide the means to
compare the deterministic and multi-scenario optimization
objective spaces as well as how and why their Pareto optimal
portfolios differ.

Robust interventions can be identified by their presence in the
Pareto optimal solutions obtained from the multi-scenario
optimization. Fig. 5 showed that although some deterministic
Pareto optimal portfolios implement the unsupported River Severn
Transfer instead of the Upper Thames Reservoir, none of the multi-
scenario portfolios select the more expensive and less reliable
transfer. In contrast, the UTR is implemented in all of the multi-
scenario portfolios. This suggests that, given how the system is
currently modeled, the reservoir intervention improves the system
design’s robustness against a variety of future conditions. Similarly,
the Pipe repair demand management intervention improves the
system’s performance under the considered range of future
conditions. Further analysis showed that all the other demand
management interventions are implemented in all the robust
portfolios in the London WRZ. Water companies generally prefer
implementing supply-side measures to plan for future deficits
(Charlton and Arnell, 2011) but our results suggest that reducing
demand by implementing demand management interventions
increases plan robustness. These interventions do not require
energy unlike the majority of supply interventions, do not rely on
uncertain hydrological flows and are likely appropriate strategies
for relatively water scarce systems in the face of uncertainty.

5.4. Limitations and future work

Future conditions in this study were represented in a limited
way. The set of 11 Future Flow scenarios is recommended for the
climate change impact assessment in the UK by regulators and
used in the Thames basin water resource system planning



226 I. Huskova et al. / Global Environmental Change 41 (2016) 216–227
(Environment Agency et al., 2012; Thames Water, 2014). The 30-
year flow time-series used here (2020–2050) may be considered
quasi-stationary at best; just over half of the scenarios do not
exhibit transient characteristics during this time period (see
Supplementary material). Transient time-series, where the prob-
ability distribution that characterizes the flow at any given time
period changes progressively as time moves forward, are not
appropriate for studies considering a static snapshot of a system’s
performance in time. The sample of water demand, energy prices
and sustainability reductions was suitable in the particular
planning context (chosen in consultation with stakeholders) but
it does not represent a wide range of possibilities; only 2 different
states for each were represented. We acknowledge the short-
comings of using a limited number of scenarios as well as estimates
based on the extrapolations of current socio-economic trends to
consider uncertainty of future conditions. The purpose of the study
is to highlight the possible improvements to the current planning
approach in England, one of which is using the scenarios to identify
the robust portfolios instead of evaluating the deterministic least-
cost portfolio against each of those separately. In future, a larger
more diverse scenario set could be sampled and more advanced
sampling techniques could be used.

Identifying robust combinations of assets is valuable but it does
not fully serve the planning processes where investments must be
chosen and prioritized over time. The approach as applied here did
not recommend a schedule of implementation (as does the current
EBSD approach); this is left to future work which will need to
consider, and trade-off, the value of flexibility (Woodward et al.,
2014) and adaptation (Haasnoot et al., 2013; Hamarat et al., 2014).

The proposed approach is computationally intensive, even
when only 88 scenarios are considered. Our multi-scenario
optimization ran in 46 h on 96 CPU cores. Further increasing the
number of possible future scenarios increases the number of their
combinations exponentially. Evaluating each candidate portfolio
against such a large ensemble poses significant computational
challenges. The ability of the MOEA optimization algorithm to
converge to the true Pareto optimal front becomes increasingly
difficult to demonstrate. Here we performed a random seed
analysis for the multi-scenario optimization with 10 different
random seeds (see Kollat and Reed (2006) for more details) while
the deterministic optimization random seed analysis checked the
approximation to the true Pareto optimal set using 50 random
seeds. As more scenarios are used, it might be increasingly harder
to verify the approximation sufficiently.

6. Conclusions

This paper proposed an approach to identify and visually
display robust plans for water resource systems that meet many
financial, engineering and ecological goals. The approach was
applied to identifying portfolios of new water supplies and
demand management interventions that could meet London’s
estimated water supply demands in 2035. Proposed portfolios
were evaluated against the following metrics: annualized capital
cost, maximum annual supply deficit, supply resilience, supply
reliability, hydro-ecological deficits and annual average energy
cost. Future portfolios were also assessed against multiple
scenarios of future climate change impacted hydrological flows,
water demands, environmentally motivated abstraction reduc-
tions, and energy prices. To identify the most robust portfolios
amongst the many available options we used a search algorithm
(many-objective evolutionary algorithm) linked to a water
resource system simulator.

Results were presented via many-dimensional visualizations
that help decision-makers consider how the performance objec-
tives trade-off with each other for the portfolios identified as
Pareto optimal. Plots can also show how options are distributed
within the Pareto front and how they influence the system’s
performance. The study was designed to show the benefits of
considering multiple plausible futures to optimize a complex
system, rather than a single deterministic scenario. Only 3% of
deterministic Pareto optimal solutions perform satisfactorily well
under the set of plausible future conditions chosen by stakeholders
in our study. Multi-scenario optimization identified portfolios that
dominate those suggested by deterministic optimization. Explor-
ing the Pareto optimal portfolios of supply and demand
interventions helps identifying robust interventions that provide
benefits over a wide range of futures including those with
conditions similar to today.
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